文档库 最新最全的文档下载
当前位置:文档库 › 热红外遥感

热红外遥感

热红外遥感
热红外遥感

熟悉envi处理热红外遥感的影像步棸

实验一:

一:实验内容:定位查找像元,快速查找像元,察看像元的剖面图以及投影的设置。二:实验步骤:

1.右击图片,打开piexl locator 修改sample line 单击apply

象元值查找

右击cursor location拖动鼠标,象元值会随着光标的移动而改变

2.剖面图

右击图像单击spectral profile 单击option<

3.投影

打开map 《geroference aster 《geroference data 选择热红外波段文件点击OK 选择投影方式选择输出方式:file 或memory 并选择文件路径。

打开basic tools 《convert data 选择刚刚投影后保存的文件单击OK 选择bil或bip

格式单击OK

打开投影后图片,查看象元值与投影前比较。

三、实验感想:在熟悉envi软件基础上,再次学习envi的一些操作,变得简单。实验在掌握步骤的基础上要了解实验的原理,如像元剖面图是像元在不同波段上得值。

实验二:

一、实验内容:投影设定,不同波段图像噪音的查看,监督分类图像的选择,非监

督分类与监督分类。

二、实验步骤:

1.地图投影的定义

单击map geoference aster geoference data

通过我截的图可以看见图像有了投影信息:

2.查看噪音选择噪音少得图像Basic tools statistics compute statistics

3.Resize data(spatial/spectral)选择想要的波段(在tools中animation可以快速观看不同波段图片)

4.Classification unsupervised isodata

5.打开memory3 tools buildmask 在mask definition中的options选择selected areas ”off”然后import data range

6.在basic tools中得masking applymask 得到非监督分类图像。

7.监督分类选择要分类图形并建立连接(1)选择感兴趣区域roi

(2).在classification 中选择supervised parallelepiped

得到图像:

(3)在overlay中单击annotation在对话框的object中选择map key即得到以下对话框,并设置参数:

在memory9 中单击则出现图例得到完整图形:

三、实验感想:从整体过程来看这个实验,这样不仅能学会操作,更能动的每一步的原理与作用。学习就是要这样,学习到本质。

红外热像仪和视频报警系统在安防领域的应用讲解

红外热像仪和视频报警系统在安防领域 的应用 一、系统概述随着技术进步,视频监控系统已经在国家公共安全防范的各个领域中开始了广泛使用,这使得人民的安全环境在很大程度上得到了提高。现在的视频监控系统主要采用的是可见光摄像机和人工监视、录像相结合的方式进行日常的安全防护。但由于可见光摄像机在恶劣天气或照度较低的条件下,很难滤除干扰得到有用的视频图像,因此使得整个安全防范系统在夜间或恶劣天气条件下的防范能力大打折扣。而且现在的视频监控系统必须由安保 一、系统概述 随着技术进步,视频监控系统已经在国家公共安全防范的各个领域中开始了广泛使用,这使得人民的安全环境在很大程度上得到了提高。现在的视频监控系统主要采用的是可见光摄像机和人工监视、录像相结合的方式进行日常的安全防护。但由于可见光摄像机在恶劣天气或照度较低的条件下,很难滤除干扰得到有用的视频图像,因此使得整个安全防范系统在夜间或恶劣天气条件下的防范能力大打折扣。而且现在的视频监控系统必须由安保人员对视频画面进行24小时不间断的监视、人为对视频图像进行分析报警,否则系统就起不到实时报警的功能只能起到事发后取证的作用。因此整体来说,现在的视频监控系统还处于在半天时、半天候和半自动状态。因此如何提高在“夜黑风高”的案件高发时间段的自动报警防范能力,就成为了国家公共安全防范领域内急需解决的重要问题之一。 红外热像仪及视频报警系统,是基于非制冷红外热像仪或可见光摄像机等硬件系统,采用红外/可见光复合成像、视频图像处理及自动行为分析报警等相关软件与之结合,将现有视频监控系统的良好天气下的人工监视、事后取证功能,提升为全天候条件下的免人为看护、电脑自动实时报警功能。系统可在夜间或者恶劣天气条件下(如大雨、大雾等)工作,不仅能节省大量的人力,同时可实现全天时全天候实时报警。不仅弥补了现有视频监控系统的不足,而且提升了安防系统的自动识别、自动报警等相关自动化程度,具有非常重要的社会作用,具有广阔的市场。 1、非制冷红外热像仪硬件系统

热红外遥感在地热中的应用

专业:测绘工程 班级: 0614111 组别:第一组 指导教师:牛磊 姓名:曹岳飞、闫佩良、马欣欣 梁威力、王君 完成时间: 2013年12月1日

热红外遥感技术及其在地热资源调查中的的应用0614111班第一组曹岳飞闫佩良马欣欣梁威力王君 摘要:热红外遥感即通过热红外探测器收集地物辐射出来的人眼看不到的热红外辐射通量,经过能量转换而变成人眼能看到的图像。热红外遥感自从1962年第一台红外测温仪诞生起在军事、地热油气调查、地质填图、热制图、热惯量估算以及灾害监测、环境污染等方面有了非常广泛的应用。本文主要介绍了热红外遥感技术及其在地热资源调查中的应用。 关键词:热红外技术地热资源调查 引言 自然界任何温度高于热力学温度(0K或-273oC)的物体都不断地向外发射电磁波。热红外遥感即通过热红外探测器收集地物辐射出来的人眼看不到的热红外辐射通量,经过能量转换而变成人眼能看到的图像。热红外遥感技术的发展是为了获取地物的热状况信息,从而推断地物的特征及环境相互作用的过程,为科学和生产所应用。 地热是地球赋予人类的廉价能源,地球就像一个庞大的地热库。 人类在面对环境污染的困扰、地球生态平衡的破坏、不可再生资源的匮乏、各国对能源需求的急速增长。这时地热资源调查就显得尤其重要。热红外遥感技术是一种快速检测地面温度的新技术,它能在瞬间或比较短的时间内获取大面积地面温度场信息,将这一新技术用来进行地热资源调查,取得了许多成功经验,同时在理论探讨方面也在逐步深化,展现出它的应用前景。 1 红外线的起源与发展 热红外遥感的发展可以从1962年第一台红外测温仪诞生算起; 1978年美国发射热惯量卫星(HCMM),首次用卫星来观察地球表面的温度差异,这标志着热红外遥感的发展; 随后,红外技术不断发展,一系列航空航天遥感器运用了热红外波段采集地面数据,并将其应用于军事、地质填图、热制图、热惯量估算以及灾害监测、环境污染等方面; 热红外遥感的发展可以从1962年第一台红外测温仪诞生算起; 1978年美国发射热惯量卫星(HCMM),首次用卫星来观察地球表面的温度差异,这标志着热红外遥感的发展;

红外热成像约翰逊准则

红外热成像约翰逊准则 This model paper was revised by the Standardization Office on December 10, 2020

红外热像仪探测距离_约翰逊准则 德图仪器小编在前面已经给大家做了近百篇红外热像仪技术文章,相信大家也对红外热像仪知识有所了解,今天,再给大家介绍下红外热像仪探测距离及约翰逊准则,希望能加深大家对红外热像仪的认知。 红外热像仪探测距离: 在自然界中一切温度高于绝对零度摄氏度)的物体都不断地辐射着红外线,这种现象称为热辐射。红外线是一种人眼不可见的光波,无论白天黑夜,物体都会辐射红外线。红外热像仪就是把这些人眼不可见的热辐射转变为人眼可见的热像图。由于红外热像仪只是被动地接收目标的热辐射,因此具有隐蔽性好等特点。 被动式红外热像仪一般工作在3—5μm和8—14μm这两个波段,相对于可见光和近红外而言,其波长比较长,穿透雨、雪、雾、烟尘等能力强,因此在国防、警用、安防等领域红外热像仪是一个非常有效的设备。 但用户购买热像仪常常会问一个问题:热像仪能看多远。这是一个特别重要的问题,但又是很难说清楚的问题。比如说,我们热像仪能看到146×106公里外的太阳,但不能说热像仪的探测距离能达到146×106公里。但这探测距离又是必须说清楚的一个问题,因为客户买热像仪是用来探测、监控目标的。 约翰逊准则: 探测距离是一个主观因素和客观因素综合作用的结果。主观因素跟观察者的视觉心理、经验等因素有关。要回答“热像仪能看多远”,必须先弄清楚“什么叫看清楚”,如探测一

个目标,甲认为看清楚了,但乙可能就认为没看清楚,因此必须有一个客观统一的评价标准。国外在这方面做了大量的工作,约翰逊根据实验把目标的探测问题与等效条纹探测联系起来。许多研究表明,有可能在不考虑目标本质和图像缺陷的情况下,用目标等效条纹的分辨力来确定红外热像仪成像系统对目标的识别能力,这就是约翰逊准则。目标的等效条纹是一组黑白间隔相等的条纹图案,其总高度为目标的临界尺寸,条纹长度为目标为垂直于临界尺寸方向的横跨目标的尺寸。等效条纹图案的分辨力为目标临界尺寸中所包含的可分辨的条纹数,也就是目标在探测器上成的像占的像素数。 目标探测可分为探测(发现)、识别和辨认三个等级。 探测 探测定义为:在视场内发现一个目标。这时目标所成的像在临界尺寸方向上必须占到个像素以上。 识别 识别定义为:可将目标分类,即可识别出目标是坦克、卡车或者人等。这是目标所成的像在临界尺寸方向上必须占到6个像素以上。 辨认 辨认的定义为:可区分开目标的型号及其它特征,如分辨出敌我。这是目标所成的像在临界尺寸方向上必须占到12个像素以上。

红外热像技术基础知识介绍

诱发企业安全事故的因素有众多,其Array中电气安全事故是当今企业的一个带有普 遍性的安全隐患,对用电系统的检查是每 一个企业安全风险评估必不可少的一项内 容。通常我们使用红外热像技术进行检测, 能有效地对电气设备进行预防性维护及评 估。 一、什么是红外热像技术? 红外辐射是自然界存在的一种最为广泛的电磁波辐射,它在电磁波连续频谱中的位置是处于无线电波与可见光之间的区域,因此人的肉眼无法看见。 德国天文学家Sir William Herschel,Herschel让太阳光穿过一个棱镜并在各种颜色处放置温度计,利用灵敏的水银温度计测量每种颜色的温度,结果发现了红外辐射。Herschel发现,当越过红色光线进入他称为“暗红热”区域时,温度便会升高。 红外热成像技术是被动接收物体发出的红外辐射,其原理是基于自然界中一切温度高于绝对零度(-273℃)的物体,均会发出不同波长的电磁辐射,物体的温度越高,分子或原子的热运动越剧烈,则其中的红外辐射越强。黑颜色或表面颜色较深的物体,辐射系数大,辐射较强;亮颜色或表面颜色较浅的物体,辐射系数小,辐射较弱。红外辐射的波长在0.7μm~1mm之间,所以人眼看不到红外辐射。 通过探测物体发出的红外辐射,热成像仪产生一个实时的图像,从而提供一种景物的热 图像。并将不可见的辐射图像转变为人眼可见的、清晰的图像。热成像仪非常灵敏,能探测

到小于0.1℃的温差。 二、红外热像技术的特点: 非接触式测温 红外热像传感器无需与物体表面进行接触,即可远距离测温和成像。 热分布图像 通过将物体表面的温度值进行调色,红外热像技术可以直观地观察物体表面 热分布图像。 区域测温 红外热像测试的是物体表面整个面的温度值,可以同时测试上万个点甚至数十万个点的温度值。 三、什么是红外热像仪? 通俗地讲红外热像仪就是将物体发出的不可见红外能量转变为可见的热图像。热图像的上面的不同颜色代表被测物体的不同温度。通过查看热图像,可以观察到被测目标的整体温度分布状况,研究目标的发热情况,从而进行下一步工作的判断。 人类一直都能够检测到红外辐射。人体皮肤内的神经末梢能够对低达±0.009°C (0.005°F) 的温差作出反应。例如,尽管人类可以凭借动物的热感知能力在黑暗中发现温血猎物,

基础科学黑体红外热辐射实验

黑体红外热辐射实验 热辐射是19世纪发展起来的新学科,至19世纪末该领域的研究达到顶峰,以致于量子论这个婴儿注定要从这里诞生。黑体辐射实验是量子论得以建立的关键性实验之一,也是高校实验教学中一重要实验。物体由于具有温度而向外辐射电磁波的现象成为热辐射,热辐射的光谱是连续谱,波长覆盖范围理论上可从0到∞,而一般的热辐射主要靠波长较长的可见光和红外线。物体在向外辐射的同时,还将吸收从其他物体辐射的能量,且物体辐射或吸收的能量与它的温度、表面积、黑度等因素有关。 1. 1862年,基尔霍夫根据实验提出了理想黑体的概念 2. 1896年,维恩把热力学考察和多普勒原理结合起来,应用到空腔辐射的压缩。他指出,在一定温度下的辐射密度可以通过反射壁包围辐射区域的绝热收缩或绝热膨胀,转变到另一温度的辐射,从而得出了黑体辐射的能量按波长(或频率)分布的公式,又称维恩公式。这个公式的短波部分同实验数据很好符合,并足以解释为什么光谱的极大强度在黑体的温度升高时愈来愈向短波方向移动。 3. 1900年,瑞利应用经典统计力学和电磁理论来计算一个封闭腔的热辐射。他指出,随着封闭腔被加热,那么腔中将建立一个电磁场,这个电磁场可分解成为一个具有不同频率和不同方向的驻波系统,每一个这样的驻波就是电磁场的一个基本状态。于是在一定频率间隔内的场能的计算变为去导出基元驻波的个数,由此得到一个新的热辐射公式。可是瑞利在推导中错了一个因数8,这个错误为英国当时只有27岁的金斯所发现。他于1905年给《自然》杂志的一封信中加以修正,即把原来的瑞利公式用8去除,得到了现在称之为瑞利-金斯公式。这是企图用古典理论来处理黑体辐射的又一重要尝试。这个公式表明,辐射能量密度的频率分布正比于频率的平方。于是在长波部分与实验数据基本相符,但在短波部分却完全不相符合,因此此时按公式计算而得到的辐射能量将变成无穷大,显然这是不可能的。古典理论与实验事实产生了很大的矛盾,这种情况曾被荷兰物理学家埃伦菲斯特称为“紫外灾难”。事实上,维恩公式与瑞利—金斯公式,各从一个侧面反映出物体辐射中的部分规律,但在解释全部热辐射现象却产生了矛盾和“灾难”,这就充分暴露了经典物理学本身的缺陷。 4. 1900年,普朗克指出,为了得到和实验符合的黑体辐射公式(普朗克公式),必须抛弃经典物理学中关于物体可以连续辐射或吸收能量的概念,而代之以新的概念。他认为可以将构成黑体腔壁的物质看作带电的线性谐振子,它们和腔内的电磁场交换能量(辐射或吸收能量)。而这些微观谐振子只能处于某些特定的状态,在这些状态中它们的能量是最小能量ε0的整数倍。它辐射或吸收能量时只能由一个可能状态跃迁到另一可能状态,即能量只可一份一份地改变,而不能连续地变化。这最小能量ε0称为能量子,它与振子的振动频率v成正比,比例系数就是h (普朗克常数),ε0=hv根据这些假设可以成功地导出普朗克黑体辐射公式。 普朗克的能量子假说,突破了经典物理学的旧框架,首次提出了微观系统的量子特性,从而打开了认识微观世界的大门,是现代物理学史上又一次革命性的发现。【实验目的】 1.了解黑体辐射的历史并明白它在近代物理学发展中的重要地位。 2.研究物体的辐射面、辐射体温度对物体辐射能力大小的影响。 3.研究物体辐射能量和距离之间的关系。 【实验器材】

热红外遥感

熟悉envi处理热红外遥感的影像步棸 实验一: 一:实验内容:定位查找像元,快速查找像元,察看像元的剖面图以及投影的设置。二:实验步骤: 1.右击图片,打开piexl locator 修改sample line 单击apply 象元值查找 右击cursor location拖动鼠标,象元值会随着光标的移动而改变 2.剖面图 右击图像单击spectral profile 单击option<

打开basic tools 《convert data 选择刚刚投影后保存的文件单击OK 选择bil或bip 格式单击OK 打开投影后图片,查看象元值与投影前比较。 三、实验感想:在熟悉envi软件基础上,再次学习envi的一些操作,变得简单。实验在掌握步骤的基础上要了解实验的原理,如像元剖面图是像元在不同波段上得值。 实验二: 一、实验内容:投影设定,不同波段图像噪音的查看,监督分类图像的选择,非监 督分类与监督分类。 二、实验步骤: 1.地图投影的定义

单击map geoference aster geoference data 通过我截的图可以看见图像有了投影信息: 2.查看噪音选择噪音少得图像Basic tools statistics compute statistics

红外热成像基本原理概论

红外热成像仪基本原理与发展前景概论 光电1201 王知权 120150111 前言 红外热像仪是利用红外探测器、光学成像物镜和光机扫描系统(目前先进的焦平面技术则省去了光机扫描系统)接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元上,在光学系统和红外探测器之间,有一个光机扫描机构(焦平面热像仪无此机构)对被测物体的红外热像进行扫描,并聚焦在单元或分光探测器上,由探测器将红外辐射能转换成电信号,经放大处理、转换或标准视频信号通过电视屏或监测器显示红外热像图。 原理 红外线是一种电磁波,具有与无线电波和可见光一样的本质。红外线的发现是人类对自然认识的一次飞跃。利用某种特殊的电子装置将物体表面的温度分布转换成人眼可见的图像,并以不同颜色显示物体表面温度分布的技术称之为红外热成像技术,这种电子装置称为红外热像仪。 这种热像图与物体表面的热分布场相对应;实质上是被测目标物体各部分红外辐射的热像分布图由于信号非常弱,与可见光图像相比,缺少层次和立体感,因此,在实际动作过程中为更有效地判断被测目标的红外热分布场,常采用一些辅助措施来增加仪器的实用功能,如图像亮度、对比度的控制,实标校正,伪色彩描绘等高线和直方进行数学运算、打印等。 红外成像系统简介 红外技术是一门研究红外辐射的产生、传播、转化、测量及其应用的技术科学。任何物体的红外辐射包括介于可见光与微波之间的电磁波段。通常人们又把红外辐射称为红外光、红外线。实际上其波段是指其波长约在0.75μm到1000μm 的电磁波。通常人们将其划分为近、中、远红外三部分。近红外指波长为 0.75-3.0μm;中红外指波长为3.0-20μm;远红外则指波长为20-1000μm。由于大气对红外辐射的吸收,只留下三个重要的“窗口”区,即1-3μm、3-5μm 和8-13μm可让红外辐射通过。 红外探测器是红外技术的核心,它是利用红外辐射与物质相互作用所呈现出来的物理效应来探测红外辐射的传感器,多数情况下是利用这种相互最用所呈现出的电学效应。红外探测器主要分为光子探测器和热敏感探测器两大类型。其中,光子探测器按原理啊可分为光电导探测器、光伏探测器、光电磁探测器和量子阱探测器。 光子探测器的材料有PbS,PbSe,InSb,HgCdTe(MCT),GaAs/InGaAs等,其中HgCdTe和InSb斗需要在低温下才能工作。光子探测器按其工作温度又可分为制

热辐射实验

1.实验题目:热辐射与红外扫描成像系列实验 2.实验目的 1) 学习热辐射的背景知识及相关定律,理解科学家们创造性的思维方法和相关实验技术。 2) 学习用虚拟仪器研究热辐射基本定律,测量Planck 常数。 3) 了解红外扫描成像的基本原理,掌握扫描成像的实验方法和技术。 4) 培养学生运用热辐射的基本原理和相关技术进行基础研究和应用设计的能力。 3.实验内容 1) 验证热辐射基本定律,用黑体辐射公式测量Planck 常数 2) 研究和测定物体不同表面状态的辐射发射量 3) 研究辐射发射量与距离的关系 4) 红外扫描成像实验研究 5) 红外无损探伤实验研究 6) 红外温度计的设计与材料热性质的研究 7) 运用热辐射基本定律和本实验装置进行自主应用设计性实验 4.实验原理 1. 了解热辐射的基本概念和定律 当物体的温度高于绝对零度时,均有红外光向周围空间辐射出来,红外辐射的物理本质是热辐射。其微观机理是物体内部带电粒子不停的运动导致热辐射效应。热辐射的波长和频率在0.76?100μ之间,与电磁波一样具有反射、透射和吸收等性质。设辐射到物体上的能量为Q ,被物体吸收的能量为Q α,透过物体的能量为Q τ,被反射的能量为Q ρ。 由能量守恒定律可得: Q=Q α+Q τ+Q ρ归一化后可得: +1Q Q Q Q Q Q βαταβτ+=++= (1) 式中α为吸收率,τ为透射率,ρ为反射率。 1.1 基尔霍夫定律 基尔霍夫指出:物体的辐射发射量M 和吸收率α的比值M/α与物体的性质无关,都等同于在同一温度下的绝对黑体的辐射发射量M B ,这就是著名的基尔霍夫定律。

1 212()B M M M f t αα====L (2) 基尔霍夫定律不仅对所有波长的全辐射(或称总辐射)而言是正确的,而且对任意单色波长λ也是正确的。 1.2 绝对黑体 能完全吸收入射辐射,并具有最大辐射率的物体叫做绝对黑体。实验室中人工制作绝对黑体的条件是:1)腔壁近似等温,2)开孔面积<<腔体。 本实验中我们利用红外传感器测量辐射方盒表面的总辐射发射量M 。M 是所有波长的电磁波的光谱辐射发射量的总和,数学表达式为: M M d λλ∞ =∫ (3) 上式被称为斯蒂芬-玻尔兹曼定律。不同的物体,处于不同的温度,辐射发射量都不同,但有一定的规律。 比辐射率ε的定义:物体的辐射发射量与黑体的辐射发射量之比,即 00d =d B B T B M M M M λλλελελ ∞∞??==????∫∫物体辐射发射量黑体辐射发射量 (4) 由基尔霍夫定律可知,辐射发射量M与吸收率α的关系:B M M α= 由能量守恒定律和基尔霍夫定律,即公式(1)和(2)联立求解 1B M M αβτα++=??=? 可得: ()1B M M τρ=?? (5) 由上述知识可知,若我们测出物体的辐射发射量和黑体的辐射发射量,便可求出物体的吸收率,还可以获得物体反射率和透射率的有关信息。 2. 空气中热辐射的传播规律研究 我们知道,许多物理量都与距离 r 的反平方成正比。现代物理学认为,这很大程度上是由空间的几何结构决定的。以天体辐射为例,如果距离 r 的指数比 2 大或者比 2 小,就会影响太阳的辐射场,使地球温度过低或者过高,从而不适合碳基生命形式的存在。那么热源的辐射量与距离的关系是否也遵循这一规律呢?对于球形均值热源和各种不同形状和不同材料构成的热源的辐射量在空气中的衰减规律及其分布是否都遵循反平方定律呢? 我们首先引进几个概念。辐射功率 P :单位时间内传递的辐射能 W ,即

什么是红外辐射红外热像仪及其工作原理

什么是红外辐射红外热像仪及其工作原理

————————————————————————————————作者:————————————————————————————————日期:

什么是红外辐射?红外热像仪及其工作原理 1800年,英国天文学家弗里德里希?威廉?赫歇尔第一次发现了红外辐射的存在。为了解不同颜色的光所产生的热量有何不同,他将太阳光用三棱镜分解成一个彩虹样的光谱,然后测量了每种颜色的温度。他发现,从光谱的紫罗兰色部分到红色部分,温度呈现逐渐升高的趋势。 在注意到这一现象之后,赫歇尔决定再在没有可见太阳光线的区域测量光谱中红色光之外的部分的温度。令他惊讶的是,这一区域的温度最高。 什么是红外辐射? 红外辐射介于电磁光谱的可见光辐射和微波辐射之间。红外辐射源主要为热量或热辐射。温度高于绝对零度(-273.15摄氏度或0开尔

文)的任何物体均会发出红外辐射。即使我们认为非常冷的物体(例如冰块)也存在红外辐射。 我们每天都会接触红外辐射,这包括我们从太阳光、火或散热器等处感觉到的热量。尽管肉眼看不到,但皮肤中的神经却可以感受到热量。物体越热,其红外辐射量越大。 红外热像仪及其工作原理 尽管肉眼无法观测红外辐射(IR),但是红外热像仪可将其转化为可见光图像,描绘被测物体或场景的温度变化。所有温度高于绝对零度的物体均可发射红外光,且物体温度越高,红外辐射量越大。 红外热像仪工作原理的简化图 某个物体发出的红外能量通过光学镜头聚焦在红外探测器上,探测器向传感器电子元件发送信息,进行图像处理,电子元件将探测器发来的数据转译成可在取景器或标准视频监视器或LCD显示屏上查看的图像。 红外热成像是一种可将红外图像转换为热辐射图像的技术,该技术可从图像中读取温度值。因此,热辐射图像中的各个像素实际上都是一个温度测量,可实现对物体表面温度的非接触式测量。

试述热红外遥感的海洋学应用

试述热红外遥感的海洋学应用 热红外辐射计和微波辐射计观测得到的全球海表面温度可应用与下列研究领域(1)气候学。海洋的面积占地球70%,地球的气候在很大程度上受海洋决定,海水的热容量是大气热容量的1000倍,海水温度的微小变化都会对大气温度、大气环流、天气形势和气候带来非常大的影响;海表面温度的任何微小变化都可能标志着海洋内部热能储蓄的重大变化。因此,地球气候不但与大气有关,还与海洋与大气之间复杂的相互作用密切相关。海气相互作用的基础是海表温度,海气之间的能量交换正是通过海气界面进行的。通过热红外可以遥感海表温度,弥补传统资料的不足和缺陷。 (2)全球海表面温度变化。CO2的增加引起全球变暖,随之而来的海表面温度增加和海平面增高已引起人们的普遍关注。然而,全球海表面温度和海平面增高的佐证,需要长期、大面积和具有较高精度的海表面温度的测量及统计。这离不开海洋遥感。 (3)海表面温度异常。海表温度异常描述在某一特定区域某一特定时间内海表面温度的观测值与长期海表面温度平均值的偏差。由于海域的浩瀚,常规航测方法很难快速获得海表面温度及其变化,正是卫星遥感才使得海表面温度异常及其变化的监测和预报成为可能。 (4)天气预报。海表面温度显著地影响到海水蒸发率,后者对当地地区的天气系统的发展有很大影响,尤其对热带气旋早期发展的位置和运动路径有重要影响。作为大气运动的下垫面,海表面的温度大小与变化在天气预报中有重要意义,甚至有文献指出,海表面温度达到或超过28C是台风产生的一个重要条件。(5)大洋涡旋。中尺度涡是大洋环流在其蛇形的过程中由于相邻水体的流速不同而形成的百米级至几十千米的中尺度现象。中尺度引起大洋环流与周围海域的水体进行能量、物质、热量交换,对其周边海域及其陆地的天气和渔业生产等产生影响。由于中尺度涡脱离于母体----大洋环流,它具有母体的一些水文特征,特别是温度特征,而与其周围海域的海水有明显的差异;因此,使用红外遥感可对其发生、发展、运动、变化、消亡等进行有效的监测。红外遥感比微波遥感具有更高的空间分辨率,它比微波遥感更适合监测中尺度涡。 (6)上升流。上升流是海洋底层水向表层涌升的现象。底层海水比表层海水温

红外热像仪学习总结讲解

红外热像仪的学习总结 制冷及低温工程 经历了几周对本课程的学习,发现自学到了很多东西,现将本课程最基本的知识整理如下: 1. 红外线的发现与分布 1672年人们发现太阳光(白光)是由各种颜色的光复合而成,同时,牛顿作出了单色光在性质上比白色光更简单的著名结论。使用分光棱镜就把太阳光(白光)分解为红、橙、黄、绿、青、蓝、紫等各色单色光。1800年,英国物理学家F. W. 赫胥尔从热的观点来研究各种色光时发现了红外线。他在研究各种色光的热量时,有意地把暗室的唯一的窗户用暗板堵住,并在板上开了一个矩型孔,孔内装了一个分光棱镜。当太阳光通过棱镜时,便被分解为彩色光带,并用温度计去测量光带中不同颜色所含的热量。为了与环境温度进行比较,赫胥尔用在彩色光带附近放几支作为比较用的温度计来测定周围环境温度。试验中,他偶然发现一个奇怪的现象:放在光带红光外的一支温度计,比室内其它温度的批示数值高。经过反复试验表明这个所谓热量最多的高温区,总是位于光带最边缘处红光的外面。于是他宣布太阳发出的辐射中除可见光线外,还有一种人眼看不见的热线,这种看不见热线位于红色外侧,叫做红外线。红外线是一种电磁波,具有与无线电波及可见光一样的本质,红外线的发展是人类对自然认识的一次飞跃,对研究、利用和发展红外技术领域开辟了一条全新的广阔道路。 红外线的波长在0.76--100μm之间,按波长的范围可分为近红外、中红外、远红外、极远红外四类,它在电磁波连续频谱中的位置是处于无线电波与可见光之间的区域。 红外线辐射是自然界存在的一种最为广泛的电磁波辐射,它是基于任何物体在常规环境下都会产生自身的分子和原子无规则的运动,并不停地辐射出热红外能量,分子和原子的运动愈剧烈,辐射的能量愈大,反之,辐射的能量愈小。温度在绝对零度以上的物体,都会因自身的分子运动而辐射出红外线。通过红外探测器将物体辐射的功率信号转换成电信号,成像装置的输出的就可以完全一一对应地模拟扫描物体表面温度的空间分布,经电子系统处理后传至显示屏上,得到与物体表面热分布相应的热像图。运用这一方法,便能实现对目标进行远距离热状态图像成像和测温并进行分析判断。热像仪为非接触式测量,这是它的优点。如果为接触式测量,一个大的缺点就是破坏了原来的温度场。 2. 红外热像仪的原理 红外热像仪由红外探测器、光学成像物镜和处理电路组成。早期的热像仪由于焦平面技术的限制,一般是线阵或×4、×6阵列的,需要光机扫描系统,目前基本为凝视型焦平面所代替,省略了光机扫描系统。利用物镜将目标的红外辐射能量分布图形成像到红外焦平面上,由焦平面将红外能量转换为电信号,经放大处理、转换为标准视频信号通过电视屏或监测器显示红外热像图。 这种热像图与物体表面的分布场相对应实;际上是被测目标物体各部分红外辐射的热像分布图由于信号非常弱,与可见光相比缺少层次和立体感,因此,在实际动作过程中为更有效地判断被测目标的红外热场,常采用一些辅助措施来增加仪器的实用功能,如图像亮度、对比度的控制,实际校正,伪色彩,描绘等高

第7章-热辐射的基本定律

第七章热辐射的基本定律 在工程技术中,在日常生活中,辐射换热现象是屡见不鲜的。太阳对大地的照射是最常见的辐射现象。高炉中灼热的火焰会烘烤得人们难以忍受‘太阳对人造卫星的辐射,会使卫星的朝阳面的温度明显地高于卫星背阳面的温度;高温发动机部件与飞机机体之间的辐射换热严重地影响着飞机的结构与强度设计,等等。特别是近年来,人类对太阳能的利用,都大大地促进了人们对辐射换热的研究。 本章首先介绍辐射的基本特性和基本规律;然后重点讨论物体之间的辐射换热规律;最后对气体辐射换热的特点作扼要的介绍。 第一节基本概念 1-1 热辐射的本质和特征 由于不同的原因,物体能够向其所在的空间发射各种不同波长的电磁波;不同波长的电磁波具有不同的效应,人们可以利用不同波长的电磁波效应达到一定的目的。比如,人们可以利用无线电波传送信息,利用x射线穿透物质的能力进行零件探伤,利用热射线传递热能,等等。人们根据电磁波不同效应把电磁波分成若干波段。波长λ=0.38一0.76μm的电磁波段称为可见光波段λ=0.76—1000 μm的电磁波段称为红外波段(一般将红外波段范围又分为近红外波段和远红外波段,近红外波段为λ=0.7—25μm,远红外波段为λ=25—1000μm);波长大于1000μm的电磁波段称为无线电波段(根据其波长的不同又可分为雷达、视频和广播三个波段);波长小于0.4μm的电磁波依次分为紫外线、x射线和Y射线等。可见光和红外线以及紫外线的一部分被物体吸收后产生热效应,即波长λ=0.1—1000 μm范围内的电磁技能被物体吸收变为热能,因此,这一波长范围的电磁波称为热射线。因为在一般常见的工业温度条件下,其辐射波长均在这一范围,所以本课程所感兴趣的将是热射线,下面将专门讨论这一波长范围内电磁波的发射、传播和吸收的规律。 一、热辐射的本质和特点 1、发射辐射能是各类物质的固有特性。当原子内部的电子受温和振动时,产生交替变化的电场和磁场,发出电磁波向空间传播,这就是辐射。由于自身温度或热运动的原因面激发产生的电磁波传播,就称热辐射。显然,热辐射是电磁波,电磁波的波长范围可从几万分之一微米到数千米,它们的名称和分类如图所示。通常把λ=0.1—100μm范围的电磁波称热射线,其中包括可见光线、部分紫外线和红外线具有波动和量子特性。 2、特点 热辐射的本质决定了热辐射过程有如下三个特点:

地表温度热红外遥感反演的研究现状及其发展趋势_祝善友

收稿日期:2006-04-19;修订日期:2006-10-16 基金项目:上海市科委光科技专项(04dz05117)资助。 作者简介:祝善友(1977-),男,博士,主要从事遥感信息处理研究工作。 地表温度热红外遥感反演的研究现状及其发展趋势 祝善友1,张桂欣1,尹 球2,匡定波2 (1.南京信息工程大学遥感学院,江苏南京 210044;2.中国科学院上海技术物理研究所,上海 200083)摘要:区域性或全球性的地表温度,只有通过遥感手段才能获得,在诸多应用中是一个非常重要的参数。地表温度反演是热红外遥感研究的热点和难点之一,大气校正、温度与比辐射率的分离是必须考虑的两个重要方面。近年来有关的研究非常多,主要反演方法可分为5类:单通道方法、分裂窗(双波段)方法、多波段温度-比辐射率分离方法、多角度温度反演方法和多角度与多通道相结合的方法。这些方法都各有利弊,如何提高反演的精度和模型的适用性是地表温度热红外遥感的未来发展趋势,理论和实验相结合的多种信息源的综合应用成为必然的要求。关 键 词:地表温度;比辐射率;热红外波段;遥感 中图分类号:TP 751.1;TP 722.5 文献标识码:A 文章编号:1004-0323(2006)05-0420-06 1 引 言 在许多环境模型中,如大气与地表的能量与水汽交换、数字天气预报、全球洋流、气候变化等方面,地表温度都是一个不可或缺的重要参量。只有通过遥感技术,才能获得区域性或全球性的地表温度分布状况。近年来许多方法被用于从热红外波段探测到的经大气影响的地表辐射,并结合其它辅助数据来估算地表温度。但是许多原因限制了高精度的地表温度反演〔1,2〕:①大气对热红外波段的影响非常复杂,难以进行精确的大气校正;②热红外波段信息受地表热状况的影响,而且地物本身的热过程非常复杂,要定量表达这一过程非常困难;③热探测器获得的物体发射辐射信息包含了地表温度与比辐射率,温度与比辐射率的分离是热红外遥感的一个难点;④热红外遥感图像的空间分辨率一般低于可见光-近红外遥感图像,造成了混合像元(非同温像元)的定义和计算的复杂。因此,若想从遥感数据中获得地表温度,高精度的大气校正、温度与比辐射率的分离是首先必须考虑的两个关键方面。 2 地表温度热红外遥感反演的理论基 础 在热红外遥感的地-气辐射传输过程中,地面 与大气都是热红外辐射的辐射源,辐射能多次通过 大气层,被大气吸收、散射和发射。图1为热红外遥感的地-气辐射传输示意图,它表达了热红外辐射的传输方向以及相互作用过程〔2〕 。 图1 热红外遥感的地-气辐射传输示意图Fig .1  Sketch map of ground -atmospheric radiance transmission of thermal inf rared remote sensing 若考虑热辐射的方向性,则根据热辐射传输方程,卫星遥感器接收到的辐射亮度可由式(1)计算:L sensor j (θ)=f j (θ)·X j (θ)·B j (T s )+L atm ↑ j (θ)+ f j (θ)·∫ o f (θ′,h ′,θ,h )·L atm ↓j (θ′)·co s θ′do ′(1) 第21卷 第5期2006年10月 遥 感 技 术 与 应 用 REM OT E S EN SING TEC HNOLOGY AND APPLICA TION Vol .21 No .5Oct .2006

红外热成像基础知识

一、红外热成像技术的定义 红外热像技术是一门获取和分析来自非接触热成像装置的热信息的科学技术。就像照相技术意味着“可见光写入”一样,热成像技术意味着“热量写入”。热成像技术生成的图片被称作“温度记录图”或“热图”。 二、红外热成像技术的基础知识-红外热像图和可见光图比较 红外热图像可见光图像 三、红外热成像测量的优势 1.非接触遥感检测,红外热像仪不同于红外测温仪,不用接触被测物,可以安全直观的找到发热点。 2.一张二维画面可以体现被测范围所有点的温度情况,具有直观性。还可以比较处于同一区域的物体的温度,查看两点间的温差等。 3.实时快速扫描静止或者移动目标,可以实时传输到电脑进行分析监控。 四、红外线的发现

1800年英国的天文学家Mr.WilliamHerschel用分光棱镜将太阳光分解成从红色到紫色的单色光,依次测量不同颜色光的热效应。他发现,当水银温度计移到红色光边界以外,人眼看不见任何光线的黑暗区的时候,温度反而比红光区更高。反复试验证明,在红光外侧,确实存在一种人眼看不见的“热线”,后来称为“红外线”,也就是“红外辐射”。 红外线普遍存于自然界中,任何温度高于绝对零度(-273.16℃ )的物体都会发出红外线,比如冰块。 五、电磁波谱 我们通常把波长大于红色光线波长0.75μm,小于1000μm的这一段电磁波称作“红外线”,也常称作“红外辐射”。红外线按照波长不同可以分为:近红外0.75 –3μm;中红外3 –6 μm;远红外6 –15μm;极远红外15 –1000 μm。

六、红外辐射的大气穿透 红外线在大气中穿透比较好的波段,通常称为“大气窗口”。红外热成像检测技术,就是利用了所谓的“大气窗口”。短波窗口在1--5μm之间,而长波窗口则是在8--14μm之间。 一般红外线热像仪使用的波段为:短波(3μm -- 5μm); 长波( 8μm --14μm) 。 七、红外热像仪的工作原理 红外热像仪可将不可见的红外辐射转换成可见的图像。物体的红外辐射经过镜头聚焦到探测器上,探测器将产生电信号,电信号经过放大并数字化到热像仪的电子处理部分,再转换成我们能在显示器上看到的红外图像。

红外热辐射的类型介绍

红外热辐射的类型介绍 红外热以光波的形式传播,并且波的波长不同,所有波长都称为光谱。它的范围很广,分为3个主要类别。短波/近红外:这是热能,人体已开发出多种机制来保护自己免受短波红外的影响,短波用于工业干燥应用,熔化,油漆干燥和石英空间加热。归类为“最热”的红外线,温度高达2700C,波长为0.7 –1.4微米,也称为“短波”或“近”红外线。 中波或中波,不如红外短波热,中波可以被皮肤吸收,有各种各样的中波加热器,主要用于工业和室外应用。红外线,温度为500 –800C,波长为1.4 –3微米,也称为“中波”或“中”红外线。 长波或远红外,容易被皮肤吸收,用于远红外采暖系统和空间加热升温中,以舒适地供暖,欧美医院还在孵化器中使用远红外热来给新生婴儿保暖和采暖加热。C是红外线,温度低于500C,是最终的且最宽的3微米–1mm波段,也称为“长波”或远红外线。 远红外线发射出生物学上最重要的舒适采暖波长,因为皮肤含量为80%的水,仅吸收3微米及以下的热波

长(远红外线)。因此,远红外更好地被皮肤吸收,更少的透射和更少的反射。 辐射加热的方式与太阳加热地球的方式相同,太阳的红外线撞击地球,物体和人。辐射热能被吸收,每个物体变成一个储热器,然后加热周围的空气。一个简单例子,留在阳光下的汽车比留在阴凉处的汽车要温暖和干燥更快,因为太阳的红外线直接加热了汽车的表面,留在阴凉处的汽车正在被周围的空气加热,不会很快干燥。 当阳光到达物体时,它们会从内部加热物体,使物体变热而不加热周围的空气,远红外采暖系统将热量保持在靠近安装表面(即瓷砖地板或墙壁)的位置,而不是将热的空气靠近天花板,远红外线恰好在电磁光谱的不可见光范围内。

光学遥感与热红外遥感模型

第二章光学遥感与热红外遥感模型
2.3 植被冠层反射模型 2.3.3 几何光学模型 几何光学原理很早就用于解释天文观测中粗糙表面的方向 性反射现象,林、农学家也曾应用实物园锥、椭球、园柱来模 拟单株或规则排列的作物在不同行向、行距、株距组合时对不 同入照方向直射光的截获。 Egbert(1976) 和 Otterman(1981) 较早引用几何光学的数学模 型到植被的BRDF研究,但他们的模型假定植株为很小的几何体 且每像元内有大量的植株,因而未能突出几何光学(Geometricoptical model, GO)模型在不连续植被BRDF上的优势。

第二章光学遥感与热红外遥感模型
2.3 植被冠层反射模型 2.3.3 几何光学模型 与辐射传输 (RT) 模型基于微体积内散射方程不同,几何光 学模型基于 “ 景合成模型 ”,即从遥感像元的观测尺度出发,将 像元视场的总亮度,看做是:在观测器视场内,一部分是太阳 光承照面,一部分在阴影中,而观测的结果是二者亮度的面积 加权和。 Jackson 等 (1972) 提出了行作物的四分量模型(承照植被、 阴 影 中 植 被 、 承照地面和地面阴影)。李一 Strahler(1985 , 1986)根据稀疏林的实际情况,抛弃了“小几何体”假定,直接用 森林结构参数计算四个分量随太阳角和观察角变化,建立了遥 感像元尺度的天然林BRDF模型。

第二章光学遥感与热红外遥感模型
2.3 植被冠层反射模型 2.3.3 几何光学模型
影响植被冠层的光学遥感信号的因素主要有: (1)植被冠层组分(叶、枝、杆)的光学特性; (2)冠层下背景(下垫面,如土壤、苔藓)的光学特性; (3)植被组分的角度分布特性; (4)植被组分的空间分布。 其中后两个因素主要取决于冠层结构。 将叶片层看做混浊介质的辐射传输模型,可以描述(1) (2)和(3),而几何光学模型则强调(4)在解释遥感信号 中的作用,因而可以很好表述以上全部4个因素的作用,对空间 结构明显的植被遥感信号的解释有优势。

红外遥感技术的发展及其应用

遥感导论 实习报告 班级:2011级测绘工程 姓名:韩宇鹏 学号:201111830127 指导教师:泮雪琴

红外遥感技术的发展及其应用 摘要:热红外遥感对研究全球能量变换和可持续发展具有重要的意义,尤其在生态学领域,借助地面实测数据和遥感数据,通过红外波段的解析、反演可以进行各种问题的定量化探讨。文章从军事、海洋,地热资源3个方面阐述了热红外遥感的应用。 一:红外遥感发展现状 地球科学正朝着更精确定量化的方向发展,地表能量交换是地球系统中水、热、碳各种循环和过程的主导因子,其中陆面温度又是地表能量交换的核心信息,而信息的获取是个高难度课题,精确定量反演陆面温度的成果将推动旱灾预报和作物缺水研究、农作物产量估算、数字天气预报、全球变化和全球碳平衡等领域研究的进展。人们要以遥感手段定量表达地球表面时空多变要素,特别是陆面温度的区域分布规律,首先遇到的问题是如何将遥感信息转化为地球科学迫切需要的应用信息。地学遥感的信息源是各种地物的反射和发射的电磁波强度记录,只有少量应用信息可以从这些电磁波信息里面直接提取,而绝大多数的应用,信息的获取需要非遥感参数和先验知识的支撑,并要在物理学、生物学、农学、水文学、气象学等多学科的交叉和渗透下,建立信息转换模型,才能使遥感信息和地学信息连接起来。成功的定量遥感研究都是从信息转换机理入手,研究如何以遥感获得电磁波信息定量反演出所需的应用信息。从唯物辩证法的角度分析,从遥感信息转换到地学应用信息的过程就是克服遥感信息局限性的过程。遥感的发展史就是不断地克服和改善遥感的局限性的历史,热红外遥感的发展也不例外。在克服遥感的局限性的道路上不乏成功之例:热红外波段的“劈窗技术”是在光谱信息上开拓的有效方法。热红外辐射的大气辐射传输是非常复杂的课题,大气参数的时空变化给陆面温度的反演带来了局限性,劈窗技术利用两个热红外波段的辐射信号的差值与大气参数之间的信息相关性,使得用热红外波段遥感信息本身就可以进行大气辐射初步纠正。热红外辐射的“肤面特征”也是一种局限性,它的信息只局限于地物表面,然而,热惯量方法是利用两个时相的热红外辐射温度差值,提取了地表面以下的土壤水分信息,使得遥感信息的应用向地表以下的深度开拓。多角度遥感也是开拓遥感信息,使其获取地物三维信息的好例子。热红外遥感基础研究的实质内涵仍然是以遥感信息为基础开拓和挖掘地学信息的过程。在地物光谱维上已开拓出多光谱遥感的研究领域,在时间维上也开拓出多时相遥感的研究范畴,而近年来发展起来的多角度遥感显然是在方向维上开拓的结果。

远红外线加热技术原理

远红外线加热技术原理 远红外线的传热形式是辐射传热,由电磁波传递能量。在远红外线照射到被加热的物体时,一部分射线被反射回来,一部分被穿透过去。当发射的远红外线波长和被加热物体的吸收波长一致时,被加热的物体吕量吸收远红外线,这时,物体内部分子和原子发生“共振"——产生强烈的振动、旋转,而振动和旋转使物体温度升高,达到了加热的目的。 烧烤炉的远红外加热方式有两种:一是燃气远红外加热方式:另一种是电热管远红外加热方式。只是能源不同,而产生的远红外线都是同一种特殊物质。 远红外线本身是一种能量传递的电磁波。在红色光谱的外侧,介于红色与不可见光谱之间,所以谓之远红外线。波长在0.47—400微米之间。远红外线的传热形式是辐射传递热能,由电磁波传递能量。在远红外线照射到被加热的物体时,一小部分射线被反射回来,绝大部分渗透到被加热的物体之中。由于远红外线本身是一种能量,当发射的远红外线波长和被加热物体的吸收波长一致时,被加热的物体内分子或原子吸收远红外线能量,产生强烈的振动并处使物体内部分子和原子发生“共振.物体分子或原子之间的高速磨擦产生热量而使其温度升高。从而达到了加热的目的。 科学实验证明,远红外线加热时不需要传热介质。其具有很强的穿透能力,这样,远红外线加热与常规传导方式相比,具有热传递直接简单,生产热效率高,卫生环保,杀菌消毒,烧烤食物快捷,干净,卫生,质量佳,口感好。大大节省能源,制造简单,易推广等优点。

辐射传递的热量与温度成四次方正比,加热时不需要传热介质,具有一定的穿透能力,这样,远红外线加热与常规传导方式相比,具有生产效率高,干燥质量好,省能量,安全,卫生,设备简单,易推广等优点。 中国远红外网https://www.wendangku.net/doc/216448370.html,

相关文档
相关文档 最新文档