文档库 最新最全的文档下载
当前位置:文档库 › 12级人文学院研究生学术沙龙

12级人文学院研究生学术沙龙

12级人文学院研究生学术沙龙
12级人文学院研究生学术沙龙

12级人文学院研究生学术沙龙

2012级人文学院研究生

学术沙龙

12级人文学院研究生学术沙龙

一、参与对象: 12级全体在籍学生

二、活动地点:16栋103

三、活动时间: 2012年10月26日星期五晚上7:00

四、活动目的:学术沙龙旨在充分发挥学术交流作为原始创新源头之一的作用,营造自由进行探究、鼓励学术争鸣、活跃学术思想、促进原始创新的环境,弘扬敢于质疑、勇于创新、宽容失败的精神,为萌芽时期尚未获得学术主流认可的学术思想、理论观点以及学术灵感提供一个宽松、自由、平等的交流平台,力求在我院班级里营造一种开放、轻松的学术交流氛围,引导学生运用自身专业知识就身边时事进行学术探讨,最终在同学中间形成自发的学术讨论和研究意识。并且促进各自专业的学生之间的交流,更好的展开学术沙龙活动。

五、活动流程:

(一)前期准备

1、本活动将以专业为单位,合作成为一个团队,分为法学、古代

文学、思政、政治经济、科社五个团队,共同举办学术沙龙2、本活动会召集班委召开简短会议,向班级各同学发通知和申请

表,积极做好活动宣传和解释工作

3、由班委或者专业老师确定议题,议题将通知一起下发至班级每

个同学

4、学习委员(肖杨杨)做策划书,学术沙龙举办时间和地点由班

究意识

3、学术沙龙倡导大胆创新,倡导交流互动,倡导争辩质疑。要求与

会者观点新颖,言之有物,反对假话、空话和套话,不重复别人观点

4、强调互动和质疑,鼓励学术批评,在讨论争辩中“孵化”新思想

新观点,在质疑交锋中“孕育”学术创新。力求突出主题新颖性、学科交叉性和成果科学性

5、主题选定

政府信息公开与公众、人物隐私权

——从“表哥”和“房叔”案件说开6、主题的选定或者主题的剖析一定要具有本专业特色

七、评分表格:见附表

12级人文学院班委会

二O一二年十月十三日

学术沙龙评分表

产生红外吸收光谱必备的条件

1 产生红外吸收光谱必备的条件? 答:1 辐射后具有能满足物质产生振动跃迁所需的能量2分子振动有瞬间偶极距变化。 2 过度过冷现象对溶液的影响?避免过度过冷现象的方法? 溶液中析出固相的纯溶剂之后,剩余的溶液浓度增加,而在计算机中使用的却是原始浓度,从而引入误差,所以要避免过度的过冷现象。避免过度过冷现象的方法:①加入少量的晶种作为晶核。②增加搅拌速度。 4简答:红外区可分为哪几个区?答:①近红外区,②中红外区或基频红外区, ③远红外区。 5 简述红外光谱,紫外光谱,核磁共振谱以及质谱各自的原理. 答:1.当分子振动引起分子偶极矩变化时,就能形成稳定的交变电场,其频率与分子振动频率相同,可以和相同频率的红外辐射发生相互作用,使分子吸收红外辐射的能量跃迁到高能态,从而产生红外吸收光谱. 2.紫外光谱是分子中电子吸收的变化而产生的,当样品分子或原子吸收电子后外层电子由基态跃迁到激发态.不同结构的样品分子其跃迁方式不同,而且吸收光的波长范围不同,吸光的频率也不同,可根据波长范围吸光度鉴别不同物质结构方面的差异. 3.当原子核吸收的辐射能量与核能级相等时,就发生能级跃迁,从而产生核磁共振信号. 4.质谱分析法是通过对样品离子的质量和强度的测定来进行成分和结构分析的一种方法. 6简述几种主要因素影响差热分析仪所测结果答案:1.样品量:样品量少,样品分辨率高,但灵敏度下降,一般根据样品热效应大小调节样品量,一般为3~5mg。 2.升温速度,一般升温速度范围在每分钟5~20度。 3.气氛:一般使用惰性气体,

如N2、Ar、He等,气流速度恒定,控制在10ml/min,否则会引起基线波动。7.简述判断分子离子峰的方法. 第一,看质谱中质量最大的峰,多数情况下质谱中高质量端的峰就是分子离子峰;第二,最高质量的峰与临近碎片离子峰之间的质量差是否合理;第三,根据氮规则判断第四,如果分子离子峰太弱,或经过判断后认为分子离子峰没有出现,可通过改进实验技术测定相对分子质量。 8简要说明质谱分析的原理、特点?答案:质谱分析方法是通过样品离子的质量个强度的测定来进行成分和结构分析的一种方法。特点:1应用范围广:可以进行同位素分析,又可做有机结构分析,可以是气、固、液样品2灵敏度高,样品用量少,灵敏度高达50pg50*10-12,用微克量级的样品,即可得到分析结果。 3分析速度快,可实现多组分同时检测。4但仪器结构复杂,价格昂贵。 9拉曼光谱与红外光谱的不同之处有哪些? 答:拉曼光谱红外光谱 光谱范围40~400,光谱范围400~4000 水不能作为溶剂,水能作为溶剂 样品可盛放于玻璃容器,不能玻璃容器盛放样品 样品表面可直接测定;测定时须研磨成KBr压片 10氢谱谱峰发生分裂,产生自旋—自旋裂分现象的原因? 答:这是由于在分子内部相邻碳原子上氢核自旋会相互干扰,通过成键电子之间的传递,形成相邻质子之间的自旋—自旋耦合,而导致自旋—自旋裂分。 11熔体破裂现象---不稳定流动 答案:高聚物熔体在挤出时,如果剪切速率超过某个极限值时,从口模处理的挤

学术沙龙策划

XX学院研究生学术沙龙活动策划书 一、活动名称 学术沙龙 二、活动背景 1、活动主题: 交流学术心得,互相促进,共同提高,学会如何高效完成科研工作。 2、活动目的: 邀请不同专业学术达人,分享科研经历,给出生涯建议,搭建一个研究生之间相互沟通的平台,提供一个交流心得并且发现人才、锻炼人才和培养人才的机会,营造轻松、活泼、自由的氛围,让广大研究生同学从实验室走出来,在相互学习的同时,丰富他们的课外生活。 3、活动宗旨 相互学习,共同进步,共同提高 三、活动对象 所有本科生、研究生 四、活动时间 XXX年XX月XX日:19点开始(时间暂定,可灵活调整) 五、活动地点 XXXX活动室 六、举办单位 主办:学术部

协办:宣传部等 七、活动项目 《学术沙龙》 1、活动流程: (1)开场:主持人简短地介绍这次学术沙龙 (2)之后由主持人简短地介绍这次学术沙龙的环节(主要是两个环节,一是嘉宾分享自己的学术经验;二是观众提问环节,嘉宾与现场观众互动交流),以及介绍一下请到的嘉宾,学术沙龙正式开始。 (3)嘉宾先做简单的自我介绍,然后通过PPT展示(多放图片)来介绍自己学术或出国学习的经历和经验。 (4)观众提问环节,不需要站起来,举手发言即可。 (5)根据活动剩余时间而定,可以添加游戏环节,拉近距离。 (6)合影留念。 2、活动形式:沙龙座谈的形式,嘉宾和观众围坐。嘉宾以PPT进行展示和分享。 八、活动开展 1、申请好活动地点,并提前准备小礼物,水果和饮用水等。 2、活动周期间由各班班长负责通知本班;并在微信公众号发出推送。 3、活动过程中学术部为主要负责部门,推选一名主要负责人;其他部门至少派两人至现场协助活动举办(需提前到会场,进行会场布置等。具体任务分配再定),并参与沙龙。 4、活动时间预计2-3小时。 5、活动预计观众人数达到20-30人(本科生和研究生)。

红外光谱与拉曼光谱的异同点

红外光谱与拉曼光谱的异同点 红外光谱又叫做红外吸收光谱,它是红外光子与分子振动、转动的量子化能级共振产生吸收而产生的特征吸收光谱曲线。要产生这一种效应,需要分子内部有一定的极性,也就是说存在分子内的电偶极矩。在光子与分子相互作用时,通过电偶极矩跃迁发生了相互作用。因此,那些没有极性的分子或者对称性的分子,因为不存在电偶极矩,基本上是没有红外吸收光谱效应的。 拉曼光谱一般也是发生在红外区,它不是吸收光谱,而是在入射光子与分子振动、转动量子化能级共振后以另外一个频率出射光子。入射和出射光子的能量差等于参与相互作用的分子振动、转动跃迁能级。与红外吸收光谱不同,拉曼光谱是一种阶数更高的光子——分子相互作用,要比红外吸收光谱的强度弱很多。但是由于它产生的机理是电四极矩或者磁偶极矩跃迁,并不需要分子本身带有极性,因此特别适合那些没有极性的对称分子的检测。 一、相同点在于: 对于一个给定的化学键,其红外吸收频率与拉曼位移相等,均代表振动能级的能量。因此,对某一给定的化合物,某些峰的红外吸收波数和拉曼位移完全相同,红外吸收波数与拉曼位移均在红外光区,两者都反映分子的结构信息。拉曼光谱和红外光谱一样,也是用来检测物质分子的振动和转动能级。 二、不同点在于: 两者产生的机理不同;红外光谱的入射光及检测光均为红外光,而拉曼光谱的入射光大多数是可见光,散射光也是可见光;红外光谱测定的是光的吸收,而拉曼测定的是光的散射;红外光谱对于水溶液、单晶和聚合物的检测比较困难,但拉曼光谱几乎可以不必特别制样处理就可以进行分析,比较方便;红外光谱不可以用水做溶剂,但是拉曼可以,水似拉曼光谱的一种优良溶剂;拉曼光谱的是利用可见光获得的,所以拉曼光谱可用普通的玻璃毛细管做样品池,拉曼散射光能全部透过玻璃,而红外光谱的样品池需要特殊材料做成的。 本质区别:红外是吸收光谱,拉曼是散射光谱;拉曼光谱光谱与红外光谱两种技术包含的信息通常是互补的。 主要区别:

研究生学术活动特点

研究生学术活动特点:第一,硕士研究生学术活动的“学习性”第二,硕士研究生学术活动目的的“双重性”第三,硕士研究生学术活动方式的“多样性”第四,硕士研究生学术活动成果的“一般性”研究生学术活动表现形式:独立自由研究式,参与式和学位论文研究(最主要,做独特的方式)常见学术活动开展形式:学术沙龙,学术论坛,学术讲座,学术会议,课题研究和论文写作。 文献调研是指为进行某项科学研究而开展的全面的信息检索和信息利用的活动。据相关统计数据显示,在科学研究中,花费在文献调研的时间占整个科研活动的51%。文献调研不仅是一种信息获取与利用的过程,他也是形成科学研究思路的过程,不仅能够了解他人研究的进展,避免撞车,同时也是获得研究突破口和切入点的重要手段学术研究前期工作中的学术不端(一)超量下载行为: 1.使用软件工具下载 2.整卷批量下载 3.短时间内连续系统的大量下载数字库资源4.通过代理服务器下载等等 第三章学术研究过程中的规范 3 1自然科学研究中的学术规范自然科学研究具有具体性,经验性和精确性。实验设计的一般规范:a必须正确地列出要通过实验解答的各项问题,即明确实验的目的b 必须在兼顾所要求的精度和可能碰到的实验难点的条件下正确地选用实验方法 c 必须正确选定实验的一般数学模型,即历次观测的数目、周期和相互关系数据的整理与分析原则:误差分析、数据整理原则、数据管理规范。数据的真实性,严谨性原则,规范性原则(实验数据是通过图表的形式来报道的,图表有很多种格式,在数据报道时,可以选择自己熟悉,使用方便的格式或者采用学术期刊指定的格式。求实精神是科学精神的第一要义,根本要求是实事求是:坚持以“事实”为科学的认识对象,通过科学实践去“求是”,并把实践作为检验科学认识真理性的唯一标准。创新精神(来自于科学活动本质层面的精神) 做科研工作最重要的是:实事求是,追求真理和勇于创新。科学研究的学术不端:伪造数据;篡改数据;破坏研究工作;积极参与他人的科研不端行为;对他人伪造数据的行为知情不报;对监督职责的严重疏忽中国科学院认定的学术不端行为包括:1实验主体的变更,即项目执行人在项目进行的过程中由于各种因素而委托项目组之外的人员代为实施项目的行为2伪造实验样本及相关实验活动一份规范的实验报告包括:实验名称,实验目的,实验原理,实验仪器,实验内容,数据的记录及其处理,分析讨论道德原则主要包括: 1 自愿原则,强调知情同意的绝对必然性2有益性原则,所有研究都必须评估利害比例的合理性,风险务必降至最低,且利益必须大于风险 关于加强学风建设的决定: 1. 提倡理论联系实际的作风,反对闭门造车,生搬硬套2. 提倡为科学献身的精神,反对沽名钓誉,追逐功利3. 提倡严谨求实的治学态度,反对粗疏浮躁,弄虚作假4. 提倡开拓创新的进取精神,反对因循守旧,固步自封5. 尊重他人研究成果和权益,反对抄袭剽窃,不实挂名6. 提倡朴实凝练的文风,反对故弄玄虚,言之无物7. 提倡积极健康的学术评论,反对阿谀吹捧,恶语相向 8. 提倡团结协作,反对门户之见社会科学研究活动中的学术失范行为 社会科学研究活动中的学术失范行为: 1. 伪注,伪造,篡改文献和数据等行为 2. 引用他人成果,数据,思想等,没有详细列出有关文献出处3. 抄袭,剽窃或侵吞他人学术成果,学术观点,学术思想4. 捏造事实 5. 为得出某种主观期望的结论,投机取巧,断章取义,片面给出与客观事实不符的研究结论 6. 在未参与工作的研究成果中署名7. 请人代写文章或代他人写文章8. 在项目中期检查中做虚假的陈述9. 在学术研究活动中违背社会道

红外光谱与拉曼光谱的区别

红外光谱与拉曼光谱的区别 1) 拉曼谱峰比较尖锐,识别混合物,特别是识别无机混合物要比红外光谱容易。 2) 在鉴定有机化合物方面,红外光谱具有较大的优势,主要原因是红外光谱的标准数据库比拉曼光谱的丰富。 3)在鉴定无机化合物方面,拉曼光谱仪获得400cm-1以下的谱图信息要比红外光谱仪容易得多。所以一般说来,无机化合物的拉曼光谱信息量比红外光谱的大。4)拉曼光谱与红外光谱可以互相补充、互相佐证。 红外光谱与拉曼光谱的比较 1、相同点 对于一个给定的化学键,其红外吸收频率与拉曼位移相等,均代表第一振动能级的能量。因此,对某一给定的化合物,某些峰的红外吸收波数与拉曼位移完全相同,红外吸收波数与拉曼位移均在红外光区,两者都反映分子的结构信息。 2、不同点 (1)红外光谱的入射光及检测光均是红外光,而拉曼光谱的入射光大多数是可见光,散射光也是可见光; (2)红外谱测定的是光的吸收,横坐标用波数或波长表示,而拉曼光谱测定的是光的散射,横坐标是拉曼位移; (3)两者的产生机理不同。红外吸收是由于振动引起分子偶极矩或电荷分布变化产生的。拉曼散射是由于键上电子云分布产生瞬间变形引起暂时极化,是极化率的改变,产生诱导偶极,当返回基态时发生的散射。散射的同时电子云也恢复原态; (4)红外光谱用能斯特灯、碳化硅棒或白炽线圈作光源而拉曼光谱仪用激光作光源;(5)用拉曼光谱分析时,样品不需前处理。而用红外光谱分析样品时,样品要经过前处理,液体样品常用液膜法和液体样品常用液膜法,固体样品可用调糊法,高分子化合物常用薄膜法,体样品的测定可使用窗板间隔为2.5-10 cm的大容量气体池; (6)红外光谱主要反映分子的官能团,而拉曼光谱主要反映分子的骨架主要用于分析生物大分子;(7)拉曼光谱和红外光谱可以互相补充,对于具有对称中心的分子来说,具有一互斥规则:与对称中心有对称关系的振动,红外不可见,拉曼可见;与对称中心无对称关系的振动,红外可见,拉曼不可见。 拉曼光谱和红外光谱的区别 红外光谱和拉曼光谱都属于分子振动光谱,都是研究分子结构的有力手段。红外光谱测定的是样品的透射光谱。当红外光穿过样品时,样品分子中的基团吸收红外光产生振动,使偶极矩发生变化,得到红外吸收光谱。拉曼光谱测定的是样品的发射光谱。当单色激光照射在样品上时,分子的极化率发生变化,产生拉曼散射,检测器检测到的是拉曼散射光。 单色激光照射样品后,产生瑞利散射和拉曼散射。瑞利散射是激光的弹性散射,不负载样品的任何信息。拉曼散射又分为斯托克斯散射和反斯托克斯散射,拉曼散射负载有样品的信息。

拉曼光谱、红外光谱、XPS的原理及应用..

拉曼光谱的原理及应用 拉曼光谱由于近几年来以下几项技术的集中发展而有了更广泛的应用。这些技术是:CCD 检测系统在近红外区域的高灵敏性,体积小而功率大的二极管激光器,与激发激光及信号过滤整合的光纤探头。这些产品连同高口径短焦距的分光光度计,提供了低荧光本底而高质量的拉曼光谱以及体积小、容易使用的拉曼光谱仪。 (一)含义 光照射到物质上发生弹性散射和非弹性散射. 弹性散射的散射光是与激发光波长相同的成分.非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征 (二)拉曼散射光谱具有以下明显的特征: a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关; b. 在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量。 c. 一般情况下,斯托克斯线比反斯托克斯线的强度大。这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。 (三)拉曼光谱技术的优越性 提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。此外 1 由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。 2 拉曼一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析。相反,若让红外光谱覆盖相同的区间则必须改变光栅、光束分离器、滤波器和检测器 3 拉曼光谱谱峰清晰尖锐,更适合定量研究、数据库搜索、以及运用差异分析进行定性研究。在化学结构分析中,独立的拉曼区间的强度可以和功能集团的数量相关。 4 因为激光束的直径在它的聚焦部位通常只有0.2-2毫米,常规拉曼光谱只需要少量的样品就可以得到。这是拉曼光谱相对常规红外光谱一个很大的优势。而且,拉曼显微镜物镜可将激光束进一步聚焦至20微米甚至更小,可分析更小面积的样品。 5 共振拉曼效应可以用来有选择性地增强大生物分子特个发色基团的振动,这些发色基团的拉曼光强能被选择性地增强1000到10000倍。 (四)几种重要的拉曼光谱分析技术 1、单道检测的拉曼光谱分析技术 2、以CCD为代表的多通道探测器用于拉曼光谱的检测仪的分析技术 3、采用傅立叶变换技术的FT-Raman光谱分析技术 4、共振拉曼光谱分析技术 5、表面增强拉曼效应分析技术 (五) 拉曼频移,拉曼光谱与分子极化率的关系 1、拉曼频移:散射光频与激发光频之差,取决于分子振动能级的改变,所以它是特征的,

学术沙龙策划书--XX大学

学 术 沙 龙 策 划 书 策划人:XX 主办单位:济南大学研究生会承办单位:济南大学研究生会学术部

一、活动目的 “倘若你有一个苹果,我也有一个苹果,而我们彼此交换这些苹果,那么你和我仍然是各有一个苹果。但是,倘若你有一种思想,我也有一种思想,而我们彼此交换这些思想,那么,我们每人将有两种思想。”——萧伯纳学术沙龙旨在为研究生及老师提供交换思想的平台,扩大同学们的知识面,锻炼同学的思维、逻辑以及语言表达能力,进一步培养和提升学生的学术思维和学术习惯。同时提供与老师交流的平台,在与老师的对话中,解决自己的疑问,提升自己的专业水平,有助于建立一个学习共同体。 二、活动名称 济南大学研究生学术沙龙活动 三、活动宗旨 拟:“热爱生活,热爱科学” 四、活动主题 拟:关于学术研究方法和创新 五、活动时间 ×年×月×日——×年×月×日 六、活动地点

拟:济南大学第二学术报告厅 七、主办单位 济南大学研究生会 八、参加人员 (1)全体研究生、老师 (2)特邀嘉宾: (3)媒体: 九、活动准备 1、学术部商讨学术沙龙活动主题、主讲人和主持人; 2、确定活动开展具体时间、地点,由部内人员申请教室和多媒体设备; 3、由宣传部和学术部共同担任此次学术沙龙活动的宣传工作,确保宣传到位; 4、征集报名者,确定参加此次活动的主要人员,具体到姓名、班级、电话、专业,并告之主题; 5、由研究生会主席和学术部部长邀请嘉宾,并告之主题; 6、邀请宣传部成员,对本次活动进行报道、拍摄等; 8、申请活动经费;

9、准备、制作活动所需材料,例如:条幅。 十、活动流程 1、主持人开场白——向大家介绍沙龙活动,介绍到场嘉宾、主讲人和主要参与者; 2、由研究生会主席致辞; 3、主持人引出活动主题; 4、主讲人利用PPT对主题进行讲解; 5、同学提出问题和想法,自由讨论,老师也一同参与; 6、主持人总结,由老师对主题进行分析和点评,扩展思路; 7、主持人总结此次活动; 9、期间拍照留念。 10、活动结束后学术部负责此次活动的总结并备案。 十一、注意事项 1、事先向主要参加此次活动的人员提供与主题相应的材料; 2、参与主讲的人员到场签到; 3、主讲人之间,主讲人与主持人之间应当事先沟通; 4、活动开始前40分钟学术部、秘书处、宣传部全体成员必须到场,佩戴工作牌,各司其职,到场签到,布置场地,试好投影仪,音响等; 5、主持人职能:

红外拉曼光谱复习题

红外、拉曼光谱习题 三.问答题 1. 分子的每一个振动自由度是否都能产生一个红外吸收?为什么? 答:(1)产生条件:激发能与分子的振动能级差相匹配,同时有偶极矩的变化。并非所有的分子振动都会产生红外吸收光谱,具有红外吸收活性,只有发生偶极矩的变化时才会产生红外光谱。 (2)产生红外吸收的条件: 1)红外辐射的能量应与振动能级差相匹配。即 v E E ?=光; 2)分子在振动过程中偶极矩的变化必须不等于零。 故只有那些可以产生瞬间偶极距变化的振动才能产生红外吸收。 2. 如何用红外光谱区别下列各对化合物? a P-CH 3-Ph-COOH 和Ph-COOCH 3 b 苯酚和环己醇 答:a 、在红外谱图中P-CH 3-Ph-COOH 有如下特征峰:vOH 以3000cm-1为中心 有一宽而散的峰。而Ph-COOCH3没有。 b 、苯酚有苯环的特征峰:即苯环的骨架振动在1625~1450cm-1之间,有几个 吸收峰,而环己醇没有。 3. 下列振动中哪些不会产生红外吸收峰? (1)CO 的对称伸缩 (2)CH 3CN 中C —C 键的对称伸缩 (3)乙烯中的下列四种振动 (A ) (B ) (C ) (D )

答:(1)0 ≠ ?μ,有红外吸收峰 (2)0 ≠ ?μ,有红外吸收峰 (3)只有D无偶极矩变化,无红外吸收峰 4、下列化合物在红外光谱中哪一段有吸收?各由什么类型振动引起? HO— CH = O CH3—CO2CH2C≡CH (A)(B) 答:(A)HO C-H :v OH3700~3200cm-1 δOH1300~1165cm-1 v CH(O)2820~2720cm-1双峰 v C=O1740~1720cm-1 苯骨架振动:1650~1450 cm-1 苯对位取代:860~800 cm-1 v=CH3100~3000cm-1 (B)CH3—COCH2C≡CH : v C=O1750~1735cm-1 v C—O—C1300~1000cm-1 v C≡C2300~2100cm-1 v≡CH3300~3200cm-1 v as C—H2962±10cm-1、2926±5cm-1 v s C—H2872±10cm-1、2853±10cm-1 δas C—H1450±20cm-1、1465±20cm-1 δs C—H1380~1370cm-1 5、红外光谱(图10-28)表示分子式为C8H9O2N的一种化合物,其结构与下列结构式哪一个符合? O

第8章红外光谱分析

第八章红外光谱分析自测试题 一、判断题(对的打√, 错的打×) 1、Cl 2、H2O分子的振动可以引起红外吸收而产生吸收谱带。( ×) 2、在红外光谱中≡C-H 的吸收波数大于 -CH2-H。(√) 3、化合物的不饱和度为2时, 化合物中可能含有两个双键, 或一个双键和一个环, 或一个三键。(√) 4、红外光谱可区别分子的顺反异构,但不能区分手性分子。(√) 5、烯烃分子的对称性越强,C=C双键的振动吸收越强。( ×) 6、H2O分子中的H-O-H对称伸缩振动不产生红外吸收。( ×) 7、从红外光谱有无羰基的特征吸收可区分醇和酸。(√) 二、选择题 1、下面四种气体,不吸收红外光的有( D ) A、H2O B、CO2 C、CH4 D、N2 2、在有机化合物的红外吸收光谱分析中,出现在4000~1350cm-1频率范围的吸收峰可用于鉴定官能团,这一段频率范围称为( B ) A、指纹区 B、基团频率区 C、基频区 D、和频区 3、并不是所有的分子振动形式其相应的红外谱带都能观察到,这是因为:( B ) A、分子既有振动运动,又有转动运动,太复杂 B、分子中有些振动能量是简并的 C、分子中某些振动能量相互抵消了 D、因为分子中有H、C、H、O以外的原子存在 4、甲烷分子的振动自由度是( C ) A、5 B、6 C、9 D、10 5.丁二烯中C=C伸缩振动如下:有红外活性的是(B )

A.CH2═CH—CH═CH2B.CH2═CH—CH═CH2 A.A B.B C.A、B都有D.A、B都没有 6、某物质能吸收红外光波,产生红外吸收谱图,那么分子结构必然是( C ) A、具有不饱和键 B、具有共轭体系 C、发生偶极矩的净变化 D、具有对称性 7、红外光谱仪使用的光源是(B) A、空心阴极灯 B、能斯特灯 C、氘灯 D、碘钨灯 8、在含羰基的分子中,增加羰基的极性会使分子中该键的红外吸收带( B ) A、向高波数方向移动 B、向低波数方向移动 C、不移动 D、稍有振动 9、不考虑费米共振的影响,下列伸缩振动吸收峰最强的是(D) A、C—H B、N—H C、P—H D、O—H 10、羰基化合物,C=O伸缩振动频率出现最高者为(D) A、R—CO—R B、R—CO—Cl C、R—CO—H D、R—CO—F 11、下列化合物中,C═C伸缩振动吸收强度最大的化合物是( A )A.R—CH═CH2B.R—CH═CH—R’(顺式) C.R—CH═CH—R’(反式)D.R—CH═CH—R 12、某种化合物,其红外光谱上3000~2800 cm-1,1460 cm-1,1375 cm-1,720 cm-1等处有主要吸收带,该化合物可能是(A) A、烷烃 B、烯烃 C、炔烃 D、芳烃 13、一种氯苯的红外光谱图在900 cm-1,690cm-1间无吸收带,它的可能结构为(C) A、对二氯苯 B、间三氯苯 C、六氯苯 D、四取代氯苯

决定红外光谱普带频率和谱带强度的相关因素

一.决定红外光谱谱带频率的相关因素 基团频率主要是由基团中原子的质量和原子间的化学键力常数决定。然而,分子内部结构和外部环境的改变对它都有影响,因而同样的基团在不同的分子和不同的外界环境中,基团频率可能会有一个较大的范围。因此了解影响基团频率的因素,对解析红外光谱和推断分子%( 结构都十分有用。影响基团频率位移的因 素大致可分为内部因素和外部因素。 内部因素: 1. 电子效应包括诱导效应、共轭效应和中介效应,它们都是由于化学键的电子分布不均匀引起的。 (1)诱导效应( I 效应)由于取代基具有不同的电负性,通过静电诱导作用,引起分子中电子分布的变化。从而改变了键力常数,使基团的特征频率发生了位移。例如,一般电负性大的基团或原子吸电子能力强,与烷基酮羰基上的碳原子数相连时,由于诱导效应就会发生电子云由氧原子转向双键的中间,增加了 C=O 键的力常数,使 C=O 的振动频率升高,吸收峰向高波数移动。随着取代原子电负性的增大或取代数目的增加,诱导效应越强,吸收峰向高波数移动的程度越显著。 诱导效应 吸电子诱导效应使羰基双键性增加,振动频率增大。 (2)中介效应( M 效应)当含有孤对电子的原子( O、 S、 N 等)与具有多重键的原子相连时,也可起类似的共轭作用,称为中介效应。由于含有孤对电子的原子的共轭作用,使 C=O 上的电子云更移向氧原子, C=O 双键的电子云密度平均化,造成 C=O 键的力常数下降,使吸收频率向低波数位移。对同一基团,若诱导效应和中介效应同时存在,则振动频率最后位移的方向和程度,取决于这两种效应的结果。当诱导效应大于中介效应时,振动频率向高波数移动,反之,振动频率向低波数移动。 2 .氢键的影响氢键的形成使电子云密度平均化,从而使伸缩振动频率降低。游离羧酸的 C=O 键频率出现在 1760 cm-1 左右,在固体或液体中,由于羧酸形成二聚体, C=O 键频率出现在 1700 cm-1 。分子内氢键不受浓度影响,分子间氢键受浓度影响较大。 3. 振动耦合当两个振动频率相同或相近的基团相邻具有一公共原子时,由于一

红外光谱实验报告

红外光谱实验报告 一、实验原理: 1、红外光谱法特点: 由于许多化合物在红外区域产生特征光谱,因此红外光谱法广 泛应用于这些物质的定性和定量分析,特别是对聚合物的定性 分析,用其他化学和物理方法较为困难,而红外光谱法简便易 行,特别适用于聚合物分析。 2、红外光谱的产生和表示 红外光谱定义:分子吸收红外光引起的振动能级跃迁和转动能级跃 迁而产生的吸收信号。 分子发生振动能级跃迁需要的能量对应光波的红外区域分类为: i.近红外区:10000-4000cm-1 ⅱ.中红外区:4000-400cm-1——最为常用,大多数化合物的化键振 动能级的跃迁发生在这一区域。 ⅲ.远红外区:400-10cm-1 产生红外吸收光谱的必要条件: 1)分子振动:只有在振动过程中产生偶极矩变化时才能吸收红外辐射。 ⅰ.双原子分子的振动:(一种振动方式)理想状态模型——把两个 原子看做由弹簧连接的两个质点,用此来 描述即伸缩振动;

图1 双原子分子的振动模型 ⅱ.多原子分子的振动:(简正振动,依据键长和键角变化分两大类) 伸缩振动:对称伸缩振动 反对称伸缩振动 弯曲振动:面内弯曲:剪切式振动 (变形振动)平面摇摆振动 面外弯曲振动:扭曲振动 非平面摇摆振动 ※同一种键型,不对称伸缩振动频率大于对称伸缩振动频率,伸缩振动频率大于弯曲振动频率。 ※当振动频率和入射光的频率一致时,入射光就被吸收,因而同一基团基本上总是相对稳定地在某一特定范围内出现吸收峰。ⅲ.分子振动频率: 基频吸收(强吸收峰):基态到第一激发态所产生分子振动 的振动频率。 倍频吸收(弱吸收峰):基态到第二激发态,比基频高一倍 处弱吸收,振动频率约为基频两倍。 组频吸收(复合频吸收):多分子振动间相互作用,2个或2

红外光谱与拉曼光谱比较

拉曼光谱红外光谱 相同点给定基团的红外吸收波数与拉曼位移完全相同,两者均在红外光区,都反映分子的结构信息 产生机理电子云分布瞬间极化产生诱导偶极振动引起偶极矩或电荷分布变化 入射光可见光红外光 检测光可见光的散射红外光的吸收 谱带范围40-4000cm-1 400-4000cm-1 水可做溶剂不能作为溶剂 样品测试装置玻璃毛细管做样品池不能用玻璃仪器 制样固体样品可以直接测需要研磨制成溴化钾片 拉曼光谱红外光谱 拉曼位移相当于红外吸收频率。红外中能得到的信息在拉曼中也会出现。互补 拉曼光谱也同样有三要素,此外,还有退偏振比。解析三要素(峰位、峰强、峰形) 非极性基团谱带强(S-S、C-C、N-N)极性基团的谱带强烈(C=O、C-Cl) 容易表征碳链振动较容易测定链上的取代基红外光谱又叫做红外吸收光谱,它是红外光子与分子振动、转动的量子化能级共振产生吸收而产生的特征吸收光谱曲线。要产生这一种效应,需要分子内部有一定的极性,也就是说存在分子内的电偶极矩。在光子与分子相互作用时,通过电偶极矩跃迁发生了相互作用。因此,那些没有极性的分子或者对称性的分子,因为不存在电偶极矩,基本上是没有红外吸收光谱效应的。 拉曼光谱一般也是发生在红外区,它不是吸收光谱,而是在入射光子与分子振动、转动量子化能级共振后以另外一个频率出射光子。入射和出射光子的能量差等于参与相互作用的分子振动、转动跃迁能级。与红外吸收光谱不同,拉曼光谱是一种阶数更高的光子——分子相互作用,要比红外吸收光谱的强度弱很多。但是由于它产生的机理是电四极矩或者磁偶极矩跃迁,并不需要分子本身带有极性,因此特别适合那些没有极性的对称分子的检测。 相同点在于:对于一个给定的化学键,其红外吸收频率与拉曼位移相等,均代表第一振动能级的能量。因此,对某一给定的化合物,某些峰的红外吸收波数和拉曼位移完全相同,红外吸收波数与拉曼位移均在红外光区,两者都反映分子的结构信息。拉曼光谱和红外光谱一样,也是用来检测物质分子的振动和转动能级 不同点在于:两者产生的机理不同;红外光谱的入射光及检测光均为红外光,而拉曼光谱的入射光大多数是可见光,散射光也是可见光;红外光谱测定的是光的吸收,而拉曼测定的是光的散射;红外光谱对于水溶液、单晶和聚合物的检测比较困难,但拉曼光谱几乎可以不必特别制样处理就可以进行分析,比较方便;红外光谱不可以用水做溶剂,但是拉曼可以,水似拉曼光谱的一种优良溶剂;拉曼光谱的是利用可见光获得的,所以拉曼光谱可用普通的玻璃毛细管做样品池,拉曼散射光能全部透过玻璃,而红外光谱的样品池需要特殊材料做成的。 本质区别:红外是吸收光谱,拉曼是散射光谱;拉曼光谱光谱与红外光谱两种技术包含的信息通常是互补的。 主要区别:(1)光谱的选择性法则是不一样的,红外光谱是要求分子的偶极矩发生变化才能测到,而拉曼是分子的极化性发生变化才能测到; (2)红外很容易测量,而且信号很好,而拉曼的信号很弱; (3)使用的波长范围不一样,红外光谱使用的是红外光,尤其是中红外,而拉曼可选择的波长很多,从可见光到NIR,都可以使用;(4)拉曼和红外大多数时候都是互相补充的,就是说,红外强,拉曼弱,反之也是如此; (5)在鉴定有机化合物方面,红外光谱具有较大的优势,无机化合物的拉曼光谱信息量比红外光谱的大。 (6)理论基础和检测方法存在明显的不同。我们说物质分子总在不停地振动,这种振动是由各种简正振动叠加而成的。当简正振动能产生偶极矩的变化时,它能吸收相应的红外光,即这种简正振动具有红外活性;具有拉曼活性的简正振动,在振动时能产生极化度的变化,它能与入射光子产生能量交换,使散射光子的能量与入射光子的能量产生差别,这种能量的差别称为拉曼位移,它与分子振动的能级有关,拉曼位移的能量水平也处于红外光谱区。 红外光谱法的检测直接用红外光检测处于红外区的分子的振动和转动能量;而拉曼光谱法的检测是用可见激光来检测处于红外区的分子的振动和转动能量,它是一种间接的检测方法。

红外拉曼光谱练习题

红外、拉曼光谱习题 一. 选择题 1.红外光谱是( AE ) A :分子光谱 B :原子光谱 C :吸光光谱 D :电子光谱 E :振动光谱 2.当用红外光激发分子振动能级跃迁时,化学键越强,则( ACE ) A :吸收光子的能量越大 B :吸收光子的波长越长 C :吸收光子的频率越大 D :吸收光子的数目越多 E :吸收光子的波数越大 3.在下面各种振动模式中,不产生红外吸收的是(AC ) A :乙炔分子中对称伸缩振动 B :乙醚分子中不对称伸缩振动 C :CO 2分子中对称伸缩振动 D :H 2O 分子中对称伸缩振动 E :HCl 分子中H -Cl 键伸缩振动 4.下面五种气体,不吸收红外光的是( D ) A:O H 2 B:2CO C:HCl D:2N 5 分子不具有红外活性的,必须是( D ) A:分子的偶极矩为零 B:分子没有振动 C:非极性分子 D:分子振动时没有偶极矩变化 E:双原子分子 6.预测以下各个键的振动频率所落的区域,正确的是( ACD ) A:O-H伸缩振动数在4000~25001 -cm B:C-O 伸缩振动波数在2500~15001 -cm C:N-H 弯曲振动波数在4000~25001 -cm D:C-N 伸缩振动波数在1500~10001 -cm E:C ≡N 伸缩振动在1500~10001 -cm 7.下面给出五个化学键的力常数,如按简单双原子分子计算,则在红外光谱中波数最大者是( B ) A:乙烷中C-H 键,=k 5.1510?达因1 -?cm B: 乙炔中C-H 键, =k 5.9510?达因1 -?cm

C: 乙烷中C-C 键, =k 4.5510?达因1 -?cm D: CH 3C ≡N 中C ≡N 键, =k 17.5510?达因1 -?cm E:蚁醛中C=O 键, =k 12.3510?达因1 -?cm 8.基化合物中,当C=O 的一端接上电负性基团则( ACE ) A:羰基的双键性增强 B:羰基的双键性减小 C:羰基的共价键成分增加 D:羰基的极性键成分减小 E:使羰基的振动频率增大 9.以下五个化合物,羰基伸缩振动的红外吸收波数最大者是( E ) A: B: C: D: E: 10.共轭效应使双键性质按下面哪一种形式改变( ABCD ) A:使双键电子密度下降 B:双键略有伸长 C:使双键的力常数变小 D.使振动频率减小 E:使吸收光电子的波数增加 11.下五个化合物羰基伸缩振动的红外吸收波数最小的是( E ) A: B: C: D: E: 12.下面四个化合物中的C=C 伸缩振动频率最小的是( D ) A: B: C: D: 13.两 个化合物(1) ,(2) 如用红外光谱鉴别,主要依 据的谱带是( C )

红外光谱谱图质量影响因素汇总

红外光谱谱图质量影响因素汇总 1、扫描次数对红外谱图的影响:傅里叶变换红外光谱仪测量物质的光谱时, 检测器在接受样品光谱信号的同时也接受了噪声信号, 输出的光谱既包括样品的信号也包括噪声信号。 信噪比:与扫描次数的平方成正比。增加扫描次数可以减少噪声、增加谱图的光滑性。 2、扫描速度对红外谱图的影响:扫描速度减慢, 检测器接收能量增加; 反之, 扫描速度加快, 检测器接收能量减小。当测量信号小时( 包括使用某些附件时) 应降低动镜移动速度, 而在需要快速测量时,提高速度。扫描速度降低, 对操作环境要求更高, 因此应选择适当的值。 采用某一动镜移动速度下的背景, 测定不同扫描速度下样品的吸收谱图, 随扫描速度的加快, 谱图基线向上位移。用透射谱图表示时,趋势相反。所以在实验中测量背景的扫描速度与测量样品的扫描速度要一致。 3、分辨率对红外谱图的影响:红外光谱的分辨率等于最大光程差的倒数, 是由干涉仪动镜移动的距离决定的, 确切地说是由光程差计算出来的。分辨率提高可改善峰形, 但达到一定数值后, 再提高分辨率峰形变化不大, 反而噪声增加。分辨率降低可提高光谱的信噪比, 降低水汽吸收峰的影响, 使谱图的光滑性增加。 样品对红外光的吸收与样品的吸光系数有关,如果样品对红光外有很强的吸收, 就需要用较高的分辨率以获得较丰富的光谱信息;如果样品对红光外有较弱的吸收, 就必须降低光谱的分辨率、提高扫描次数以便得到较好的信噪比。 4、数据处理对红外谱图质量的影: (1)平滑处理:红外光谱实验中谱图常常不光滑,影响谱图质量。不光滑的原因除了样品吸潮以外还有环境的潮湿和噪声。平滑是减少来自各方面因素所产生的噪声信号, 但实际是降低了分辨率, 会影响峰位和峰强, 在定量分析时需特别注意。 (2)基线校正:在溴化钾压片制样中由于颗粒研磨得不够细或者不够均匀, 压出的锭片不够透明而出现红外光散射, 所以不管是用透射法测得的红外光谱,还是用反射法测得的光谱, 其光谱基线不可能在零基线上, 使光谱的基线出现漂移和倾斜现象。需要基线校正时,首先判断引起基线变化的原因, 能否进行校正。基线校正后会影响峰面积, 定量分析要慎重。 (3)样品量的控制对谱图的影响:在红外光谱实验中, 固体粉末样品不能直接压片, 必须用稀释剂稀释、研磨后才能压片。稀释剂溴化钾与样品的比例非常重要, 样品太少不行,样品太多则信息太丰富而特征峰不突出, 造成分析困难或吸收峰成平顶。对于白色样品或吸光系数小的样品, 稀释剂溴化钾与样品的比例是100:1; 对于有色样品或吸光系数大的样品稀释剂溴化钾与样品的比例是150:1。 5、影响吸收谱带的因素还有分子外和分子内的因素:如溶剂不同, 振动频率不同, 溶剂的极性不同, 介电常数不同, 引起溶质分子振动频率不同, 因为溶剂的极性会引起溶剂和溶 质的缔合, 从而改变吸收带的频率和强度。氢键的形成使振动频率向低波数移动、谱带加宽和强度增强(分子间氢键可以用稀释的办法消除, 分子内氢键不随溶液的浓度而改变)。 6、影响吸收谱带的其他因素还有:共轭效应、张力效应、诱导效应和振动耦合

红外光谱(1)

红外光谱:当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射,并使得这些吸收区域的透射光强度减弱。记录红外光的百分透射比与波长关系的曲线,即为红外光谱,所以又称之为红外吸收光谱。 红外吸收光谱基本原理:产生红外吸收的条件:红外光谱是由于分子振动能级(同时伴随转动能级)跃迁而产生的,物质吸收红外辐射应满足两个条件:1.红外辐射光的频率与分子振动的频率相当,才能满足分子振动能级跃迁所需的能量,而产生吸收光谱。2.必须是能引起分子偶极矩变化的振动才能产生红外吸收光谱。伸缩振动:以v表示,是沿着键的方向的振动,只改变键长,对键角没有影响,它的吸收频率相对在高波数区。 弯曲振动或变形振动:以δ表示,为垂直于化学键方向的振动,只改变键角而不影响键长,它的吸收频率相对在低波数区。 分子的红外活性:1.对称分子——没有偶极矩,辐射不能引起共振,无红外活性;例如:N2、O2、Cl2 均无红外吸收光谱。2.非对称分子——有偶极矩,具有红外活性。 炔烃特点:1.键越强,力常数k越大,振动频率越高(波数值大)。2.成键原子质量越大,振动频率越低(波数值小)。弯曲振动(C-H:1340cm-1)要比伸缩振动(C-H:3000cm-1)的振动频率小。(C三N伸缩振动:2252cm-1) 红外分析方法:1.液体样品:液膜法、溶液法;2.固体样品:压片法、调糊法、薄膜法; 紫外吸收带的强度:A=-logI/I0=εcl(A:吸光度,ε摩尔消光系数, c: 溶液的摩尔浓度,l: 样品池长度.I0、I分别为入射光、透射光的强度) 紫外-可见光谱:分子吸收紫外-可见光区10-800 nm的电磁波而产生的吸收光谱,简称紫外可见光谱。(紫外光谱只适用于分析分子中具有不饱和结构的化合物)紫外-可见光谱的基本原理:分子轨道和电子跃迁类型:1.分子轨道可分为成键分子轨道、反键分子轨道和非键分子轨道。2.电子跃迁主要是价电子吸收一定能量的光能由成键轨道跃迁到反键轨道,分子从基态变为激发态。通常有机化合物的价电子包括成键的ζ电子、π电子和非键电子。这些电子可能发生的跃迁类型有ζ→ζ?、π→π?、n →ζ?和n →π?等跃迁。电子跃迁吸收电磁波的波长取决于发生跃迁的两个分子轨道间的能量差。 生色基:产生紫外(或可见)吸收的不饱和基团(通常都含有π电子)。 助色基(助色效应):当具有非键电子的原子或基团连在双键或共轭体系上时,会形成非键电子与π电子的共轭(P-π共轭),从而使电子的活动范围增大,吸收向长波方向位移,颜色加深,这种效应称为助色效应。能产生助色效应的原子或原子团称为助色基。(-OH、-Cl、-NH2、-NR2、-SR) 红移现象:由于取代基或溶剂的影响使最大吸收峰向长波方向移动的现象称为红移现象。 蓝移现象:由于取代基或溶剂的影响使最大吸收峰向短波方向移动的现象。 增色效应:使ε值增加的效应称为增色效应。 减色效应:使ε值减少的效应称为减色效应。 溶剂的影响:苯胺在中性溶液中,于280 nm处有吸收,加酸后发生蓝移,且吸收强度减弱。当溶液由中性变为酸性时,若谱带发生蓝移,应考虑到可能有氨基与苯环的共轭结构的存在。苯酚在中性溶液中于270 nm处有吸收,加碱后发生红移,吸收波长为287 nm。当溶液由中性变为碱性时,若谱带发生红移时,应考虑到可能有羟基与芳环的共轭结构存在。

拉曼光谱与红外光谱的对比

红外光谱与拉曼光谱的对比 一.基本原理 红外光谱:是红外光子与分子振动、转动的量子化能级共振产生吸收而产生的特征吸收光谱曲线。要产生这一种效应,需要分子内部有一定的极性,也就是说存在分子内的电偶极矩。在光子与分子相互作用时,通过电偶极矩跃迁发生了相互作用。因此,那些没有极性的分子或者对称性的分子,因为不存在电偶极矩,基本上是没有红外吸收光谱效应的。 拉曼光谱:一般也是发生在红外区,它不是吸收光谱,而是在入射光子与分子振动、转动量子化能级共振后以另外一个频率出射光子。入射和出射光子的能量差等于参与相互作用的分子振动、转动跃迁能级。与红外吸收光谱不同,拉曼光谱是一种阶数更高的光子——分子相互作用,要比红外吸收光谱的强度弱很多。但是由于它产生的机理是电四极矩或者磁偶极矩跃迁,并不需要分子本身带有极性,因此特别适合那些没有极性的对称分子的检测。 相同点:对于一个给定的化学键,其红外吸收频率与拉曼位移相等,均代表第一振动能级的能量。因此,对某一给定的化合物,某些峰的红外吸收波数和拉曼位移完全相同,红外吸收波数与拉曼位移均在红外光区,两者都反映分子的结构信息。拉曼光谱和红外光谱一样,也是用来检测物质分子的振动和转动能级 不同点:两者产生的机理不同;红外光谱的入射光及检测光均为红外光,而拉曼光谱的入射光大多数是可见光,散射光也是可见光;红外光谱测定的是光的吸收,而拉曼测定的是光的散射; 二. 仪器构成 1.红外光谱 色散型红外光谱仪: 1.1光源:通常是一种惰性固体,用电加热使之发射高强度的连续红外辐射。 1.2 吸收池 1.3 单色器:由色散原件、准直镜和狭缝构成 1.4 检测器:常用的是真空热电偶、热释电检测器和碲镉汞检测器 Fourier变换红外光谱仪:没有色散元件,主要由光源(硅碳棒、高压汞灯)、

相关文档
相关文档 最新文档