文档库 最新最全的文档下载
当前位置:文档库 › 高等数学(上册)-第一章教案

高等数学(上册)-第一章教案

高等数学(上册)-第一章教案
高等数学(上册)-第一章教案

第一章:函数、极限与连续

教学目的与要求

1.解函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系式。

2.解函数的奇偶性、单调性、周期性和有界性。

3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。

4.掌握基本初等函数的性质及其图形。

5.理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限之间的关系。

6.掌握极限的性质及四则运算法则。

7.了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

8.理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。

9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

10.了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。

所需学时:18学时(包括:6学时讲授与2学时习题)

第一节:集合与函数

一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。

我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A 中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a?A。

⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N

⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。

⑶、全体整数组成的集合叫做整数集。记作Z。

⑷、全体有理数组成的集合叫做有理数集。记作Q。

⑸、全体实数组成的集合叫做实数集。记作R。

集合的表示方法

⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合

⑵、描述法:用集合所有元素的共同特征来表示集合。

集合间的基本关系

⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A?B(或B?A)。。

⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。

⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。

⑷、空集:我们把不含任何元素的集合叫做空集。记作?,并规定,空集是任何集合的子集。

⑸、由上述集合之间的基本关系,可以得到下面的结论:

①、任何一个集合是它本身的子集。即A?A

②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。

③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。

集合的基本运算

⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A∪B。(在求并集时,它们的公共元素在并集中只能出现一次。)

即A∪B={x|x∈A,或x∈B}。

⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A∩B。

即A∩B={x|x∈A,且x∈B}。

⑶、补集:

①全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。通常记作U。

②补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集。简称为集合A的补集,记作C U A。

即C U A={x|x∈U,且x A}。

集合中元素的个数

⑴、有限集:我们把含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。

⑵、用card来表示有限集中元素的个数。例如A={a,b,c},则card(A)=3。

⑶、一般地,对任意两个集合A、B,有card(A)+card(B)=card(A∪B)+card(A∩B)

我的问题:

1、学校里开运动会,设A={x|x是参加一百米跑的同学},B={x|x是参加二百米跑的同学},C={x|x是参加四百米跑的同学}。学校规定,每个参加上述比赛的同学最多只能参加两项,请你用集合的运算说明这项规定,并解释以下集合运算的含义。⑴、A∪B;⑵、A∩B。

2、在平面直角坐标系中,集合C={(x,y)|y=x}表示直线y=x,从这个角度看,集合D={(x,y)|方程组:2x-y=1,x+4y=5}表示什么?集合C、D之间有什么关系?请分别用集合语言和几何语言说明这种关系。

3、已知集合A={x|1≤x≤3},B={x|(x-1)(x-a)=0}。试判断B是不是A的子集?是否存在实数a使A=B成立?

4、对于有限集合A、B、C,能不能找出这三个集合中元素个数与交集、并集元素个数之间的关系呢?

5、无限集合A={1,2,3,4,…,n,…},B={2,4,6,8,…,2n,…},你能设计一种比较这两个集合中元素个数多少的方法吗?

2、区间

⑴、变量的定义:我们在观察某一现象的过程时,常常会遇到各种不同的量,其中有的量在过程中不起变化,我们把其称之为常量;有的量在过程中是变化的,也就是可以取不同的数值,我们则把其称之为变量。注:在过程中还有一种量,它虽然是变化的,但是它的变化相对于所研究的对象是极其微小的,我们则把它看作常量。

⑵、变量的表示:如果变量的变化是连续的,则常用区间来表示其变化范围。在数轴上来说,区间是指介于某两点之间的线段上点的全体。

区间的名称区间的满足的不等式区间的记号区间在数轴上的表示

闭区间a≤x≤b[a,b]

开区间a<x<b (a,b)

半开区间a<x≤b或a≤x<b (a,b]或[a,b)

以上我们所述的都是有限区间,除此之外,还有无限区间:

[a,+∞):表示不小于a的实数的全体,也可记为:a≤x<+∞;

(-∞,b):表示小于b的实数的全体,也可记为:-∞<x<b;

(-∞,+∞):表示全体实数,也可记为:-∞<x<+∞

注:其中-∞和+∞,分别读作"负无穷大"和"正无穷大",它们不是数,仅仅是记号。

⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。

3、复合函数

复合函数的定义:若y是u的函数y=f(u),而u又是x的函数:u=φ(x),且u=φ(x)的函数值的全部或部分在f(u)的定义域内,那末,y通过u的联系也是x的函数,我们称后一个函数是由函数y=f(u)及u=φ(x)复合而成的函数,简称复合函数,记作

y=f(φ(x)),其中u叫做中间变量。

注:并不是任意两个函数就能复合;复合函数还可以由更多函数构成。

例题:函数y=arcsinx与函数u=2+x2是不能复合成一个函数的。

因为对于u=2+x2的定义域(-∞,+∞)中的任何x值所对应的u值(都大于或等于2),使y=arcsinu都没有定义。

4、初等函数

⑴、基本初等函数:我们最常用的有五种基本初等函数,分别是:指数函数、对数函数、幂函数、三角函数及反三角函数。下面我们用表格来把它们总结一下:

函数

名称

函数的记号函数的图形函数的性质

指数函数

a):不论x为何值,y总为正数;

b):当x=0时,y=1.

对数函数

a):其图形总位于y轴右侧,并过(1,0)点

b):当a>1时,在区间(0,1)的值为负;在区间(-,+∞)的值为正;在定义域内单调增.

a为任意实数

这里只画出部分函数图形的一部分。

令a=m/n

a):当m为偶数n为奇数时,y是偶函数;

b):当m,n都是奇数时,y是奇函数;

c):当m奇n偶时,y在(-∞,0)无意义.

三角函数

(正弦函数)

这里只写出了正弦函数

a):正弦函数是以2π为周期的周期函

b):正弦函数是奇函数且

反三角函数

(反正弦函数)

这里只写出了反正弦函数

a):由于此函数为多值函数,因此我们此

函数值限制在[-π/2,π/2]上,并称其为反

正弦函数的主值.

⑵、初等函数:由基本初等函数与常数经过有限次的有理运算及有限次的函数复合所产生并且能用一个解析式表出的函数称为初等函数.

5、双曲函数及反双曲函数(补充)

⑴、双曲函数:在应用中我们经常遇到的双曲函数是:(用表格来描述)

函数的

名称

函数的表达式函数的图形函数的性质

双曲正弦

a):其定义域为:(-∞,+∞);

b):是奇函数;

c):在定义域内是单调增

双曲余弦

a):其定义域为:(-∞,+∞);

b):是偶函数;

c):其图像过点(0,1);

双曲正切

a):其定义域为:(-∞,+∞);

b):是奇函数;

c):其图形夹在水平直线y=1及y=-1之间;在定域内单调增;

课后作业及小结:

1、学习了集合概念与函数概念

2、掌握复合函数与反函数计算方法。

作业:P9.1,7,8

第二节:数列的极限

1、引入

⑴、数列:若按照一定的法则,有第一个数a1,第二个数a2,…,依次排列下去,使得任何一个正整数n对应着一个确定的数a n,那末,我们称这列有次序的数a1,a2,…,a n,…为数列.数列中的每一个数叫做数列的项。第n项a n叫做数列的一般项或通项.

注:我们也可以把数列a n看作自变量为正整数n的函数,即:a n=,它的定义域是全体正整数

⑵、极限:极限的概念是求实际问题的精确解答而产生的。

例:我们可通过作圆的内接正多边形,近似求出圆的面积。

设有一圆,首先作圆内接正六边形,把它的面积记为A1;再作圆的内接正十二边形,其面积记为A2;再作圆的内接正二十四边形,其面积记为A3;依次循下去(一般把内接正6×2n-1边形的面积记为A n)可得一系列内接正多边形的面积:A1,A2,A3,…,An,…,它们就构成一列有序数列。我们可以发现,当内接正多边形的边数无限增加时,An也无限接近某一确定的数值(圆的面积),这个确定的数值在数学上被称为数列A1,A2,A3,…,An,… 当n→∞(读作n趋近于无穷大)的极限。

注:上面这个例子就是我国古代数学家刘徽(公元三世纪)的割圆术。

2、数列极限的概念

(1)、数列的极限:一般地,对于数列x1,x2,x3,…,x n,来说,若存在任意给定的正数ε(不论其多么小),总存在正整

数N,使得对于n>N时的一切x n不等式都成立,那末就称常数a是数列x n的极限,或者称数x n收敛于a .

记作:或

注:此定义中的正数ε只有任意给定,不等式才能表达出x n与a无限接近的意思。且定义中的正整数N与任意给定的正数ε是有关的,它是随着ε的给定而选定的。

(2)、数列的极限的几何解释:在此我们可能不易理解这个概念,下面我们再给出它的一个几何解释,以使我们能理解它。数列x n极限为a的一个几何解释:将常数a及数列x1,x2,x3,…,x n在数轴上用它们的对应点表示出来,再在数轴上作点a 的ε邻域即开区间(a-ε,a+ε),如下图所示:

因不等式与不等式等价,故当n>N时,所有的点x n都落在开区间(a-ε,a+ε)内,而只有有限个(至多只有N个)在此区间以外。

注:有界的数列不一定收敛,即:数列有界是数列收敛的必要条件,但不是充分条件。例:数列 1,-1,1,-1,…,(-1)n+1,…是有界的,但它是发散的。

3、数列极限的计算(课本例子)

课后作业及小结:

1、学习了数列极限概念

2、掌握数列极限运算方法。

作业:P15.2

第三节:函数极限的定义域计算

前面我们学习了数列的极限,已经知道数列可看作一类特殊的函数,即自变量取1→∞内的正整数,若自变量不再限于正整数的顺序,而是连续变化的,就成了函数。下面我们来学习函数的极限.

函数的极值有两种情况:a):自变量无限增大;b):自变量无限接近某一定点x0,如果在这时,函数值无限接近于某一常数A,就叫做函数存在极值。我们已知道函数的极值的情况,那么函数的极限如何呢 ?

下面我们结合着数列的极限来学习一下函数极限的概念!

1、函数的极限(分两种情况)

a):自变量趋向无穷大时函数的极限

定义:设函数y=f(x),若对于任意给定的正数ε(不论其多么小),总存在着正数X,使得对于适合不等式的一切x,所对应的函数值y=f(x)都满足不等式

那末常数A就叫做函数y=f(x)当x→∞时的极限,记作:

下面我们用表格把函数的极限与数列的极限对比一下:

数列的极限的定义函数的极限的定义

存在数列a n=f(x)与常数A,任给一正数ε>0,总可找到一正

整数N,对于n>N的所有a n都满足<ε则称数列a n,当

x→∞时收敛于A记:。

存在函数y=f(x)与常数A,任给一正数ε>0,总可

找到一正数X ,对于适合的一切x,都满足

,函数y=f(x)当x→∞时的极限为A ,记:

从上表我们发现了什么??试思考之

b):自变量趋向有限值时函数的极限。我们先来看一个例子.

例:函数,当x→1时函数值的变化趋势如何?函数在x=1处无定义.我们知道对实数来讲,在数轴上任何一个有限的范围内,都有无穷多个点,为此我们把x→1时函数值的变化趋势用表列出,如下图:

注:在定义中为什么是在去心邻域内呢?这是因为我们只讨论x→x0的过程,与x=x0出的情况无关。此定义的核心问题是:对给出的ε,是否存在正数δ,使其在去心邻域内的x均满足不等式。

有些时候,我们要用此极限的定义来证明函数的极限为 A,其证明方法是怎样的呢?

a):先任取ε>0;

b):写出不等式<ε;

c):解不等式能否得出去心邻域0<<δ,若能;

d):则对于任给的ε>0,总能找出δ,当0<<δ时,<ε成立,因此

2、函数极限的运算规则

前面已经学习了数列极限的运算规则,我们知道数列可作为一类特殊的函数,故函数极限的运算规则与数列极限的运算规则相似。

⑴、函数极限的运算规则

若已知x→x0(或x→∞)时,.

则:

推论:

在求函数的极限时,利用上述规则就可把一个复杂的函数化为若干个简单的函数来求极限。

例题:求

解答:

例题:求

此题如果像上题那样求解,则会发现此函数的极限不存在.我们通过观察可以发现此分式的分子和分母都没有极限,像这种情况怎么办呢?下面我们把它解出来。

解答:

注:通过此例题我们可以发现:当分式的分子和分母都没有极限时就不能运用商的极限的运算规则了,应先把分式的分子分母转化为存在极限的情形,然后运用规则求之。

3、左右极限定义

定义:如果x 仅从左侧(x <x 0)趋近x 0时,函数f(x)与常量A 无限接近,则称A 为函数f(x)当

时的左极限.记:

如果x 仅从右侧(x >x 0)趋近x 0时,函数f(x)与常量A 无限接近,则称A 为函数f(x)当时的右极限.记:

注:只有当x→x 0时,函数f(x)的左、右极限存在且相等,方称f(x)在x→x 0时有极限 课后作业及小结:

1、学习了函数数列极限概念

2、掌握函数数列极限运算方法。 作业:P23.1,2

第四节:极限性质

1、数列极限的性质

定理1(极限的唯一性) 数列{x n }不能收敛于两个不同的极限. 证明: 假设同时有a x n n =∞

→lim 及b x n n =∞

→lim , 且a

按极限的定义, 对于2a b -=ε>0, 存在充分大的正整数N , 使当n >N 时, 同时有|x n -a |<2a b -=ε 及|x n

-b |<2

a b -=ε,

因此同时有 2a b x n +<

及2

a b x n +>, 这是不可能的. 所以只能有a =b . 数列的有界性: 对于数列{x n },如果存在着正数M ,使得对一切x n 都满足 不等式 |x n |≤M ,则称数列{x n }是有界的; 如果这样的正数M 不存在,就说数列{x n }是无界的

定理2(收敛数列的有界性) 如果数列{x n }收敛, 那么数列{x n }一定有界.

证明: 设数列{x n }收敛, 且收敛于a , 根据数列极限的定义, 对于ε =1, 存在正整数N , 使对于n >N 时的一切x n , 不等式 |x n -a |<ε =1都成立. 于是当n >N 时,

|x n |=|(x n -a )+a | ≤| x n -a |+|a |<1+|a |.

取M =max{|x 1|, |x 2|, ? ? ?, |x N |, 1+| a |}, 那么数列{x n }中的一切x n 都满足不等式|x n |≤ M . 这就证明了数列{x n }是有界的.

定理3(收敛数列的保号性) 如果数列{x n }收敛于a , 且a >0(或a <0), 那么存在正整数N , 当n >N 时, 有x n >0(或x n <0). 证 就a >0的情形证明. 由数列极限的定义, 对02>=a ε, ?N ∈N +, 当n >N 时, 有2

||a a x n <-, 从而02

2>=-

>a

a a x n . 推论 如果数列{x n }从某项起有x n ≥0(或x n ≤0), 且数列{x n }收敛于a , 那么a ≥0(或a ≤0).

证明 就x n ≥0情形证明. 设数列{x n }从N 1项起, 即当n >N 1时有x n ≥0. 现在用反证法证明, 或a <0, 则由定理3知, ?N 2∈N +, 当n > N 2时, 有x n <0. 取N =max{ N 1, N 2 }, 当n >N 时, 按假定有x n ≥0, 按定理3有x n <0, 这引起矛盾. 所以必有a ≥0. 子数列: 在数列{x n }中任意抽取无限多项并保持这些项在原数列中的先后次序, 这样得到的一个数列称为原数列{x n }的子数列. 例如, 数列{x n }: 1, -1, 1, -1, ? ? ?, (-1)n +1? ? ?的一子数列为{x 2n }: -1, -1, -1, ? ? ?, (-1)2n +1? ? ? 定理3(收敛数列与其子数列间的关系) 如果数列{x n }收敛于a , 那么它的任一子数列也收敛, 且极限也是a . 证明: 设数列}{k n x 是数列{x n }的任一子数列.

因为数列{x n }收敛于a , 所以?ε >0, ?N ∈N +, 当n >N 时, 有|x n -a |<ε .取K =N , 则当k >K 时, n k ≥k >K =N . 于是|k n x -a |<ε . 这就证明了a x k

n k =∞

→lim .

2、函数极限的性质

定理1(函数极限的唯一性)如果极限)(lim 0

x f x x →存在, 那么这极限唯一.

定理2(函数极限的局部有界性) 如果f (x )→A (x →x 0), 那么存在常数M >0和δ, 使得当0<|x -x 0|<δ时, 有|f (x )|≤M . 证明 因为f (x )→A (x →x 0), 所以对于ε =1, ?δ>0, 当0<|x -x 0|<δ时, 有|f (x )-A |<ε =1,

于是 |f (x )|=|f (x )-A +A |≤|f (x )-A |+|A |<1+|A |.这就证明了在x 0的去心邻域{x | 0<|x -x 0|<δ }内, f (x )是有界的.

定理3(函数极限的局部保号性) 如果f (x )→A (x →x 0), 而且A >0(或A <0), 那么存在常数δ>0, 使当0<|x -x 0|<δ时, 有f (x )>0(或f (x )<0).

定理3' 如果f (x )→A (x →x 0)(A ≠0), 那么存在点x 0的某一去心邻域, 在该邻域内, 有||2

1|)(|A x f >. 推论 如果在x 0的某一去心邻域内f (x )≥0(或f (x )≤0), 而且f (x )→A (x →x 0), 那么A ≥0(或A ≤0).

证明: 设f (x )≥0. 假设上述论断不成立, 即设A <0, 那么由定理1就有x 0的某一去心邻域, 在该邻域内 f (x )<0, 这与f (x )≥0的假定矛盾. 所以A ≥0.

定理4(函数极限与数列极限的关系)

如果当x →x 0时f (x )的极限存在, {x n }为f (x )的定义域内任一收敛于x 0的数列, 且满足x n ≠x 0(n ∈N +), 那么相应的函数值数列{f (x n )}必收敛, 且)(lim )(lim 0

x f x f x x n n →∞

→=.

证明 设f (x )→A (x →x 0), 则?ε >0, ?δ >0, 当0<|x -x 0|<δ 时, 有|f (x )-A |<ε . 又因为x n →x 0(n →∞), 故对δ >0, ?N ∈N +, 当n >N 时, 有|x n -x 0|<δ . 由假设, x n ≠x 0(n ∈N +). 故当n >N 时, 0<|x n -x 0|<δ , 从而|f (x n )-A |<ε . 即)(lim )(lim 0

x f x f x x n n →∞

→=

课后作业及小结:

1、学习了极限的相关定理与函数列相关定理 作业:P30.8

第五节:两个重要的极限

1、准则I

如果数列{x n }、{y n }及{z n }满足下列条件: (1)y n ≤x n ≤z n (n =1, 2, 3, ? ? ?),

(2)a y n n =∞

→lim , a z n n =∞

→lim ,

那么数列{x n }的极限存在, 且a x n n =∞

→lim .

证明: 因为a y n n =∞

→lim , a z n n =∞

→lim , 以根据数列极限的定义, ?ε >0, ?N 1>0, 当n >N 1时, 有

|y n -a |<ε ; 又?N 2>0, 当n >N 2时, 有|z n -a |<ε . 现取N =max{N 1, N 2}, 则当 n >N 时, 有 |y n -a |<ε , |z n -a |<ε 同时成立, 即

a -ε

同时成立. 又因y n ≤x n ≤z n , 所以当 n >N 时, 有 a -ε

即 |x n -a |<ε . 这就证明了a x n n =∞

→lim .

简要证明: 由条件(2), ?ε >0, ?N >0, 当n >N 时, 有 |y n -a |<ε 及|z n -a |<ε , 即有 a -ε

a -ε

→lim .

注意: 准则I '

如果函数f (x )、g (x )及h (x )满足下列条件: (1) g (x )≤f (x )≤h (x );

(2) lim g (x )=A , lim h (x )=A ; 那么lim f (x )存在, 且lim f (x )=A .

注 如果上述极限过程是x →x 0, 要求函数在x 0的某一去心邻域内有定义, 上述极限过程是x →∞, 要求函数当|x |>M 时有定义,

准则I 及准则I ' 称为夹逼准则. 2、第一重要极限

下面根据准则I '证明第一个重要极限: 1

sin lim 0=→x

x x .

证明 首先注意到, 函数

x

x

sin 对于一切x ≠0都有定义. 参看附图: 图中的圆为单位圆, BC ⊥OA , DA ⊥OA . 圆心角∠AOB =x (0

π). 显然 sin x =CB , x =?

AB , tan x =AD . 因为 S ?AOB

21sin x <21x <2

1

tan x , 即 sin x

x

x x cos 1sin 1<<, 或 1

sin cos <

x x . 注意此不等式当-2 π

1cos lim 0

=→x x , 根据准则I ', 1sin lim

0=→x x x .

简要证明: 参看附图, 设圆心角∠AOB =x (2

0π<

显然 BC < AB

sin cos <

x x (此不等式当x <0时也成立). 因为1cos lim 0

=→x x , 根据准则I ', 1

sin lim

0=→x

x x .

应注意的问题: 在极限)

()

(sin lim

x x αα中, 只要α(x )是无穷小, 就有1)()(sin lim =x x αα.

这是因为, 令u =α(x ), 则u →0, 于是)

()

(sin lim

x x αα1sin lim 0==→u u u . 1sin lim 0=→x x x , 1)

()

(sin lim =x x αα(α(x )→0). 例1. 求x

x

x tan lim 0→.

解: x x x tan lim

0→x x x x cos 1sin lim 0?=→1

cos 1lim sin lim 00=?=→→x x x x x .

例2. 求2

0cos 1lim

x x

x -→.

解: 20cos 1lim

x x

x -→=2

2022

)2

(2sin

lim 212sin 2lim

x x x x x x →→= 2112

122sin lim 2122

0=?=????

?

??=→x x x . 211212

2sin lim 2122

0=?=???

? ??=→x

x

x . 3、准则II 单调有界数列必有极限.

如果数列{x n }满足条件x 1≤x 2≤x 3≤ ? ? ? ≤x n ≤x n +1≤ ? ? ?,就称数列{x n }是单调增加的; 如果数列{x n }满足条件x 1≥x 2≥x 3≥ ? ? ? ≥x n ≥x n +1≥ ? ? ?,就称数列{x n }是单调减少的. 单调增加和单调减少数列统称为单调数列.

在第三节中曾证明: 收敛的数列一定有界. 但那时也曾指出: 有界的数列不一定收敛. 现在准则II 表明: 如果数列不仅有界, 并且是单调的, 那么这数列的极限必定存在, 也就是这数列一定收敛. 准则II 的几何解释:

单调增加数列的点只可能向右一个方向移动, 或者无限向右移动, 或者无限趋近于某一定点A , 而对有界数列只可能后者情况发生.

4、第二重要极限

根据准则II , 可以证明极限n n n

)11(lim +∞

→存在.

设n n n

x )11(+=, 现证明数列{x n }是单调有界的. 按牛顿二项公式, 有 n n n n

n n n n n n n n n n n n n n n x 1

!)1( )1( 1!3)2)(1(1!2)1(1!11)11(32?+-???-+???+?--+?-+?+=+=

)11( )21)(11(!1 )21)(11(!31)11(!2111n

n n n n n n n --???--+???+--+-+

+=, )1

1

1( )121)(111(!1 )121)(111(!31)111(!21111+--???+-+-+???++-+-++-++=+n n n n n n n n x n )1

1( )121)(111()!1(1+-???+-+-++

n n n n n . 比较x n , x n +1的展开式, 可以看出除前两项外, x n 的每一项都小于x n +1的对应项, 并且x n +1还多了最后一项, 其值大于0, 因此 x n < x n +1 ,

这就是说数列{x n }是单调有界的.这个数列同时还是有界的. 因为x n 的展开式中各项括号内的数用较大的数1代替, 得

32132

1121

1121 212111!1 !31!2111112<-=--

+=+???++++

n n n x .

根据准则II , 数列{x n }必有极限. 这个极限我们用e 来表示. 即

e n

n n =+∞→)11(lim . 我们还可以证明e x

x x =+∞

→)1

1(lim . e 是个无理数, 它的值是e =2. 7045? ? ?.

指数函数y =e x 以及对数函数y =ln x 中的底e 就是这个常数. 在极限)(1

)](1lim[x x αα+中,

只要α(x )是无穷小,

就有e x x =+)

(1

)](1lim[αα.

这是因为, 令)(1x u α=

, 则u →∞, 于是)(1

)](1lim[x x αα+e u u u =+=∞→)11(lim . e x x x =+∞→)11(lim ,

e x x =+)

(1

)](1lim[αα(α(x )→0).

例3. 求x x x

)1

1(lim -∞

→.

解: 令t =-x , 则x →∞时, t →∞. 于是 x x x )11(lim -∞

→t t t

-∞

→+=)11(lim e t

t t 1)11(1lim

=+=∞

→. 或 )1()11(lim )11(lim --∞

→∞

→-+

=-x x x x x x 1

1])11(lim [---∞→=-+=e x

x x .

课后作业及小结: 1、学习了两个重要极限 2、了解单调有界准则

3、综合运用夹逼准则 作业:P38.1,2,3

第六节:无穷小与无穷大

1、无穷小

如果函数f (x )当x →x 0(或x →∞)时的极限为零, 那么称函数f (x )为当x →x 0(或x →∞)时的无穷小. 特别地, 以零为极限的数列{x n }称为n →∞时的无穷小. 例如, 因为01lim

=∞→x x , 所以函数x

1

为当x →∞时的无穷小. 因为0)1(lim 1

=-→x x , 所以函数为x -1当x →1时的无穷小. 因为011lim

=+∞→n n , 所以数列{1

1

+n }为当n →∞时的无穷小.

讨论: 很小很小的数是否是无穷小?0是否为无穷小?

提示: 无穷小是这样的函数, 在x →x 0(或x →∞)的过程中, 极限为零. 很小很小的数只要它不是零, 作为常数函数在自变量的任何变化过程中, 其极限就是这个常数本身, 不会为零. 无穷小与函数极限的关系:

定理1 在自变量的同一变化过程x →x 0(或x →∞)中, 函数f (x )具有极限A 的充分必要条件是f (x )=A +α, 其中α是无穷小.

证明: 设A x f x x =→)(lim 0

, ?ε >0 , ? δ >0, 使当0<|x -x 0|<δ 时, 有|f (x )-A |<ε .

令α=f (x )-A , 则α是x →x 0时的无穷小, 且f (x )=A +α . 这就证明了f (x )等于它的极限A 与一个无穷小α之和. 反之, 设f (x )=A +α , 其中A 是常数, α是x →x 0时的无穷小, 于是|f (x )-A |=|α|.

因α是x →x 0时的无穷小, ?ε >0 , ? δ >0, 使当0<|x -x 0|<δ , 有|α|<ε 或|f (x )-A |<ε 这就证明了A 是f (x ) 当 x →x 0时的极限. 简要证明: 令α=f (x )-A , 则|f (x )-A |=|α|.

如果?ε >0 , ? δ >0, 使当0<|x -x 0|<δ , 有f (x )-A |<ε , 就有|α|<ε ; 反之如果?ε >0 , ? δ >0, 使当0<|x -x 0|<δ , 有|α|<ε , 就有f (x )-A |<ε .

这就证明了如果A 是f (x ) 当 x →x 0时的极限, 则α是x →x 0时的无穷小; 如果α是x →x 0时的无穷小, 则A 是f (x ) 当 x →x 0时的极限. 类似地可证明x →∞时的情形.

例如, 因为333212121x x x +=+, 而021lim 3=∞→x x , 所以2

1

21lim

33=+∞→x x x . 2、无穷大

如果当x →x 0(或x →∞)时, 对应的函数值的绝对值|f (x )|无限增大, 就称函数 f (x )为当x →x 0(或x →∞)时的无穷大. 记为

∞=→)(lim 0

x f x x (或∞=∞

→)(lim x f x ).

应注意的问题: 当x →x 0(或x →∞)时为无穷大的函数f (x ), 按函数极限定义来说, 极限是不存在的. 但为了便于叙述函数的这一性态, 我们也说“函数的极限是无穷大”, 并记作

∞=→)(lim 0

x f x x (或∞=∞

→)(lim x f x ).

讨论: 无穷大的精确定义如何叙述?很大很大的数是否是无穷大?

提示: ∞=→)(lim 0

x f x x ??M >0, ?δ >0, 当0<|x -0x |<δ 时, 有|f (x )|>M . 正无穷大与负无穷大:

+∞=∞→→)(lim )

( 0

x f x x x , -∞=∞→→)(lim )

( 0x f x x x .

例2 证明∞=-→1

1

lim

1x x .

证 因为?M >0, ?M

1

=δ, 当0<|x -1|<δ 时, 有 M x >-|1

1

|, 所以∞=-→1

1

lim

1x x .

提示: 要使M x x >-=-|

1|1

|11|, 只要M x 1|1|<-.

铅直渐近线:

如果∞=→)(lim 0

x f x x , 则称直线0x x =是函数y =f (x )的图形的铅直渐近线. 例如, 直线x =1是函数1

1

-=

x y 的图形的铅直渐近线.

3、无穷小与无穷大的关系

定理 (无穷大与无穷小之间的关系) 在自变量的同一变化过程中, 如果f (x )为无穷大, 则)

(1x f 为无穷小; 反之, 如果f (x )为无穷小, 且f (x )≠0, 则)

(1x f 为无穷大. 证明:

如果0)(lim 0

=→x f x x , 且f (x )≠0, 那么对于M 1=

ε, ?δ >0, 当0<|x -0x |<δ 时, 有M

x f 1|)(|=<ε, 由于当0<|x -0x |<δ 时, f (x )≠0, 从而

M x f >|)

(1

|

, 所以

)

(1

x f 为x →x 0时的无穷大. 如果∞=→)(lim 0x f x x , 那么对于ε1=M , ?δ >0,当0<|x -0x |<δ 时, 有ε1|)(|=>M x f , 即

ε<|)

(1

|

x f , 所以为x →x 时的无穷小. 课后作业及小结:

1、学习了无穷大与无穷小的概念

2、掌握无穷大与无穷小之间的关系 作业:P45.4,5

第七节:函数的连续性及其性质

在自然界中有许多现象,如气温的变化,植物的生长等都是连续地变化着的.这种现象在函数关系上的反映,就是函数的连续性 1、连续的概念

在定义函数的连续性之前我们先来学习一个概念——增量

设变量x 从它的一个初值x 1变到终值x 2,终值与初值的差x 2-x 1就叫做变量x 的增量,记为:△x 即:△x=x 2-x 1 增量△x 可正可负.

我们再来看一个例子:函数y=f(x)在点x 0的邻域内有定义,当自变量x 在领域内从x 0变到x 0+△x 时,函数y 相应地从f(x 0)变到

,其对应的增量为:

这个关系式的几何解释如下图:

现在我们可对连续性的概念这样描述:如果当△x趋向于零时,函数y对应的增量△y也趋向于零,即:,那末就称函数y=f(x)在点x0处连续。

函数连续性的定义:

设函数y=f(x)在点x0的某个邻域内有定义,如果有称函数y=f(x)在点x0处连续,且称x0为函数的y=f(x)的连续点.

下面我们结合着函数左、右极限的概念再来学习一下函数左、右连续的概念:设函数y=f(x)在区间(a,b]内有定义,如果左极限存在且等于f(b),即:= f(b),那末我们就称函数f(x)在点b左连续.设函数f(x)在区间[a,b)内有定义,如果右极限存在且等于f(a),即:= f(a),那末我们就称函数f(x)在点a右连续.

一个函数在开区间(a,b)内每点连续,则为在(a,b)连续,若又在a点右连续,b点左连续,则在闭区间[a,b]连续,如果在整个定义域内连续,则称为连续函数。

注:一个函数若在定义域内某一点左、右都连续,则称函数在此点连续,否则在此点不连续.

注:连续函数图形是一条连续而不间断的曲线。

通过上面的学习我们已经知道函数的连续性了,同时我们可以想到若函数在某一点要是不连续会出现什么情形呢?接着我们就来学习这个问题:函数的间断点

2、函数的间断点

定义:我们把不满足函数连续性的点称之为间断点. 它包括三种情形:

a):f(x)在x0无定义;

b):f(x)在x→x0时无极限;

c):f(x)在x→x0时有极限但不等于f(x0);

下面我们通过例题来学习一下间断点的类型:

例1:正切函数y=tanx在x=π/2处没有定义,所以点x=π/2是函数y=tanx的间断点,因,我们就称x=π/2为函数y=tanx的无穷间断点;

例2:函数y=sin(1/x)在点x=0处没有定义;故当x→0时,函数值在-1与+1之间变动无限多次,我们就称点x=0叫做函数y=sin(1/x)的振荡间断点;

例3:函数当x→0时,左极限,右极限,从这我们可以看出函数左、右极限虽然都存在,但不相等,故函数在点x=0是不存在极限。我们还可以发现在点x=0时,函数值产生跳跃现象,为此我们把这种间断点称为跳跃间断点;我们把上述三种间断点用几何图形表示出来如下:

3、间断点的分类

我们通常把间断点分成两类:如果x0是函数f(x)的间断点,且其左、右极限都存在,我们把x0称为函数f(x)的第一类间断点;不是第一类间断点的任何间断点,称为第二类间断点.

可去间断点

若x0是函数f(x)的间断点,但极限存在,那末x0是函数f(x)的第一类间断点。此时函数不连续原因是:f(x0)不存在

或者是存在但≠f(x0)。我们令,则可使函数f(x)在点x0处连续,故这种间断点x0称为可去间断点。

4、初等函数的连续性

连续函数的性质——函数的和、积、商的连续性

我们通过函数在某点连续的定义和极限的四则运算法则,可得出以下结论:

a):有限个在某点连续的函数的和是一个在该点连续的函数;

b):有限个在某点连续的函数的乘积是一个在该点连续的函数;

c):两个在某点连续的函数的商是一个在该点连续的函数(分母在该点不为零);

反函数的连续性:若函数f(x)在某区间上单调增(或单调减)且连续,那末它的反函数x=φ(y)也在对应的区间上单调增(单调减)且连续

例:函数y=sinx在闭区间[-π/2,π/2]上单调增且连续,故它的反函数y=arcsinx在闭区间[-1,1]上也是单调增且连续的。

复合函数的连续性:设函数u=φ(x)当x→x0时的极限存在且等于a,即:.而函数f(u)在点u=a连续,那末复合函数y=f(φ(x))当x→x0时的极限也存在且等于f(a).即:

例题:求

解答:

设函数u=φ(x)在点x=x0连续,且u0=φ(x0),而函数y=f(u)在点u=u0连续,那末复合函数y=f(φ(x))在点x=x0也是连续的5、闭区间上初等函数的连续性

通过前面我们所学的概念和性质,我们可得出以下结论:基本初等函数在它们的定义域内都是连续的;一切初等函数在其定义域内也都是连续的.

闭区间上的连续函数则是在其连续区间的左端点右连续,右端点左连续.对于闭区间上的连续函数有几条重要的性质,下面我们来学习一下:

最大值最小值定理:在闭区间上连续的函数一定有最大值和最小值。(在此不作证明)

例:函数y=sinx在闭区间[0,2π]上连续,则在点x=π/2处,它的函数值为1,且大于闭区间[0,2π]上其它各点出的函数值;则在点x=3π/2处,它的函数值为-1,且小于闭区间[0,2π]上其它各点出的函数值。

介值定理:在闭区间上连续的函数一定取得介于区间两端点的函数值间的任何值。即:,μ在α、

β之间,则在[a,b]间一定有一个ξ,使

推论:在闭区间连续的函数必取得介于最大值最小值之间的任何值。

课后作业及小结:

1、学习了连续与间断点等概念

2、掌握间断点种类

3、了解闭区间上函数的性质作业:P57,4,7

大学高等数学第一章函数(习题精讲)

第1章 函 数 §1.1 函数的概念与性质 1. 绝对值与不等式(0>a ,0b >) (1)x x x -≤≤;x y x y x y -≤±≤+ (2 )2 112 a b a b +≤+(调和平均值≤几何平均值≤算术平均值) 一般地,1212111n n x x x n n x x x +++≤≤ +++ (3){}max ,22a b a b a b -+=+;{}min ,22 a b a b a b -+=- 2. 函数概念与性质 对变量D x ∈的每一个确定值,变量y 按某确定规则f ,都有且只有一确定值与之对应,则称变量y 是变量x 的函数,记为()y f x =,D x ∈。 注意:定义域D 和对应规则f 是函数相等的两要素。 (1)无关性 ()()y f x f t == D t x ∈, (2)单调性 1212,,x x I x x ?∈< 1212()()()()()()f x f x f x f x f x f x ≤???≥? ?单调递增单调递减;1212()()()()()()f x f x f x f x f x f x ??严格单增严格单减 (3)奇偶性 ()() ()()()()f x f x f x y f x f x f x -=???-=-??为偶函数,对称于轴为奇函数,对称于原点 注意:函数的奇偶性是相对于对称区间而言,若定义域关于原点不对称,则不是奇/偶函数。 (4)周期性 若()()f x T f x +=,0T >,则称为)(x f 的周期。 (5)有界性 若D x ∈?,M x f ≤)(,()0>M ,则称)(x f 在D 上有界。 常用有界函数:sin 1x ≤,cos 1x ≤,(,)-∞+∞;

【免费下载】高等数学课程教案

授课题目§9.1二重积分的概念与性质 课时安排2教学目的、要求:1.熟悉二重积分的概念,了解二重积分的性质;2.了解二重积分的几何意义。教学重点、难点:二重积分的几何意义教学内容 一、二重积分的概念1.引例与二重积分定义引例:(1).曲顶柱体的体积。(2)已知平面薄板质量(或电荷)面密度的分布时。求总质量(或电荷)。2.二重积分的几何意义 二、二重积分的性质性质1、 ,为非零常数;(,)(,)D D kf x y d k f x y d σσ=????k 性质2、;{(,)(,)}D f x y g x y d σ±??(,)(,)D D f x y d g x y d σσ=±????性质3、若,且(除边沿部分外),则12D D D =+12D D φ= 12(,)(,)(,)D D D f x y d f x y d f x y d σσσ=+?? ????性质4、若,,则:;(,)(,)f x y g x y ≥(,)x y D ∈(,)(,)D D f x y d g x y d σσ≥????性质5、估值定理性质6、(中值定理)设在上连续,则在上至少存在一点,使),(y x f D D ),(ηξA f d y x f D ?ηξ=σ??),(),(三、例题 例1 设是由与所围的区域,则D 24x y -=0=y =σ??D d π2例2 求在区域:上的平均值222),(y x R y x f --=D 222R y x ≤+讨论、思考题、作业:思考题:1.将二重积分定义与定积分定义进行比较,找出它们的相同之处与不同之处.2.估计积分的值,其中是圆形区域: .??++=D d y x I σ)94(22D 422≤+y x 习题9-1 P79 4(1),(3),5(1)(3)授课类型: 理论课教学方式:讲授教学资源:多媒体 填表说明:每项页面大小可自行调整。、管路敷设技术通过管线敷设技术,不仅可以解决吊顶层配置不规范问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

高职高专高等数学第一章教案

第一章 函数、极限、连续 教学要求 1.了解分段函数、复合函数、初等函数等概念。 2.理解数列极限、函数极限的定义。 3.掌握极限的四则运算法则。 4.了解无穷大、无穷小及其比较的概念,了解函数及其极限与无穷小的关系。理解无穷小的性质。 5.了解夹逼准则和单调有界数列极限存在准则。熟练掌握两个重要极限求极限。 6.理解函数连续与间断概念,会判断间断点类型,了解初等函数连续性及闭区间上连续函数性质。 教学重点 函数的概念、复合函数的概念,基本初等函数的图形和性质;极限概念,极限四则运算法则;函数的连续性。 教学难点 函数与复合函数的概念;极限定义,两个重要极限;连续与间断的判断。 教学内容 第一节 函数 一、函数的定义与性质 1.集合; 2.邻域; 3.常量与变量; 4.函数的定义; 5.函数的特性。 二、初等函数 1.反函数; 2.复合函数; 3.初等函数。 三、分段函数 一、 函数的定义与性质 1集合定义 具有某种特定性质的事物的总体;组成这个集合的事物称为该集合的元素,元素a 属于集 合A ,记作a A ∈, 元素a 不属于集合A, ,a A ? 2集合的表示法: 列举法 12{,, ,}n A a a a = 描述法 {}M x x =所具有的特征 3集合间的关系: 若,x A ∈则必,x B ∈就说A 是B 的子集,记做A B ?;若A B ?且A B,≠ A B 则称是的真子集;若A B ?且B A ?,则A B =。

4常见的数集 N----自然数集;Z----整数集;Q----有理数集;R----实数集 它们间关系: ,,.N Z Z Q Q R ??? 5例 {1,2}A =,2{320}C x x x =-+=,则A C = 不含任何元素的集合称为空集, 记作? 例如, 2 {,10}x x R x ∈+==? 规定 空集为任何集合的子集. 6运算 设A 、B 是两集合, 则 1) 并 A ?B ? {x ∣x ∈A 或x ∈B}; 2) 交 A ?B ?{x ∣x ∈A 且x ∈B} 3) 差“A \B” ?{x ∣x ∈A 且x ?B} 4) 补(余)?S/A ,其中S 为全集 5) 其运算律 (1) A ?B= B ?A , A ?B =B ?A (2)(A ?B )?C =A ?(B ?C) , (A ?B)= A ?(B ?C) (3)(A ?B ) ? C =(A ? C )?(B ? C) (A ? B ) ? C =(A ? C ) ? (B ? C) (4) (),()c C C c c c A B A B A B A B ?=??=? 注意A 与B 的直积A ?B ?{(x,y)∣x ∈A 且y ∈B} 例如:R ?R={(x,y)∣x ∈R 且y ∈R} 表示xoy 面上全体点的集合, R R ?常记为2 R 7邻域: 设a 与δ是两个实数且0δ>,称集合{}x a x a δδ-<<+为点a 的δ邻域。点a 叫做这邻域的中心,δ叫做这邻域的半径。记作(){}U a x a x a δδδ=-<<+ 点a 的去心δ邻域记做0 ()U a δ ,0(){0}U a x x a δδ=<-<。 注意:邻域总是开集。 8常量与变量: 在某个过程中变化着的量称为变量,保持不变状态的量称为常量, 注意:常量与变量是相对于“自变量变化过程”而言的. x δ δ

大学高等数学阶段测验卷

第一章函数与极限阶段测验卷 学号 班级 成绩 考试说明:1、请将客观题答案全部填涂在答题卡上,写在试卷上一律无效。 2、请在答题卡上填涂好、班级、课程、考试日期、试卷类型和考号。试卷类型 划A;考号为学号的后九个数,请填涂在“考号”的九个空格并划线。 3、答题卡填涂不符合规者,一切后果自负。 一.是非判断题(本大题共10题,每题2分,共20分) 1. x y 2cos 1-=与x y sin =是相同的函数. ( ) A 、正确 B 、错误 2. 函数ln(1)y x x =-+在区间(,1)-∞-单调递增.( ) A 、正确 B 、错误 3. 函数x y e =在(0,)+∞有界. ( ) A. 正确 B. 错误 4. 设()f x 在[,](0)a a a ->上有定义,则函数1 ()[()()]2 g x f x f x =--是奇函数.( ) A. 正确 B. 错误 5. 函数2sin y x =是当0x →时的无穷小.( ) A. 正确 B. 错误 6.函数y = 是初等函数.( ) A 、正确 B 、错误 7. 当x →∞时,函数22135x y x +=+趋向于1 3 .( ) A 、正确 B 、错误 8. 当0x →时,函数2 12 y x = 与1cos y x =-是等价无穷小.( ) A 、正确 B 、错误 9. 211lim cos 2 x x x →∞=-( ) A 、正确 B 、错误

10. 函数1 (12),0;, 0x x x y e x ?? +≠=??=? 在0x =处连续. ( ) A 、正确 B 、错误 二.单项选择题(本大题共12个,每题3分,共36分) 11.函数)5)(2ln(+-=x x y 的定义域为( ). A. 25≤≤-x ; B. 2>x ; C. 2>x 或5-

高等数学上册第一章教案

第一章:函数、极限与连续 教学目的与要求 1.解函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系式。 2.解函数的奇偶性、单调性、周期性和有界性。 3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。 4.掌握基本初等函数的性质及其图形。 5.理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限之间的关系。 6.掌握极限的性质及四则运算法则。 7.了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。 8.理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。 9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。 10.了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。 所需学时:18学时(包括:6学时讲授与2学时习题) 第一节:集合与函数 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A 中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a?A。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A?B(或B?A)。。 ⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。 ⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作?,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。即A?A ②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。 集合的基本运算 ⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。 ⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A∩B。 即A∩B={x|x∈A,且x∈B}。 ⑶、补集:

高等数学上册复习要点及解题技巧

高等数学上册复习要点及解题技巧 第一章:1、极限(夹逼准则) 2、连续(学会用定义证明一个函数连续,判断间断点类型) 第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续 2、求导法则(背) 3、求导公式也可以是微分公式 第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节) 2、洛必达法则 3、泰勒公式拉格朗日中值定理 4、曲线凹凸性、极值(高中学过,不需要过多复习) 5、曲率公式曲率半径 第四章、第五章:积分 不定积分:1、两类换元法 2、分部积分法(注意加C ) 定积分: 1、定义 2、反常积分 第六章:定积分的应用 主要有几类:极坐标、求做功、求面积、求体积、求弧长 第七章:向量问题不会有很难 1、方向余弦 2、向量积 3、空间直线(两直线的夹角、线面夹角、求直线方程) 3、空间平面 4、空间旋转面(柱面) 高数解题技巧 高数解题的四种思维定势 ●第一句话:在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。 ●第二句话:在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下再说。 ●第三句话:在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。 ●第四句话:对定限或变限积分,若被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。

线性代数解题的八种思维定势 ●第一句话:题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E。 ●第二句话:若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。 ●第三句话:若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解因子aA+bE再说。 ●第四句话:若要证明一组向量α1,α2,…,αS线性无关,先考虑用定义再说。 ●第五句话:若已知AB=0,则将B的每列作为Ax=0的解来处理 ●第六句话:若由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。 ●第七句话:若已知A的特征向量ξ0,则先用定义Aξ0=λ0ξ0处理一下再说。 ●第八句话:若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理一下再说。 概率解题的九种思维定势 ●第一句话:如果要求的是若干事件中“至少”有一个发生的概率,则马上联想到概率加法公式;当事件组相互独立时,用对立事件的概率公式 ●第二句话:若给出的试验可分解成(0-1)的n重独立重复试验,则马上联想到Bernoulli试验,及其概率计算公式 ●第三句话:若某事件是伴随着一个完备事件组的发生而发生,则马上联想到该事件的发 生概率是用全概率公式计算。关键:寻找完备事件组 ●第四句话:若题设中给出随机变量X ~ N 则马上联想到标准化 ~ N(0,1)来处理有关问题。 ●第五句话:求二维随机变量(X,Y)的边缘分布密度的问题,应该马上联想到先画出使 联合分布密度的区域,然后定出X的变化区间,再在该区间内画一条//y轴的直线,先与区域边界相交的为y的下限,后者为上限,而的求法类似。 ●第六句话:欲求二维随机变量(X,Y)满足条件Y≥g(X)或(Y≤g(X))的概率,应该马上联 想到二重积分的计算,其积分域D是由联合密度的平面区域及满足Y≥g(X)或(Y≤g(X))的 区域的公共部分。 ●第七句话:涉及n次试验某事件发生的次数X的数字特征的问题,马上要联想到对X作 (0-1)分解。即令

高等数学电子教案

第四章不定积分 教学目的: 1、理解原函数概念、不定积分的概念。 2、掌握不定积分的基本公式,掌握不定积分的性质,掌握换元积分法(第一,第二) 与分部积分法。 3、会求有理函数、三角函数有理式和简单无理函数的积分。 教学重点: 1、不定积分的概念; 2、不定积分的性质及基本公式; 3、换元积分法与分部积分法。 教学难点: 1、换元积分法; 2、分部积分法; 3、三角函数有理式的积分。

§4 1 不定积分的概念与性质 一、教学目的与要求: 1.理解原函数与不定积分的概念及性质。 2.掌握不定积分的基本公式。 二、重点、难点:原函数与不定积分的概念 三、主要外语词汇:At first function ,Be accumulate function , Indefinite integral ,Formulas integrals elementary forms. 四、辅助教学情况:多媒体课件第四版和第五版(修改) 五、参考教材(资料):同济大学《高等数学》第五版

一、原函数与不定积分的概念 定义1 如果在区间I 上, 可导函数F (x )的导函数为f (x ), 即对任一x ∈I , 都有 F '(x )=f (x )或dF (x )=f (x )dx , 那么函数F (x )就称为f (x )(或f (x )dx )在区间I 上的原函数. 例如 因为(sin x )'=cos x , 所以sin x 是cos x 的原函数. 又如当x ∈(1, +∞)时, 因为x x 21)(=', 所以x 是x 21的原函数. 提问: cos x 和x 21还有其它原函数吗? 原函数存在定理 如果函数f (x )在区间I 上连续, 那么在区间I 上存在可导函数F (x ), 使对任一x ∈I 都有 F '(x )=f (x ). 简单地说就是: 连续函数一定有原函数. 两点说明: 第一, 如果函数f (x )在区间I 上有原函数F (x ), 那么f (x )就有无限多个原函数, F (x )+C 都是f (x )的原函数, 其中C 是任意常数. 第二, f (x )的任意两个原函数之间只差一个常数, 即如果Φ(x )和F (x )都是f (x )的原函数, 则 Φ(x )-F (x )=C (C 为某个常数). 定义2 在区间I 上, 函数f (x )的带有任意常数项的原函数称为f (x )(或f (x )dx )在区间I 上的不定积分, 记作 ?dx x f )(. 其中记号?称为积分号, f (x )称为被积函数, f (x )dx 称为被积表达式, x 称为积分变量. 根据定义, 如果F (x )是f (x )在区间I 上的一个原函数, 那么F (x )+C 就是f (x )的不定积分, 即 ?+=C x F dx x f )()(. 因而不定积分dx x f )(?可以表示f (x )的任意一个原函数. 例1. 因为sin x 是cos x 的原函数, 所以 C x xdx +=?sin cos . 因为x 是x 21的原函数, 所以 C x dx x +=?21.

《高等数学》教案 第一章 函数

第一章函数 函数是积分的主要研究对象,后边关于微积分性质的研究都是对函数性质的研究。本章首先引入集合,然后研究两个实数集合之间的一种对应关系——函数关系,并介绍函数的基本性质和常见的初等函数。 §1.1 集合 一、概念 集合是具有某种属性的事物的全体,或者说是一些确定对象的汇总。构成集合的事物或对象,称为集合的元素。 举例: 有限集合:由有限个元素构成的集合。 无限集合:由无限个元素构成的集合。 集合通常用大写字母A、B、C、X、Y等表示。元素由小写字母a、b、c、x、y等表示。如果a是集合A的元素,记作a∈A;否则记作a?A。 二、表示方法 1、列举法:按任意顺序列出集合的所有元素,并用花括号“{ }”括起来。如:A ={a,b,c,d} 即列出集合中所有元素,不计较顺序,但不能遗漏和重复。 2、描述法:设P(a)为某个与a有关的条件或法则,A为满足P(a)的一切a 构成的集合,记为A ={a∣P(a)}。如:A ={x∣x2-5x+6=0} 即把集合中元素所具有的某个共同属性描述出来,用{a∣a具有的共同属性}。 3、文氏图:可以表示集合以及集合间的关系。 三、全集与空集 由所研究的所有事物构成的集合称为全集,记为U。全集是相对的。 不包含任何元素的集合称为空集,记为Φ。 四、子集 1、定义:如果集合A的每一个元素都是集合B的元素,即“如果a∈A,则

a∈B”,则称A为B的子集。记为A?B或B?A。 如果A?B成立,且B中确有元素不属于A,则称A为B的真子集。记作A?B或B?A。 2、定义:设有集合A和B,如果A?B且B?A,则称A与B相等。 结论:(1)A?A,即“集合A是其自己的子集”; (2)Φ?A,即“空集是任意集合的子集”; (3)若A?B,B?C,则A?C,即“集合的包含关系具有传递性”。 五、集合的运算 1、定义:设有集合A和B,由A和B的所有元素构成的集合,称为A和B 的并,记为A∪B。即A∪B ={x∣x∈A或x∈B}。 性质:(1)A?A∪B,B?A∪B; (2)A∪Φ = A,A∪U = U,A∪A = A。 2、定义:设有集合A和B,由A和B的所有公共元素构成的集合,称为A 与B的交,记为A∩B。即A∩B ={x∣x∈A且x∈B}。 性质:(1)A∩B?A,A∩B?B; (2)A∩Φ =Φ,A∩U = A,A∩A = A。 3、定义:设有集合A和B,属于A而不属于B的所有元素构成的集合,称为A与B的差,记为A-B。即A-B ={x∣x∈A且x ? B}。 4、定义:全集中所有不属于A的元素构成的集合,称为A的补集,记为A。即A={x∣x∈U且x ? A}。 性质:A∪A =U,A∩A=Φ。 习题7、8:

大学理科一类高等数学(上)参考答案

理科一类《高等数学》(上)习题参考答案 第一章 函数与极限 习题一 一、1..224>-<<-x x 或;2.[]a a -1,; 3.1525++?x x ; 4.奇函数; 5.0,1,1,0; 6.4231,,,--e e e e . 二(略) 三、1.1; 2.0; 3.2 1 ; 4.4. 四、1,1,1,-不存在. 五、1,1-==b a 六、都不存在. 七、;3 2 . 4; 2 21. 3; 1. 2; 0.1 5.-2; 1.8; 3.7;. 6e . 八、2.6, 0.5, 2.4,3 2. 3,2 1. 2,2.1-. 九(略) 习题二 一、()()[] 1,0. 5,1,1.4, ,22,1. 3,2.2,.1-+∞?e 第一 二、4 1= a . 三、361.ln 2, 2., 3.1, 4., 5.1, 6.1e e . 四、1.为可去间断点1=x ,为无穷间断点2=x ;2.为跳跃间断点1=x . 五、()()+∞?∞-,00,. 六、左不连续;右连续. 七、八、 (略) 九、为跳跃间断点0=x ;为无穷间断点1=x . 第一章 测验题 一、1., 2., 3., 4., 5.D A C A B . 二、[]2.5, 22.4, 2,0.3, 2.2, 2.12+-x x .

三、112 2 1 1., 2.1, 3., 4.3, 6.6 e e - . 四、x x x x p ++=232)(. 五、1 1,2,12 x x x x =-===处连续为无穷间断点,为可去间断点. 六、.3,2 1 ==b a 七、(略) . 八、lim n n x a →∞ = 第二章 导数与微分 习题一 一、)0(.2,)(,)(2,)(.1000f x f x f x f '''';)(),(1 .300000 0x x x y y x x x y y --=--= - 二、,0 ()2,0,0x e x f x x x x ?>? '=>. 习题二 一、1.3622ln 2-++x x x ; 2.1; 3. 2 ln 1x x -; )2 (4 2 ,)2 (42. 42 2 π ππ π ππ- = - - - =- x y x y ;)(4)(2.5222x f x x f ''+'. 二、2 )1() sin 3(cos sin cos 2.1x x e x x e x x +-+-; x x x x x x x x c o s s i n l n c o s 2s i n .2+-+; 211 arcsin 2.3x x -?;12ln (ln )4.n x n x x --;a a x x x ax a a a 21 211sec ln .5+?+-; 21sec 222116.3ln3ln ;8.sec tan x x y y y e x x x -?'''===?? 三、()[]{}()[]()x f x f f x f f f '?'?'. 1, )()(2.22 2 x x x x x e f e e e f xe '+

高等数学 电子教案(下)

高等数学电子教案(下) 《高等数学》 2008 ,2009 学年第二学期 教师姓名: 李石涛 授课对象:1.化学工程与工艺0801,0803,应用化学0801,0802 2.高分子材料工程0801,0802;环境工程0801,0802 授课学时: 128/64 选用教材《高等数学》史俊贤主编 大连理工大学出版社 2006/2 基础部数学教研室 沈阳工业大学教案 第 1 周授课日期 09.2.18 授课章节:第六章 6.1 定积分元素法 教学目的: 1、理解定积分元素法的基本思想, 2、掌握用定积分表达和计算一些几何量,平面图形的面积、平面曲线 的弧长, 教学重点:平面图形的面积、平面曲线的弧长教学难点:平面图形的面积教学内容纲要: 一、定积分的元素法, 二、平面图形的面积、教 学三、平面曲线的弧长、 实采用的教学形式:讲授施 过教学方法:启发式教学

程教学步骤: 设 1、复习定积分的概念~引出定积分的元素法, 计 2、举例讲解平面图形的面积 3、举例讲解平面曲线的弧长 课后复习及作业或思考题: 1、复习定积分的元素法。 2、课后习题6-2 1、2、4、5。 教学后记: 时间: 沈阳工业大学教案 第 1 周授课日期 09.2.20 授课章节:6.2 定积分在几何学上的应用 教学目的: 1、理解定积分元素法的基本思想, 2、掌握用定积分表达和计算一些几何量,旋转体的体积及侧面积、平行截面面积为 已知的立体体积, 教学重点:旋转体的体积、平行截面面积为已知的立体体积教学难点:旋转体的体积、平行截面面积为已知的立体体积 教学内容纲要: 一、旋转体的体积、 二、平行截面面积为已知的立体体积, 教 学采用的教学形式:讲授 实教学方法:启发式教学施

高等数学电子教案(大专版)

《高等数学》教案 第一讲 函数与极限 1.函数的定义 设有两个变量x ,y 。对任意的x ∈D ,存在一定规律f ,使得y 有唯一确定的值与之对应,则y 叫x 的函数。记作y=f(x),x ∈D 。其中x 叫自变量,y 叫因变量。 函数两要素:对应法则、定义域,而函数的值域一般称为派生要素。 例1:设f(x+1)=2x 2+3x-1,求f(x). 解:设x+1=t 得x=t-1,则f(t)=2(t-1)2+3(t-1)-1=2t 2-t-2 ∴f(x)=2x 2 – x – 2 定义域:使函数有意义的自变量的集合。因此,求函数定义域需注意以下几点: ①分母不等于0 ②偶次根式被开方数大于或等于0 ③对数的真数大于0 例2 求函数y= 6—2x -x +arcsin 7 1 2x -的定义域. 解:要使函数有定义,即有: 1|7 12|062≤-≥--x x x ? 4323≤≤--≤≥x x x 或?4323≤≤-≤≤-x x 或 于是,所求函数的定义域是:[-3,-2] [3,4]. 例3 判断以下函数是否是同一函数,为什么? (1)y=lnx 2与y=2lnx (2)ω=u 与y=x 解 (1)中两函数的 定义域不同,因此不是相同的函数. (2)中两函数的 对应法则和定义域均相同,因此是同一函数. 2. 初等函数 (1)基本初等函数 常数函数:y=c(c 为常数) 幂函数: y=μ x (μ为常数) 指数函数:y=x a (a>0,a ≠1,a 为常数) 对数函数:y=x a log (a>0,a ≠1,a 为常数) 三角函数:y=sinx y=cosx y=tanx y=cotx y=secx y=cscx 反三角函数:y=arcsinx y=arccosx y=arctanx y=arccotx (2)复合函数 设),(u f y =其)(x u ?=中,且)(x ?的值全部或部分落在)(u f 的定义域内,则称)]([x f y ?=为x 的复合函数,而u 称为中间变量. 例4:若y=u ,u = sinx ,则其复合而成的函数为y=x sin ,要求u 必须≥0, ∴sinx ≥0,x ∈[2k π,π+2k π] 例5:分析下列复合函数的结构

高等数学电子教案7.

第七章微分方程 教学目的: 1.了解微分方程及其解、阶、通解,初始条件和特等概念。 2.熟练掌握变量可分离的微分方程及一阶线性微分方程的解法。 3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程。 4.会用降阶法解下列微分方程: ()() n y f x =,(,) y f x y ''' +和(,) y f y y ''' = 5.理解线性微分方程解的性质及解的结构定理。 6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。 7.求自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解和通解。 8.会解欧拉方程,会解包含两个未知函数的一阶常系数线性微分方程组。 9.会解微分方程组(或方程组)解决一些简单的应用问题。 教学重点: 1、可分离的微分方程及一阶线性微分方程的解法 2、可降阶的高阶微分方程 ()() n y f x =,(,) y f x y ''' +和(,) y f y y ''' = 3、二阶常系数齐次线性微分方程; 4、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微 分方程; 教学难点: 1、齐次微分方程、伯努利方程和全微分方程; 2、线性微分方程解的性质及解的结构定理; 3、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解。 青岛科技大学数理学院高等数学课程建设组

青岛科技大学数理学院高等数学课程建设组 4、欧拉方程 §7. 1 微分方程的基本概念 函数是客观事物的内部联系在数量方面的反映, 利用函数关系又可以对客观事物的规律性进行研究. 因此如何寻找出所需要的函数关系, 在实践中具有重要意义. 在许多问题中, 往往不能直接找出所需要的函数关系, 但是根据问题所提供的情况, 有时可以列出含有要找的函数及其导数的关系式. 这样的关系就是所谓微分方程.含有未知函数的导数或微分的方程叫做微分方程。历史悠久(与微积分同时诞生),应用广泛。 微分方程建立以后, 对它进行研究, 找出未知函数来, 这就是解微分方程. 例1 一曲线通过点(1, 2), 且在该曲线上任一点M (x , y )处的切线的斜率为2x , 求这曲线的方程. 解 设所求曲线的方程为y =y (x ). 根据导数的几何意义, 可知未知函数y =y (x )应满足关系式(称为微分方程) x dx dy 2=. (1) 此外, 未知函数y =y (x )还应满足下列条件: x =1时, y =2, 简记为y |x =1=2. (2) 把(1)式两端积分, 得(称为微分方程的通解) ? =xdx y 2, 即y =x 2+C , (3) 其中C 是任意常数. 把条件“x =1时, y =2”代入(3)式, 得 2=12+C , 由此定出C =1. 把C =1代入(3)式, 得所求曲线方程(称为微分方程满足条件y |x =1=2的解): y =x 2+1. 例2 列车在平直线路上以20m/s(相当于72km/h)的速度行驶; 当制动时列车获得加速度-0.4m/s 2. 问开始制动后多少时间列车才能停住, 以及列车在这段时间里行驶了多少路程? 解 设列车在开始制动后t 秒时行驶了s 米. 根据题意, 反映制动阶段列车运动规律的函数s =s (t )应满足关系式 4.02 2-=dt s d . (4)

同济大学(高等数学)_第一章_函数极限

第一篇 函数、极限与连续 第一章 函数、极限与连续 高等数学的主要内容是微积分,微积分是以变量为研究对象,以极限方法为基本研究手段的数学学科.本章首先复习函数相关内容,继而介绍极限的概念、性质、运算等知识,最后通过函数的极限引入函数的连续性概念,这些内容是学习高等数学课程极其重要的基础知识. 第1节 集合与函数 1.1 集合 1.1.1 集合 讨论函数离不开集合的概念.一般地,我们把具有某种特定性质的事物或对象的总体称为集合,组成集合的事物或对象称为该集合的元素. 通常用大写字母A 、B 、C 、 表示集合,用小写字母a 、b 、c 、 表示集合的元素. 如果a 是集合A 的元素,则表示为A a ∈,读作“a 属于A ”;如果a 不是集合A 的元素,则表示为A a ?,读作“a 不属于A ”. 一个集合,如果它含有有限个元素,则称为有限集;如果它含有无限个元素,则称为无限集;如果它不含任何元素,则称为空集,记作Φ. 集合的表示方法通常有两种:一种是列举法,即把集合的元素一一列举出来,并用“{}”括起来表示集合.例如,有1,2,3,4,5组成的集合A ,可表示成 A ={1,2,3,4,5}; 第二种是描述法,即设集合M 所有元素x 的共同特征为P ,则集合M 可表示为 {}P x x M 具有性质|=. 例如,集合A 是不等式022<--x x 的解集,就可以表示为 {} 02|2<--=x x x A . 由实数组成的集合,称为数集,初等数学中常见的数集有: (1)全体非负整数组成的集合称为非负整数集(或自然数集),记作N ,即 {} ,,,3,2,1,0n N =; (2)所有正整数组成的集合称为正整数集,记作+ N ,即 {} ,,,3,2,1n N =+; (3)全体整数组成的集合称为整数集,记作Z ,即 {} ,,,3,2,1,0,1,2,3,,,n n Z ----=;

高等数学(下册)电子教案

第四章常微分方程 §4.1 基本概念和一阶微分方程 甲内容要点 一.基本概念 1.常微分方程 含有自变量、未知函数和未知函数的导数(或微分)的方程称为微分方程,若未知函数是一元函数则称为常微分方程,而未知函数是多元函数则称为偏微分方程,我们只讨论常微分方程,故简称为微分方程,有时还简称为方程。 2.微分方程的阶 微分方程中未知函数的导数的最高阶数称为该微分方程的阶 3.微分方程的解、通解和特解 满足微分方程的函数称为微分方程的解; 通解就是含有独立常数的个数与方程的阶数相同的解; 通解有时也称为一般解但不一定是全部解; 不含有任意常数或任意常数确定后的解称为特解。 4.微分方程的初始条件 要求自变量取某定值时,对应函数与各阶导数取指定的值,这种条件称为初始条件,满足初始条件的解称为满足该初始条件的特解。 5.积分曲线和积分曲线族 微分方程的特解在几何上是一条曲线称为该方程的一条积分曲线;而通解在几何上是一族曲线就称为该方程的积分曲线族。 6.线性微分方程 如果未知函数和它的各阶导数都是一次项,而且它们的系数只是自变量的函数或常数,则称这种微分方程为线性微分方程。不含未知函数和它的导数的项称为自由项,自由项为零

的线性方程称为线性齐次方程;自由项不为零的方程为线性非齐次方程。 二.变量可分离方程及其推广 1.变量可分离的方程 (1)方程形式:()()()()0≠=y Q y Q x P dx dy 通解 ()()??+=C dx x P y Q dy (注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意常数另外再加) (2)方程形式:()()()()02211=+dy y N x M dx y N x M 通解 ()()()()C dy y N y N dx x M x M =+??1221 ()()()0,012≠≠y N x M 2.变量可分离方程的推广形式 (1)齐次方程 ?? ? ??=x y f dx dy 令u x y =, 则()u f dx du x u dx dy =+= ()c x c x dx u u f du +=+=-?? ||ln (2) ()()0,0≠≠++=b a c by ax f dx dy 令u c by ax =++, 则()u bf a dx du += ()c x dx u bf a du +==+?? (3) ??? ? ??++++=222111c y b x a c y b x a f dx dy

高等数学第一章函数极限与连续教案

教学内§1.1 函数 教学目的】 理解并掌握函数的概念与性质 教学重点】 函数的概念与性质 教学难点】 函数概念的理解 教学时数】 4 学时 一、组织教学,引入新课 极限是微积分学中最基本、最重要的概念之一,极限的思想与理论,是整个高等数 学的基础,连续、微分、积分等重要概念都归结于极限 . 因此掌握极限的思想与方法是 学好高等数学的前提条件 . 本章将在初等数学的基础上,介绍极限与连续的概念 、讲授新课 (一)、实数概述 1、实数与数轴 1)实数系表 2)实数与数轴关系 x,x 0 1)绝对值的定义: x x,x 0 x,x 0 2)绝对值的几何意义 3)绝对值的性质 练习:解下列绝对值不等式:① x 5 3 ,② x 1 2 3、区间 (1)区间的定义:区间是实数集的子集 (2)区间的分类:有限区间、无限区间 ① 有限区间:长度有限的区间 设 a 与 b 均为实数,且 a b ,则 (3)实数的性质: 封闭性 有序性 稠密性 连续性

数集{ x a x b }为以 a 、 b 为端点的半开半闭区间,记作 [a ,b ) 数集{ x a x b }为以a 、 b 为端点的半开半闭区间,记作( a ,b ] 区间长度: b a ② 无限区间 数集{ xa x }记作[a , ), 数集{xa x }记作( a , ) 数集{ x x a }记作( ,a], 数集{ x x a }记作( ,a ) 实数集 R 记作( , ) 3)邻域 ① 邻域:设 a 与 均为实数,且 0 ,则开区间( a , a )为点 a 的 邻域 记作U(a, ) ,其中点 a 为邻域的中心, 为邻域的半径 ② 去心邻域:在的 邻域中去掉点 a 后,称为点 a 的去心邻域,记作 U (a, ) (二) 、函数的概念 1、函数的定义 : 设有一非空实数集 D ,如果存在一个对应法则 f ,使得对于每一个 x D ,都有一个 惟一的实数 y 与之对应,则称对应法则 f 是定义在 D 上的一个函数. 记作 y f(x), 其中 x 为自变量, y 为因变量,习惯上 y 称是的函数。 定义域: 使函数 y f ( x )有意义的自变量的全体,即自变量 x 的取值范围 D 函数值:当自变量 x 取定义域 D 内的某一定值 x 0时,按对应法则 f 所得的对应 值 y 0 称 为函数 y f(x)在 x x 0时的函数值,记作 y 0 f(x 0)。 值 域:当自变量 x 取遍 D 中的一切数时,所对应的函数值 y 构成的集合,记 数集{ x a x b }为以 a 、 b 为端点的闭区间,记作 [a ,b ] 数集{ x a x b }为以 a 、 b 为端点的开区间,记作 ( a ,b )

相关文档 最新文档