文档库 最新最全的文档下载
当前位置:文档库 › 上期高等数学单元测试答案

上期高等数学单元测试答案

上期高等数学单元测试答案
上期高等数学单元测试答案

湖南科技学院二○一五年 上 学期单元测试

计算机科学与技术专业 2014年级 高等数学(二)试题

考试类型:闭卷 试卷类型:A 卷 考试时量: 120分钟

1

?

?

-=

y

dx y x f dy 30

3

1

),(dy y x f dx x

?

?

-31

2

),(

2 设L 为圆周t a x cos =,t a y sin =)20,0(π≤≤>x a ,则?

=L ds a π2

3 设L 为球面12

22=++z y x 与平面0=++z y x 相交的圆周,则?

=L

xds 0

4 若曲线L 是1)1(22=+-y x ,方向为逆时针,则

=++?

dy e x dx xe y y L

y 222)(π-

5 设曲线L :)0(2

2

2

>=+a a y x ,方向逆时针,则

=+?dx y x

L

)(22

6 设S 是由柱面12

2=+y x 和平面0=z 及4=z 所围成的闭曲面,方向取外侧,则

??=+S

zdxdy dydz x

2

π4

7 =+-∑∞

=1

)15)(45(1

n n n 15

8 幂级数1

1

n n x n +∞

=∑收敛区间为 [1,1)- 9 曲面22

z x y =+与平面9z =所围成的空间立体的体积用二重积分可表示为

9:,)9(2

222≤+--=

??y x D dxdy y x V D

二、选择题(每小题3分,共24分)

1 用格林公式表示闭曲线L 所围成的区域D 的面积=S ( B )

(A )

?-L

ydx xdy (B )?L

xdy (C )?

L

ydx (D )?+L

ydx xdy

2 有分片光滑的闭曲面S 所围成的立体的体积是 ( C )

(A )??++S

zdxdy ydzdx xdydz (B )??--S

zdxdy ydzdx xdydz

(C )

??+-S

zdxdy ydzdx xdydz (D ) ??+S

ydzdx xdydz

3 下列级数中条件收敛的是 ( B )

(A )∑∞

=+-11)1(n n

n n (B )∑∞=-11)1(n n n (C )∑∞=-12

1)1(n n n (D )∑∞

=+-1

)1(1)1(n n

n n 4 下列选项中哪一个不是曲线积分

?+L

Qdy Pdx 与路线无关的等价条件。 ( C )

(A)

x Q y P ??=?? (B) 0=+?Qdy x Pd L (C) y

Q x P ??=

?? (D) Qdy Pdx d +=μ 5设S :)0(,1222≤=++z z y x ,1S 为S 在第五卦限中的部分,则有)(C

(A )????=1

4S S

xdS xdS (B ) ????=1

4S S

ydS ydS

(C )

????=1

4S S

zdS zdS (D ) ????=1

4S S

xyzdS xyzdS

6 设S 为球面1222=++z y x ,则曲面积分

=??dS y

x S

2

( D )

(A )1- (B )1 (C )2 (D )0

7 设1:22

2222≤++c z b y a x V ,则???=+V

dxdydz z )1(( A )

(A )43

abc π (B )3abc π (C )4abc π (D )0

三、解答题(每小题7分,共42分)

1 设L 是t y t x sin ,cos ==上从0=t 到π=t 的一段,求?-L

ydy xdx 。

解:原式dt t t t t )cos sin cos sin (0

--=?π

?

-=

π

2sin tdt

0=

2 设L 是顶点为)1,0(),0,1(),0,0(B A O 所围成的三角形边界,求

ds y x L

?+)(

解: AB OB OA ,,所在直线方程分别为1,0,0=+==y x x y , 所以 原式?

?

?

++=OB

OA

AB

???++=1

10

AB

ds ydy xdx

21+=

3 求

??++

D

dxdy y y x )(22,其中D 是1)1(2

2=++y x 所围成的平面区域。 解:由题意知积分区域D 关于x 轴对称,所以

??=D

ydxdy 0。 1分

设θθsin ,cos r y r x ==,则2

32

,cos 20π

θπ

θ≤

≤-≤≤r 2分 所以原式dr r d ?

?

-=

θ

ππ

θcos 20

22

32

θθπ

πd 32

32

cos 38?-=932=

4 求

dxdydz z y x V

???

++)(,V 是球面22

22=++z y x 与锥面z =所围立体。 解:由对称性知

()0V

x y dxdydz +=???,设

sin cos ,sin sin ,cos x r y r z r ?θ?θ?=== 则 原式21

34

cos sin V

zdxdydz d d r dr π

π

θ???=

=?????? 4

cos sin 28

d ππ

π

???=

=

?

5 设V 是锥面z =与半球面z =, S 是V 的整个边界

的外侧, 求

S

xdydz ydzdx zdxdy ++??.

解: 由高斯公式和球面坐标变换:sin cos ,sin sin ,cos x r y r z r ?θ?θ?===, 有

3S

V

xdydz ydzdx zdxdy dxdydz ++=?????

22

340

3

sin 2(1R

r dr d d R π

π

??θπ==?

?? 注: 三重积分还可以柱面坐标变换和截面法求.

6 求幂级数

201

21

n n x n ∞

=+∑的和。 解: 设21

01()21n n S x x n ∞

+==+∑,(0)0S =, 则201()21

n n S x x n x ∞==

+∑。易知幂级数收敛半径为1R =,在1x =±时幂级数发散,故收敛域为(1,1)-.由幂级数的性质有

因为220

1

()1n

n S x x x ∞

='==-∑,所以20111()ln 121x x S x dt t x +==--? 0x ≠时, 所以2101111()()ln

21

21n n x

S x x S x n x x x ∞

=+===+-∑

四、证明题(每小题5分,10分) 1 已知级数

∑∞

=1

2

n n

a

∑∞

=1

2n n

b

都收敛, 试证明级数

∑∞

=1

n n

n b

a 绝对收敛.

证明:因为222n n n n b a b a +≤,且∑∞=12n n a 和∑∞=1

2

n n b 都收敛,由比较判别法知

∑∞

=1

n n

n b

a 绝对收敛

2 求证:

1

1

()(),:||||1R

f x y dxdy f u du R x y -+=+≤???

证明:设,x y u x y v +=-=,则:1,1R u v '-≤≤且

(,)111

(,)11(,)2

(,)11

x y u v u v x y ?===-???-

所以

(,)

()()|

|(,)

R

R x y f x y dxdy f u dudv u v '

?+=???

??

1

111111()()2

f u du dv f u du ---==???

湖南科技学院二○一五年 上 学期单元测试

计算机科学与技术专业 2014年级 高等数学(二)试题

考试类型:闭卷 试卷类型:B 卷 考试时量: 120分钟

1

?

?=

y

dx y x f dy 20

10

),(?

?1

2

20

),(x dy y x f dx

2 设D 由0,y x y x ==

=所围成的闭区域,则2sin D

x dxdy =

??2

1 3 设L 为圆周t a x cos =,t a y sin =)20,0(π≤≤>x a ,则?

=L

ds x 2

3

a π

4 设L 为球面12

22=++z y x 与平面0=++z y x 相交的圆周,则?

=L

yds 0

5 若曲线L 是1)1(22=+-y x ,方向为逆时针,则

=++?

dy e x dx xe y y L

y 222)(π-

6

=

∑∞

=-1

1)2(ln n n 1

1ln 2-

7 幂级数1(1)

n

n x n n ∞

=+∑收敛区间为 [1,1]-

8 设S 是球面12

2

2

=++z y x ,方向取外侧,则

=??S

dzdx y x

22

9 设S 是由柱面12

2=+y x 和平面0=z 及4=z 所围成的闭曲面,方向取外侧,则

??=+S

ydxdy

xdydz π4

二、选择题(每小题3分,共24分)

1 用格林公式表示闭曲线L 所围成的区域D 的面积=S ( B ) (A )

?-L

ydx xdy (B )?L

xdy (C )?

L

ydx (D )?+L

ydx xdy

2 有分片光滑的闭曲面S 所围成的立体的体积是 ( C ) (A )

??++S

zdxdy dzdx xdydz (B ) ??-S

ydzdx xdydz

(C )

??+-S

zdxdy ydzdx xdydz (D ) ??+S

ydzdx xdydz

3 下列级数一定发散的是 ( D )

(A )11(1)n n n +∞

=-∑ (B )∑∞

=13sin n n n

(C )∑∞=1

21arctan n n

(D ) ++-+++-

+n

n n 1)1(342311 4 下列选项中哪一个不是曲线积分

?+L

Qdy Pdx 与路线无关的等价条件。 ( C )

(A)

x Q y P ??=?? (B) 0=+?Qdy x Pd L (C) y

Q

x P ??=

?? (D) Qdy Pdx d +=μ 5 设S :)0(,1222≥=++x z y x ,1S 为S 在第一卦限中的部分,则有( A )

(A )????=1

4S S

xdS xdS (B ) ????=1

4S S

ydS ydS

(C )

????=1

4S S

zdS zdS (D ) ????=1

4S S

xyzdS xyzdS

6 设S 为球面1222=++z y x ,则曲面积分

=??ydS x

S

2

( C )

(A )1- (B )1 (C )0 (D )2 7 设平面域D 由1,21

=+=+y x y x 及两坐标轴围成,dxdy y x I D

??+=31)ln(, d x d y y x I D

??+=

3

2)(,dxdy y x I D

??+=33)sin(,则 ( C ) (A )321I I I << (B )213I I I << (C ) 231I I I << (D )123I I I <<

三、解答题(每小题7分,共42分)

1 设L 是t y t x sin ,cos ==上从0=t 到π=t 的一段,求?-+L

ydy dx x )1(

解:原式dt t t t t t )sin cos sin cos sin (0

---=?π

??

--=

π

π0

sin 2sin tdt tdt

2-=

2 设L 是顶点为)1,0(),0,1(),0,0(B A O 所围成的三角形边界,求

ds y x L

?++)1(

解: AB OB OA ,,所在直线方程分别为1,0,0=+==y x x y , 所以 原式?

?

?

++=

OB

OA

AB

???++++=10

1

2)1()1(AB

ds dy y dx x

223+=

3求

??++D

d y y x σ)(22,其中D 是由圆422=+y x 所围成的平面区域。 解:由题意知积分区域D 关于x 轴对称,所以

??=D

ydxdy 0。 1分

设θθsin ,cos r y r x ==,则πθ20,20≤≤≤≤r , 2分 所以原式dr r d ??

=

2

220

π

θ3

16π

=

4分

4 设V

是由上半球面z =

z =

V 上任一点(,,)P x y z 的体

密度是(,,)x y z z ρ=,试求V 的质量。

解:由z =

z =

222,4z x y =+=。

由截面法得:

2

3

30

2

(8)V

zdxdydz z dz z z dz π=+-?????8π=

5 计算曲面积分

xdxdy z dzdx y z y dydz y x S

222)(+++??,其中S 是以原点为中心,边长为3的立方体表面外侧。

解:由S 关于xoz yoz xoy ,,面都对称,所以

02

22===??????xdxdy z zdzdx y dydz y x S

S

S

设V 是由S 围成的区域,由高斯公式得 原式zdx yd S

??=

???=V

dxdydz

27= 6 求幂级数

1

2(1)n

n n x n n ∞

=++∑的和。 解: 设2

(1)

n n u n n +=

+,则211n u n n =-+, 且收敛半径

1

2(1)(2)

lim

lim 1(1)3n n n n u n n n R u n n n →∞→∞++++===++,又1x =-时,由Leibniz 判别法

1

(1)(2)(1)n n n n n ∞

=-++∑收敛, 1x =时,由比较判别法知1(2)

(1)n n n n ∞

=++∑发散,所以收敛域为[1,1)-. 当0x ≠时, 设112()n n S x x n ∞

==∑,则111122()()21n

n n n S x x x n x ∞∞

-==''===-∑∑

1211()1n n S x x n ∞

+==+∑, 则1211

1()()11n n n n x S x x x n x ∞∞

+==''===

+-∑∑ 再积分得 12()2l n (1)1S x d x x x =

=---?,2()ln(1)1x

S x dx x x x ==----?,所以

12ln(1)122ln(1)ln(1)1(1)

n n n x x x x x x n n x x ∞

=+----=---=-++∑ 当0x =时, 则0)0(=S ,所以

112ln(1)1[1,0)(0,1)2(1)00n n x

x x n x x

n n x ∞

=-?-+∈-+?

=?+?=?

∑U 四、证明题(每小题5分,10分)

1 设正项级数

1

n

n a

=∑收敛, 试证明级数

∑∞

=1

2

n n

a

也收敛.

证明:因为正项级数

1

n

n a

=∑收敛,所以lim 0n n a →∞

=,从而当n 充分大时,01n a ≤<, 所以此

时有2n

n a a ≤, 由比较判别法知

21

n

n a

=∑绝对收敛。

2 求证:

21

()ln 2(),R

f xy dxdy f u du R =???

是1,2,,4xy xy y x y x ====所围成区域。

证明:设,

y xy u v x ==,则:12,14R u v '≤≤≤≤,且2(,)111(,)(,)

2(,)

1x y u v y x u v v

x y y x

x

?==

=

???- 所以

(,)

()()|

|(,)

R

R x y f xy dxdy f u dudv u v '

?=???

??

2

421

1111()ln 2()2f u du dv f u du v =

=???

微积分课后题答案第九章习题详解

第9章 习题9-1 1. 判定下列级数的收敛性: (1) 11 5n n a ∞ =?∑(a >0); (2) ∑∞ =-+1 )1(n n n ; (3) ∑∞ =+13 1 n n ; (4) ∑∞ =-+12)1(2n n n ; (5) ∑∞ =+11ln n n n ; (6) ∑∞ =-12)1(n n ; (7) ∑∞ =+11 n n n ; (8) 0(1)21n n n n ∞ =-?+∑. 解:(1)该级数为等比级数,公比为 1a ,且0a >,故当1 ||1a <,即1a >时,级数收敛,当1 | |1a ≥即01a <≤时,级数发散. (2) Q n S =+++L 1= lim n n S →∞ =∞ ∴ 1 n ∞ =∑发散. (3)113 n n ∞ =+∑是调和级数11n n ∞=∑去掉前3项得到的级数,而调和级数11 n n ∞ =∑发散,故原 级数 11 3 n n ∞ =+∑发散. (4)Q 1112(1)1(1)22 2n n n n n n n ∞ ∞-==?? +--=+ ???∑∑ 而11 12n n ∞ -=∑,1(1)2m n n ∞ =-∑是公比分别为1 2的收敛的等比级数,所以由数项级数的基本性质

知111(1)2 2n n n n ∞ -=??-+ ???∑收敛,即原级数收敛. (5)Q ln ln ln(1)1 n n n n =-++ 于是(ln1ln 2)(ln 2ln 3)[ln ln(1)]n S n n =-+-+-+L ln1ln(1)ln(1)n n =-+=-+ 故lim n n S →∞ =-∞,所以级数 1 ln 1 n n n ∞ =+∑发散. (6)Q 2210,2n n S S +==- ∴ lim n n S →∞ 不存在,从而级数 1 (1) 2n n ∞ =-∑发散. (7)Q 1 lim lim 10n n n n U n →∞ →∞+==≠ ∴ 级数 1 1 n n n ∞ =+∑发散. (8)Q (1)(1)1 , lim 21212 n n n n n n U n n →∞--==++ ∴ lim 0n x U →∞≠,故级数1 (1)21n n n n ∞ =-+∑发散. 2. 判别下列级数的收敛性,若收敛则求其和: (1) ∑∞ =??? ??+13121n n n ; (2) ※ ∑∞ =++1)2)(1(1n n n n ; (3) ∑∞ =?1 2sin n n n π ; (4) 0πcos 2n n ∞ =∑. 解:Q (1)1111, 23n n n n ∞ ∞==∑∑都收敛,且其和分别为1和12,则1112 3n n n ∞ =?? + ???∑收敛,且其 和为1+ 12=3 2 . (2)Q 11121(1)(2)212n n n n n n ?? =-+ ?++++??

期末高等数学(上)试题及答案

1 第一学期期末高等数学试卷 一、解答下列各题 (本大题共16小题,总计80分) (本小题5分) 3 求极限 lim 一3x - x 2 2x 3 (本小题5分) 求 X 2 2 dx. (1 x ) (本小题5分) (本小题5分) 设函数y y (x )由方程y 5 in y 2 x 6 所确定,求鱼. dx (本小题5分) 求函数y 2e x e x 的极值 (本小题5分) 2 2 2 2 求极限lim & ° (2x ° (3x ° 辿」 x (10x 1)(11x 1) (本小题5分) cos2x d x. sin xcosx 二、解答下列各题 (本大题共2小题,总计14分) 3 . ---------- 求 x . 1 xdx . 5 sin x , 2—dx. 0 8 sin 2 x (本小题5分) 1、 2、 3、 4、 5、 6、 7、 8、 9、 10、 11、 12、 13、 14、 15、 16、 x 2的单调区间 设 x(t) e kt (3cos 4sin t), 求 dx . 12x 16 9x 2 12x .1 arcs in x 求极限 limarctan x x (本小题5分) 求—^dx. 1 x (本小题5分) 求—x .1 t 2 dt . dx 0 (本小题5分) 求 cot 6 x esc 4 xdx. (本小题5分) 求-1 1 , 求 cos dx. x x 5分) [曲2确定了函数y es int 5分) (本小题 设 x y (本小 y(x),求乎 dx

(本大题6分) 设f (x ) x (x 1)( x 2)( x 3),证明f (x ) 0有且仅有三个实根 一学期期末高数考试(答案) 、解答下列各题 (本大题共16小题,总计77分) 1、(本小题3分) lim 」^ x 2 12x 18 2、(本小题3分) (1 2 1 d(1 x ) 2 (1 x 2)2 1 1 2 1 x 2 3、(本小题3分) 故 limarctan x 4、(本小题3分) dx dx 」 dx dx 1 x x In 1 x c. 5、 (本小题3分) 原式 2x 1 x 4 6、 (本小题4分) .6 4 cot x csc xdx cot 6 x(1 cot 2 x)d(cot x) 1、(本小题7分) 某农场需建一个面积为 512平方米的矩形的晒谷场,一边可用原来的石条围 另三边需砌新石条围沿 2、(本小题7分) 2 求由曲线y -和y 2 三、解答下列各题 ,问晒谷场的长和宽各为多少时,才能使材料最省? 3 —所围成的平面图形绕 ox 轴旋转所得的旋转体的 8 沿, 体积. 解:原式 lim x 2 6x 3x 2~ 2 12 18x 12 c. 因为 arctanx —而 limarcsin 2 x .1 x arcs in x

大学高等数学上考试题库(附答案)

《高数》试卷1(上) 一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()2g x x = (C )()f x x = 和 ()() 2 g x x = (D )()|| x f x x = 和 ()g x =1 2.函数()()sin 42 0ln 10x x f x x a x ?+-≠? =+?? =? 在0x =处连续,则a =( ). (A )0 (B )1 4 (C )1 (D )2 3.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ). (A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 5.点0x =是函数4 y x =的( ). (A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 6.曲线1 || y x = 的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7. 211 f dx x x ??' ???? 的结果是( ). (A )1f C x ?? -+ ??? (B )1f C x ?? --+ ??? (C )1f C x ?? + ??? (D )1f C x ?? -+ ??? 8. x x dx e e -+?的结果是( ). (A )arctan x e C + (B )arctan x e C -+ (C )x x e e C --+ ( D )ln()x x e e C -++ 9.下列定积分为零的是( ).

关于大学高等数学上考试题库附答案

关于大学高等数学上考试 题库附答案 This manuscript was revised on November 28, 2020

《高数》试卷1(上) 一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ( )g x =(C )()f x x = 和 ( )2 g x = (D )()|| x f x x = 和 ()g x =1 2.函数( )()2 0ln 10x f x x a x ≠? =+?? =? 在0x =处连续,则a =( ). (A )0 (B )1 4 (C )1 (D )2 3.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ). (A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 5.点0x =是函数4y x =的( ). (A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 6.曲线1 || y x = 的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211 f dx x x ??' ????的结果是( ). (A )1f C x ?? -+ ??? (B )1f C x ?? --+ ??? (C )1f C x ?? + ??? (D )1f C x ?? -+ ??? 8.x x dx e e -+? 的结果是( ). (A )arctan x e C + (B )arctan x e C -+ (C )x x e e C --+ (D )ln()x x e e C -++ 9.下列定积分为零的是( ). (A )4 24arctan 1x dx x π π-+? (B )44 arcsin x x dx ππ-? (C )112x x e e dx --+? (D )()121sin x x x dx -+?

大学高等数学上习题(附答案)

《高数》习题1(上) 一.选择题 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ( )g x =(C )()f x x = 和 ( )2 g x = (D )()|| x f x x = 和 ()g x =1 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 7. 211 f dx x x ??' ???? 的结果是( ). (A )1f C x ?? - + ??? (B )1f C x ?? --+ ??? (C )1f C x ?? + ??? (D )1f C x ?? -+ ??? 10.设()f x 为连续函数,则()10 2f x dx '?等于( ). (A )()()20f f - (B )()()11102f f -????(C )()()1 202f f -??? ?(D )()()10f f - 二.填空题 1.设函数()21 00x e x f x x a x -?-≠? =??=? 在0x =处连续,则a = . 2.已知曲线()y f x =在2x =处的切线的倾斜角为5 6 π,则()2f '=. 3. ()21ln dx x x = +?. 三.计算 1.求极限 ①21lim x x x x →∞+?? ??? ②() 20sin 1 lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分x xe dx -?

中国人民大学出版社第四版高等数学一第6章课后习题详解

高等数学一第6章课后习题详解 课后习题全解 习题6-2 ★ 1.求由曲线 x y =与直线 x y =所围图形的面积。 知识点:平面图形的面积 思路:由于所围图形无论表达为X-型还是Y-型,解法都较简单,所以选其一做即可 解: 见图6-2-1 ∵所围区域D 表达为X-型:?? ?<<<

∵所围区域D 表达为X-型:?????<<< <1 sin 2 0y x x π, (或D 表达为Y-型:???<<<

∴所围区域D 表达为Y-型:?? ?-<<<<-2 2 422y x y y , ∴23 16 )32 4()4(2 2 32 222= -=--=- - ? y y dy y y S D (由于图形关于X 轴对称,所以也可以解为: 2316 )324(2)4(22 32 22=-=--=? y y dy y y S D ) ★★4.求由曲线 2x y =、24x y =、及直线1=y 所围图形的面积 知识点:平面图形面积 思路:所围图形关于Y 轴对称,而且在第一象限内的图形表达为Y-型时,解法较简单 解:见图6-2-4 ∵第一象限所围区域1D 表达为Y-型:? ??<<<

高等数学试题及答案

高等数学试题及答案文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

《 高等数学 》 一.选择题 1. 当0→x 时,)1ln(x y +=与下列那个函数不是等价的 ( ) A)、x y = B)、x y sin = C)、x y cos 1-= D)、1-=x e y 2. 函数f(x)在点x 0极限存在是函数在该点连续的( ) A)、必要条件 B)、充分条件 C)、充要条件 D)、无关条件 3. 下列各组函数中,)(x f 和)(x g 不是同一函数的原函数的有( ). A)、()()() 222 1 ,21)(x x x x e e x g e e x f ---=-= B) 、(( )) ()ln ,ln f x x g x x ==- C)、()()x x g x x f --=-=1arcsin 23,12arcsin )( D)、()2 tan ,sec csc )(x x g x x x f =+= 4. 下列各式正确的是( ) A )、2ln 2x x x dx C =+? B )、sin cos tdt t C =-+? C )、2arctan 1dx dx x x =+? D )、211 ()dx C x x -=-+? 5. 下列等式不正确的是( ). A )、()()x f dx x f dx d b a =??????? B )、()()()[]()x b x b f dt x f dx d x b a '=??????? C )、()()x f dx x f dx d x a =??????? D )、()()x F dt t F dx d x a '=????? ?'? 6. 0 ln(1)lim x x t dt x →+=?( ) A )、0 B )、1 C )、2 D )、4 7. 设bx x f sin )(=,则=''?dx x f x )(( ) A )、C bx bx x +-sin cos B )、C bx bx x +-cos cos

高等数学试题及答案新编

《 高等数学》 一.选择题 1.当0→x 时,)1ln(x y +=与下列那个函数不是等价的() A)、x y =B)、x y sin =C)、x y cos 1-=D)、1-=x e y 2.函数f(x)在点x 0极限存在是函数在该点连续的() A )、必要条件 B )、充分条件 C )、充要条件 D )、无关条件 3.下列各组函数中,)(x f 和)(x g 不是同一函数的原函数的有(). A)、()()() 222 1 ,21)(x x x x e e x g e e x f ---=-= B) 、 (( )) ()ln ,ln f x x g x x ==- C)、()()x x g x x f --=-=1arcsin 23,12arcsin )( D)、()2 tan ,sec csc )(x x g x x x f =+= 4.下列各式正确的是() A )、2ln 2x x x dx C =+? B )、sin cos tdt t C =-+? C )、 2arctan 1dx dx x x =+?D )、2 11 ()dx C x x -=-+? 5.下列等式不正确的是(). A )、 ()()x f dx x f dx d b a =???????B )、()()()[]()x b x b f dt x f dx d x b a '=???? ??? C )、()()x f dx x f dx d x a =???????D )、()()x F dt t F dx d x a '=???? ??'? 6.0 ln(1)lim x x t dt x →+=?() A )、0 B )、1 C )、2 D )、4 7.设bx x f sin )(=,则=''?dx x f x )(()

高等数学上复旦第三版 课后习题答案

283 高等数学上(修订版)(复旦出版社) 习题六 无穷数级 答案详解 1.写出下列级数的一般项: (1)111135 7 ++++ ; (2)2 2242462468x x x x x ++++?????? ; (3)3579 3579 a a a a -+-+ ; 解:(1)1 21 n U n =-; (2)()2 !! 2n n x U n = ; (3)() 21 1 121 n n n a U n ++=-+; 2.求下列级数的和: (1)()()() 11 11n x n x n x n ∞ =+-+++∑ ; (2) ( )1 221n n n n ∞ =+-++∑; (3)23 111 5 55+ ++ ; 解:(1)()()() ()()()()1 11111211n u x n x n x n x n x n x n x n = +-+++?? -= ?+-++++??

284 从而()()()()()()() ()()()()()()()1111 1211212231111111211n S x x x x x x x x x n x n x n x n x x x n x n ?-+-= +++++++?? ++ - ?+-++++? ?? -= ?++++?? 因此() 1lim 21n n S x x →∞ =+,故级数的和为 () 121x x + (2)因为()()211n U n n n n =-+-++- 从而()()()() ()()()()3243322154432112112 1 12 21 n S n n n n n n n n =-+-----+-++---+-++-=+-++-=+-+++ 所以lim 12n n S →∞ =-,即级数的和为12-. (3)因为2111 5551115511511145n n n n S =+ ++????-?? ???? ?=-????=-?? ????? 从而1lim 4 n n S →∞ =,即级数的和为14 . 3.判定下列级数的敛散性: (1) ( )1 1n n n ∞ =+-∑; (2) ()() 11111661111165451n n +++++???-+ ; (3) ()23133222213333 n n n --+-++- ;

高等数学上考试试题及答案

四川理工学院试卷(2007至2008学年第一学期) 课程名称: 高等数学(上)(A 卷) 命题教师: 杨 勇 适用班级: 理工科本科 考试(考查): 考试 2008年 1 月 10日 共 6 页 注意事项: 1、 满分100分。要求卷面整洁、字迹工整、无错别字。 2、 考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地方,否 则视为废卷。 3、 考生必须在签到单上签到,若出现遗漏,后果自负。 4、 如有答题纸,答案请全部写在答题纸上,否则不给分;考完请将试卷和答题卷 分别一同交回,否则不给分。 试 题 一、单选题(请将正确的答案填在对应括号内,每题3分,共15分) 1. =--→1 ) 1sin(lim 21x x x ( C ) (A) 1; (B) 0; (C) 2; (D) 2 1 2.若)(x f 的一个原函数为)(x F ,则dx e f e x x )(? --为( B ) (A) c e F x +)(; (B) c e F x +--)(; (C) c e F x +-)(; (D ) c x e F x +-) ( 3.下列广义积分中 ( D )是收敛的. (A) ? +∞ ∞ -xdx sin ; (B)dx x ? -111 ; (C) dx x x ?+∞ ∞-+2 1; (D)?∞-0dx e x 。 4. )(x f 为定义在[]b a ,上的函数,则下列结论错误的是( B )

(A) )(x f 可导,则)(x f 一定连续; (B) )(x f 可微,则)(x f 不一定可导; (C) )(x f 可积(常义),则)(x f 一定有界; (D) 函数)(x f 连续,则? x a dt t f )(在[]b a ,上一定可导。 5. 设函数=)(x f n n x x 211lim ++∞→ ,则下列结论正确的为( D ) (A) 不存在间断点; (B) 存在间断点1=x ; (C) 存在间断点0=x ; (D) 存在间断点1-=x 二、填空题(请将正确的结果填在横线上.每题3分,共18分) 1. 极限=-+→x x x 1 1lim 20 _0____. 2. 曲线? ??=+=3 2 1t y t x 在2=t 处的切线方程为______. 3. 已知方程x xe y y y 265=+'-''的一个特解为x e x x 22 )2(2 1+- ,则该方程的通解为 . 4. 设)(x f 在2=x 处连续,且22 ) (lim 2=-→x x f x ,则_____)2(='f 5.由实验知道,弹簧在拉伸过程中需要的力F (牛顿)与伸长量s 成正比,即ks F =(k 为比例系数),当把弹簧由原长拉伸6cm 时,所作的功为_________焦耳。 6.曲线23 3 2 x y =上相应于x 从3到8的一段弧长为 . 三、设0→x 时,)(22 c bx ax e x ++-是比2 x 高阶的无穷小,求常数c b a ,,的值(6分)

高等数学第六版(同济大学)上册课后习题答案解析

高等数学第六版上册课后习题答案及解析 第一章 习题1-1 1. 设A =(-∞, -5)?(5, +∞), B =[-10, 3), 写出A ?B , A ?B , A \B 及A \(A \B )的表达式. 解 A ?B =(-∞, 3)?(5, +∞), A ? B =[-10, -5), A \ B =(-∞, -10)?(5, +∞), A \(A \B )=[-10, -5). 2. 设A 、B 是任意两个集合, 证明对偶律: (A ?B )C =A C ?B C . 证明 因为 x ∈(A ?B )C ?x ?A ?B ? x ?A 或x ?B ? x ∈A C 或x ∈B C ? x ∈A C ?B C , 所以 (A ?B )C =A C ?B C . 3. 设映射f : X →Y , A ?X , B ?X . 证明 (1)f (A ?B )=f (A )?f (B ); (2)f (A ?B )?f (A )?f (B ). 证明 因为 y ∈f (A ?B )??x ∈A ?B , 使f (x )=y ?(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B ) ? y ∈f (A )?f (B ), 所以 f (A ?B )=f (A )?f (B ). (2)因为 y ∈f (A ?B )??x ∈A ?B , 使f (x )=y ?(因为x ∈A 且x ∈B ) y ∈f (A )且y ∈f (B )? y ∈ f (A )?f (B ), 所以 f (A ?B )?f (A )?f (B ). 4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g =ο, Y I g f =ο, 其中I X 、 I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1. 证明 因为对于任意的y ∈Y , 有x =g (y )∈X , 且f (x )=f [g (y )]=I y y =y , 即Y 中

高等数学上模拟试卷和答案

高等数学上模拟试卷和 答案 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

北京语言大学网络教育学院 《高等数学(上)》模拟试卷 注意: 1.试卷保密,考生不得将试卷带出考场或撕页,否则成绩作废。请监考老师负责监督。 2.请各位考生注意考试纪律,考试作弊全部成绩以零分计算。 3.本试卷满分100分,答题时间为90分钟。 4.本试卷试题为客观题,请按要求填涂答题卡,所有答案必须填涂在答题卡上,答在试题卷上不给分。 一、【单项选择题】(本大题共100小题,每小题4分,共400分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。 1、函数)1lg(2++=x x y 是( )。 [A] 奇函数 [B] 偶函数 [C] 既奇又偶函数 [D] 非奇非偶函数 2、极限=--→9 3 lim 23x x x ( )。 [A] 0 [B] 6 1 [C] 1 [D] ∞ 3、设c x x x x f +=?ln d )(,则=)(x f ( )。 [A] 1ln +x [B] x ln [C] x [D] x x ln 4、 ?-=+01 d 13x x ( )。 [A] 6 5 [B] 6 5- [C] 2 3- [D] 2 3 5、由曲线22,y x x y ==所围成平面图形的面积=S ( )。 [A] 1 [B] 2 1 [C] 3 1 [D] 4 1 6、函数x x y cos sin +=是( )。 [A] 奇函数 [B] 偶函数 [C] 既奇又偶函数 [D] 非奇非偶函数 7、设函数?????=≠=00 3sin )(x a x x x x f ,在0=x 处连续,则a 等于( )。 [A] 1- [B] 1 [C] 2 [D] 3

高等数学试题及答案

高等数学试题 一、单项选择题(本大题共5小题,每小题2分,共10分) 1.设f(x)=lnx ,且函数?(x)的反函数1?-2(x+1)(x)= x-1,则[]?=f (x)( ) ....A B C D x-2x+22-x x+2 ln ln ln ln x+2x-2x+22-x 2.()002lim 1cos t t x x e e dt x -→+-=-?( ) A .0 B .1 C .-1 D .∞ 3.设00()()y f x x f x ?=+?-且函数()f x 在0x x =处可导,则必有( ) .lim 0.0.0.x A y B y C dy D y dy ?→?=?==?= 4.设函数,131,1 x x x ?≤?->?22x f(x)=,则f(x)在点x=1处( ) A.不连续 B.连续但左、右导数不存在 C.连续但不可导 D. 可导 5.设C +?2 -x xf(x)dx=e ,则f(x)=( ) 2222-x -x -x -x A.xe B.-xe C.2e D.-2e 二、填空题(本大题共10小题,每空3分,共30分) 请在每小题的空格中填上正确答案。错填、不填均无分。 6.设函数f(x)在区间[0,1]上有定义,则函数f(x+14)+f(x-14)的定义域是__________. 7.()()2lim 1_________n n a aq aq aq q →∞++++<= 8.arctan lim _________x x x →∞= 9.已知某产品产量为g 时,总成本是2 g C(g)=9+800 ,则生产100件产品时的边际成本100__g ==MC 10.函数3()2f x x x =+在区间[0,1]上满足拉格朗日中值定理的点ξ是_________. 11.函数3229129y x x x =-+-的单调减少区间是___________. 12.微分方程3'1xy y x -=+的通解是___________. 13. 设2ln 2,6 a a π==?则___________. 14.设2cos x z y =则dz= _______. 15.设{}2(,)01,01y D D x y x y xe dxdy -=≤≤≤≤=??,则_____________. 三、计算题(一)(本大题共5小题,每小题5分,共25分) 16.设1x y x ??= ???,求dy.

微积分课后题答案习题详解

微积分课后题答案习题 详解 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

第二章 习题2-1 1. 试利用本节定义5后面的注(3)证明:若lim n →∞ x n =a ,则对任何自然数k ,有lim n →∞ x n +k =a . 证:由lim n n x a →∞ =,知0ε?>,1N ?,当1n N >时,有 取1N N k =-,有0ε?>,N ?,设n N >时(此时1n k N +>)有 由数列极限的定义得 lim n k x x a +→∞ =. 2. 试利用不等式A B A B -≤-说明:若lim n →∞ x n =a ,则lim n →∞ ∣x n ∣=|a|.考察数列x n =(-1)n ,说明 上述结论反之不成立. 证: 而 n n x a x a -≤- 于是0ε?>,,使当时,有N n N ?> n n x a x a ε-≤-< 即 n x a ε-< 由数列极限的定义得 lim n n x a →∞ = 考察数列 (1)n n x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞ =, 所以前面所证结论反之不成立。 3. 利用夹逼定理证明: (1) lim n →∞ 2 22111(1) (2)n n n ??+++ ?+?? =0; (2) lim n →∞2!n n =0. 证:(1)因为 222 222111 112(1)(2)n n n n n n n n n n ++≤+++ ≤≤=+ 而且 21lim 0n n →∞=, 2lim 0n n →∞=, 所以由夹逼定理,得 22211 1lim 0(1)(2)n n n n →∞?? +++ = ?+? ? . (2)因为22222240!123 1n n n n n < =<-,而且4 lim 0n n →∞=,

期末高等数学(上)试题及答案

第一学期期末高等数学试卷 一、解答下列各题 (本大题共16小题,总计80分) 1、(本小题5分) 求极限 lim x x x x x x →-+-+-2332121629124 2、(本小题5分) .d )1(22x x x ?+求 3、(本小题5分) 求极限lim arctan arcsin x x x →∞?1 4、(本小题5分) ? -.d 1x x x 求 5、(本小题5分) .求dt t dx d x ?+2 021 6、(本小题5分) ??.d csc cot 46x x x 求 7、(本小题5分) .求?ππ 2 1 21cos 1dx x x 8、(本小题5分) 设确定了函数求.x e t y e t y y x dy dx t t ==?????=cos sin (),22 9、(本小题5分) . 求dx x x ?+3 01 10、(本小题5分) 求函数 的单调区间y x x =+-422 11、(本小题5分) .求? π +2 02sin 8sin dx x x 12、(本小题5分) .,求设 dx t t e t x kt )sin 4cos 3()(ωω+=- 13、(本小题5分) 设函数由方程所确定求.y y x y y x dy dx =+=()ln ,226 14、(本小题5分) 求函数的极值y e e x x =+-2 15、(本小题5分) 求极限lim ()()()()()()x x x x x x x →∞++++++++--121311011011112222 16、(本小题5分) .d cos sin 12cos x x x x ? +求 二、解答下列各题 (本大题共2小题,总计14分)

高等数学同济第六版上册课后答案

2018年湖南省怀化市中考物理试卷 一、选择区 1. 下图中符合安全用电原则的是() A. 雷雨时在大树下躲雨 B. 在高压线下钓鱼 C. 在同一插座上同时使用多个大功率用电器 D. 发现有人触电时立即切断电源 【答案】D 【解析】A、雷雨时,不可以在大树下避雨,要注意防雷电,故A错误; B、高压线下钓鱼,鱼线很容易接触到高压线,容易发生触电事故,故B错误; C、在同一个插座上同时使用了多个大功率的用电器,由可得,会使干路中的电流过大,容易发生电路火灾,故C错误; D、当发现有人触电时,应该立即采取的措施是:迅速切断电源或用绝缘体挑开电线,因为人体是导体,不能用手拉开电线和触电的人,故D正确。 故选:D。 点睛:本题考查日常安全用电常识,关键是了解安全用电的基本原则“不接触低压带电体,不靠近高压带电体。” 2. 在北京8分钟的节目中,憨态可掬的大熊猫令人忍俊不禁。这只大熊猫是用一种特制的铝合金材料制成的,它的高度为2.35m,质量却只有10kg,它利用了铝合金的哪一种性质() A. 质量小 B. 密度小 C. 比热容小 D. 导热性能好 【答案】B 【解析】解:由题知,大熊猫是用一种特殊的铝合金材料制成的,它的高为2.35m,质量却只有10kg,也就是说它的体积很大,质量很小,根据ρ=可知,材料的体积相同时,质量越小,密度越小。所以它利用

了铝合金密度小的性质。故ACD错误,B正确。 故选:B。 点睛:密度是物质的一种特性,不同物质密度一般不同,常用密度来鉴别物质。解答本题时,要紧扣大熊猫高度大,质量小的特点进行分析。 3. 下列事例中不是利用大气压工作的是() A. 用塑料吸管吸饮料 B. 用抽水机抽水 C. 用注射器将药液注入病人体内 D. 钢笔吸墨水 【答案】C 【解析】解:A、用吸管吸饮料时,吸管内的气压小于外界大气压,饮料在外界大气压的作用下,被压入口腔内。利用了大气压。故A不合题意; B、抽水机抽水,通过活塞上移或叶轮转动使抽水机内水面上方的气压减小,水在外界大气压的作用下,被压上来,利用了大气压,故B不合题意。 C、用注射器将药液注入病人体内是利用人的压力将药液注入人体肌肉的,不是利用大气压来工作的,故C 符合题意。 D、用力一按橡皮囊,排出了里面的空气,当其恢复原状时,橡皮囊内部气压小于外界大气压,在外界大气压的作用下,墨水被压入钢笔内,利用了大气压。故D不合题意。 故选:C。 点睛:本题考查了大气压的应用,此类问题有一个共性:通过某种方法,使设备内部的气压小于外界大气压,在外界大气压的作用下出现了这种现象。 4. 自然界中有些能源一旦消耗就很难再生,因此我们要节约能源。在下列能源中,属于不可再生的能源的是 A. 水能 B. 风能 C. 太阳能 D. 煤炭 【答案】D D、煤炭属于化石燃料,不能短时期内从自然界得到补充,属于不可再生能源,故D符合题意。

高等数学上模拟试卷和答案

高等数学上模拟试卷和答 案 Prepared on 22 November 2020

北京语言大学网络教育学院 《高等数学(上)》模拟试卷 注意: 1.试卷保密,考生不得将试卷带出考场或撕页,否则成绩作废。请监考老师负责监督。 2.请各位考生注意考试纪律,考试作弊全部成绩以零分计算。 3.本试卷满分100分,答题时间为90分钟。 4.本试卷试题为客观题,请按要求填涂答题卡,所有答案必须填涂在答题卡上,答在试题卷上不给分。 一、【单项选择题】(本大题共100小题,每小题4分,共400分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。 1、函数)1lg(2++=x x y 是( )。 [A] 奇函数 [B] 偶函数 [C] 既奇又偶函数 [D] 非奇非偶函数 2、极限=--→9 3 lim 23x x x ( )。 [A] 0 [B] 6 1 [C] 1 [D] ∞ 3、设c x x x x f +=?ln d )(,则=)(x f ( )。 [A] 1ln +x [B] x ln [C] x [D] x x ln 4、 ?-=+01 d 13x x ( )。 [A] 6 5 [B] 6 5- [C] 23- [D] 2 3 5、由曲线22,y x x y ==所围成平面图形的面积=S ( )。 [A] 1 [B] 2 1 [C] 3 1 [D] 4 1 6、函数x x y cos sin +=是( )。 [A] 奇函数 [B] 偶函数 [C] 既奇又偶函数 [D] 非奇非偶函数 7、设函数?????=≠=00 3sin )(x a x x x x f ,在0=x 处连续,则a 等于( )。 [A] 1- [B] 1 [C] 2 [D] 3 8、函数12+=x y 在区间]2,2[-上是( )。 [A] 单调增加 [B] 单调减少 [C] 先单调增加再单调减少 [D] 先单调减少再单调增加

高等数学下-复旦大学出版-习题十答案详解

习题十 1. 根据二重积分性质,比较 ln()d D x y σ+?? 与2[ln()]d D x y σ+??的大小,其中: (1)D 表示以(0,1),(1,0),(1,1)为顶点的三角形; (2)D 表示矩形区域{(,)|35,02}x y x y ≤≤≤≤. 解:(1)区域D 如图10-1所示,由于区域D 夹在直线x +y =1与x +y =2之间,显然有 图10-1 12x y ≤+≤ < 从而 0ln()1x y ≤+< 故有 2 ln()[ln()]x y x y +≥+ 所以 2ln()d [ln()]d D D x y x y σσ+≥+?? ?? (2)区域D 如图10-2所示.显然,当(,)x y D ∈时,有3x y +≥. 图10-2 从而 ln(x +y )>1 故有 2 ln()[ln()]x y x y +<+ | 所以 2ln()d [ln()]d D D x y x y σσ +<+?? ?? 2. 根据二重积分性质,估计下列积分的值: (1)4d ,{(,)|02,02}I xy D x y x y σ=+=≤≤≤≤??; (2)22sin sin d ,{(,)|0π,0π}D I x y D x y x y σ= =≤≤≤≤?? ;

解:(1)因为当(,)x y D ∈时,有02x ≤≤, 02y ≤≤ 因而 04xy ≤≤. 从而 2≤≤》 故 2d D D σσσ≤≤?? ?? ?? 即2d d D D σσσ≤≤???? 而 d D σσ=?? (σ为区域D 的面积) ,由σ=4 得 8σ≤ ≤?? (2) 因为2 2 0sin 1,0sin 1x y ≤≤≤≤,从而 220sin sin 1x y ≤≤ 故 220d sin sin d 1d D D D x y σσσ≤≤?? ???? 即220sin sin d d D D x y σσσ≤ ≤=???? ~ 而2 πσ= 所以2220sin sin d πD x y σ≤ ≤?? (3)因为当(,)x y D ∈时,2 2 04x y ≤+≤所以 22229494()925x y x y ≤++≤++≤ 故 229d (49)d 25d D D D x y σσσ≤++≤?? ???? 即 229(49)d 25D x y σσσ≤ ++≤?? 而 2 π24πσ=?= 所以 2236π(49)d 100πD x y σ≤ ++≤?? … 3. 根据二重积分的几何意义,确定下列积分的值:

2019级高等数学(上)期中考试试题及答案1

高等数学(上)期中考试试题及答案 班级 学号 姓名 得分 一、选择题(每小题3分,共30分) 1.设当0x →时,2(1cos )sin x x -是ln(1)n x +的高阶无穷小,而ln(1)n x +又是(1) x x e -的高阶无穷小,则正整数n =( ) (A) 4 (B) 3 (C) 2 (D) 1 2.若21 lim( )01 x x ax b x →∞+--=+,则,a b 分别为( ). (A) 1,1 (B) 1,1- (C) 1,1- (D) 1,0 3.考虑下列5个函数: ①x e ; ②2 x e ; ③2 x e -; ④arctan x ; ⑤2 arctan x . 上述函数中,当x →∞时,极限存在的是 ( ) (A) ②③⑤ (B) ①④ (C) ③⑤ (D) ①②③⑤ 4.设)(u f 二阶可导,)1 (x f y =,则22 d d y x =( ) (A ))1(x f '' (B) 23 1121 ()()f f x x x x '''+ (C) 431121()()f f x x x x '''+ (D)431121()()f f x x x x '''- 5.设2 211()f x x x x +=+,则1()f x x '+=( ) (A) 22x x + (B) 322x x - (C) 3 13x x - (D) 2222x x - 6.设()f x 在点0x =处可导,且(0)0f =,则0x =点是函数() ()f x x x ?=的( ). (A) 可去间断点 (B) 跳跃间断点 (C) 无穷间断点 (D) 振荡间断点 7.设2 ()() lim 1() x a f x f a x a →-=--,则()f x 在点x a =处( ) (A)取得极大值 (B)取得极小值 (C)一定不取得极值 (D)不一定取得极值

相关文档
相关文档 最新文档