文档库 最新最全的文档下载
当前位置:文档库 › MATLAB的建模和仿真

MATLAB的建模和仿真

MATLAB的建模和仿真
MATLAB的建模和仿真

课程设计说明书

题目:基于Matlab的IIR滤波器设计与仿真班级:2012 级电气五班

姓名:王璐

学号:201295014178

指导教师:张小娟

日期:2015年 1 月12日

课程设计任务书

基于MATLAB的IIR滤波器设计与仿真

前言

数字信号处理(digital signal processing,DSP)是从20世纪60年代以来,随着信息学科和计算机学科的高速发展而迅速发展起来的一门新兴学科。数字信号处理是把信号用数字或符号表示的序列,通过计算机或通用(专用)信号处理设备,用数字的数值计算方法处理(例如滤波、变换、压缩、增强、估计、识别等),以达到提取有用信息便于应用处理的目的。数字信号处理系统有精度高、灵活性高、可靠性高、容易大规模集成、时分复用、可获得高性能指标、二维与多维处理等特点。正是由于这些突出的特点,使得它在通信、语音、雷达、地震测报、声呐、遥感、生物医学、电视、仪器中得到愈来愈广泛的应用。在数字信号处理中起着重要的作用并已获得广泛应用的是数字滤波器(DF,Digital Filter),根据其单位冲激响应函数的时域特性可分为两类:无限冲激响应IIR(Infinite Impulse Response)滤波器和有限冲激响应FIR(Finite Impulse Response)滤波器。MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来结算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的有点,使MATLAB成为一个强大的数学软件,在新的版本中也加入了对C,FORTRAN,C++,JA V A的支持。可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用。

1 数字滤波器概述

数字滤波器是对数字信号实现滤波的线性时不变系统。数字滤波实质上是一种运算过程,实现对信号的运算处理。输入数字信号(数字序列)通过特定的运算转变为输出的数字序列,因此,数字滤波器本质上是一个完成特定运算的数字计算过程,也可以理解为一台计算机。描述离散系统输出与输入关系的卷积和差分方程只是给数字信号滤波器提供运算规则,使其按照这个规则完成对输入数据的处理。时域离散系统的频域特性:Y(eωj)=X(eωj)H(eωj)

其中Y(eωj)、X(eωj)分别是数字滤波器的输出序列和输入序列的频域特性(或称为

频谱特性),H(e ωj )是数字滤波器的单位取样响应的频谱,又称为数字滤波器的频域响应。输入序列的频谱X(e ωj )经过滤波后X(e ωj )H(e ωj ),因此,只要按照输入信号频谱的特点和处理信号的目的,适当选择H(e ωj ),使得滤波后的X(e ωj )H(e ωj )满足设计的要求,这就是数字滤波器的滤波原理。

数字滤波器根据其冲击响应函数的时域特性,可分为两种,即无限长冲激响应(IIR )数字滤波器和有限长冲激响应(FIR )数字滤波器。IIR 数字滤波器的特征是,具有无限持续时间冲激响应,需要用递归模型:

y(n)=)(0i n x a N i i -∑=+)(1i n y b N

i i -∑=

来实现,其差分方程为:H(z)=∑∑=-=-+N

k k

k M r r r

Z a Z b 10

1 系统函数为:

设计IIR 滤波器的任务就是寻求一个物理上可实现的系统函数H(z),使其频率响应H(z)满足所希望得到的频域指标,即符合给定的通带截止频率、阻带截止频率、通带衰减系数和阻带衰减系数。

数字滤波器由数字乘法器、加法器和延时单元组成的一种算法或装置。数字滤波器的功能是对输入离散信号的数字代码进行运算处理,以达到改变信号频谱的目的。

由于电子计算机技术和大规模集成电路的发展,数字滤波器已经可用计算机软件实现,也可用大规模集成数字硬件实时实现。

数字滤波器是一个离散时间系统(按预定的算法,将输入离散时间信号(对应数字频率)转换为所要求的输出离散时间信号的特定功能装置)。应用数字滤波器处理模拟信号(对应模拟频率)时,首先须对输入模拟信号进行限带、抽样和模数转换。为得到模拟信号,数字滤波器处理的输出数字信号须经数模转换、平滑。数字滤波器具有高精度、高可靠性、可程控改变特性或复用、便于集成等优点。数字滤波器在语言信号处理、图像信号处理、医学生物信号处理以及其他应用领域都得到了广泛应用。

数字滤波器有低通、高通、带通、带阻和全通等类型。它可以是时不变的或时变的、因果的或非因果的、线性的或非线性的。

滤波器的种类很多,分类方法也不同。

从处理信号分:经典滤波器、现代滤波器

从实现的网络结构方法上分:FIR (有限脉冲响应)、IIR (无限脉冲响应)

从功能上分:低通、高通、带通、带阻

从设计方法上来分:Butterworth (巴特沃斯),Chebyshev (切比雪夫),椭圆函数(Ellipse ),贝塞尔(Bessel )等等。

数字滤波器与模拟滤波器的区别 数字滤波器的传输函数)(ωj e H 都是以2π为周期的,滤波器的低通频带处于2π的整数倍处,而高频频带处于π的奇数倍附近。

数字滤波器的技术要求:H(e ωj )=)()(ω?ωj j e e H 其中:)(ωj e H 幅频特性 )(ω?相频特性

2 IIR 数字滤波器设计方法

就广义而言,数字滤波器是一个用有限精度算法实现的线性移不变时间系统。设计实现一个数字滤波器一般包括四个基本步骤:

1 按照实际需要确定滤波器的性能要求。比如确定所设计的滤波器是低通、高通、带通还是带阻,截止频率是多少,阻带的衰减有多大,通带的波动是多少等;

2 用一个因果稳定的系统函数去逼近这个性能要求;(IIR ,FIR )

3 用一个有限精度的算法去实现这个系统函数;(运算结构)

4 实际的技术实现。(通用计算机软件或专用数字滤波器硬件)

IIR 数字滤波器的设计方法

图1

IIR 数字滤波器设计方法

数字滤波器(Digital Filter)是指输入、输出都是离散时间信号,通过一定运算关系改变输入信号所含频率成分的相对比例或者滤除某些频率成分的器件。数字滤波器在数字信号处理中起着非常重要的作用,在信号的过滤、检测与参数的估计等方面,是使用最为广泛的一种线性系统。

实现数字滤波器的方法有两种,一是采用计算机软件进行,就是把所要完成的工作通过程序让计算机来实现;二十设计专用的数字处理硬件。这个地方主要用到的就是第一种方法。即是用Mafiab提供的信号处理工具箱来实现数字滤波器。

Matlab信号处理工具箱提供了丰富的设计方法,可以使得繁琐的程序设计简化成函数的调用,只要以正确的指标参数调用函数,就可以正确快捷的得到设计结果。

IIR数字滤波器的最通用的方法是借助于模拟滤波器的设计方法。模拟滤波器设计已经有了相当成熟的技术和方法,有完整的设计公式,还有比较完整的图表可以查询,因此设计数字滤波器可以充分利用这些丰富的资源来进行。

对于IIR数字滤波器的设计具体步骤如下:

(1)按照一定的规则将给出的数字滤波器的技术指标转换为模拟低通滤波器的技术指标。

(2)根据转换后的技术指标设计模拟低通滤波器G(s)(G(s)是低通滤波器的传递函数)。

(3)再按照一定的规则将G(s)转换成H(z)(H(z)是数字滤波器的传递函数)。若设计的数字滤波器是低通的,上述的过程可以结束,若设计的是高通、带通或者是带阻滤波器,那么还需要下面的步骤:

将高通。带通或带阻数字滤波器的技术指标转换为低通模拟滤波器的技术指标,然后设计出低通G(s),再将G(s)转换为H(z)。

Matlab信号工具箱提供了几个直接设计IIR数字滤波器的函数,直接调用这些函数就可以很方便的对滤波器进行设计。这里选取巴特沃斯法、切比雪夫Ⅰ、切比雪夫Ⅱ、椭圆法四种方法进行比较。给出用上述方法设计数字滤波器的函数如下:Butterworth滤波器:

[N,Wn]=buttord(Wp,Ws,Rp,Rs)

[b,a]=butter(N,Wn)

[b,a]=butter(N,Wn,’ftype’)

[h,f]=freqz(b,a,n,Fs)

其中:Wp表示通带截止频率;Ws表示阻带截止频率;Rp表示通带纹波系数;Rs 表示阻带纹波系数;N表示滤波器最小阶数;Wn表示截止频率。b,a分别表示阶次位N+1的数字滤波器系统传递函数的分子和分母多项式系数向量;Fs位采样频率;n为在区间[0 Fs]频率范围内选取的频率点数,f记录频率点数。N取2的幂次方,可以提高运算的速度,因为freqz函数采用基2的FFT算法。Ftype=high时,位高通滤波器;ftype=bandpass时,位带通滤波器;ftype=stop时,位带阻滤波器。

Chebyshev eⅠ型滤波器:

[N,Wn]=cheb1ord(Wp,Ws,Rp,Rs)

[b,a]=cheby1(N,Rp,Wn)

[b,a]=cheby1(N,Rp,Wn,’ftype’)

[h,f]=freqz(b,a,n,Fs)

Chebyshev eⅡ型滤波器:

[N,Wn]=cheb2ord(Wp,Ws,Rp,Rs)

[b,a]=cheby2(N,Rs,Wn)

[b,a]=cheby2(N,Rs,Wn,’ftype’)

[h,f]=freqz(b,a,n,Fs)

椭圆滤波器:

[N,Wn]=ellipord(Wp,Ws,Rp,Rs)

[b,a]=ellip(N,Rp,Rs,Wn)

[b,a]=ellip(N,Rp,Rs,Wn,’ftype’)

[h,f]=freqz(b,a,n,Fs)

比较结果分析

通过对各种类型的滤波器通过不同方法进行设计,可以使一些结论得到验证。利用Butterworth滤波器、Chebyshev eⅠ型滤波器、Chebyshev eⅡ型滤波器、椭圆滤波器都可以进行低通、高通、带通、带阻滤波器的设计,但是各有特点。Butterworth滤波器通带内的幅频响应曲线能得到最大限度的平滑,但牺牲了截止频率的坡度。

Chebyshev eⅠ型滤波器通带内等波纹,阻带内单调;Chebyshev eⅡ型滤波器通带内单调,然而阻带内等波纹;椭圆滤波器阻带和通带内都是等波纹的,但下降的坡度更大,

而且可以以更低的阶数实现和其他两类滤波器一样的性能指标。

3 IIR数字滤波器的特点

IIR数字滤波器采用递归型结构,即结构上带有反馈环路。IIR滤波器运算结构通常由延时、乘以系数和相加等基本运算组成,可以组合成直接型、正准型、并联型四种结构形式,都具有反馈回路。由于运算中的舍入处理,使误差不断累积,有时会产生微弱的寄生振荡。

IIR数字滤波器在设计上可以借助成熟的模拟滤波器的成果,如巴特沃斯、契比雪夫和椭圆滤波器等,有现成的设计数据或图表可查,其设计工作量比较小,对计算工具的要求不高。在设计一个IIR数字滤波器时候,我们根据指标先写出模拟滤波器的公式,然后通过一定的变换,将模拟滤波器的公式转换成数字滤波器的公式。

IIR数字滤波器的相位特性不好控制,对相位要求较高时,需加相位校准网络。

在MATLAB下设计IIR滤波器可使用Butterworth函数设计出巴特沃斯滤波器,使用Cheby1函数设计出契比雪夫I型滤波器,使用Cheby2设计出契比雪夫II型滤波器,使用ellipord函数设计出椭圆滤波器。下面主要介绍前连个函数的使用。

与FIR滤波器的设计不同,IIR滤波器设计时的阶数不是由设计者指定,而是根据设计者输入的各个滤波器参数(截止频率、通带滤纹、阻带衰减等),由软件设计出满足这些参数的最低滤波器的阶数,在MATLAB下设计不同类型IIR滤波器均有与之对应的函数用于阶数的选择。

IIR单位响应为无限脉冲序列FIR单位响应为有限的。

IIR幅频特性精度很高,不是线性相位的,可以应用于对相位信息不敏感的音频信号上。

FIR幅频特性精度较至于IIR低,但是线性相位,就是不同频率分量的信号经过FIR 滤波器后他们的时间差不变。

另外有限的单位响应也有利于对数字信号的处理,便于编程,用于计算的时延也小。

4 MATLAB概述

MATLAB代表Matrix Laboratory,它的首创者是美国新墨西哥大学计算机系的系主任Cleve Moler博士,他在教授线性代数课程发现其他语言很不方便,便构思开发了MATLAB。最初采用FORTRAN语言编写,20世纪80年代后出现了MATLAB第二版,全部采用C语言编写。

MATLAB是一种高性能的技术计算语言。

强大的数值计算和工程运算功能

符号计算功能

强大的科学数据可视化能力

多种工具箱

MATLAB可以进行:

数学计算、算法开发、数据采集

建模、仿真、原型

数据分析、开发和可视化

科学和工程图形应用程序的开发,包括图形用户界面的创建。

MATLAB广泛应用于:

数值计算、图形处理。符号运算、数学建模、系统辨识、小波分析、实时控制、动态仿真等领域。

MATLAB的构成:

MATLAB开发环境:进行应用研究开发的交互式平台

MATLAB数学与运算函数库:用于科学计算的函数

MATLAB语言:进行应用开发的编程工具

图形化开发:二维、多维图形开发的工具

应用程序接口(API)用于与其他语言混编

面向专门领域的工具箱:小波工具箱、神经网络工具箱、信号处理工具箱、图形处理工具箱、模糊逻辑工具箱、优化工具箱、鲁棒控制工具箱等几十个不同应用的工具箱。

MATLAB语言特点:

MATLAB具有用法简单、灵活、程式结构性强、延展性好等优点,已经逐渐成为科技计算、视图交互系统和程序中的首选语言工具。特别是它在线性代数、数理统计、自动控制、数字信号处理、动态系统仿真等方面表现突出,已经成为科研工作人员和工程技术人员进行科学研究和生产实践的有利武器。

MATLAB的技术特点:

语言简洁紧凑,语法限制不严,程序设计自由度大,可移植性好。MATLAB是一个高级的矩阵/阵列语言,它包含控制语句、函数、数据结构、输入输出和面向对象编程

特点。MATLAB以矩阵为居处,不需要预先定义变量和矩阵(包括数组)的位数,可以方便地进行矩阵的算术运算、关系运算和逻辑运算等。而且MATLAB有特殊矩阵专门的库函数,可以高效地求解诸如信号处理、图像处理、控制等问题。

运算符、库函数丰富。MATLAB的一个重要特色就是具有一套程序扩展系统和一组称之为工具箱的特殊应用子程序,每一个工具箱都是为某一类学科专业和应用而定制的。MATLAB包括两个部分:核心部分和各种可选的工具箱。核心部分中有数百个核心内部函数。其工具箱又分为两类:功能性工具箱和学科性工具箱。功能性工具箱主要用来扩充其符号计算功能,图示建模仿真功能,文字处理功能以及与硬件实时交互的功能;而学科性工具箱是专业性比较强的,如:control,toolbox,signl proceessingtoolbox,commumnicationtoolbox等。这些工具箱都是由该领域内学术水平很高的专家编写的,所以用户无需编写自己学科范围内的基础程序就可直接进行高、精、尖的研究。

强大的数值(矩阵)运算功能。MATLAB是一个包含大量计算算法的集合。其拥有600多个工程中要用到的数学运算函数,可以方便的实现用户所需的各种计算功能。函数中所使用的算法都是科研和工程计算中的最新研究成果,而前经过了各种优化和容错处理。在通常情况下,可以用它来代替底层编程语言,如C和C++。在计算要求相同的情况下,使用MATLAB的编程工作量会大大减少。MATLAB的这些函数集包括从最简单最基本的函数到诸如矩阵、特征向量、快速傅里叶变换的复杂函数。函数所能解决的问题其大致包括矩阵运算和线性方程组的求解、微分方程及偏微分方程组的求解、符号运算、傅里叶变换和数据的统计分析、工程中的优化问题、稀疏矩阵运算、复数的各种运算、三角函数和其他初等数学运算、多维数组操作以及建模动态仿真等。

界面友好、编程效率高。MATLAB程序书写形式自由,被称为“草稿式”语言,这是因为其函数名和表达更接近我们书写计算公式的思维表达方式。编写MATLAB程序犹如在草稿纸上排列公式和求解问题,因此可以快速地验证工程技术人员的算法。此外MATLAB还是一种解释性语言,不需要专门的编译器。具体的说,MATLAB运行时,可直接在命令行输入MATLAB语句,系统立即进行处理,完成编译、连接和运行的全过程。利用丰富的库函数避开繁杂的子程序编程任务,压缩了一切不必要的编程工作。

图形功能强大。MATLAB具有非常强大的以图形化显示矩阵和数组的能力,同时它能给这些图形增加注释并且可以对图形进行标注和打印。MATLAB的图形技术包括二维和三维的可视化、图像处理、动画等高层次的专业图形的高级绘图函数(例如图形

的光照处理、色度处理以及四维数据的表现等),又包括一些可以让用户灵活控制图形特点的低级绘图命令,可以利用MATLAB的句柄图形技术创建图形用户界面。同时对一些特殊的可视化要求,例如图形对话等,MATLAB也有相应的功能函数,保证了用户不同层次的要求。新版本的MATLAB还着重在图形用户界面(GUI)的制作上作了很大的改善。

MATLAB功能特点:

MATLAB将一个优秀软件的易用性与可靠性、通用性与专业性、一般目的的应用与高深的科学技术应用有机的结合。

扩展性强。MATLAB不仅有着丰富的库函数,在进行复杂的数学运算时可以直接调用。而且用户还可以根据需要方便地编写和扩充新的函数库。通过混合编程用户可以方便地在MATLAB环境中调用其他用FORTRAN或者C语言编写的代码,也可以再C 语言或者FORTRAN语言程序中调用MATLAB计算引擎来执行MATLAB代码。

可靠的容错功能、应用灵活的兼容与接口功能。MathWorks公司开发的Matlab Notebook成功地将Microsoft Word和Matlab结合在一起,为文字处理、科学计算和工程设计营造了一个完美的工作环境。Matlab的Notebook实现Word和Matlab无缝连接使Word不仅兼容原有编辑能力而且又增加了Matlab强大的计算和绘图能力,在科学研究、工程设计和教学方面都有很好的实用价值,已经远远的把MathCAD抛在后面。Matlab Notebook可以在word中随时修改计算命令,随时计算并生成图像返回。

信息量丰富的联机检索功能。新版本的Matlab可以利用Matlab编译器和C/C++数学库和图形库,将自己的MATLAB程序自动转换为独立于MATLAB运行的C和C++代码。允许用户编写可以和MATLAB进行交互的C或C++语言程序。另外,MATLAB 网页五福程序还容许在Web应用中使用自己的Matlab数学和图形程序。

综上,MATLAB是一种基于矩阵运算、具有强大的数值运算和数据处理功能的高级编程语言,广泛应用于信号分析、语言分析、优化设计等领域,在复杂的算法方面表现出其他语言难以比拟的优势。MATLAB的开放性。除内部函数以外,所有MATLAB 的核心文件和工具箱文件都是可读可改的源文件,用户可通过对源文件的修改以及加入自己的文件构成新的工具箱。

5 SIMULINK

所谓模型化图形输入是指SIMULINK提供了一些按功能分类的基本的系统模块,

用户只需要知道这些模块的输入输出及模块的功能,而不必考虑模块内部是如何实现的,通过对这些基本模块的调用,再将它们连接起来就可以构成所需要的系统模型(以.mdl文件进行存取),进而进行仿真与分析。

SIMULINK是MATLAB软件的扩展,它是实现动态系统建模和仿真的一个软件包,它与MATLAB语言的主要区别在于,其与用户交互接口是基于Windows的模型化图形输入,其结果是使得用户可以把更多的精力投入到系统模型的构建,而非语言的编程上。

Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。在该环境中无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。Simulink具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。同时有大量的第三方软件和硬件可应用于或被要求应用于Simulink。

Simulink是MATLAB中的一种可视化仿真工具,是一种基于MATLAB的框图设计环境,是实现动态系统建模、仿真和分析的一个软件包,被广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中。Simulink可以用连续采样时间、离散采样时间或两种混合的采样时间进行建模,它也支持多速率系统,也就是系统中的不同部分具有不同的采样速率。为了创建动态系统建模,Simulink提供了一个建立模型方块图的图形用户接口(GUI),这个创建过程只需单击和拖动鼠标操作就能完成,它提供了一种更快捷、直接明了的方式,而且用户可以立即看到系统的仿真结果。

Simulink是用于动态系统和嵌入式系统的多领域仿真和基于模型的设计工具。对各种时变系统,包括通讯、控制、信号处理、视频处理和图像处理系统,Simulink提供了交互式图形化环境和可定制模块库来对其进行设计、仿真、执行和测试。

构架在Simulink基础之上的其他产品扩展了Simulink多领域建模功能,也提供了用于设计、执行、验证和确认任务的相应工具。Simulink与MATLAB紧密集成,可以直接访问MATLAB大量的工具来进行算法研发、仿真的分析和可视化、批处理脚本的创建、建模环境的定制以及信号参数和测试数据的定义。

特点

丰富的可扩充的预定义模块库

交互式的图形编辑器来组合和管理直观的模块图

以设计功能的层次性来分割模型,实现对复杂设计的管理

通过Model Explorer 导航、创建、配置、搜索模型中的任意信号、参数、属性,生成模型代码

提供API 用于与其他仿真程序的连续或与手写代码集成

使用Embedded MATLAB TM 模块在Simulink 和嵌入式系统执行中调用MATLAB 算法

使用定步长或变步长运行仿真,根据仿真模式(Normal,Accelerator,Rapid Accelerator )来决定以解释性的方式运行或以编辑C 代码的形式来运行模型

图形化的调试器和剖析器来检查仿真结果,诊断设计的性能和异常行为

可访问MATLAB 从而对结果进行分析与可视化,定制建模环境,定义信号参数和测试数据

模型分析和诊断工具来保证模型的一致性,确定模型中的错误

6 IIR 数字滤波器设计方法

IIR 数字滤波器是一种离散时间系统,其系统函数为 H(z)=

)

()(110z x z r z a z b N K k

k M K k k =-∑∑=-=- 假设M<=N ,当M>N 时,系统函数可以看作一个IIR 的子系统和一个(M-N )的FIR 子系统的级联。IIR 数字滤波器的设计实际上是求解滤波器的系数和k a 和k b ,它是数学上的一种逼近问题,即在规定意义上(通常采用最小均方误差准则)去逼近系统的特性。如果在S 平面上去逼近,就得到模拟滤波器;如果在Z 平面上去逼近,就得到数字滤波器。

IIR 数字滤波器的设计步骤

IIR 数字滤波器的设计一般有两种方法:一种是借助模拟滤波器的设计方法进行。一种直接在频率或者时域内进行,由于需要解联立方程,设计时需要计算机做辅助设计。

模拟滤波器设计方法主要有脉冲响应不变法和双线性变换法。

脉冲响应不变法的最大缺点是有频率响应的混叠效应。所以,脉冲响应不变法只适用于限带的模拟滤波器,而且高频衰减越快,混叠效应越小。双线性变换法与脉冲响应

不变法相比,其主要的优点是避免了频率响应的混叠现象。

用MATLAB进行数字滤波器的设计步骤如下:

(1)将设计指标归一化处理。如果采用双线性变换法,还需进行预畸变。

。可供选用的阶数择函数(2)根据归一化频率,确定最小阶数N和频率参数W

n

有:buttord,cheb1ord,cheb2ord,ellipord等。

(3)运用最小阶数N设计模拟低通滤波器原型。模拟低通滤波器的创建函数有:buttap,cheb1ap,cheb2ap,ellipap和besslap,这些函数输出的是零极点式形式,还要用zp2tf函数转换成分子分母多项式形式。

,模拟低通滤波器原型转换模拟低通、高通、带(4)根据第2步的频率参数W

n

通、带阻滤波器,可用函数分别是:lp2lp,lp2hp,lp2bp,lp2bs。

(5)运用脉冲响应不变法或双线性变法把模拟滤波器转数字滤波器,调用的函数是impinvar和bilinear。脉冲响应不变法适用于采样频率大于4倍截止频率的锐截止低通带通滤波器,而双线性变换法适合于相位特性要求不高的各型滤波器。

(6)根据输出的分子分母系数,调用函数buttord计算N和wc,有系数向量可以写出数字滤波器系统函数Z,再用freqz函数验证设计结果。

用脉冲响应不变法设计的巴特沃斯数字低通滤波器的M程序如下:

fp=2100;

fs=8000;

Fs=20000;

Rp=0.5;

Rs=30;

T=1/Fs; %设计指标

W1p=fp/Fs*2;W1s=fs/Fs*2;%求归一化频率

[N,Wn]=buttord(W1p,W1s,Rp,Rs,'s');

%确定butterworth的最小介数N和频率参数Wn

[z,p,k]=buttap(N); %设计模拟低通原型的零极点增益参数

[bp,ap]=zp2tf(z,p,k); %将零极点增益转换成分子分母参数

[bs,as]=lp2lp(bp,ap,Wn*pi*Fs);%将低通原型转换为模拟低通

[bz,az]=impinvar(bs,as,Fs); %用脉冲响应不变法进行模数变换

sys=tf(bz,az,T); %给出传输函数H(Z)

[H,W]=freqz(bz,az,512,Fs); %生成频率响应参数subplot(2,1,1);

plot(W,20*log10(abs(H))); %绘制幅频响应

grid on; %加坐标网格

xlabel('频率/Hz');

ylabel('振幅/dB');

subplot(2,1,2);

plot(W,abs(H)); grid on;

xlabel('频率/Hz');

ylabel('振幅/H');

运行后的波形如下:

图2 典型滤波器在MATLAB上运行波形运行结果:

N=4

bz=0.0000 0.0999 0.1914 0.0252

az=1.0000 -1.4336 1.0984 -0.4115 0.0627

用双线性变换法设计椭圆数字低通滤波器的M程序如下:

fs=20000;

wp=2*pi*2100/fs;

ws=2*pi*8000/fs;

Rp=0.5;

Rs=30;

Ts=1/fs;

Wp=2/Ts*tan(wp/2);Ws=2/Ts*tan(ws/2); %按频率转换公式进行转换[N,Wn]=ellipord(Wp,Ws,Rp,Rs,'s'); %计算模拟滤波器的最小阶数[z,p,k]=ellipap(N,Rp,Rs);%设计模拟原型滤波器

[Bap,Aap]=zp2tf(z,p,k); %零点极点增益形式转换为传递函数形式[b,a]=lp2lp(Bap,Aap,Wn); %低通转换为低通滤波器的频率转化[bz,az]=bilinear(b,a,fs); %运用双线性变换法得到数字滤波器传递函数[H,f]=freqz(bz,az,512,fs);

subplot(2,1,1);

plot(f,20*log10(abs(H)));

title('N=2 频率响应');

grid on;

xlabel('频率/Hz');

ylabel('振幅/dB');

subplot(2,1,2);

plot(f,abs(H)); grid on;

xlabel('频率/Hz');

ylabel('振幅/H');

运行后的波形如下:

图3 双线性变换法设计的椭圆数字低通滤波器波形

运行结果:

N=2

bz=0.1213 0.1662 0.1213

az=1.0000 -0.9889 0.4218

IIR数字滤波器的直接设计法

除了典型设计以外,MATLAB信号处理工具箱提供了几个直接设计IIR数字滤波器的函数,直接调用就可以设计滤波器,这为设计通用滤波器提供了方便。

Chebyshev I型的M程序如下:

Fs=20000; %抽样频率20KHz

Flp=2100;

Fls=8000;

Wp=2*Flp/Fs; %归一化的通带截止频率

Ws=2*Fls/Fs; %归一化的阻带截止频率

Rp=0.5; %通带最大衰减(单位:dB)

Rs=30; %阻带最小衰减(单位:dB)

[N,Wn]=cheb1ord(Wp,Ws,Rp,Rs); %返回最小阶数和截止频率[b,a]=cheby1(N,Rp,Wn); %返回H(z)的分子分母系数[hw,w]=freqz(b,a);

subplot(2,1,1);

plot(w/pi,20*log10(abs(hw)));grid on;

xlabel('ω/π');ylabel('幅度(dB)')

title('切比雪夫I型幅频响应');

subplot(2,1,2);plot(w/pi,abs(hw));

grid on;

xlabel('ω/π');ylabel('幅度(H)');

运行后的波形如下:

图4 ChebyshevⅠ型运行波形

运行结果:

N=2

b=0.1007 0.2014 0.1007

a=1.0000 -0.9872 0.4140

Chebyshev II型M程序如下:

Fs=20000; %抽样频率20KHz

Flp=2100;

Fls=8000;

Wp=2*Flp/Fs; %归一化的通带截止频率

Ws=2*Fls/Fs; %归一化的阻带截止频率

Rp=0.5; %通带最大衰减(单位:dB)Rs=30; %阻带最小衰减(单位:dB)[N,Wn]=cheb2ord(Wp,Ws,Rp,Rs); %返回最小阶数和截止频率[b,a]=cheby2(N,Rs,Wn); %返回H(z)的分子分母系数[hw,w]=freqz(b,a);

subplot(2,1,1);

plot(w/pi,20*log10(abs(hw)));grid on;

xlabel('ω/π');ylabel('幅度(dB)')

title('切比雪夫II型幅频响应');

subplot(2,1,2);plot(w/pi,abs(hw));

grid on;

xlabel('ω/π');ylabel('幅度(H)');

运行后的波形:

图5 ChebyshevⅡ型运行波形

运行结果:

N=2

b=0.2357 0.4241 0.2357

a=1.0000 -0.2996 0.1950

附录

从频率响应图中可以看出:切比雪夫Ⅰ型滤波器的幅频特性在通带内有波动,阻带内单调;切比雪夫Ⅱ型滤波器的幅频特性在阻带内有波动,通带内有单调。

致谢

在此,我衷心感谢一直以来给予我悉心指导和帮助的张小娟老师,本设计是在张老师的帮助下完成的。在跟着张老师做课程设计的整个过程中,我能深切地感受到张老师严谨与一丝不苟的治学态度。这不仅激励我认真努力地完成了这次课程设计,而且将继续影响我今后的学习和生活。

同时,我还要感谢大学里向我传授知识、给予我耐心指导和热情帮助的其他各位老师,正是老师们的悉心栽培才使我由一个知之甚少的中学生成长为一个新时代的大学生。三年来,我从各位老师那里不仅学到了科学知识,还深切感受到了他们身上的优秀品质,这将使我今后受益无穷。再次衷心感谢各位老师!

另外,在这次课程设计过程中,有很多同学都给我提供了帮助,在此也对他们深表感谢。

现代信号处理Matlab仿真——例611

例6.11 利用卡尔曼滤波估计一个未知常数 题目: 设已知一个未知常数x 的噪声观测集合,已知噪声v(n)的均值为零, 方差为 ,v(n)与x 不相关,试用卡尔曼滤波估计该常数 题目分析: 回忆Kalman 递推估计公式 由于已知x 为一常数,即不随时间n 变化,因此可以得到: 状态方程: x(n)=x(n-1) 观测方程: y(n)=x(n)+v(n) 得到A(n)=1,C(n)=1, , 将A(n)=1,代入迭代公式 得到:P(n|n-1)=P(n-1|n-1) 用P(n-1)来表示P(n|n-1)和P(n-1|n-1),这是卡尔曼增益表达式变为 从而 2v σ1??(|1)(1)(1|1)(|1)(1)(1|1)(1)()()(|1)()[()(|1)()()]???(|)(|1)()[()()(|1)](|)[()()](|1)H w H H v x n n A n x n n P n n A n P n n A n Q n K n P n n C n C n P n n C n Q n x n n x n n K n y n C n x n n P n n I K n C n P n n --=----=----+=--+=-+--=--2()v v Q n σ=()0w Q n =(|1)(1)(1|1)(1)()H w P n n A n P n n A n Q n -=----+21 ()(|1)[(|1)]v K n P n n P n n σ-=--+22(1)()[1()](1)(1)v v P n P n K n P n P n σσ-=--=-+

APF matlab仿真建模要点

电力电子系统建模与仿真 学院:电气工程学院 年级:2012级 学号:12031236 姓名:周琪俊 指导老师:舒泽亮

二极管钳位多电平APF电压平衡SPWM仿真报告 1 有源电力滤波器的发展及现状 有源电力滤波器的发展最早可以追溯到20 世纪60 年代末,1969 年B.M.Bird 和J.F.Marsh发表的论文中,描述了通过向电网注入三次谐波电流来减少电源电流中的谐波成分,从而改善电源电流波形的新方法,这种方法是APF 基本思想的萌芽。1971年日本的H.Sasaki 和T.Machida 首先提出APF 的原始模型。1976 年美国西屋电气公司的L.Gyugyi 等提出了用PWM 变流器构成的APF 并确立了APF 的概念。这些以PWM 变流器构成的APF 已成为当今APF 的基本结构。但在70 年代由于缺少大功率的快速器件,因此对APF 的研究几乎没有超出实验室的范围。80 年代以来,随着新型电力半导体器件的出现,脉宽调制的发展,以及H.Akagi 的基于瞬时无功功率理论的谐波电流瞬时检测方法的提出,APF有了迅速发展。 现在日本、美国、德国等工业发达国家APF已得到了高度重视和日益广泛的应用。由于理论研究起步较早,目前国外有源电力滤波器的研究已步入工业化应用阶段。随着容量的逐步提高,其应用范围也从补偿用户自身的谐波向改善整个电网供电质量的方向发展。有源电力滤波器的工业化应用对理论研究起了非常大的推动作用,新的理论研究成果不断出现。1976 年美国西屋公司的L.Gyugyi 率先研制出800kV A的有源电力滤波器。在此以后的几十年里,有源电力滤波器的实践应用得到快速发展。在一些国家,已经投入工业应用的有源电力滤波器容量已增加到50MV A。目前大部分国际知名的电气公司如西屋电气、三菱电机、西门子和梅兰日兰等都有相关的部门都已有相关的产品。 我国在有源电力滤波器的研究方面起步较晚,直到20 世纪80 年代末才有论文发表。90 年代以来一些高等院校和科研机构开始进行有源电力滤波器的研究。1991 年12 月由华北电科院、北京供电局和冶金部自动化研究所研制的国内第一台400V/50kV A 的有源电力滤波器在北京某中心变电站投运,2001 年华北电科院又将有源电力滤波器的容量提高到了10kV/480kV A。由中南大学和湖南大学研制的容量为500kV A 并联混合型有源电力滤波器已在湖南娄底早元220kV 变电站挂网运行。在近几年国内的有源电力滤波器产品已有很多应用,本文研制的两种APF都已应用于工业现场。 2 二极管箝位式多电平逆变器 自从日本学者南波江章于1980 年提出三电平中性点箝位逆变器以来,多电平逆变器的拓扑结构就受到人们的普遍关注,很多学者相继提出了一些实际应用

MATLAB Simulink系统建模与仿真 实验报告

MATLAB/Simulink 电力系统建模与仿真 实验报告 姓名:****** 专业:电气工程及其自动化 班级:******************* 学号:*******************

实验一无穷大功率电源供电系统三相短路仿真 1.1 无穷大功率电源供电系统仿真模型构建 运行MATLAB软件,点击Simulink模型构建,根据电路原理图,添加下列模块: (1)无穷大功率电源模块(Three-phase source) (2)三相并联RLC负荷模块(Three-Phase Parallel RLC Load) (3)三相串联RLC支路模块(Three-Phase Series RLC Branch) (4)三相双绕组变压器模块(Three-Phase Transformer (Two Windings)) (5)三相电压电流测量模块(Three-Phase V-I Measurement) (6)三相故障设置模块(Three-Phase Fault) (7)示波器模块(Scope) (8)电力系统图形用户界面(Powergui) 按电路原理图连接线路得到仿真图如下: 1.2 无穷大功率电源供电系统仿真参数设置 1.2.1 电源模块 设置三相电压110kV,相角0°,频率50Hz,接线方式为中性点接地的Y形接法,电源电阻0.00529Ω,电源电感0.000140H,参数设置如下图:

1.2.2 变压器模块 变压器模块参数采用标幺值设置,功率20MVA,频率50Hz,一次测采用Y型连接,一次测电压110kV,二次侧采用Y型连接,二次侧电压11kV,经过标幺值折算后的绕组电阻为0.0033,绕组漏感为0.052,励磁电阻为909.09,励磁电感为106.3,参数设置如下图: 1.2.3 输电线路模块 根据给定参数计算输电线路参数为:电阻8.5Ω,电感0.064L,参数设置如下图: 1.2.4 三相电压电流测量模块 此模块将在变压器低压侧测量得到的电压、电流信号转变成Simulink信号,相当于电压、电流互感器的作用,勾选“使用标签(Use a label)”以便于示波器观察波形,设置电压标签“Vabc”,电流标签“Iabc”,参数设置如下图:

Matlab仿真实例-卫星轨迹

卫星轨迹 一.问题提出 设卫星在空中运行的运动方程为: 其中是k 重力系数(k=401408km3/s)。卫星轨道采用极坐标表示,通过仿真,研究发射速度对卫星轨道的影响。实验将作出卫星在地球表面(r=6400KM ,θ=0)分别以v=8KM/s,v=10KM/s,v=12KM/s 发射时,卫星绕地球运行的轨迹。 二.问题分析 1.卫星运动方程一个二阶微分方程组,应用Matlab 的常微分方程求解命令ode45求解时,首先需要将二阶微分方程组转换成一阶微分方程组。若设,则有: 2.建立极坐标如上图所示,初值分别为:卫星径向初始位置,即地球半径:y(1,1)=6400;卫星初始角度位置:y(2,1)=0;卫星初始径向线速度:y(3,1)=0;卫星初始周向角速度:y(4,1)=v/6400。 3.将上述一阶微分方程及其初值带入常微分方程求解命令ode45求解,可得到一定时间间隔的卫星的径向坐标值y(1)向量;周向角度坐标值y(2)向量;径向线速度y(3)向量;周向角速度y(4)向量。 4.通过以上步骤所求得的是极坐标下的解,若需要在直角坐标系下绘制卫星的运动轨迹,还需要进行坐标变换,将径向坐标值y(1)向量;周向角度坐标值y(2)向量通过以下方程转换为直角坐标下的横纵坐标值X,Y 。 5.卫星发射速度速度的不同将导致卫星的运动轨迹不同,实验将绘制卫星分别以v=8KM/s ,v=10KM/s ,v=12KM/s 的初速度发射的运动轨迹。 三.Matlab 程序及注释 1.主程序 v=input('请输入卫星发射速度单位Km/s :\nv=');%卫星发射速度输入。 axis([-264007000-1000042400]);%定制图形输出坐标范围。 %为了直观表达卫星轨迹,以下语句将绘制三维地球。 [x1,y1,z1]=sphere(15);%绘制单位球。 x1=x1*6400;y1=y1*6400;???????-=+-=dt d dt dr r dt d dt d r r k dt r d θ θθ2)(2 22222θ==)2(,)1(y r y ?????????????**-=**+*-===)1(/)4()3(2)4()4()4()1()1()1()3()4()2() 3()1(y y y dt dy y y y y y k dt dy y dt dy y dt dy ???*=*=)] 2(sin[)1(Y )]2(cos[)1(X y y y y

基于MATLAB的变压器仿真 与分析

于MATLAB_Simulink的牵引变压器建模与仿真 基于MATLAB/Simulink的牵引变压器建模与仿真徐(西安铁路局安康供电段新陕西汉中 723000)摘要:针对多种牵引变压器接线方式,建立数学模型,基于Matlab/Simulink仿真软件,建立牵引变压器的仿真模型,并验证数学模型和仿真模型的一致性。利用所建立仿真模型对不同接线形式牵引变压器在不同条件下对公用电网产生的谐波和负序影响进行仿真试验,对研究各种类型的牵引变压器特性在我国电气化铁路的应用提供条件。关键词:牵引变压器;数学模型;仿真模型;Matlab/Simulink 中图分类号:U223.6 文献标识码:A 文章编号:1671-7597(2011)0610061-03 牵引变压器按其特性可分为平衡接线和不平衡接线。其中不平衡接线有单相接线、Vv接线和YNd11接线;平衡接线是试图实现三相两相对称变换而提出的,主要代表方式有Scott,Leblanc、Kubler、Wood-bridge、阻抗匹配接线等。本次主要总结了常用牵引变压器的特点并建立数学模型,包括每种牵引变压器的原理结构、原次边电气量关系等,基于Matlab/Simulink软件建立牵引变压器仿真模型,并对牵引变压器在不同条件下的负序、谐波特性的进行了研究. 1 牵引变压器数学模型研究 1.1 YNd11接线 YNd11变压器接线原理如下图所示,如果忽略激磁电流及其漏阻抗压降,二次侧绕组ac相与一次侧绕组A相同相,cb相与C相同相。由于变压器一次侧绕组A,B,C相与电力系统的相序一致,A相滞后C相,对应的二次侧ac也滞后cb相[2]。其中Z为牵引端口对应变压器漏抗,和β相的端口电压。 1.2 Vv接线 Vv接线牵引变压器接线原理如图2所示。为二次侧空载相即α相图2 Vv接线牵引变压器设Vv接线变压器一次侧、二次侧绕组匝数分别为可得电流输入输出关系[3]:和,电压输入输出关系如下:图1 YNd11接线牵引变压器设YNd11接线变压器一次侧、二次侧绕组匝数分别为和假设变压器原边中性点接地,可以得出一次侧三相电流。,其中为牵引端口对应变压器漏抗,为二次侧空载相即α相和β相的端口电压。 1.3 Scott接线 Scott接线变压器(又称T形接法变压器)属于能完成三相-两相变换的平衡变压器,Scott接线牵引变压器接线原理如图3所示。图3 Scott牵引变压器接线原理图 1 61 设一次侧绕组BC的匝数为次侧绕组AD的匝数为,记,二次的绕组ad、bc的匝数为,则一。可得电流输入输出关系[4]:把一次侧绕组电流用相电流替换,即为:式中,为从三相端子流进变压器的电流。输出端口电压方程为:图6 YNd11接线牵引变压器两供电臂输出电压波形从电压输出波形中可以得到α供电臂电压波形超前β供电臂电压波形120°,在对称阻性负载下,两臂电流输出波形幅值相同,相位相差120°,满足理论值。 2.2 Vv接线牵引变压器 Vv 接线牵引变压器是由两个单相牵引变压器并联而成,仿真模型如图7所示.在仿真模型中牵引变压器T1和T2的原、次边变比设置为110kV/27.5kV。对,于

倒立摆系统的建模及Matlab仿真资料

第1 页共11 页 倒立摆系统的建模及Matlab仿真 1.系统的物理模型 考虑如图(1)所示的倒立摆系统。图中,倒立摆安装在一个小车上。这里仅考虑倒立摆在图面内运动的二维问题。 图(1)倒立摆系统 假定倒立摆系统的参数如下。 摆杆的质量:m=0.1g l=1m小车的质量:摆杆的长度:2重力加速度:g=9.8m/M=1kg s摆杆的质量在摆杆的中心。 设计一个控制系统,使得当给定任意初始条件(由干扰引起)时,最大超调量?≤10%,调节时间ts ≤4s ,通过小车的水平运动使倒立摆保持在垂直位置。 2.系统的数学模型 2.1建立倒置摆的运动方程并将其线性化。 为简化问题,在数学模型中首先假设:1)摆杆为刚体;2)忽略摆杆与支点之间的摩擦;3)忽略小车与接触面间的摩擦。 ?),在u设小车瞬时位置为z,摆心瞬时位置为(作用下,小车及摆均产生加速远 动,sin?lz根据牛顿第二定律,在水平直线远动方向的惯性力应与u平衡,于是有 22dzd?)?sinu?M?m(zl22dtdt???2????z(M?mml?)cos?mlusin? 即:??①

绕摆轴转动的惯性力矩与重力矩平衡,因而有. 第2 页共11 页 2??d??? sin??lcosm(z?lsinmgl)??2dt?????22???????即: nis?l?ocgcosincoszs?ls??② 以上两个方程都是非线性方程,为求得解析解,需作线性化处理。由于控制的目的是保持倒立摆直?2?????且可忽略则,立,在试驾合适的外力条件下,假定θ很小,接近于零时合理的,1sincos??,项。于是有 ???M?zm?u?ml??)(③ ????g?z?l??④联立求解可得1mg?u?z????MM 1)?m(M????u??MlMl 列写系统的状态空间表达式。2.2??T xx,x,x,,选取系统变量则 xx,x,xx?,42134123xx??211mgux???x?32MM x?x?431)(M?mu?x?x? 34MlMl 即00100????z??1mg??????000?z?????d MM??Bu?Ax?xux????????00001???dt????1gm?(M)????000??????? MlMl??????Cx?0?y?xx1001代入数据计算得到:0100????000?1??????T0D,?0??1BA?,?001,C100??1000??00011?? 11 页3 页共第 3.设计控制器3.1判断系统的能控性和稳定性 1100????0011????23BBAABAB?Q?故被控对象完全可控, rank()=4,Q kk??11?0?10??011?10???22???11?。出现大于零的特征值,故被,,0 解得特征值为 0由特征方程0??11I?A?)(控对象不稳定3.2确定希望的极点, 另一对为远极点,认为系统性能主要由主导,选其中一对为主导极点和希望的极点n=4ss21极点决定,远极点只有微小影响。根据二阶系统的关系式,先确定主导极点???42??1????10.?e??t1.67?有,闭环可得;取误差带,于是取,则6.?059?0.02.?0? pns??n2????1?js??=-10.8j,远极点选择使它和原点的距离大于主导极点与原点 距离主导极点为?n,21s??15倍,取的54,33.3采用状态反馈方法使系统稳定并配置极点 ??kkkk?k;状态反馈系统的状态方程,馈状态反的控制规律为为kxu??3102?,其

MATLAB的建模和仿真

课程设计说明书 题目:基于Matlab的IIR滤波器设计与仿真班级:2012 级电气五班 姓名:王璐 学号:201295014178 指导教师:张小娟 日期:2015年 1 月12日

课程设计任务书

基于MATLAB的IIR滤波器设计与仿真 前言 数字信号处理(digital signal processing,DSP)是从20世纪60年代以来,随着信息学科和计算机学科的高速发展而迅速发展起来的一门新兴学科。数字信号处理是把信号用数字或符号表示的序列,通过计算机或通用(专用)信号处理设备,用数字的数值计算方法处理(例如滤波、变换、压缩、增强、估计、识别等),以达到提取有用信息便于应用处理的目的。数字信号处理系统有精度高、灵活性高、可靠性高、容易大规模集成、时分复用、可获得高性能指标、二维与多维处理等特点。正是由于这些突出的特点,使得它在通信、语音、雷达、地震测报、声呐、遥感、生物医学、电视、仪器中得到愈来愈广泛的应用。在数字信号处理中起着重要的作用并已获得广泛应用的是数字滤波器(DF,Digital Filter),根据其单位冲激响应函数的时域特性可分为两类:无限冲激响应IIR(Infinite Impulse Response)滤波器和有限冲激响应FIR(Finite Impulse Response)滤波器。MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来结算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的有点,使MATLAB成为一个强大的数学软件,在新的版本中也加入了对C,FORTRAN,C++,JA V A的支持。可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用。 1 数字滤波器概述 数字滤波器是对数字信号实现滤波的线性时不变系统。数字滤波实质上是一种运算过程,实现对信号的运算处理。输入数字信号(数字序列)通过特定的运算转变为输出的数字序列,因此,数字滤波器本质上是一个完成特定运算的数字计算过程,也可以理解为一台计算机。描述离散系统输出与输入关系的卷积和差分方程只是给数字信号滤波器提供运算规则,使其按照这个规则完成对输入数据的处理。时域离散系统的频域特性:Y(eωj)=X(eωj)H(eωj) 其中Y(eωj)、X(eωj)分别是数字滤波器的输出序列和输入序列的频域特性(或称为

MATLAB实现通信系统仿真实例

补充内容:模拟调制系统的MATLAB 仿真 1.抽样定理 为了用实验的手段对连续信号分析,需要先对信号进行抽样(时间上的离散化),把连续数据转变为离散数据分析。抽样(时间离散化)是模拟信号数字化的第一步。 Nyquist 抽样定律:要无失真地恢复出抽样前的信号,要求抽样频率要大于等于两倍基带信号带宽。 抽样定理建立了模拟信号和离散信号之间的关系,在Matlab 中对模拟信号的实验仿真都是通过先抽样,转变成离散信号,然后用该离散信号近似替代原来的模拟信号进行分析的。 【例1】用图形表示DSB 调制波形)4cos()2cos(t t y ππ= 及其包络线。 clf %%计算抽样时间间隔 fh=1;%%调制信号带宽(Hz) fs=100*fh;%%一般选取的抽样频率要远大于基带信号频率,即抽样时间间隔要尽可能短。 ts=1/fs; %%根据抽样时间间隔进行抽样,并计算出信号和包络 t=(0:ts:pi/2)';%抽样时间间隔要足够小,要满足抽样定理。 envelop=cos(2*pi*t);%%DSB 信号包络 y=cos(2*pi*t).*cos(4*pi*t);%已调信号 %画出已调信号包络线 plot(t,envelop,'r:','LineWidth',3); hold on plot(t,-envelop,'r:','LineWidth',3); %画出已调信号波形 plot(t,y,'b','LineWidth',3); axis([0,pi/2,-1,1])% hold off% xlabel('t'); %写出图例 【例2】用图形表示DSB 调制波形)6cos()2cos(t t y ππ= 及其包络线。 clf %%计算抽样时间间隔 fh=1;%%调制信号带宽(Hz) fs=100*fh;%抽样时间间隔要足够小,要满足抽样定理。 ts=1/fs; %%根据抽样时间间隔进行抽样

三相变压器建模及仿真及MATLAB仿真

XXXXXXX学院课程设计报告 课程名称: 系部: 专业班级: 学生姓名: 指导教师: 完成时间: 报告成绩: 学院教学工作部制

目录 摘要 (3) 第一章变压器介绍 (4) 1.1 变压器的磁化特性 (4) 1.2 变压器保护 (4) 1.3 励磁涌流 (7) 第二章变压器基本原理 (9) 2.1 变压器工作原理 (9) 2.2 三相变压器的等效电路及联结组 (10) 第三章变压器仿真的方法 (11) 3.1 基于基本励磁曲线的静态模型 (11) 3.2基于暂态磁化特性曲线的动态模型 (13) 3.3非线性时域等效电路模型 (14) 第四章三相变压器的仿真 (16) 4. 1 三相变压器仿真的数学模型 (16) 4.2电源电压的描述 (20) 4.3铁心动态磁化过程简述 (21) 第五章变压器MATLAB仿真研究 (25) 5.1 仿真长线路末端电压升高 (25) 5.2 仿真三相变压器 T2 的励磁涌流 (28) 5.3三相变压器仿真模型图 (34) 5.4 变压器仿真波形分析 (36) 结论 (40) 参考文献 (41)

摘要 在电力变压器差动保护中,励磁涌流和内部故障电流的判别一直是一个关键问题。文章阐述了励磁涌流的产生及其特性,利用 MATLAB 对变压器的励磁涌流、内部故障和外部故障进行仿真,对实验的数据波形分析,以此来区分故障和涌流,目的是减少空载合闸产生的励磁涌流对变压器差动保护的影响,提高保护的灵敏性。 本文在Matlab的编程环境下,分析了当前的变压器仿真的方法。在单相情况下,分析了在饱和和不饱和的励磁涌流现象,和单相励磁涌流的特征。在三相情况下,在用分段拟和加曲线压缩法的基础上,分别用两条修正的反正切函数,和两条修正的反正切函数加上两段模拟饱和情况的直线两种方法建立了Yd11、Ynd11、Yny0和Yy0四种最常用接线方式下三相变压器的数学仿真模型,并在Matlab下仿真实现。通过对三相励磁涌流和磁滞回环波形分析,三相励磁涌流的特征分析,总结出影响三相变压器励磁涌流地主要因素。最后,分析了两种方法的优劣,建立比较完善的变压器仿真模型。 关键字: 变压器;差动保护;励磁涌流;内部故障;外部故障;波形分析;仿真;数学模型

基于Matlab、Simulink 的AM通信系统仿真设计与研究

天津理工大学计算机与通信工程学院通信工程专业设计说明书 基于Matlab/Simulink 的AM通信系统仿真设计与研究 姓名杜艳玮 学号 20092177 班级 09通信-2 指导老师赵健 日期2012/12/16

目录 摘要 (3) 第一章前言 (4) 1.1专业设计任务及要求 (4) 1.2 Matlab简介 (4) 1.4 通信系统模型 (6) 第二章 AM调制原理及仿真 (7) 2.1 AM调制原理 (7) 2.1.1 AM介绍 (7) 2.1.2 AM调制原理框图 (8) 2.2 AM调制方式的Matlab仿真 (8) 2.2.1 载波信号分析 (8) 2.2.2 AM调制 (9) 2.3 AM调制方式Matlab-simulink仿真 (10) 2.3.1 仿真框图 (10) 2.3.2 仿真结果 (11) 第三章 AM解调 (13) 3.1 AM解调原理 (13) 3.2 AM解调方式Matlab仿真 (13) 3.2.1 滤波前AM解调信号波形 (13) 3.2.2 AM调制信号解调 (15) 3.3 AM解调方式的Matlab-simulink仿真 (17) 3.3.1 仿真框图 (17) 3.3.2 仿真结果 (18) 第四章结论 (19) 参考文献 (20)

摘要 学习AM调制原理,AM调制就是由调制信号去控制高频载波的幅度,使之随调制信号作线性变化的过程。在波形上,幅度已调信号的幅度随基带信号的规律而呈正比地变化。解调方法利用相干解调。解调就是实现频谱搬移,通过相乘器与载波相乘来实现。通过相干解调,通过低通滤波器得到解调信号。相干解调时,接收端必须提供一个与接受的已调载波严格同步的本地载波,它与接受的已调信号相乘后,经低通滤波器取出低频分量,得到原始的基带调制信号。通过信号的功率谱密度的公式,得到功率谱密度。利用Matlab和Matlab-Simulink仿真建立AM调制的通信系统模型,用Matlab仿真程序画出调制信号、载波、已调信号、相干解调之后信号的波形以及功率频谱密度,分析所设计系统性能。用Matlab-Simulink仿真建立基于相干解调的AM仿真模型,详细叙述模块参数的设置,分析仿真结果。 关键字:AM调制相干解调 Matlab仿真 Matlab-Simulink仿真

倒立摆系统的建模及Matlab仿真

倒立摆系统的建模及Matlab 仿真 1.系统的物理模型 考虑如图(1)面内运动的二维问题。 图(1)倒立摆系统 假定倒立摆系统的参数如下。 摆杆的质量:m=0.1g 摆杆的长度:l =1m 小车的质量: M=1kg 重力加速度:g=9.8m/2s 摆杆的质量在摆杆的中心。 设计一个控制系统,使得当给定任意初始条件(由干扰引起)时,最大超调量δ ≤10%,调节时 间ts ≤4s ,通过小车的水平运动使倒立摆保持在垂直位置。 2.系统的数学模型 2.1建立倒置摆的运动方程并将其线性化。 为简化问题,在数学模型中首先假设:1)摆杆为刚体;2)忽略摆杆与支点之间的摩擦;3)忽略小车与接触面间的摩擦。 设小车瞬时位置为z,摆心瞬时位置为(θsin l z +),在u 作用下,小车及摆均产生加速远动,根据牛顿第二定律,在水平直线远动方向的惯性力应与u 平衡,于是有 u l z dt d m dt z d M =++)sin (22 22θ 即: u ml ml z m M =-++θθθθsin cos )(2&&&&& ① 绕摆轴转动的惯性力矩与重力矩平衡,因而有

θθθsin cos )sin (22mgl l l z dt d m =??? ????+ 即: θθθθθθθsin cos sin cos cos 22g l l z =-+&&&&& ② 以上两个方程都是非线性方程,为求得解析解,需作线性化处理。由于控制的目的是保持倒立摆直 立,在试驾合适的外力条件下,假定θ很小,接近于零时合理的,则1cos ,sin ≈≈θθθ,且可忽略θ θ2&项。于是有 u ml z m M =++θ&&&& )( ③ θθg l z =+&&&& ④ 联立求解可得 u Ml Ml m M u M M mg z 1)(1 -+=+- =θθθ&&&& 2.2列写系统的状态空间表达式。 选取系统变量4321,,,x x x x , []T x x x x x 4321,,,=则 u Ml x Ml m M x x x u M x M mg x x x 1 )(134433221-+= =+-==&&&& 即 []Cx x x y Bu Ax u Ml M x Ml g m M M mg z z dt d x ===+=?????? ? ???????-+?????????? ??? ? +- =???? ????????=000110100)(0 010 0000000 1 1θθ&&& 代入数据计算得到: [][]0,0001,1010,01100 1000010000 1 0==-=? ? ??? ? ??? ???-=D C B A T

四旋翼飞行器建模与仿真Matlab

四轴飞行器的建模与仿真 摘要 四旋翼飞行器是一种能够垂直起降的多旋翼飞行器,它非常适合近地侦察、监视的任务,具有广泛的军事和民事应用前景。本文根据对四旋翼飞行器的机架结构和动力学特性做详尽的分析和研究,在此基础上建立四旋翼飞行器的动力学模型。四旋翼飞行器有各种的运行状态,比如:爬升、下降、悬停、滚转运动、俯仰运动、偏航运动等。本文采用动力学模型来描述四旋翼飞行器的飞行姿态。在上述研究和分析的基础上,进行飞行器的建模。动力学建模是通过对飞行器的飞行原理和各种运动状态下的受力关系以及参考牛顿-欧拉模型建立的仿真模型,模型建立后在Matlab/simulink软件中进行仿真。 关键字:四旋翼飞行器,动力学模型,Matlab/simulink Modeling and Simulating for a quad-rotor aircraft ABSTRACT The quad-rotor is a VTOL multi-rotor aircraft. It is very fit for the kind of reconnaissance mission and monitoring task of near-Earth, so it can be used in a wide range of military and civilian applications. In the dissertation, the detailed analysis and research on the rack structure and dynamic characteristics of the laboratory four-rotor aircraft is showed in the dissertation. The dynamic model of the four-rotor aircraft areestablished. It also studies on the force in the four-rotor aircraft flight principles and course of the campaign to make the research and analysis. The four-rotor aircraft has many operating status, such as climbing, downing, hovering and rolling movement, pitching movement and yawing movement. The dynamic model is used to describe the four-rotor aircraft in flight in the dissertation. On the basis of the above analysis, modeling of the aircraft can be made. Dynamics modeling is to build models under the principles of flight of the aircraft and a variety of state of motion, and Newton - Euler model with reference to the four-rotor aircraft.Then the simulation is done in the software of Matlab/simulink. Keywords: Quad-rotor,The dynamic mode, Matlab/simulink

基于Matlab的电力系统自动重合闸建模与仿真讲解

实践课程设计报告 课程名称:Matlab上机 题目:基于MATLAB的电力系统自动重合闸 所在学院: 学科专业: 学号: 学生姓名: 指导教师: 二零一五年四

摘要 分析了单相自动重合闸的工作特性,并利用MATLAB软件搭建了220kv电力系统的自动重合闸的仿真模型,模拟系统发生单相接地、三相相间短路故障,断路器跳闸后自动重合闸的工作过程。 关键词:电力系统自动重合闸MATLAB 短路故障

目录 1 引言 (1) 2 模型中主要模块的选择和参数 (2) 2.1同步发电机模块 (2) 2.2 变压器模块 (2) 2.3 输电线路模块 (3) 2.3.1 150km线路模块 (3) 2.3.2 100km线路模块 (4) 2.1 电源模块 (5) 2.3 负载模块 (6) 2.3.1 三相串联RLC负载Load1 (6) 2.3.2 三相串联RLC负载Load4 (7) 2.4 断路器模块 (8) 2.5 测量模块 (9) 2.6 显示模块 (9) 2.7 其他模块 (9) 2.8 仿真参数设置 (10) 3 仿真结果及波形分析 (10) 3.1 线路单相重合闸 (10) 3.2 线路三相重合闸 (12) 总结 (13) 参考文献 (14)

基于Matlab的电力系统自动重合闸 1 引言 随着技术的发展,电力系统的规模越来越复杂。从实际条件与安全角度考虑,不太可能进行电力系统科研实验,因而电力系统数字仿真成为了电力系统研究、规划和设计的重要手段。电力系统仿真软件如BPA,EMTP,PSCAD/ EMTDC ,NETOMAC,PSASP,MATLAB等,正向着多功能,具有更高的可移植性方向发展。其中在MATLAB 中,电力系统模型可以在Simulink环境下直接搭建,Simulink电力系统元件库中有多种多样的电气模块,电力系统大多数元件都包含。其中,可以直接调用。电力系统大部分故障是瞬时性故障,因此采用自动重合闸后,电力系统发生瞬时性故障时供电的连续性、系统的稳定性得到很大的提高。此外,自动重合闸有效纠正由于断路器或继电保护误动作引起的误跳闸。 本文以MATLAB为工具,对简单系统的线路单相重合闸和线路三相重合闸进行分析与研究。 1.1 仿真模型的设计和实现 电力系统正常运行时可以认为是三相对称的,即电压、电流对称,且具有正弦波形。下图为理想情况下220kv电力系统的模型。 图 1 220kv电力系统模型

Matlab通信系统建模与仿真例题源代码-第三章

% ch3example1A.m clear; f_p=2400; f_s=5000; R_p=3; R_s=25; % 设计要求指标 [n, fn]=buttord(f_p,f_s,R_p,R_s, 's'); % 计算阶数和截止频率 Wn=2*pi*fn; % 转换为角频率 [b,a]=butter(n, Wn, 's'); % 计算H(s) f=0:100:10000; % 计算频率点和频率范围 s=j*2*pi*f; % s=jw=j*2*pi*f H_s=polyval(b,s)./polyval(a,s); % 计算相应频率点处H(s)的值 figure(1); subplot(2,1,1); plot(f, 20*log10(abs(H_s))); % 幅频特性 axis([0 10000 -40 1]); xlabel('频率Hz');ylabel('幅度dB'); subplot(2,1,2); plot(f, angle(H_s)); % 相频特性 xlabel('频率Hz');ylabel('相角rad'); figure(2); freqs(b,a); % 也可用指令freqs直接画出H(s)的频率响应曲线。 % ch3example1B.m clear; f_p=2400; f_s=5000; R_p=3; R_s=25; % 设计要求指标 [n, fn]=ellipord(f_p,f_s,R_p,R_s,'s'); % 计算阶数和截止频率 Wn=2*pi*fn; % 转换为角频率 [b,a]=ellip(n,R_p,R_s,Wn,'s'); % 计算H(s) f=0:100:10000; % 计算频率点和频率范围 s=j*2*pi*f; % s=jw=j*2*pi*f H_s=polyval(b,s)./polyval(a,s); % 计算相应频率点处H(s)的值 figure(1); subplot(2,1,1); plot(f, 20*log10(abs(H_s))); % 幅频特性 axis([0 10000 -40 1]); xlabel('频率Hz');ylabel('幅度dB'); subplot(2,1,2); plot(f, angle(H_s)); % 相频特性 xlabel('频率Hz');ylabel('相角rad'); figure(2); freqs(b,a); % 也可用指令freqs直接画出H(s)的频率响应曲线。 % ch3example2A.m f_N=8000; % 采样率 f_p=2100; f_s=2500; R_p=3; R_s=25; % 设计要求指标 Ws=f_s/(f_N/2); Wp=f_p/(f_N/2); % 计算归一化频率 [n, Wn]=buttord(Wp,Ws,R_p,R_s); % 计算阶数和截止频率 [b,a]=butter(n, Wn); % 计算H(z) figure(1); freqz(b,a, 1000, 8000) % 作出H(z)的幅频相频图, freqz(b,a, 计算点数, 采样率)

基于Matlab和VR技术的移动机器人建模及仿真

文章编号:100422261(2004)0120039204 基于Matlab 和VR 技术的移动机器人建模及仿真Ξ 葛为民1,2,曹作良2,彭商贤1 (1.天津大学机械工程学院,天津300072;2.天津理工学院机械工程学院,天津300191) 摘 要:利用Matlab 建立移动机器人的动力学模型,在虚拟现实(VR )环境下,实时仿真移动机器人路径跟踪的运动特性,为基于Internet 的机器人遥操作试验搭建了仿真平台.实验结果表明,虚拟模型准确地模拟了真实移动机器人的动力学特征;通过对模型的参数修改,为实现对真实机器人的最优控制和设计提供了可信的参考方案.关键词:Matlab ;虚拟现实;移动机器人;遥操作中图分类号:TP242.2 文献标识码:A Dynamic modeling and simulation of mobile robot based on matlab and VR technology GE Wei 2min 1,2,C AO Zuo 2liang 2,PE NG Shang 2xian 1 (1.School of Mechanical Eng.,T ianjin University ,T ianjin 300072,China ;2.School of Mechanical Eng.,T ianjin Institute of T echnology ,T ianjin 300191,China ) Abstract :This paper proposes an approach that develops a dynam ic m odel of a m obile robot taking advantage of the M atlab.M eantime ,in a developed virtual reality environment ,the built m odel simulates the m otion of path tracking and obstacle av oidance.Furtherm ore ,it provides a platformfor experiments of m obile robot teleoperation.The experi 2mental results approve that ,the virtual m odel represents the dynam ic properties of real robot accurately and ,w ith the change of parameters of the virtual m odel ,it helps to find out the optim ization methods of controlling and designing the m obile robot indeed. K eyw ords :M atlab ;virtual reality ;m obile robot ;teleoperation 在当今工业现代化的高速发展时期,特别是自动化设备在各个领域的广泛应用,移动机器人(AG V )的应用越来越显示出它的重要性和优越性.AG V 的重要特征是它的可移动性,对这种可移动性的控制是AG V 研制的核心问题.课题组研制的T UT -1型AG V 采用3种传感器(磁导航传感器、CC D 摄像机、超声波传感器)跟踪磁条来对AG V 进行引导和避障,经过这3种传感器的信息融合,测算出AG V 的位置和运动方向作为反馈与给定的运动状态进行比较,来调整AG V 下一步的运动[1]. 在天津市自然科学基金的资助下,课题组利用T UT -1这个平台开展基于Internet 的AG V 遥操作系 统的研究.为模拟AG V 的运动特性,利用Matlab 进行 AG V 的动力学建模.同时,在虚拟现实环境下,利用Matlab 模型仿真AG V 的路径跟踪,研究和探索AG V 最优的控制和配置方案. 1 实验和建模过程 如图1所示,T UT -1移动机器人在室内进行导航和避障的实验[2].AG V 通过磁导航传感器和CC D 摄像机跟踪磁条引导前进,当AG V 接近墙壁时,通过超声传感器引导.AG V 将实时采集到的磁条位置信息作为反馈,与给定的磁条标准位置信息进行比较来调整 Ξ收稿日期:2003212225 基金项目:天津市自然科学基金资助项目(023615011) 第一作者:葛为民(1968— ),男,讲师,博士研究生  第20卷第1期2004年3月天 津 理 工 学 院 学 报 JOURNA L OF TIAN JIN INSTITUTE OF TECHN OLOG Y V ol.20N o.1 Mar.2004

倒立摆系统地建模及Matlab仿真

倒立摆系统的建模及Matlab仿真 1.系统的物理模型 考虑如图(1)所示的倒立摆系统。图中,倒立摆安装在一个小车上。这里仅考虑倒立摆在图面内运动的二维问题。 图(1)倒立摆系统 假定倒立摆系统的参数如下。 摆杆的质量:m=0.1g 摆杆的长度:l=1m小车的质量: M=1kg重力加速度:g=9.8m/2s 摆杆的质量在摆杆的中心。 设计一个控制系统,使得当给定任意初始条件(由干扰引起)时,最大超调量 ≤10%,调节时间ts ≤4s ,通过小车的水平运动使倒立摆保持在垂直位置。

2.系统的数学模型 2.1建立倒置摆的运动方程并将其线性化。 为简化问题,在数学模型中首先假设:1)摆杆为刚体;2)忽略摆杆与支点之间的摩擦;3)忽略小车与接触面间的摩擦。 设小车瞬时位置为z,摆心瞬时位置为(θsin l z +),在u 作用下,小车及摆均产生加速远动,根据牛顿第二定律,在水平直线远动方向的惯性力应与u 平衡,于是有 u l z dt d m dt z d M =++)sin (22 22θ 即: u ml ml z m M =-++θθθθsin cos )(2&&&&& ① 绕摆轴转动的惯性力矩与重力矩平衡,因而有 θθθsin cos )sin (22mgl l l z dt d m =??? ????+ 即: θθθθθθθsin cos sin cos cos 22g l l z =-+&&&&& ② 以上两个方程都是非线性方程,为求得解析解,需作线性化处理。由于控制的目的是保持倒立摆直 立,在试驾合适的外力条件下,假定θ很小,接近于零时合理的,则1cos ,sin ≈≈θθθ,且可忽略θθ 2&项。于是有 u ml z m M =++θ&&&& )( ③ θθg l z =+&&&& ④ 联立求解可得 u Ml Ml m M u M M mg z 1)(1 -+=+- =θθθ&&&&

相关文档
相关文档 最新文档