文档库 最新最全的文档下载
当前位置:文档库 › 二面角求法及经典题型归纳

二面角求法及经典题型归纳

二面角求法及经典题型归纳

- 1 - αβa O A B 二面角求法

一:知识准备

1、二面角的概念:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面.

2、二面角的平面角的概念:平面角是指以二面角的棱上一点为端点,在两个半平面内分别做垂直于棱的两条射线,这两条射线所成的角就叫做该二面角的平面角。

3、二面角的大小范围:[0°,180°]

4、三垂线定理:平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它就和这条斜线垂直

5、平面的法向量:直线L 垂直平面α,取直线L 的方向向量,则这个方向向量叫做平面α的法向量。(显然,一个平面的法向量有无数个,它们是共线向量)

6、二面角做法:做二面角的平面角主要有3种方法:

(1)、定义法:在棱上取一点,在两个半平面内作垂直于棱的2 条射线,这2条所夹 的角;

(2)、垂面法:做垂直于棱的一个平面,这个平面与2个半平面分别有一条交线,这2条交线所成的角;

(3)、三垂线法:过一个半平面内一点(记为A )做另一个半平面的一条垂线,过这个垂足(记为B )再做棱的垂线,记垂足为C ,连接AC ,则∠ACB 即为该二面角的平面角。

7、两个平面的法向量的夹角与这两个平面所成的二面角的平面角有怎样的关系? 二:二面角的基本求法及练习

1、定义法:

从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。

本定义为解题提供了添辅助线的一种规律。如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );

在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。

例1.在正方体ABCD —A 1B 1C 1D 1中,求 (1)二面角11A

B C A 的大小;

(2)平面11A DC 与平面11ADD A 所成角的正切值。

C1

高中数学二面角求法及经典题型归纳

αβa O A B 立体几何二面角求法 一:知识准备 1、二面角的概念:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面. 2、二面角的平面角的概念:平面角是指以二面角的棱上一点为端点,在两个半平面内分别做垂直于棱的两条射线,这两条射线所成的角就叫做该二面角的平面角。 3、二面角的大小范围:[0°,180°] 4、三垂线定理:平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它就和这条斜线垂直 5、平面的法向量:直线L 垂直平面α,取直线L 的方向向量,则这个方向向量叫做平面α的法向量。(显然,一个平面的法向量有无数个,它们是共线向量) 6、二面角做法:做二面角的平面角主要有3种方法: (1)、定义法:在棱上取一点,在两个半平面内作垂直于棱的2 条射线,这2条所夹 的角; (2)、垂面法:做垂直于棱的一个平面,这个平面与2个半平面分别有一条交线,这2条交线所成的角; (3)、三垂线法:过一个半平面内一点(记为A )做另一个半平面的一条垂线,过这个垂足(记为B )再做棱的垂线,记垂足为C ,连接AC ,则∠ACB 即为该二面角的平面角。 7、两个平面的法向量的夹角与这两个平面所成的二面角的平面角有怎样的关系? 二:二面角的基本求法及练习 1、定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这 两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直, 这两条垂线所成的角的大小就是二面角的平面角。 本定义为解题提供了添辅助线的一种规律。如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F ); 在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。 例1.在正方体ABCD —A 1B 1C 1D 1中,求 (1)二面角11A B C A --的大小; (2)平面11A DC 与平面11ADD A 所成角的正切值。 C1

二面角求法及经典题型归纳

- 1 - αβa O A B 二面角求法 一:知识准备 1、二面角的概念:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面. 2、二面角的平面角的概念:平面角是指以二面角的棱上一点为端点,在两个半平面内分别做垂直于棱的两条射线,这两条射线所成的角就叫做该二面角的平面角。 3、二面角的大小范围:[0°,180°] 4、三垂线定理:平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它就和这条斜线垂直 5、平面的法向量:直线L 垂直平面α,取直线L 的方向向量,则这个方向向量叫做平面α的法向量。(显然,一个平面的法向量有无数个,它们是共线向量) 6、二面角做法:做二面角的平面角主要有3种方法: (1)、定义法:在棱上取一点,在两个半平面内作垂直于棱的2 条射线,这2条所夹 的角; (2)、垂面法:做垂直于棱的一个平面,这个平面与2个半平面分别有一条交线,这2条交线所成的角; (3)、三垂线法:过一个半平面内一点(记为A )做另一个半平面的一条垂线,过这个垂足(记为B )再做棱的垂线,记垂足为C ,连接AC ,则∠ACB 即为该二面角的平面角。 7、两个平面的法向量的夹角与这两个平面所成的二面角的平面角有怎样的关系? 二:二面角的基本求法及练习 1、定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。 本定义为解题提供了添辅助线的一种规律。如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F ); 在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。 例1.在正方体ABCD —A 1B 1C 1D 1中,求 (1)二面角11A B C A 的大小; (2)平面11A DC 与平面11ADD A 所成角的正切值。 C1

二面角的几种求法

二 面 角 的 几 种 求 法 河北省武安市第一中学 李春杰056300 摘要:在立体几何学习中,求二面角的大小是一个重点,更是一个难点。在每年的高考中,求二面角的大小,几乎成了必考的知识点,但学生却对这个知识点不太熟练,不知从何入手,更不能站在一个高度去求二面角。因而我们将一些求角的方法加以归纳、总结,从而更好更准确地解决问题。 关键词:二面角 平面角 三垂线定理 空间向量 在高考中,立体几何占的分值比较大,学生觉得在学习的过程中有一定的难度,他们觉得,立几中要记的定义,定理,方法和基本图形比较多,再加上还要运用空间想象和空间思维能力,因此,空间立体几何对他们来说,真的有一定的难度。我们将有关二面角大小的方法加以归纳,为的是在以往有关解答此类问题时能有一定的解题技巧、方法,以便得心应手地面对各种有关的题型。 一:二面角定义的回顾: 从一条直线出发的两个半平面所组成的图形就叫做二面角。二面角的大小是用二面角的平面角来衡量的。而二面角的平面角是指在二面角βα--l 的棱上任取一点O ,分别在两个半平面内作射线l BO l AO ⊥⊥, 1.利用定义作出二面角的平面角,并设法求出其大小。 例1、 如图,空间四边形ABCD 中,AB=BC=CD=DA=a ,对角线AC=a ,BD=.求二面角 A-BD-C 的大小。 解: 取BD 的中点为O ,分别连接AO 、CO

2220 0,,,,2 ,,, 9090AB AD BC CD AO BD CO BD AOC A BD C AB AD a BD AO BC CD a BD OC OA AC a OA OC AC AOC A BD C ==∴⊥⊥∴∠--===∴====∴===+=∴∠=-- 为二面角的平面角在AOC 中,即二面角为的二面角 2.三垂线定理(逆定理)法 由二面角的一个面上的斜线(或它的射影)与二面角的棱垂直,推得它位于二面角的另一的面上的射影(或斜线)也与二面角的棱垂直,从而确定二面角的平面角。 例2.如图,在底面为直角梯形的四棱锥P ABCD -中//AD BC ,,90?=∠ABC 平面⊥PA ABC , 32,2,4===AB AD PA ,BC =6。 (Ⅰ)求证:BD PAC ⊥平面;(Ⅱ)求二面角D BD P --的大小; 解:(Ⅰ)PA ⊥平面A B C D ,BD ?平面A B C D .BD PA ∴⊥. 又tan AD ABD AB = = tan BC BAC AB == 30ABD ∴= ∠,60BAC = ∠,90AEB ∴= ∠,即BD AC ⊥. 又PA AC A = .BD ∴⊥平面PAC . (Ⅱ)过E 作EF PC ⊥,垂足为F ,连接DF . DE ⊥平面PAC ,EF 是DF 在平面PAC 上的射影,由三垂线定理知PC DF ⊥, EFD ∴∠为二面角A PC D --的平面角. 又9030DAC BAC =-= ∠∠, sin 1DE AD DAC ∴==, sin AE AB ABE == 又AC = EC ∴=8PC =. A E D P C B F

用向量法求二面角的平面角教案

第三讲:立体几何中的向量方法——利用空间向量求二面角的平面角 大家知道,立体几何是高中数学学习的一个难点,以往学生学习立体几何时,主要采取“形到形”的综合推理方法,即根据题设条件,将空间图形转化为平面图形,再由线线,线面等关系确定结果,这种方法没有一般规律可循,对人的智力形成极大的挑战,技巧性较强,致使大多数学生都感到束手无策。 高中新教材中,向量知识的引入,为学生解决立体几何问题提供了一个有效的工具。它能利用代数方法解决立体几何问题,体现了数形结合的思想。并且引入向量,对于某些立体几何问题提供通法,避免了传统立体几何中的技巧性问题,因此降低了学生学习的难度,减轻了学生学习的负担,体现了新课程理念。 为适应高中数学教材改革的需要,需要研究用向量法解决立体几何的各种问题。本文举例说明如何用向量法解决立体几何的空间角问题。以此强化向量的应用价值,激发学生学习向量的兴趣,从而达到提高学生解题能力的目的。 利用向量法求空间角,不需要繁杂的推理,只需要将几何问题转化为向量的代数运算,方便快捷。空间角主要包括线线角、线面角和二面角,下面对二面角的求法进行总结。 教学目标 1.使学生会求平面的法向量; 2.使学生学会求二面角的平面角的向量方法; 3.使学生能够应用向量方法解决一些简单的立体几何问题; 4.使学生的分析与推理能力和空间想象能力得到提高. 教学重点

求平面的法向量; 求解二面角的平面角的向量法. 教学难点 求解二面角的平面角的向量法. 教学过程 Ⅰ、复习回顾 一、回顾相关公式: 1、二面角的平面角:(范围:],0[πθ∈) 向量夹角的补角. 3、用空间向量解决立体几何问题的“三步曲”: (1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(化为向量问题) (2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;(进行向量运算) (3)把向量的运算结果“翻译”成相应的几何意义。(回到图形) Ⅱ、典例分析与练习 例1、如图,ABCD 是一直角梯形,?=∠90ABC ,⊥SA 面ABCD ,1===BC AB SA ,

高中数学必修2立体几何专题二面角典型例题解法总结

二面角的求法 一、 定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。 本定义为解题提供了添辅助线的一种规律。如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。 例1 如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD = 2DC SD ==,点M 在侧棱SC 上,ABM ∠=60° (I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。 ? 证(I )略 解(II ):利用二面角的定义。在等边三角形ABM 中过点B 作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G , 连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, · ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点, ∴GF 是△AMS 的中位线,点G 是AS 的中点。 则GFB ∠即为所求二面角. ∵2= SM ,则2 2 = GF , 又∵6= =AC SA ,∴2=AM ,∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴ 3=BF 。在△GAB 中,26= AG ,2=AB ,0 90=∠GAB ,∴2 11423=+=BG 366 23 2 22211 32 12cos 2 2 2 -=-=??- +=?-+=∠FB GF BG FB GF BFG F G F G

线面角及二面角的求法

第9节线面角及二面角的求法 【基础知识】 求线面角、二面角的常用方法: (1) 线面角的求法,找出斜线在平面上的射影,关键是作垂线,找垂足,要把线面角转化到一个三角形中求解. (2) 二面角的大小求法,二面角的大小用它的平面角来度量. :] 【规律技巧】 平面角的作法常见的有①定义法;②垂面法?注意利用等腰、等边三角形的性质. 【典例讲解】 【例1】如图,在四棱锥 P-ABCD中,FA丄底面ABCD , AB⊥ AD , AC⊥ CD, ∠ ABC =60 ° , PA = AB = BC, E 是 PC 的中点. P (1)求PB和平面PAD所成的角的大小; ⑵证明:AE丄平面PCD ; ⑶求二面角 A — PD — C的正弦值. (1)解在四棱锥P — ABCD中, 因FA丄底面 ABCD , AB?平面 ABCD , 故PA⊥ AB.又AB⊥ AD , FA ∩ AD = A, 从而AB丄平面PAD, 故PB在平面PAD内的射影为FA, 从而∠ APB为PB和平面PAD所成的角. 在Rt△ PAB 中,AB= FA,故∠ APB = 45° 所以PB和平面PAD所成的角的大小为 45 ⑵证明在四棱锥P— ABCD中, 因FA丄底面 ABCD, CD?平面ABCD, 故CD丄FA.由条件 CD丄AC , PA ∩ AC= A , ??? CD丄平面PAC. 又 AE?平面 FAC,??? AE丄CD.

由FA= AB = BC,∠ ABC = 60° ,可得 AC = PA. ??? E 是 PC 的中点,???AE⊥ PC. 又PC∩ CD = C,综上得AE⊥平面PCD. 【变式探究】如图所示,在四棱锥P — ABCD中,底面ABCD是正方形,侧棱 PD丄底 面ABCD , PD = DC.E是PC的中点,作 EF丄PB交PB于点F. ⑴证明PA//平面EDB ; ⑵证明PB⊥平面EFD ; (3) 求二面角 C — PB— D的大小. ⑴证明如图所示,连接 AC, AC交BD于0,连接EO. ???底面ABCD是正方形, ?点0是AC的中点. 在厶PAC中,EO是中位线, ? PA // E0. 而E0?平面EDB且PA?平面EDB , ? PA //平面 EDB. 【针对训练】 1.如图,四棱锥 P — ABCD中,底面 ABCD为菱形,PA丄底面ABCD , AC = 2,2, FA =2, E 是PC 上的一点,PE= 2EC. (1)证明:PC⊥平面BED ; ⑵设二面角A — PB-C为90°,求PD与平面PBC所成角的大小.

解二面角问题三种方法(习题及答案)

C A D A A 1 B D C C 1 B 1 解二面角问题 (一)寻找有棱二面角的平面角的方法和求解。 (1)定义法:利用二面角的平面角的定义,在二面角的棱上取一点,过该点在两个半平面内作垂直于棱的射线,两射线所成的角就是二面角的平面角,这是一种最基本的方法。要注意用二面角的平面角定义的三个“主要特征”来找出平面角,当然这种找出的角要有利于解决问题。下面举几个例子来说明。 例1:如图,立体图形V -ABC 的四个面是全等的正三角形,画出二面角V -AB -C 的平面角并求出它的度数。 例2:在三棱锥P-ABC 中,∠APB=∠BPC=∠CPA=600,求二面角A-PB-C 的余弦值。 这样的类型是不少的,如下列几道就是利用定义法找出来的: 1、在正方体ABCD -A 1B 1C 1D 1中,找出二面角B -AC -B 1的平面角并求出它的度数。 2、.边长为a 的菱形ABCD ,∠ACB=600,现沿对角线BD 将其折成才600的二面角,则A 、C 之间的距离为 。(菱形两条对角线互相垂直,对折后的一条对角线成两条线段仍都垂直于另一条对角线,则所成的角是二面角的平面角) 3、正三棱柱ABC —A 1B 1C 1的底面边长是4,过BC 的一个平面与AA 1交于D ,若AD =3,求二面角D ―BC ―A 的正切值。 总之,能用定义法来找二面角的平面角的,一般是图形的性质较好,能够较快地找到满足二面角的平面角的三个主要特征。并且能够很快地利用图形的一些条件来求出所要求的。在常见的几何体有正四面体,正三棱柱,正方体,以及一些平面图形,正三角形,等腰三角形,正方形,菱形等等,这些有较好的一些性质,可以通过它们的性质来找到二面角的平面角。至于求角,通常是把这角放在一个三角形中去求解。由图形及题目的已知条件来求这个三角形的边长或者角,再用解三角形的知识去求解。

高中立体几何中二面角经典求法

高中立体几何中二面角求法 摘要:在立体几何中,求二面角的大小是历届高考的热点,几乎每年必考,而对于求二面角方面的问题,同学们往往很难正确地找到作平面角的方法,本文对求二面角的方法作了一个总结,希望对学生有帮助。 (一)、二面角定义的回顾: 从一条直线出发的两个半平面所组成的图形就叫做二面角。二面角的大小是用二面角的平面角来衡量的。而二面角的平面角是指在二面角βα--l 的棱上任取一点O ,分别在两个半平面内作射线l BO l AO ⊥⊥,,则AOB ∠为二面角βα--l 的平面角。 α β (二)、二面角的通常求法 1、由定义作出二面角的平面角; * 2、利用三垂线定理(逆定理)作出二面角的平面角; 3、作二面角棱的垂面,则垂面与二面角两个面的交线所成的角就是二面角的平面角。 4、空间坐标法求二面角的大小 5、平移或延长(展)线(面)法 6、射影公式S 射影=S 斜面cos θ 7、化归为分别垂直于二面角的两个面的两条直线所成的角 1、利用定义作出二面角的平面角,并设法求出其大小。 例1、 如图,已知二面角α-а-β等于120°,PA ⊥α,A ∈α,PB ⊥β,B ∈β. 求∠APB 的大小. 解: 设平面∩PAB α=OA,平面PAB ∩β=OB 。 ∵PA ⊥α, аα ∴PA ⊥а 同理PB ⊥а ∴а⊥平面PAB 又∵OA 平面PAB ∴а⊥OA 同理а⊥OB. ∴∠AOB 是二面角α-а-β的平面角. 在四边形PAOB 中, ∠AOB=120°,. O A B ) A B l P . B A

∠PAO=∠POB=90°, 所以∠APB=60° 2、 ( 3、 三垂线定理(逆定理)法 由二面角的一个面上的斜线(或它的射影)与二面角的棱垂直,推得它位于二面角的另一的面上的射影(或斜线)也与二面角的棱垂直,从而确定二面角的平面角。 例2:如图,ABCD-A 1B 1C 1D 1是长方体,侧棱AA 1长为1,底面为正方体且边长为2,E 是棱BC 的中点,求面C 1DE 与面CDE 所成二面角的正切值. 解:在长方体ABCD —A 1B 1C 1D 1中 由三垂线定理可得: CD CE=1, DE= 5 3、找(作)公垂面法 由二面角的平面角的定义可知两个面的公垂面与棱垂直,因此公垂面与两个面的交线所成的角,就是二面角的平面角。 例5、如图,已知PA 与正方形ABCD 所在平面垂直,且AB =PA ,求平面PAB 与平面PCD 所成的二面角的大小。 \ 解: ∵PA ⊥平面ABCD ,∴PA ⊥CD .P 又CD ⊥AD ,故CD ⊥平面PAD . A D 而CD 平面PCD , B C 所以 平面PCD ⊥平面PAD . A B C D A 1 B 1 C 1 ( E O CO DE O C C ,连结,作过点⊥11DE CO ⊥的平面角 为二面角C DE C OC C --∠∴11的正方形 是边长为又2ABCD CO DE CE CD S CDE Rt CDE ?=?=??2 1 21中,在1 1=CC 又5 52tan 1= ∠∴OC C 5 52tan arg 1=∠∴OC C 5 5 2= ∴CO

二面角大小的几种求法(归类总结分析)

二面角大小的几种求法 二面角大小的求法中知识的综合性较强,方法的灵活性较大,一般而言,二面角的大小往往转化为其平面角的大小,从而又化归为三角形的内角大小,在其求解过程中,主要是利用平面几何、立体几何、三角函数等重要知识。求二面角大小的关键是,根据不同问题给出的几何背景,恰在此时当选择方法,作出二面角的平面角,有时亦可直接运用射影面积公式求出二面角的大小。 I. 寻找有棱二面角的平面角的方法 ( 定义法、三垂线法、垂面法、射影面积法 ) 一、定义法:利用二面角的平面角的定义,在二面角的棱上取一点(特殊点),过该点在两个半平面内作垂直于棱的射线,两射线所成的角就是二面角的平面角,这是一种最基本的方法。要注意用二面角的平面角定义的三个“主要特征”来找出平面角。 1. 在三棱锥P-ABC 中,∠APB=∠BPC=∠CPA=600,求二面角A-PB-C 的余弦值。 2.如图5.在锥体P-ABCD 中,ABCD 是边长为1的菱形,且∠DAB=60? ,PA PD ==,PB=2, E,F 分别是BC,PC 的中点. 2 三垂线法 这是最典型也是最常用的方法,当然此法仍扎“根”于二面角平面角的定义. 此法最基本的一个模型为:如图3,设锐二面角βα--l ,过面α 内一点P 作PA ⊥α于A ,作AB ⊥l 于B ,连接PB ,由三垂线定理得PB ⊥l ,则∠PBA 为二面角βα--l 的平面角,故称此法为三垂线法. A α β P B l

最重要的是在“变形(形状改变)”和“变位(位置变化)”中能迅速作 出所求二面角的平面角,再在该角所在的三角形(最好是直角三角形,如图3中的Rt △PAB)中求解.对于钝二面角也完全可以用这种方法,锐角的补角不就是钝角吗? 点金P43例2 3如图4,平面α⊥平面β,α∩β=l ,A ∈α,B ∈β,点A 在直线l 上的射影为A 1,点B 在l 的射影为B 1,已知AB=2,AA 1=1,BB 1=2,求:二面角A 1-AB -B 1的正弦值. 分析与略解:所求二面角的棱为AB ,不像图3的那样一看就明白 的状态,但本质却是一样的,对本质的观察能力反映的是思维的深刻性. 作A 1E ⊥AB 1于AB 1于E ,则可证A 1E ⊥平面AB 1B.过E 作EF ⊥A B 交AB 于F ,连接A 1F ,则得A 1F ⊥AB ,∴∠A 1FE 就是所求二面角的 平面角. 依次可求得AB 1=B 1B=2,A 1B=3,A 1E= 22,A 1F=2 3 ,则在Rt △A 1EF 中,sin ∠A 1FE=A 1E A 1F =63 . 与图3中的Rt △PAB 比较,这里的Rt △A 1EF 就发生了“变形”和“变位”,所以要有应对各种变化,乃至更复杂变化的思想准备. 4.如图,三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1B C 的中点为O ,且AO ⊥平面11BB C C . (1)证明:1B C AB ⊥; (2)若1 AC AB ⊥, o 160CBB ∠=,1BC =,试画出二面角1A BC B --的平面角,并求它的余弦值. 3 垂面法 事实上,图1中的平面COC 1、图2(2)中的平面QMF 、图3中的平面PAB 、图4中的平面A 1FE 都是相关二面角棱的垂面,这种通过作二面角棱的垂面得平面角的方法就叫做垂面法.在某些情况下用这种方法可取得良好的效果. 图4 B 1 A α β A 1 B l E

二面角求法及经典题型归纳

二面角求法归纳 18题,通常是立体几何(12-14分),本题考查空间线面平行、线面垂直、面面垂直的判断与证明,考查二面角的求法以及利用向量知识解决几何问题的能力,同时考查空间想象能力、推理论证能力和运算能力。 以下是求二面角的五种方法总结,及题形归纳。 定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。 本定义为解题提供了添辅助线的一种规律。如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。 例1(2009全国卷Ⅰ理)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面 ABCD ,AD =2DC SD ==,点M 在侧棱SC 上,ABM ∠=60° (I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。 证(I )略 解(II ):利用二面角的定义。在等边三角形ABM 中过点B 作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G , 连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点, ∴GF 是△AMS 的中位线,点G 是AS 的中点。则GFB ∠即为所求二面角. ∵2= SM ,则2 2 = GF ,又∵6==AC SA ,∴2=AM ∵2==AB AM ,0 60=∠ABM ∴△ABM 是等边三角形,∴3= BF 在△GAB 中,26= AG ,2=AB ,0 90=∠GAB ,∴2 11423=+=BG 366 23 2 22211 32 12cos 222-=-=??- +=?-+=∠FB GF BG FB GF BFG F G F G

二面角的求法

二面角求法总结 二面角的类型和求法可用框图展现如下: 一、定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。 例1:(全国卷Ⅰ理)如图,四棱锥中,底面为矩形,底面,,,点M在侧棱上,=60° (I)证明:M在侧棱的中点 (II)求二面角的大小。 变式1:(山东)如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,60 ABC ∠=?,E,F S ABCD -ABCD SD⊥ABCD2 AD= 2 DC SD ==SC ABM ∠ SC S AM B --

分别是BC, PC的中点. (Ⅰ)证明:AE⊥PD; (Ⅱ)若H为PD上的动点,EH与平面PAD所成最大角的正切值为 6 ,求二面角E—AF—C的余弦值. 二、三垂线法 三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜 线垂直.通常当点P在一个半平面上则通常用三垂线定理法求二面角的大小。 例2.(山东卷理) 如图,在直四棱柱ABCD-A B C D中,底面ABCD为等腰梯形,AB//CD,AB=4, BC=CD=2, AA=2, E、E、F分别是棱AD、AA、AB的中点。 (1)证明:直线EE//平面FCC; (2)求二面角B-FC-C的余弦值。 变式2:(天津)如图,在四棱锥ABCD P 中,底面ABCD是矩形. 1111 111 11 1

已知ο 60,22,2,2,3=∠====PAB PD PA AD AB . (Ⅰ)证明⊥AD 平面PAB ; (Ⅱ)求异面直线PC 与AD 所成的角的大小; (Ⅲ)求二面角A BD P --的大小. 三.补棱法 本法是针对在解构成二面角的两个半平面没有明确交线的求二面角题目时,要将两平面的图形补充完整,使之有明确的交线(称为补棱),然后借助前述的定义法与三垂线法解题。即当二平面没有明确的交线时,一般用补棱法解决 例3(湖南)如图所示,四棱锥P-ABCD 的底面ABCD 是边长为1的菱形,∠BCD =60°,E 是CD 的中 点,PA ⊥底面ABCD ,PA =2. (Ⅰ)证明:平面PBE ⊥平面PAB; (Ⅱ)求平面PAD 和平面PBE 所成二面角(锐角)的大小. 变式3-1:已知斜三棱柱ABC —A 1B 1C 1的棱长都是a ,侧棱与底面成600 的角,侧面BCC 1B 1⊥底面ABC 。 A B C E D P

高中数学必修2立体几何专题二面角典型例题解法总结

二面角的求法 一、 定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。 本定义为解题提供了添辅助线的一种规律。如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。 例1 如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,AD = 2DC SD ==,点M 在侧棱SC 上,ABM ∠=60° (I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。 证(I )略 解(II ):利用二面角的定义。在等边三角形ABM 中过点B 作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G , 连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点, ∴GF 是△AMS 的中位线,点G 是AS 的中点。 则GFB ∠即为所求二面角. ∵2= SM ,则2 2 = GF , 又∵6= =AC SA ,∴2=AM ,∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴ 3=BF 。在△GAB 中,26= AG ,2=AB ,0 90=∠GAB ,∴2 11423=+=BG 366 23 2 22211 32 12cos 2 2 2 -=-=??- +=?-+=∠FB GF BG FB GF BFG ∴二面角S AM B --的大小为)3 6arccos(- F G F G

求二面角的6种方法【自己总结全面】

a O 课题3:二面角求法总结 一、知识准备 1、二面角的概念:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面. 2、二面角的平面角的概念:平面角是指以二面角的棱上一点为端点,在两个半平面内分别做垂直于棱的两条射线,这两条射线所成的角就叫做该二面角的平面角。 3、二面角的大小范围:[0°,180°] 4、 二面角的求解方法 对二面角的求解通常是先定位二面角的平面角,从而将三维空间中的求角问题转化为二维空间并可以通过三角形的边角问题加以解决.定位出二面角为解题的关键环节,下面就二面角求解的步骤做初步介绍: 一、“找”:找出图形中二面角,若不能直接找到可以通过作辅助线补全图形定位二面角的平面角 二、“证”:证明所找出的二面角就是该二面角的平面角 三、“算”:计算出该平面角 由于定位二面角的难度较大,对于求解二面角还有一种思路就是绕开定位二面角这一环节,通过一些等价的结论或公式或用空间向量等方法来直接求出二面角的大小.本文将根据这两种解题思路对二面角的解题方法做一一介绍. 5、二面角做法:做二面角的平面角主要的方法有: 6、 (1)、定义法:在棱上取一点,在两个半平面内作垂直于棱的2 条射线,这2条所夹 的角; 7、 (2)、三垂线法:过一个半平面内一点(记为A )做另一个半平面的一条垂线,过这个垂足(记为B )再做棱的垂线,记垂足为C ,连接AC ,则∠ACB 即为该二面角的平面角。 (3)射影法:凡二面角的图形中含有可求原图形面积和该图形在另一个半平面上的射影图形面积的都可利用射影面积公式(cos 斜 射S S = θ)求出二面角的大小。 (4)、垂面法:做垂直于棱的一个平面,这个平面与2个半平面分别有一条交线,这2条交线所成的角; (5)无交线的二面角处理方法 (6)向量法 二、二面角的基本求法及练习 1、定义法(从两面内引两条射线与棱垂直,这两条射线可以相交也可异面,从而面面角就转化为线线角来求) 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫 做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面 内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面

用三垂线法求二面角的方法(新)

用三垂线法求二面角的方法 三垂线定理:平面内的一条直线,如果和这个平面内的一条斜线的射影垂直,那么它也和这条斜线垂直。 已知:如图, PB 是平面α的斜线, PA 是平面α的垂线, 直线a ?平面α,直线a 垂直;射影AB. 求证: a ⊥PB 证明:∵PA 是平面α的垂线, 直线a ?平面α ∴直线a ⊥PA 又∵直线a ⊥AB AB ?PA A = ∴直线a ⊥平面PAB 而PB ?平面PAB ∴a ⊥PB 总结:定理论述了三个垂直关系,①垂线PA 和平面α垂直;②射影AB 和直线a 垂直;③斜线PB 和直线a 垂直. 三垂线定理揭示了一个平面和四条直线所构成的三种垂直关系的内在联系,是线面垂直的性质,在立体几何中有广泛的应用。求二面角是高考考查的热点,三垂线法是求二面角最常用的方法,应用好定理的关键是实现斜线与其在面内射影垂直关系的转化,因此寻找垂线、斜线及其射影至关重要。 运用三垂线法求二面角的一般步骠: ①作:过二面角的其中一个平面上一点作(找)另一个平面的垂线,过垂足作二面角的棱的垂线。. ②证:证明由①所得的角是二面角的平面角(符合二面角的定义) 。 ③求: 二面角的平面角的大小(常用面积相等关系求垂线段长度) 。 1、如右图所示的四面体ABCD 中,AB ⊥平面BCD ,BC CD ⊥且1BC CD == ,AD =①求二面角 C AB D --的大小;②求二面角B CD A --的大小; 1.解: ①∵AB ⊥面BCD ∴BC AB ⊥ BD AB ⊥ ∴CBD ∠为二面角C AB D --的平面角 ∵BC CD ⊥且1BC CD ==∴CBD ∠=4 π ∴二面角C AB D --的大小为 4 π ②∵AB ⊥面BCD BC CD ⊥ ∴由三垂线定理得CD AC ⊥ ∴ACB ∠为二面角B CD A --的平面角 ∵BC CD ⊥ ∴BD = =∵AB ⊥平面BCD ∴AB BC ⊥ AB BD ⊥ ∴1AB = =在Rt ABC ?中,tan 1AB ACB BC ∠= =, ∴二面角B CD A --的大小为 4 π 方法点拨:本题①的方法是直接运用二面角的定义求解,本题②的关键是找出垂线AB 、斜线AC 及 其射影BC,。从而得到二面角的平面角为ACB ∠。 A B D C

向量法求二面角专题练习

1,在底面是直角梯形的四棱锥S —A BCD 中,AD//BC ,∠A BC=900,S A ⊥ 面A BCD ,S A =21,A B=BC=1,A D=2 1 。 求侧面SCD 与面SB A 所成的二面角的 大小。 2如图,正三棱柱111ABC A B C -的所有棱长都为 2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角11C B A A --的大小; 3.如图,已知四棱锥P ABCD -,底面ABCD 为菱形, PA ⊥平面ABCD ,60ABC ∠= ,E F ,分别是BC PC ,的中点. (1)证明:AE PD ⊥; (2)若H 为PD 上的动点,EH 与平面PAD 面角E AF C --的余弦值. A B C D 1 A 1 C 1 B P B E C D F A

4.如图,在底面是菱形的四棱锥P —ABC D中,∠ABC=600,PA=AC=a ,PB=PD=a 2,点E 在PD 上,且PE:ED=2:1. (1)证明PA ⊥平面ABCD ; (2)求以AC 为棱,EAC 与DAC 为面的二面角 的大小 5.如图,直三棱柱ABC —A 1B 1C 1中,∠ACB=90°,AC=AA 1=1,,AB 1与A 1B 相 交于点D ,M 为B 1C 1的中点. (1)求证:CD ⊥平面BDM ; (2)求平面B 1BD 与平面CBD 所成二面角的大小.

6.如图,在四棱锥P—ABCD中,底面ABCD为正方形,PD⊥平面ABCD,且PD=AB=a,E为PB 的中点. (1)求异面直线PD与AE所成的角的大小; (2)在平面PAD内求一点F,使得EF⊥平面PBC; (3)在(2)的条件下求二面角F—PC—E的大小. 7. 如图,正方体ABCD—A1B1C1D1的棱长为1, E、F、M、N分别是A1B1、BC、C1D1、B1C1 的中点. (1)用向量方法求直线EF与MN的夹角; (2)求直线MF与平面ENF所成角的余弦值; (3)求二面角N—EF—M的平面角的正切值.

(新)高中立体几何中二面角经典求法(供参考)

高中立体几何中二面角求法 摘要:在立体几何中,求二面角的大小是历届高考的热点,几乎每年必考,而对于求二面角方面的问题,同学们往往很难正确地找到作平面角的方法,本文对求二面角的方法作了一个总结,希望对学生有帮助。 (一)、二面角定义的回顾: 从一条直线出发的两个半平面所组成的图形就叫做二面角。二面角的大小是用二面角的平面角来衡量的。而二面角的平面角是指在二面角βα--l 的棱上任取一点O ,分别在两个半平面内作射线l BO l AO ⊥⊥,,则AOB ∠为二面角βα--l 的平面角。 (二)、二面角的通常求法 1、由定义作出二面角的平面角; 2、利用三垂线定理(逆定理)作出二面角的平面角; 3、作二面角棱的垂面,则垂面与二面角两个面的交线所成的角就是二面角的平面角。 4、空间坐标法求二面角的大小 5、平移或延长(展)线(面)法 6、射影公式S 射影=S 斜面cos θ 7、化归为分别垂直于二面角的两个面的两条直线所成的角 1、利用定义作出二面角的平面角,并设法求出其大小。 例1、 如图,已知二面角α-а-β等于120°,PA ⊥α,A ∈α,PB ⊥β,B ∈β. 求∠APB 的大小. 解: 设平面∩PAB α=OA,平面PAB ∩β=OB 。 ∵PA ⊥α, а?α ∴PA ⊥а 同理PB ⊥а ∴а⊥平面PAB 又∵OA ?平面PAB ∴а⊥OA 同理а⊥OB. ∴∠AOB 是二面角α-а-β的平面角. 在四边形PAOB 中, ∠AOB=120°,. ∠PAO=∠POB=90°, 所以∠APB=60°

2、 三垂线定理(逆定理)法 由二面角的一个面上的斜线(或它的射影)与二面角的棱垂直,推得它位于二面角的另一的面上的射影(或斜线)也与二面角的棱垂直,从而确定二面角的平面角。 例2:如图,ABCD-A 1B 1C 1D 1是长方体,侧棱AA 1长为1,底面为正方体且边长为2,E 是棱BC 的中点,求面C 1DE 与面CDE 所成二面角的正切值. 解:在长方体ABCD —A 1B 1C 1D 1中 由三垂线定理可得: ∴ CD =2 CE=1, DE= 5 3、找(作)公垂面法 由二面角的平面角的定义可知两个面的公垂面与棱垂直,因此公垂面与两个面的交线所成的角,就是二面角的平面角。 例5、如图,已知PA 与正方形ABCD 所在平面垂直,且AB =PA ,求平面PAB 与平面PCD 所成的二面角的大小。 解: ∵PA ⊥平面ABCD ,∴PA ⊥CD .P 又CD ⊥AD ,故CD ⊥平面PAD . A D 而CD ?平面PCD , B C 所以 平面PCD ⊥平面PAD . 同理可证 平面PAB ⊥平面PAD . 因为 平面PCD ∩平面PAD =PD ,平面PAB ∩平面PAD =PA ,所以PA 、PD 与所求二面角的棱均垂直,即∠APD 为所求二面角的平面角,且∠APD =45°. A B C D A 1 B 1 C 1 D 1 E O CO DE O C C ,连结,作过点⊥11DE CO ⊥的平面角 为二面角C DE C OC C --∠∴11的正方形 是边长为又2ABCD CO DE CE CD S CDE Rt CDE ?=?=??2 1 21中,在1 1=CC 又5 52tan 1= ∠∴OC C 5 52tan arg 1 =∠∴OC C 5 5 2= ∴CO

高中数学常见题型解法归纳 二面角的求法

高中数学常见题型解法归纳 二面角的求法 【知识要点】 一、二面角的定义 平面内的一条直线把平面分为两部分,其中的每一部分叫做半平面.从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面.二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角,叫做这个二面角的平面角. 二、二面角的范围 规定:二面角的两个半平面重合时,二面角为00,当两个半平面合成一个平面时,二面角为0 180,因 此,二面角的大小范围为000,180????. 三、二面角的求法 方法一:(几何法)找→作(定义法、三垂线法、垂面法)→证(定义)→指→求(解三角形) 方法二:(向量法)首先求出两个平面的法向量,m n ;再代入公式cos m n m n α?=± (其中,m n 分别是两个平面的法向量,α是二面角的平面角.)求解.(注意先通过观察二面角的大小选择“±”号) 四、求二面角体现的是数学的转化的思想,就是把空间的角转化为平面的角,再利用解三角形的知识解答. 【方法讲评】 【例1】如图,四棱锥P ABCD -中,底面ABCD 是边长为3的菱形, 060ABC ∠=,PA ⊥面ABCD ,且3PA =,F 在棱PA 上,且1AF =,E 在棱PD 上.

(1)若//CE 面BDF ,求:PE ED 的值; (2)求二面角B DF A --的余弦值. (2)过点B 作BH ⊥直线DA 交DA 延长线于H ,过点H 作HI ⊥直线DF 交于I , ∵PA ⊥面ABCD ,∴面PAD ⊥面ABCD ,∴BH ⊥面PAD ,由三垂线定理可得DI IB ⊥, ∴BIH ∠是二面角B DF A --的平面角. 由题意得3 2AH =,92BH HD ==,且HI AF HD DF ==,∴HI =, ∴tan 23 BIH ∠==B DF A --【点评】(1)本题第2问也可以利用向量的方法解答.(2)第2小问的解答实际上是利用了几何的方法,利用三垂线定理作出二面角的平面角,再解三角形.这是几何法求二面角常用的一种方法,大家务必熟练掌握灵活运用. 【反馈检测1】如图所示,四边形ABCD 是菱形,O 是AC 与BD 的交点,SA ABCD ⊥平面. (Ⅰ)求证:SAC SBD ⊥平面平面;

二面角求法大全

二面角求法之面面观 求解二面角是立体几何中最基本、最重要的题型,也是各地高考中的“热点”问题,虽然对此可说是“千锤百炼”,但我们必须面对新的情境、新的变化,如何以基本方法的“不变”去应对题目中的“万变”就是我们研究的中心话题. 总的来说,求解二面角的大体步骤为:“作、证、求”.其中“作、证”是关键也是难点,“求”依靠的计算,也决不能忽视,否则因小失大,功亏一篑,也是十分遗憾之事. 1 定义法 即在二面角的棱上找一点,在二面角的两个面内分别作棱的射线即得二面角的平面角.定义法是“众法之源”,万变不离其宗,“树高千尺,叶落归根”,求二面角的一切方法盖源出定义这个“根”!. 例1 正方体ABCD-A 1B 1C 1D 1中,求二面角A-BD-C 1的正切值为 . 分析与略解:“小题”不必“大做”,由图1知所求二面角为 二面角C-BD-C 1的“补角”.教材中根本就没有“二面角的补角” 这个概念,但通过几何直观又很容易理解其意义,这就叫做直觉 思维,在立体几何中必须发展这种重要的思维能力.易知∠COC 1 是二面角C-BD-C 1的平面角,且tan ∠COC 1= 2。 将题目略作变化,二面角A 1-BD-C 1的余弦值为 . 在图1中,∠A 1OC 1是二面角A 1-BD-C 1的平面角,设出正方体的棱长,用余弦定理易求得 cos ∠A 1OC 1= 3 1 例2(2006年江苏试题)如图2(1),在正三角形ABC 中,E 、F 、P 分别是AB 、AC 、BC 上的点,满足AE : EB=CF :FA=CP :BP=1:2.如图2(2),将△AEF 折起 到△A 1EF 的位置,使二面角A 1-EF-B 成直二面角,连 接A 1B 、A 1P . (Ⅰ)与(Ⅱ)略;(Ⅲ)求二面角B-A 1P-F 的余弦值。 分析与略解:在例1中,图形的对称和谐状态对解题产生了很好的启迪作用,在这里更离不开图形的这种对称和谐性.若取BP 的中点Q ,连接EQ ,则在正三角形ABC 中,很容易证得△BEQ ≌△ PEQ ≌△PEF ≌△AEF ,那么在图2(2)中,有A 1Q=A 1F.作FM ⊥A 1P 于M ,连接QH 、QF ,则易得△A 1QP ≌△A 1FP ,△QMP ≌△FMP ,所以∠PMQ=∠PMF=90o ,∠QMF 为二面角B-A 1P-F 的平面角,使题解取得了突破性的进展.设正三角形的边长为3,依次可求得A 1P=5,QM=FM=5 52,在△QMF 中,由余弦定理得cos ∠QMF=8 7- 。 练习:2011广东高考理18.(本小题满分13分) 如图5.在锥体P-ABCD 中,ABCD 是边长为1的菱形, 且∠DAB=60? ,PA PD == 分别是BC,PC 的中点. D B 1 图1 A O A 1 C B D 1 C 1 O 1 M A F A 1 Q P C E C B P E F 图2(2) 图2(1) Q

相关文档
相关文档 最新文档