文档库 最新最全的文档下载
当前位置:文档库 › 平移法在一类存在性问题中的应用

平移法在一类存在性问题中的应用

平移法在一类存在性问题中的应用
平移法在一类存在性问题中的应用

平移法在一类存在性问题中的应用

初中数学中“用坐标表示平移”这个知识点中,讲述了图形平移时,图形上各点坐标的变化具有如下规律:

①在平面直角坐标系中,将点(x,y)向右(或向左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或向下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).

②对一个图形平移,这个图形上所有点坐标都要发生相应变化;反过来,从图形上点的坐标的某种变化,可以看出对这个图形进行了怎样的平移.

灵活运用这些基本规律,可给我们解题带来便利,

例已知平面直角坐标系内三点A(2,1),B(3,-1),C(-2,2),在平面内求一点D,使以A、B、C、D为顶点的四边形是平行四边形,写出D点的坐标.

分析假若以A、B、C、D为顶点的平行四边形已经存在,则有三种情况(如图1,2,3):

图1可看作将A平移至B,C平移至D;

图2可看作将B平移至A,C平移至D;

图3可看作将C平移至A,B平移至D.

解设D点坐标为(x,y),则

①A(2,1)平移至8(3,-1)时,C(-2,2)平移至D(x,y),则

x=-2+1=-1,y=2-2=0,

故D(-1,0);

②当B(3,-1)平移至A(2,1)时,C(-2,2)平移至D(x,y),则

x=-2-1=-3,y=2+2=4,

故D(-3,4);

③当C(-2,2)平移至A(2,1)时,B(3,-1)平移至D(x,y),则

x=3+4=7,y=-1-1=-2,

故D(7,-2).

综上所述,满足条件的点D有三个:分别是D1(-1,0),D2(-3,4),D3,(7,-2).

思路梳理上述平移方式实质是相互等价的,那么,如何做到不重复不遗漏地平移呢?首先利用平移规律②,将线的平移转化成点的平移,例如“将线段AC沿线段AB平移至BD”可看作“将点A平移至B,按同样方式将C平移至D”,这样可减少研究对象

种类;然后依据点的平移结合例题解题过程,可得到如下规律:在已知三点中,任选一点作为标准,按“一出二进,由已知到未知”的顺序进行平移,就会做到不重不漏譬如上面例题,就是以A为标准,“一出”即A平移至B(A平移至C亦可);“二进”即B平移至A;C平移至A.“由已知到未知”即每次均为已知点平移至未知点.另外,A平移至B或B 平移至A时,AB为平行四边形的边;C平移至A时,AB为平行四边形的对角线.下面分类说明.

1、单动点问题

例1 (2013年湘潭中考题)如图4,在坐标系xOy中,△ABC是等腰直角三角形,∠

BAC=90°,A(1,0),B(0,2),抛物线y=1

2

x2+bx-2的图象过C点.

(1)求抛物线的解析式;

(2)平移该抛物线的对称轴所在直线l,

当l移动到何处时,恰好将△ABC的面积分为相等的两部分?

(3)点P是抛物线上一动点,是否存在点P,使四边形PACB为平行四边形?若存在,求出P点坐标;若不存在,说明理由.

分析运用平移规律解答本题问题(3)不仅思路简洁,且计算简便.

解由(1)知C(3,1),设P(x,y).

(i)若A(1,0)平移至B(0,2)时,C(3,1)平移至P(x,y),可得x=3-1=2,y=1+2=3,则P(2,3),此时P不在抛物线上,舍去.

(ii)若B(0,2)平移至A(1,0)时,C(3,1)平移至P(x,y),可得x=3+1=4,y=1-2=-1.则P(4,-1),此时P不在抛物线上,舍去.

(iii)若C(3,1)平移至A(1,0)时,B(0,2)平移至P(x,y),可得x=0-2=-2,y=2-1=1,则P(-2,1),此时P在抛物线上,故存在P(-2,1)使四边形PACB为平行四边形.

2、双动点问题

例2 (2013年昆明中考题)如图5,矩形OABC在平面直角坐标系xOy中,点A在x 轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O,A两点,直线AC交抛物线于点D.

(1)求抛物线的解析式;

(2)求点D的坐标;

(3)若点M在抛物线上,点N在x轴上,是否存在以

A,D,M,N为顶点的四边形是平行四边形?若存在,

求出点N的坐标;若不存在,请说明理由.

分析 本例问题(3)中,点M 、N 均为未知点,可先设出点M 、点N 坐标,并将M 或N 中的一个视为已知点,另一点作为未知点,仍可运用平移规律解题,这样既避免了繁杂的几何图形分析,又避开了几何推理.下面解法以A 、D 、N 为巳知点,A 为标准点.

3、多动点问题

例3 (2013年嘉兴中考题)如图6,在平面直角坐标系xOy 中,抛物线y =

14(x -m)2-14

m 2+m 的顶点为A ,与y 轴的交点为B ,连结AB ,AC ⊥AB ,交y 轴于点C ,延长CA 到点D .使AD =AC ,连结BD ,作AE ∥x 轴,DE ∥y 轴.

(1)当m =2时,求点B 的坐标;

(2)求DE 的长;

(3)①设点D 的坐标为(x ,y),求y 关于x

的函数关系式;②过点D 作AB 的平行线,与

第(3)①题确定的函数图象的另一个交点为

P ,当m 为何值时,以A ,B ,D ,P 为顶点的四边

形是平行四边形?

分析 本题问题(3)②中A 、B 、D 、P 均为位置不定点,中考参考答案是假设平行四边形已经存在,然后画出大致草图,利用平行四边形性质构造全等三角形,进而求出含有参数m 的P 点坐标.

本题图形的不确定性决定了思维的抽象性及复杂性,要想画出草图是很难的,故而图形分析难度大,几何推理难以展开,解题思路也会处处受阻.但若运用平移规律就能化繁为简,化抽象为具体,绕开画图这个难点,更不需要图形分析、几何推理,轻松解答题目.在运用平移规律时,首先应将这些坐标中含参数的点当作已知点,并选择标准点,依据解题规律按步骤解题.另外,依据条件“DP ∥AB ”,可知AB 为平行四边形的边,故只需考虑“A 平移至B ”与“B 平移至A ”两种情况即可.

解 抛物线y =14(x -m)2-m 2+m 顶点A 的坐标为(m ,-14

m 2+m ),与y 轴交点B 的坐标为(0,m).

由(3)①,知

D(2m ,-14

m 2+m +4), y 与x 的函数关系式为

2114162

y x x =-

++ 故可设P(x ,2114162x x -++)

将①代入②,并化简得m 2+8m =0.

故m 1=-8,m 2=0(此种情况A 、B 重合,舍去).

综上所述,m 的值为8或-8时,以A 、B 、D 、P 为顶点的四边形是平行四边形.

2016苏教版平移旋转轴对称知识点总结

2016苏教版平移、旋转、轴对称知识点总结 平移 1、物体在同一平面上沿直线运动,这种现象叫做平移。 注意:平移只是沿水平方向左右移动(×) 平移不仅仅局限于左右运动。 2、平移二要素:(1)平移方向;(2)平移距离。 将一个图形平移时,要先确定方向,再确定平移的距离,缺一不可。 3、平移的特征:物体或图形平移后,他们的形状、大小、方向都不改变,只是位置发生改变。 4、在方格纸上平移图形的方法: (1)找出图形的关键点; (2)以关键点为参照点,按指定方向数出平移的格数,描出平移后的点; (3)把各点按原图顺序连接,就得到平移后的图形。 注意:用箭头标明平移方向(→) 旋转 1、旋转:物体绕某一点或轴的转动。 2、旋转方向:与时针运动方向相同的是顺时针方向; 与时针运动方向相反的是逆时针方向; 3、旋转三要素:旋转点(旋转中心)、旋转方向、旋转角度。

4、图形旋转的特征:图形旋转后,形状、大小都没发生变化,只是位置和方向 变了。 5、图形旋转的性质:图形绕某一点旋转一定的角度,图形中的对应点、对应线 段都旋转相同的角度,对应点到旋转点的距离相等。 6、旋转的叙述方法:物体是绕哪个点向什么方向旋转了多少度。 7、简单图形旋转90°的画法: (1)找出原图形的关键线段或关键点,借助三角板作关键线段的垂线,或者作关键点与旋转点所在线段的垂线; (2)从旋转点开始,在所作的垂线上量出与原线段相等的长度取点,即所找的点是原图形关键点的对应点; (3)参照原图形顺次连接所画的对应点。 关键线段:水平的、竖直的、过旋转点的线段。 轴对称图形 1、将图形沿着一条直线对折,如果直线两侧的部分能够完全重合,这样的图形叫做轴对称图形。折痕所在的直线叫做对称轴。 注意:对称轴是直线,既不是线段,也不是射线,画时不用实线,用虚线(虚线、尺子、露头) 2、轴对称图形性质:对称点到对称轴的距离相等。 3、对称点:轴对称图形沿对称轴对折后,互相重合的点叫做对称点。 4、在方格纸上补全轴对称图形关键: 找出所给图形的关键点的对称点,要按照顺序将对称点连接起来。 5、不同的轴对称图形,对称轴的数量也不同,轴对称图形至少有一条对称轴。

数列中的存在性问题 经典

专题:数列中的存在性问题 一、单存在性变量 解题思路:该类问题往往和恒成立问题伴随出现(否则就是一个方程有解问题,即零点问题),可以先假设存在,列出一个等式,通过化简,整理成关于任意性变量(一般为n )的方程,然后n 的系数为0,构造方程,进而解出存在性变量,最后检验。 例1、已知数列{ n a }的前n 项和为 n S =235n n +,在数列{n b }中,1b =8,164n n b b +-=0,问是 否存在常数c 使得对任意n , log n c n a b +恒为常数M ,若存在求出常数c 和M ,若不存在说明理由. 解析:假设存在常数c 使得对任意n , log n c n a b +恒为常数M , ∵n S =235n n +, ∴当n =1时,则 1a = 1 S =8, 当n ≥2时,n a =1n n S S --=2235[3(1)5(1)]n n n n +--+-=62n +, 当n =1适合, ∴ n a =62 n +, 又∵164n n b b +-=0, ∴1n n b b +=164, ∴数列{n b }是首项为8,公比为1 64的等比数列, ∴n b = 118( )64n -=962n -, 则 log n c n a b += 9662log 2n c n -++= 62(96)log 2a n n ++-= 6(1log 2)29log 2 a a n -++, 又∵对任意n ,log n c n a b +恒为常数M , ∴ 6(1log 2) a -=0,解得c =2, ∴M = 29log 2 a +=11, ∴存在常数c =2使得对任意n , log n c n a b +恒为常数M =11. 二、双存在型变量 解题思路:先假设存在,根据题目条件,列出一个含有两个变量(一般至少都为正整数)的等式,即转化为一个数论中的双整数问题,然后分离变量。如果可以分离常数,则利用数论中约数的知识列出所有可能情况,最后进行双检验,即对两个变量均进行条件检验;如果不可以分离常数,则利用分离出的变量所具有的隐含范围(如大于0)消元,进而构造一个不等式,解出另一个变量的范围,再列出求出的被压缩的范围里的所有整数值,分别求出对应的另一个存在性变量,最后进

2函数的单调性及其应用高三复习专题

函数的单调性 1.单调性与单调区间: 例1.下列函数中,满足“对任意1x ,2x ∈(0,+∞),当1x <2x 时,都有1()f x >2()f x ”的是( ) A .()f x =1x B .()f x =2(1)x - C .()f x =x e D .()ln(1)f x x =+ 演变1.给定函数:①1 2y x =,②12 log (1)y x =+,③|1|y x =-,④12x y +=,其中在区间 (0,1)上单调递减的函数序号是( ) A .①② B .②③ C .③④ D .①④ 例2.函数2()21 x f x x -= -的单调区间为__________ 演变1.函数25---=a x x y 在),1(+∞-上单调递增,则a 的取值范围是__________ 例3.函数267)(x x x f --=的单调递增区间为__________ 演变1. 函数()f x =__________ 例4.函数2()2||3f x x x =--的单调递增区间为__________ 演变1.函数|32|)(2--=x x x f 的单调递增区间为__________ 2.利用单调性求参数范围: 例1.已知函数2)1(22+-+=x a x y 在)4,(-∞上是减函数,则实数a 的取值范围是_______ 演变1.若ax x x f 2)(2+-=与1 )(+=x a x g 在区间[1,2]上都是减函数,则a 的取值范围是__________ 例2.已知函数(31)4(1)()log (1)a a x a x f x x x -+

平移 旋转 轴对称 知识点总结

第十章知识点总结

对应点间的连线平行且相等(或在同一条直线上) 对应边平行且相等(或在同一条直线上),对应角相等,图形的形状和大小不改变。 图形上每 一点都绕同一 点按相同的方 向和角度旋转 对应点到 旋转中心的距 离相等 对应边相 等,对应角相 等,图形的性状 大小不改变 旋转 180°能否与 自身重合 对应点 间的连线是否 经过同一点, 并被这一点平 分 找对称轴:找一组对应点连线,做其垂直平分线。找两组对应点连线,过两条中点的 找对称中心:找一组对应点连线找其中点 两组对应点连线的交点

找关键点 过每个关键点做对称轴的垂线截取与之相等的距离,标出对应点 连接对应点。 找关键点 过每个关 键点做平移方向 的平行线截取与 之相等的距离,标 出对应点 连接对应 点。 找关键点 连接关键 点与旋转中心, 将这条线段按 方向和角度旋 转,标出对应点 连接对应 点。 找关键 点 连接关 键点与对称中 心,延长并截 取相等的长 度,标出对应 点 连接对 应点。 线段是轴对称图形,对称轴是它的垂直平分线。 角是轴对称图形,对称轴是它的角平分线。 垂直平分线的性质:垂直平分线上任意一点到线段两端的距离相等。④角平分线的性质: 多次平移 相当于一次平移 两条对称 轴平行时,两次轴 对称相当于一次 平移 线段旋转 90°后与原来 的位置垂直 两条对称 轴相交时,两次 轴对称相当于 一次旋转。 中心对 称一定是旋转 对称,旋转对 称不一定是中 心对称。 任何通 过中心对称图 形的对称中心 的直线都将这 个图形分成面 积相等的两部 分。 两条对 称轴互相垂直 时,两次轴对 一个图 形经过轴对称、 平移或选转等 变换得到的新 图形一定与原 图形全等 两个全 等的图形总能 经过轴对称、平 移或旋转等变 换后重合。

COMSOL周期性边界条件的应用

COMSOL周期性边界条件的应用 在将真实的物理问题转化为仿真模型时,为了通过有限的计算资源获得尽可能高的计算精度,模型简化是必要的。模型简化的前提是所模拟的物理问题具有结构、材料属性及边界条件的对称性或均匀性,以此为基础,可通过特定的方程及边界条件建立模型,例如降维方程,镜像/周期性/旋转对称边界条件,或根据工程经验将某些计算域简化为边界等等。 当处理空间或时间上具有周期性的物理问题时,采用周期性边界条件(Periodic/Cyclic Condition),可将复杂结构的模拟简化为周期单元,在不失精确度的前提下,大大降低计算量。 COMSOL提供的周期性边界条件包括四种类型: ?连续性周期边界(Continuity),指在源和目标边界上的场值相等; ?反对称周期边界(Antiperiodicity),源和目标边界上场值符号相反; ?弗洛奎特周期性边界(Floquet periodicity),源和目标边界上场值相差一个位相因子,位相因子由波矢和边界相对距离确定。Continuity和Antiperiodicity边界可以认 为是Floquet periodicity边界在位相分别为0和π情况下的两个特例。 ?循环对称性边界(Cyclic Symmetry),源和目标边界上场值相差一个位相因子,位相因子由计算域所对应的扇形角和角向模式数决定。 以下是几个典型应用: 1.微纳光学领域内的光子晶体(Photonic Crystal)、表面等离子体激元(Surface Plasmon) 阵列结构及超材料(Metamaterial),这几种结构均由空间上周期性重复的散射体构 成,当计算透射率及能带结构时,常常可采用Floquet perioidcity边界将结构简化。 超材料能带分析 Metamaterial.mph 2.作为压电传感器件的声表面波器件(Surface Acoustic Wave, SAW)的本征频率问题 计算。

难点专题:数列中的4类探索性问题

难点专题:破解数列中的4类探索性问题1.条件探索性问题 此类问题的基本特征是:针对一个结论,条件未知需探求,或条件增删需确定,或条件正误需判定,解决此类问题的基本策略是:执果索因,先寻找结论成立的必要条件,再通过检验或认证找到结论成立的充分条件,在“执果索因”的过程中,常常会犯的一个错误是不考虑推理过程的可逆与否,误将必要条件当作充分条件,应引起注意. [例1] 已知数列{a n}中,a1=2,a2=3,其前n项和S n满足S n+2+S n=2S n+1+1(n∈N*);数列{b n}中,b1=a1,b n+1=4b n+6(n∈N*). (1)求数列{a n},{b n}的通项公式; (2)设c n=b n+2+(-1)n-1λ·n a2(λ为非零整数,n∈N*),试确定λ的值,使得对任意n∈N*,都有c n+1>c n成立.

此类问题的基本特征是:有条件而无结论或结论的正确与否需要确定.解决此类问题的策略是:先探索结论而后去论证结论,在探索过程中常可先从特殊情形入手,通过观察、分析、归纳、判断来作一番猜测,得出结论,再就一般情形去认证结论. [例2] 已知各项均为正数的数列{a n}满足:a2n+1=2a2n+a n a n+1,且a2+a4=2a3+4,其中n∈N*. (1)求数列{a n}的通项公式; (2)设数列{b n}满足:b n= na n 2n+12n ,是否存在正整数m,n(1

三角函数在解题中的应用

论文提要 三角函数是高中数学的重点内容,也是历年高考的重点和热点内容,在高考数学试卷中占有很大的比例,三角函数的性质和图象是三角函数的重要知识点.三角函数是数学教学中的重要内容之一在解题过程中,三角函数常常与三角形密切结合在一起,灵活运用三角函数的知识以及三角形本身的独特性质.三角函数是学习高等数学的必备基础知识之一,学习时要注重三角知识的基础性,突出三角函数的周期性、单调性、奇偶性等性质.以及化简、求值和最值等重点内容的复习,又要注重三角知识的工具性,突出三角与代数、几何、向量的综合联系,以及三角知识的应用意识.本文介绍了在平时教学中我们应有意识地将各种数学思维方法贯穿在其中,有效的训练学生的思维能力,并举例说明巧用三角函数的一些性质解决一些求值、求参数范围、三角函数的单调性、奇偶性等问题.

论三角函数在解题中的应用 王宪 摘要:三角函数是高中数学的重点内容,也是历年高考的重点和热点内容,在高考数学试卷中占有很大的比例,三角函数的性质和图象是三角函数的重要知识点.三角函数是数学教学中的重要内容之一在解题过程中,三角函数常常与三角形密切结合在一起,灵活运用三角函数的知识以及三角形本身的独特性质。本文介绍了在平时教学中我们应有意识地将各种数学思维方法贯穿在其中,有效的训练学生的思维能力,并举例说明巧用三角函数的一些性质解决一些求值、求参数范围、三角函数的单调性、奇偶性等问题。 关键词:三角函数三角形公式定理 高中数学的三角函数是比较难学的,也是高考必考内容.其涉及的基础知识、数学思想方法在数学和其它学科中都有广泛的运用.本文通过实例介绍几种常用的数学解题思想在三角函数中的应用. 一.培养三角函数应用于解题的思想 1. 分类的思想 分类讨论方法又称逻辑划分,中学数学最常用的数学思想方法之一,也是高考数学中常考常新的数学思想. 分类讨论就是依据一定的标准,对问题进行分类、求解,然后综合出问题的答案.在三角函数中主要对角的终边所在的象限的三角函数值等进行分类. 2. 数形结合的思想 数形结合方法是指将数(量) 与图形结合起来进行分析、研究、解决问题的一种思维策略,数形结合思想可以使抽象的复杂的数量关系通过几何图形直观地表现出来.在三角函数的学习过程中,应把三角函数的性质融于函数的图形之中,充分利用三角函数的图像来解决实际问题. 3. 函数与方程思想 方程思想是指对所求的问题通过列方程(组) 使问题获解,有些三角函数问题通过引入一个新的变量,转化命题的结构,经过变形与比较,建立起含有特定字母系数的方程组,进而

平移_旋转_轴对称_知识点总结

旋转、平移、轴对称、中心对称知识点总结 轴对称平移旋转中心对称全等 定义一个(两个)平 面图形沿某条直 线对折能够完全 重合 平面图形在它所在 平面上的平行移动。 决定要素:平移的方 向、平移的距离 一个平面图形绕一 定点按一定的方向 旋转一定的角度的 运动。 一个图形旋转 180°能与自身 重合 能够完全重合的 两个图形 表示方法: ΔABC≌△DEF 轴对称 图形 成轴对 称 中心对 称图形 成中心 对称 全等多边形 全等三角形 对应边 对应角 一个图 形; 不止一 条对称 轴 两个图 形; 只有一 条对称 轴 旋转对称图形:一 个图形绕内部某一 点旋转一定的角度 能与自身重合。 一个图 形 两个图 形 图形 特征对应角相等,对 应边相等 ①对应点间的连线 平行且相等(或在同 一条直线上) ②对应边平行且相 等(或在同一条直线 上),对应角相等, 图形的形状和大小 不改变。 ①图形上每一点都 绕同一点按相同的 方向和角度旋转 ②对应点到旋转中 心的距离相等 ③对应边相等,对 应角相等,图形的 性状大小不改变 连结对应点的线 段必然经过对称 中心,并被对称 中心平分成相等 的两部分。 对应边相等,对应 角相等

判断方法沿着某条直线对 折看是否重合。 找平移的方向和距 离: 找一组对应点,连线 即是他平移的方向 和距离 找旋转的方向和角 度: 找一组对应点,与 旋转中心连线的夹 角 ①旋转180°能 否与自身重合 ②对应点间的连 线是否经过同一 点,并被这一点 平分 各边对应相等 各角对应相等 找对称轴:①找一 组对应点连线, 做其垂直平分 线。②找两组对应 点连线,过两条 中点的直线 找对称中心:① 找一组对应点连 线找其中点 ②两组对应点连 线的交点 画法 ①找关键点 ②过每个关键点 做对称轴的垂线 截取与之相等的 距离,标出对应 点 ③连接对应点。 ①找关键点 ②过每个关键点做 平移方向的平行线 截取与之相等的距 离,标出对应点 ③连接对应点。 ①找关键点 ②连接关键点与旋 转中心,将这条线 段按方向和角度旋 转,标出对应点 ③连接对应点。 ①找关键点 ②连接关键点与 对称中心,延长 并截取相等的长 度,标出对应点 ③连接对应点。 重要结论①线段是轴对称 图形,对称轴是 它的垂直平分 线。 ②角是轴对称图 形,对称轴是它 的角平分线。 ③垂直平分线的 性质:垂直平分 线上任意一点到 线段两端的距离 相等。④角平分 线的性质:角平 分线上任意一点 到叫两边的距离 相等。⑤对称轴 垂直平分对称点 间的连线。 ①多次平移相当于 一次平移 ②两条对称轴平行 时,两次轴对称相当 于一次平移 ①线段旋转90°后 与原来的位置垂直 ②两条对称轴相交 时,两次轴对称相 当于一次旋转。 ①中心对称一定 是旋转对称,旋 转对称不一定是 中心对称。 ②任何通过中心 对称图形的对称 中心的直线都将 这个图形分成面 积相等的两部 分。 ③两条对称轴互 相垂直时,两次 轴对称相当于一 次中心对称 ①一个图形经过 轴对称、平移或选 转等变换得到的 新图形一定与原 图形全等 ②两个全等的图 形总能经过轴对 称、平移或旋转等 变换后重合。

fluent边界条件(二)

周期性边界条件 周期性边界条件用来解决,物理模型和所期待的流动的流动/热解具有周期性重复的特点。FLUENT提供了两种类型的周期性边界条件。第一种类型不允许通过周期性平面具有压降(对于FLUENT4用户来说:这一类型的周期性边界是指FLUENT4中的圆柱形边界)。第二种类型允许通过平移周期性边界具有压降,它是你能够模拟完全发展的周期性流动(在FLUENT4中是周期性边界)。 本节讨论了无压降的周期性边界条件。在周期性流动和热传导一节中,完全发展的周期性模拟能力得到了详尽的描述。 周期性边界的例子 周期性边界条件用于模拟通过计算模型内的两个相反平面的流动是相同的情况。下图是周期性边界条件的典型应用。在这些例子中,通过周期性平面进入计算模型的流动和通过相反的周期性平面流出流场的流动是相同的。正如这些例子所示,周期性平面通常是成对使用的。 Figure 1: 在圆柱容器中使用周期性边界定义涡流 周期性边界的输入 对于没有任何压降的周期性边界,你只需要输入一个东西,那就是你的所模拟的几何外形是旋转性周期还是平移性周期。(对于有周期性压降的周期流还要输入其它的东西,请参阅周期性流动和热传导一节。) 旋转性周期边界是指关于旋转对称几何外形中线形成了一个包括的角度。本节中的图一就是旋转性周期。平移性周期边界是指在直线几何外形内形成周期性边界。下面两图是平移性周期边界:

Figure 1: 物理区域 Figure 2: 所模拟的区域 对于周期性边界,你需要在周期性面板(下图)中指定平移性边界还是旋转性边界,该面板是从设定边界条件菜单中打开的。 Figure 3: 周期性面板 (对于耦合解算器,周期性面板中将会有附加的选项,这一选项允许你指定压力跳跃,详细内容请参阅周期性流动和热传导一节。) 如果区域是旋转性区域,请选择旋转性区域类型。如果是平移性就选择平移性区域类型。对

一轮复习专题数列中的存在性问题

专题:数列中的存在性问题 学大苏分教研中心 周坤 一、单存在性变量 解题思路:该类问题往往和恒成立问题伴随出现(否则就是一个方程有解问题,即零点问题),可以先假设存在,列出一个等式,通过化简,整理成关于任意性变量(一般为n )的方程,然后n 的系数为0,构造方程,进而解出存在性变量,最后检验。 例1、已知数列{ n a }的前n 项和为 n S =235n n +,在数列{n b }中,1b =8,164n n b b +-=0, 问是否存在常数c 使得对任意n ,log n c n a b +恒为常数M ,若存在求出常数c 和M ,若不 存在说明理由. 解析:假设存在常数c 使得对任意n ,log n c n a b +恒为常数M , ∵ n S =2 35n n +, ∴当n =1时,则 1a =1 S =8, 当n ≥2时,n a =1n n S S --=2235[3(1)5(1)]n n n n +--+-=62n +, 当n =1适合, ∴ n a =62n +, 又∵164n n b b +-=0, ∴1n n b b +=1 64, ∴数列{n b }是首项为8,公比为1 64的等比数列, ∴n b = 118( )64n -=962n -, 则 log n c n a b += 9662log 2n c n -++= 62(96)log 2 a n n ++-= 6(1log 2)29log 2 a a n -++, 又∵对任意n ,log n c n a b +恒为常数M , ∴ 6(1log 2) a -=0,解得c =2,

∴M = 29log 2 a +=11, ∴存在常数c =2使得对任意n ,log n c n a b +恒为常数M =11. 二、双存在型变量 解题思路:先假设存在,根据题目条件,列出一个含有两个变量(一般至少都为正整数)的等式,即转化为一个数论中的双整数问题,然后分离变量。如果可以分离常数,则利用数论中约数的知识列出所有可能情况,最后进行双检验,即对两个变量均进行条件检验;如果不可以分离常数,则利用分离出的变量所具有的隐含范围(如大于0)消元,进而构造一个不等式,解出另一个变量的范围,再列出求出的被压缩的范围里的所有整数值,分别求出对应的另一个存在性变量,最后进行检验。 例2、【2010南通一模】 设等差数列{}n a 的前n 项和为n S ,且5133349a a S +==,. (1)求数列{}n a 的通项公式及前n 项和公式; (2)设数列{}n b 的通项公式为n n n a b a t = +,问: 是否存在正整数t ,使得12m b b b ,, (3)m m ≥∈N ,成等差数列?若存在,求出t 和m 的值;若不存在,请说明理由. 【解】(1)设等差数列{}n a 的公差为d. 由已知得 51323439a a a +=?? =?,, ………………2分 即118173a d a d +=?? +=?,,解得112.a d =??=?, ……………………………………………………………4分. 故 2 21n n a n S n =-=,.…………………………………………………………………6分 (2)由(1)知 21 21n n b n t -= -+.要使12m b b b ,,成等差数列,必须212m b b b =+,即 312123121m t t m t -? =+ ++-+,………………………………………………………………8分.

浅谈函数单调性的应用

浅谈函数单调性的应用 贵州省习水县第一中学袁嗣林 摘要:函数的单调性是函数的一条重要性质,本文概括、总结了五种方法判断函数的单调性. 同时对每种方法的特点及适用范围、注意事项采用举例的方式作了具体的介绍,这有助于读者更好地理解和掌握这些方法,从而能轻松的解决有关函数单调性的问题. 函数的单调性是函数的一条重要性质,反映了函数值的变化规律. 在高考中历考弥新,考查的深度远远高于课本。 在讨论函数单调性时必须在其定义域内进行,因此要研究函数的单调性就必须先求函数的定义域,函数的单调区间是定义域的子集. 接下来我就来谈谈函数单调性的应用。 一、函数单调性的判别 单调性是函数最重要的性质之一.导数的引入虽然给单调性的研究带来了极大的方便,但是它并不能解决与单凋性有关的所有问题.本文结合近几年的试题谈谈判断单调性的几种方法。. 1.定义法(自变量增大函数值变小为减函数;反之,为增函数) 例1 判断函数的单调性 解因为==,显然当为正数且逐 渐增加时, 也逐渐增加,则其倒数逐渐减小,即函数值逐渐减小,所以函数 在区间(0,+∞)上为减函数. 2.函数变换法

由上面的定义法我们不难得到单调函数运算后的一些结论:在同一个区间上,若f(x)、g(x)都是单凋增(减)函数,则f(x)+g(x)也是单凋增(减)函数;若f(x)单凋递增,g(x)单凋递减,则f(x)-g(x)单调递增;若f(x)单凋递减,g(x)单凋递增,则f(x)-g(x )单调递减. 例2 判断函数的单调性. 解设,显然当x>0时,函数g(x)单凋递增,而函数f(x)单调递减.由上面的运算法则知函数f(X)在区间(0,+∞)上为增函数. 3.复合函数法 设函数f(x)由两个函数g(x)与h(X)复合而成,则g(x)与h(x)单调性相同时,f(x)单调递增;g( x)与h(x)单调性不同时,f(x)单调递减,即通常所说的同增异减.多层复合,依此类推. 例3已知函数y=f(x)的图象与函数的图象关于直线对称,记,若y=g(x)在区间[ 1/2,2]上是增函数,则实数a的取值范围( ) (A)(0,+∞) (B)(0,1)U(1,2) (C) (D) 解因为, 所以-1

函数单调性的应用

函数单调性的应用 一、比较大小 例1 若函数f (x )=x 2+mx +n ,对任意实数x 都有f (2-x )=f (2+x )成立,试比较f (-1),f (2),f (4)的大小. 解 依题意可知f (x )的对称轴为x =2, ∴f (-1)=f (5). ∵f (x )在[2,+∞)上是增函数, ∴f (2)

(3)利用单调性解不等式时,一定要注意变量的限制条件,以防出错. 三、求参数的值或取值范围 例3 已知a>0,函数f(x)=x3-ax是区间[1,+∞)上的单调函数,求实数a的取值范围. 解任取x1,x2∈[1,+∞),且x10. Δy=f(x2)-f(x1)=(x32-ax2)-(x31-ax1) =(x2-x1)(x21+x1x2+x22-a). ∵1≤x13. 显然不存在常数a,使(x21+x1x2+x22-a)恒为负值. 又f(x)在[1,+∞)上是单调函数, ∴必有一个常数a,使x21+x1x2+x22-a恒为正数, 即x21+x1x2+x22>a. 当x1,x2∈[1,+∞)时,x21+x1x2+x22>3, ∴a≤3.此时,∵Δx=x2-x1>0,∴Δy>0, 即函数f(x)在[1,+∞)上是增函数, ∴a的取值范围是(0,3]. 四、利用函数单调性求函数的最值 例4 已知函数f(x)=x2+2x+a x,x∈[1,+∞). (1)当a=4时,求f(x)的最小值;

[考试]在fluent中修改周期性边界条件

[考试]在fluent中修改周期性边界条件中国振动联盟 标题: 在fluent中修改周期性边界条件,怎么不对啊 [打印本页] 作者: skgk-qqq 时间: 2012-2-26 09:39 标题: 在fluent中修改周期性边界 条件,怎么不对啊 我是在fluent主界面输入命令:grid mod check,然后回车,得到periodic zone[()],我再输入3,回车,shadow zonezone[()],我再输入10,回车,得到Rottional periodic,(if no,translational)[yes],然后回车,得到Create periodic zones?[yes],然后回车,得到zone 3;matched 0 out of 10854 faces. zone 10:matched 0 out of 10854 faces. Error: Failed to make zones periodic.ERROE:object:#f.请教各位了,着急啊~~~ 作者: skgk-qqq 时间: 2012-2-26 09:51 回复 1 # skgk-qqq 的帖子 各位大哥,帮帮忙啊,着急啊 作者: Seventy721 时间: 2012-2-26 11:01 大概是因为你的两个periodic面上的网格不完全一致,导致不能match。这两 个面的几何尺寸和网格划分必须完全一致。建议划分网格之前在两个面上建立 hard link,这样网格就会完全一样了。如果还不行就调整判断网格差异的tolerance,我记得用户手册里有说明,你找找看。 作者: skgk-qqq 时间: 2012-2-26 16:15 回复 3 # Seventy721 的帖子 我已经建立了link了啊,经过网格检查,网格单元数量也是一致的,而且输 出meh文件也正确,请问怎么调整tolerance啊,着急啊

2020年高三数学大串讲第19讲(数列单调性、奇偶项、存在性问题)(原卷版)

第19讲(数列单调性、奇偶项、存在性问题) 【目标导航】 中学研究的特殊数列只有等差数列与等比数列,一个是线性数列,一个是类指数数列,但数列性质却远远不止这些,因此新数列的考查方向是多样的、不定的,不仅可考查函数性质,而且常对整数的性质进行考查.明确考查方向是解决以新数列为背景的解答题的前提,恰当运用对应性质是解决问题思想方法. 【例题导读】 例1、设数列{}n a ()*n N ∈是公差不为零等差数列,满足2 369579,6a a a a a a +=+=;数列{}n b () *n N ∈的前n 项和为n S ,且满足423n n S b +=. (1)求数列{}n a 、{}n b 的通项公式; (2)在1b 和2b 之间插入1个数11x ,使1112,,b x b 成等差数列;在2b 和3b 之间插入2个数2122,x x ,使 221223,,,b x x b 成等差数列;……;在n b 和1n b +之间插入n 个数12,,...,n n nm x x x ,使121,,,...,n n n nm n b x x x b +成等 差数列, (i )求11212212......n n n nm T x x x x x x =+++++++; (ii )是否存在正整数,m n ,使1 2m n m a T a +=成立?若存在,求出所有的正整数对(),m n ;若不存在,请说明理由. 例2、有限个元素组成的集合为{}12,,,n A a a a =L ,*n N ∈,集合A 中的元素个数记为()d A ,定义 {},A A x y x A y A +=+∈∈,集合A A +的个数记为()d A A +,当()()()() 12 d A d A d A A ?++= ,称 集合A 具有性质Γ. (1)设集合{}1,,M x y =具有性质Γ,判断集合M 中的三个元素是否能组成等差数列,请说明理由; (2)设正数列{}n d 的前n 项和为n S ,满足1123n n S S +=+ ,其中11 3 d =,数列{}n d 中的前2020项:1232020,,,,d d d d L 组成的集合{}1232020,,,,d d d d L 记作D ,将集合D D +中的所有元素 ()*123,,,,k t t t t k N ∈L 从小到大排序,即123,,,,k t t t t L 满足123k t t t t <<<

周期边界条件

周期边界条件 aresaran (答网友问) (1)、究竟什么是"周期性边界条件"?如何去定义它的,为什么要引入这样一个定义。 周期边界条件源于这样的问题:宏观结构的信息不足以描述问题的细节,所以引入微观结构的信息来统计物质的宏观性质。周期边界条件广泛用于molecular dynamics & micromechanics. Fig1.细观力学的RVE 代表单元 尽管目前计算机的运算速度极大提高,但是仍然不能够用于进行大规模的宏微观联合计算。 因此引入了代表单元的概念,代表单元RVE 就如同是一个打开微观世界的一个窗口,看到的只是窗户里面的东西,我们假设整个微观世界是统计均匀的,因此无限量的复制了这个窗口,就可以得到所有微观信息。当然这个代表单元有要求,如上图,宏观结构尺寸远远尺寸,但是这个达标单元的尺寸又要能 足够多的包含微观颗粒的信息,有代表性,所以要求l L >>l A <<这是个一般性定义。 (2)、"周期性边界条件" 是不是只是在处理复合材料问题时才用,而且从众位大侠的讨论中似乎让我觉得这有点像"子结构"? Fig2. 2D or 3 D RVE

子结构和代表单元根本不在一个层次上,RVE 的建模与普通建模没什么区别,当然你想得到随机的微观结构,就需要用外部程序比如matlab 书写相应的inp 文件。 Fig3. Ref. Frederic Feyel. Multiscale elastoviscoplastic analysis of composite structures. Computational Materials Science,1999,16: 344~354 2FE 子结构模型适合多尺度计算。如图三,是一个发动机叶片,局部区域希望能够用细观微结构描述,其余结构希望是均匀材料。 这个问题的模型就可以将复合材料区域SiC/Ti 用子模型/子结构实现代表单元,子结构传递边界条件给代表单元, 实现微观和宏观的关联。 (3)、"周期性边条"是不是"旋转周期结构"里所需施加的边界条件? 对于复合材料层合壳体结构的旋转周期结构,相当于直角坐标周期结构的球坐标变换,物理意义等同。 (4)、为什么有些"轴对称单元"也在用这个? 因该是指对称性条件和周期性条件的关系,下面的例子会给出解释。 【1】周期边界条件的推导实例: ij 是边界上施加的的宏观应变条件 Displacement BC. j ij i i l x u y u ε+=)()( Traction BC. )()()()(x n x y n y j ij j ij σσ?=

数列的综合问题探究(教学案)

数列的综合问题探究(教学案) 【热身训练】 1..已知数列{a n },a n =n 2 +λn +3(其中λ为常实数),且a 3为数列{a n }的最小项,则实数λ的取值范围是________. 解析:法一 a n ≥a 3对任意n ∈N * 恒成立,即:λ(n -3)≥-(n -3)(n +3)当n ≥4时,λ≥-(n +3),所以λ≥-7;当n ≤2时,λ≤-5;当 n =3时,λ∈R;综上所述:-7≤λ≤-5. 法二 基本函数的特性:52≤-λ2≤7 2,所以-7≤λ≤-5. 2.若数列{c n }满足 c n =??? ?? 4n -1,当n 为奇数时; 4n +9,当n 为偶数时. 则数列{c n }的前19项的 和T 19=________. 解析:c 2n +1-c 2n -1=8,c 2n +2-c 2n =8,T 19=+ 2 ×10+ +2 =831. 3.设S n 是等差数列{a n }的前n 项和,满足a 1=1,S 6=36,且a m ,a m +2,a k 成等比数列,则m +k 的值为________. 解析:设等差数列{a n }的公差是d .所以S 6=6a 1+15d =36,又因为a 1=1,所以d =2.所以a n =a 1+(n -1)d =2n -1.又a m ,a m +2,a k 成等比数列等价于(2m -1)(2k -1)=(2m +3)2 ,即2k -1= m +2 2m -1 =2m -1+8+ 162m -1.所以k =m +4+8 2m -1,m ,k 是正整数.由于m ,k 是正整数,故2m -1只可能取1,2,4,8.又2m -1为奇数,故2m -1=1,即m =1,k =13,所以m +k =14

数学思想在解题中的应用(上)

数学思想在解题中的应用(上) 目录 前言 第一章高中数学常用的思想方法 一、数形结合思想 1、知识点概述 2、解题方法指导 3、数形结合思想方法的应用 4、数形结合思想在函数中的应用 二、函数与方程思想 1、函数的思想 2、方程的思想 3、函数方程思想的应用 三、化归与转化思想 1、等于不等的相互转化 2、正与反的相互转化 3、特殊与一般的相互转化 4、简单与复杂的相互转化

前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,我们总想用旧的题型去套,这只是满足于解出来,只有对数学思想、数学方法理解和融会贯通时,才能提出新看法,巧解法。高考试题特别注重对数学思想方法的考察,特别是突出考察能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识的用数学思想方法去分析问题去解决问题,提高能力,形成数学素养,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考察: 1、常用数学方法;配方法,换元法,待定系数法,参数法,消去法,数学归纳法等 2、常用数学逻辑方法:分析法,综合法,反证法,归纳法,演绎法等 3、常用数学思维方法:观察与分析,概括与抽象,分析与综合,特殊与一般,类比等 4、常用数学思想:数形结合思想,函数与方程思想,化归与转化思想,有限与无限思想,必然与或然 思想,分类讨论思想等 数学思想方法与数学基础知识相比较,它有较高的低位和层次。数学知识使数学内容,可以用文字,符号来记录和描述,随着时间的推移,记忆力的衰退,将来可能忘记。而数学思想是一种数学意识,只能够领会和应用,属于思想的范畴,用以对数学问题的认识,处理和解决。掌握数学思想方法,不是受用一阵子,而是受用一辈子。即使数学知识忘了,数学思想方法还是记得,对你还是起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的模型,具有模式化和可操作性的特征。可以选用作为解题的基本手段。 可以说,知识是基础,方法是手段。思想是深化,提高数学素质的核心就是提高学生对数学知识方法的认识和应用。数学素质的综合能力的体现就是应用。 为帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍了高考中常用的基本思想方法,配方法,换元法,待定系数法,归纳法,参数法,数形结合思想,分类讨论思想,化归与转化思想,特殊与一般思想,有限与无限思想,或然与必然思想,函数与方程思想。末位整合了高考中的热点问题。

对数函数的单调性及其应用

对数函数的单调性及其性质 一、相关内容 1、当01时,指数函数x a y log =在R 上单调递增。 二、基础练习 1、比较下列各组数值的大小 (1)3.37.1和1.28.0 (2)7.03.3和8.04.3 (3)25log ,27log ,23 98 (4)60.70.70.76log 6,, (5)3.0222,3.0log ,3.0===c b a (6)(61)0,2,log 221 ,log 0.523 (7)6.05,56.0,5log 6.0 (8)a=log 0.50.6,b=log 20.5,c=log 35 (9)0.52a =,πlog 3b =,2log 0.5c =

2、选择题 1) 若(0,1)x ∈,则下列结论正确的是( ) A .122lg x x x >> B .122lg x x x >> C .122lg x x x >> D .1 2lg 2x x x >> 2) 若b a ,是任意实数,且b a >,则( ) A 22b a > B 1-b a D b a ??? ??0 B .a 1-a >1 C .log a (1-a )<0 D .(1-a )2>a 2 6) 设2a =5b =m ,且1a +1b =2,则m =( ) A.10 B .10 C .20 D .100 7) 已知log 12b 2a >2c B .2a >2b >2c C .2c >2b >2a D .2c >2a >2b 8) 函数x y a log =当x >2 时恒有y >1,则a 的取值范围是( ) A .1221 ≠≤≤a a 且 B .02121 ≤<≤,函数()log a f x x =在区间[,2]a a 上的最大值与最小值之差为1 2,则a = ( ) A .2 B .2 C .22 D .4 11) 若0,0,1a b ab >>>,12log ln 2a =,则log a b 与a 2 1log 的关系是( ) A .12log log a b a < B .12log log a b a = C .12log log a b a > D .12 log log a b a ≤ 12) 已知函数log (2)a y ax =-在区间[0,1]上是x 的减函数,则a 的取值范围是( ) A .(0,1) B .(1,2) C .(0,2) D .(2,)+∞

相关文档