文档库 最新最全的文档下载
当前位置:文档库 › 2019对口高职高考数学练习题(2018.11.14)

2019对口高职高考数学练习题(2018.11.14)

2019对口高职高考数学练习题(2018.11.14)
2019对口高职高考数学练习题(2018.11.14)

2019口高职高考数学模拟试卷

一、选择题

1.ab>0是a>0,b>0的()。

A.充分条件

B. 必要条件

C.

D. 无法确定

2.若不等式+c<0的解集是,则c的值等于()。

A.12

B. -12

C.

D. -11

3.函数y=的定义域是()。

A.(-1,1)

B. [-1,1

C.

D. [-1,1]

4.设x(1,10),a=,b=lg,c=lg(lgx),则下列各式中成立的是()

A. c

B. a

C. c

D. a

5. 在等差数列{a n}中,若a3+a17=10,则S19等于()

A.75

B.85

C.95

D.65

6.在⊿ABC中,若acos B=bcosA,则⊿ABC是().

A.等腰三角形

B. 钝角三角形

C.

D. 锐角三角形

7.椭圆9+16=144的短轴长等于()。

A.3

B.

C.

D. 8

8.设集合A={},集合B={},则集

合A B等于()。

A.[1,2]

B.

C.

D. {2,+

9.设A、B是集合,“A?B”是“A B=B”的()。

A.充分而不必要条件

B. 必要而不充分条件

C. D. 既不充分也不必要条件

10.函数y=lg(-)的定义域是()。

A.(-)

B. (—)

c.(-6,1) D. (-1,6)

11.等差数列{a n}的通项公式是a n=-3n+2,则公差d是()。

A.-4

B.

C.

D. 4

12 .已知sin且tan的值是()。

A.-2

B.

C.

D. 2

13.方程为kx=2+4k的曲线经过点P(-2,1),则k的值是()。

A.-2

B.

C.

D. 2

14.将6人分成甲、乙、丙三组,一组1人,一组2人,一组3人,共有分法()

A. B. D.

15.“a”是“a”的()

A.充分条件

B. 必要条件

C. D. 既不充分也不必要条件

16.关于x的不等式>的解集是()。

A.x>

B. x>2

C.

D. x<2

17.若sin()=,则cos()的值是()

A. B. C. D.-

18.若f(x-1)=x+1,则f(3)等于()

A. B. C. D.6

19.在等差数列{a n}中,=120,那么a3+ a8等于()

A. B. C. D.48

20.已知方程+=1表示椭圆,则k的取值范围为()

A. B.

C. D.(-3,-)

21.偶函数f(x)在[0,6]上递减,那么f(-)与f(5)的大小关系是()

A. B.f(-)>f(5) C.f(-)=f(5) D.不确定

22.若直线ax+2y+6=0与直线x+(a-1)y+()=0平行,则a的值是()

A. B. C. D.

23.函数f(x)=的定义域为()

A. B. C.

D.

2019年高考数学试题带答案

2019年高考数学试题带答案 一、选择题 1.已知二面角l αβ--的大小为60°,b 和c 是两条异面直线,且,b c αβ⊥⊥,则b 与 c 所成的角的大小为( ) A .120° B .90° C .60° D .30° 2.设集合(){} 2log 10M x x =-<,集合{ } 2N x x =≥-,则M N ?=( ) A .{} 22x x -≤< B .{} 2x x ≥- C .{}2x x < D .{} 12x x ≤< 3.如图所示的组合体,其结构特征是( ) A .由两个圆锥组合成的 B .由两个圆柱组合成的 C .由一个棱锥和一个棱柱组合成的 D .由一个圆锥和一个圆柱组合成的 4.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高. 成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为 A .甲、乙、丙 B .乙、甲、丙 C .丙、乙、甲 D .甲、丙、乙 5.已知P 为双曲线22 22:1(0,0)x y C a b a b -=>>上一点,12F F , 为双曲线C 的左、右焦点,若112PF F F =,且直线2PF 与以C 的实轴为直径的圆相切,则C 的渐近线方程为( ) A .43y x =± B .34 y x =? C .3 5 y x =± D .53 y x =± 6.在△ABC 中,a =5,b =3,则sin A :sin B 的值是( ) A . 53 B . 35 C . 37 D . 57 7.圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0的公共弦的长为( ) A 2B 3 C .22 D .328.若干年前,某教师刚退休的月退休金为6000元,月退休金各种用途占比统计图如下面的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为( ).

2019年高考数学真题分类汇编专题18:数列(综合题)

2019年高考数学真题分类汇编 专题18:数列(综合题) 1.(2019?江苏)定义首项为1且公比为正数的等比数列为“M-数列”. (1)已知等比数列{a n }()* n N ∈满足:245324,440a a a a a a =-+=,求证:数列{a n }为 “M-数列”; (2)已知数列{b n }满足: 111221,n n n b S b b +==- ,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式; ②设m 为正整数,若存在“M-数列”{c n }()* n N ∈ ,对任意正整数k , 当k ≤m 时,都有1k k k c b c +≤≤成立,求m 的最大值. 【答案】 (1)解:设等比数列{a n }的公比为q , 所以a 1≠0,q ≠0. 由 ,得 ,解得 . 因此数列 为“M—数列”. (2)解:①因为 ,所以 . 由 得 ,则 . 由 ,得 , 当 时,由 ,得 , 整理得 . 所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n . ②由①知,b k =k , .

因为数列{c n}为“M–数列”,设公比为q,所以c1=1,q>0. 因为c k≤b k≤c k+1,所以,其中k=1,2,3,…,m. 当k=1时,有q≥1; 当k=2,3,…,m时,有. 设f(x)= ,则. 令,得x=e.列表如下: x e (e,+∞) + 0 – f(x)极大值 因为,所以. 取,当k=1,2,3,4,5时,,即, 经检验知也成立. 因此所求m的最大值不小于5. 若m≥6,分别取k=3,6,得3≤q3,且q5≤6,从而q15≥243,且q15≤216,所以q不存在.因此所求m的最大值小于6. 综上,所求m的最大值为5. 【考点】导数在最大值、最小值问题中的应用,等比数列的通项公式,等差关系的确定 【解析】【分析】(1)利用已知条件结合等比数列的通项公式,用“M-数列”的定义证出数列{a n}为“M-数列”。(2)①利用与的关系式结合已知条件得出数列为等差数列,并利用等差数列通项公式求出数列的通项

2019年高考数学模拟试题含答案

F D C B A 2019年高考数学模拟试题(理科) 注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。 3.回答第Ⅱ卷时,将答案写在答题卡上。写在本试卷上无效。 4.考试结束后,将本试卷和答题卡一并收回。 一.选择题:本大题共12个小题,每小题5分,共60分。在每小题给出的四个选项中只有一项是符合题目要求的 1.已知集合}032{2>--=x x x A ,}4,3,2{=B ,则B A C R ?)(= A .}3,2{ B .}4,3,2{ C .}2{ D .φ 2.已知i 是虚数单位,i z += 31 ,则z z ?= A .5 B .10 C . 10 1 D . 5 1 3.执行如图所示的程序框图,若输入的点为(1,1)P ,则输出的n 值为 A .3 B .4 C .5 D .6 (第3题) (第4题) 4.如图,ABCD 是边长为8的正方形,若1 3 DE EC =,且F 为BC 的中点,则EA EF ?=

A .10 B .12 C .16 D .20 5.若实数y x ,满足?? ???≥≤-≤+012y x y y x ,则y x z 82?=的最大值是 A .4 B .8 C .16 D .32 6.一个棱锥的三视图如右图,则该棱锥的表面积为 A .3228516++ B .32532+ C .32216+ D .32216516++ 7. 5张卡片上分别写有0,1,2,3,4,若从这5张卡片中随机取出2张,则取出的2张卡片上的数字之和大于5的概率是 A . 101 B .51 C .103 D .5 4 8.设n S 是数列}{n a 的前n 项和,且11-=a ,11++?=n n n S S a ,则5a = A . 301 B .031- C .021 D .20 1 - 9. 函数()1ln 1x f x x -=+的大致图像为 10. 底面为矩形的四棱锥ABCD P -的体积为8,若⊥PA 平面ABCD ,且3=PA ,则四棱锥 ABCD P -的外接球体积最小值是

2019高考数学复习专题:集合(含解析)

一、考情分析 集合是高考数学必考内容,一般作为容易题.给定集合来判定集合间的关系、集合的交、并、补运算是考查的主要形式,常与函数的定义域、值域、不等式(方程)的解集相结合,在知识交汇处命题,以选择题为主,多出现在试卷的前3题中. 二、经验分享 (1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型的集合;如下面几个集合请注意其区别: ①{}220x x x -=;②{}22x y x x =-;③{}22y y x x =-;④(){} 2,2x y y x x =-. (2)二元方程的解集可以用点集形式表示,如二元方程2xy =的整数解集可表示为()()()(){}1,2,2,1,1,2,2,1----. (3)集合中元素的互异性常常容易忽略,求解问题时要特别注意.分类讨论的思想方法常用于解决集合问题. (4)空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系. (5)一般来讲,集合中的元素若是离散的,则用Venn 图表示;集合中的元素若是连续的实数,则用数轴表示,此时要注意端点的情况. (6)解决以集合为背景的新定义问题,要抓住两点:①紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在;②用好集合的性质.解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的运算与性质. 三、知识拓展 1.若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n -1. 2.A ?B ?A ∩B =A ?A ∪B =B ()()U U A B A B U ?=??=痧 . 3.奇数集:{}{}{} 21,21,4 1.x x n n x x n n x x n n =+∈==-∈==±∈Z Z Z . 4. 数集运算的封闭性,高考多次考查,基础知识如下:若从某个非空数集中任选两个元素(同一元素可重复选出),选出的这两个元素通过某种(或几种)运算后的得数仍是该数集中的元素,那么,就说该集合对于这种(或几种)运算是封闭的.自然数集N 对加法运算是封闭的;整数集Z 对加、减、乘法运算是封闭的.有理数集、复数

2019-2020年高考数学第二轮专题复习数列教案

2019-2020年高考数学第二轮专题复习数列教案 二、高考要求 1.理解数列的有关概念,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前n项. 2.理解等差(比)数列的概念,掌握等差(比)数列的通项公式与前n项和的公式. 并能运用这些知识来解决一些实际问题. 3.了解数学归纳法原理,掌握数学归纳法这一证题方法,掌握“归纳—猜想—证明”这一思想方法. 三、热点分析 1.数列在历年高考中都占有较重要的地位,一般情况下都是一个客观性试题加一个解答题,分值占整个试卷的10%左右.客观性试题主要考查等差、等比数列的概念、性质、通项公式、前n项和公式、极限的四则运算法则、无穷递缩等比数列所有项和等内容,对基本的计算技能要求比较高,解答题大多以考查数列内容为主,并涉及到函数、方程、不等式知识的综合性试题,在解题过程中通常用到等价转化,分类讨论等数学思想方法,是属于中高档难度的题目. 2.有关数列题的命题趋势(1)数列是特殊的函数,而不等式则是深刻认识函数和数列的重要工具,三者的综合求解题是对基础和能力的双重检验,而三者的求证题所显现出的代数推理是近年来高考命题的新热点(2)数列推理题是新出现的命题热点.以往高考常使用主体几何题来考查逻辑推理能力,近两年在数列题中也加强了推理能力的考查。(3)加强了数列与极限的综合考查题 3.熟练掌握、灵活运用等差、等比数列的性质。等差、等比数列的有关性质在解决数列问题时应用非常广泛,且十分灵活,主动发现题目中隐含的相关性质,往往使运算简洁优美.如a2a4+2a3a5+a4a6=25,可以利用等比数列的性质进行转化:a2a4=a32,a4a6=a52,从而有a32+2aa53+a52=25,即(a3+a5)2=25. 4.对客观题,应注意寻求简捷方法解答历年有关数列的客观题,就会发现,除了常规方法外,还可以用更简捷的方法求解.现介绍如下:①借助特殊数列. ②灵活运用等差数列、等比数列的有关性质,可更加准确、快速地解题,这种思路在解客观题时表现得更为突出,很多数列客观题都有灵活、简捷的解法 5.在数列的学习中加强能力训练数列问题对能力要求较高,特别是运算能力、归纳猜想能力、转化能力、逻辑推理能力更为突出.一般来说,考题中选择、填空题解法灵活多变,而解答题更是考查能力的集中体现,尤其近几年高考加强了数列推理能力的考查,应引起我们足够的重视.因此,在平时要加强对能力的培养。 6.这几年的高考通过选择题,填空题来着重对三基进行考查,涉及到的知识主要有:等差(比)数列的性质. 通过解答题着重对观察、归纳、抽象等解决问题的基本方法进行考查,其中涉及到方程、不等式、函数思想方法的应用等,综合性比较强,但难度略有下降. 四、复习建议 1.对基础知识要落实到位,主要是等差(比)数列的定义、通项、前n项和.

2019-2020高考数学模拟试题含答案

2019-2020高考数学模拟试题含答案 一、选择题 1.一个容量为80的样本中数据的最大值是140,最小值是51,组距是10,则应将样本数据分为( ) A .10组 B .9组 C .8组 D .7组 2.已知向量a v ,b v 满足a =v ||1b =v ,且2b a +=v v ,则向量a v 与b v 的夹角的余弦值 为( ) A . 2 B . 3 C D . 4 3.设双曲线22 22:1x y C a b -=(00a b >>,)的左、右焦点分别为12F F ,,过1F 的直线分别 交双曲线左右两支于点M N ,,连结22MF NF ,,若220MF NF ?=u u u u v u u u u v ,22MF NF =u u u u v u u u u v ,则双曲 线C 的离心率为( ). A B C D 4.设i 为虚数单位,则(x +i)6的展开式中含x 4的项为( ) A .-15x 4 B .15x 4 C .-20i x 4 D .20i x 4 5.已知P 为双曲线22 22:1(0,0)x y C a b a b -=>>上一点,12F F , 为双曲线C 的左、右焦点,若112PF F F =,且直线2PF 与以C 的实轴为直径的圆相切,则C 的渐近线方程为( ) A .43y x =± B .34 y x =? C .3 5y x =± D .5 3 y x =± 6.若()34i x yi i +=+,,x y R ∈,则复数x yi +的模是 ( ) A .2 B .3 C .4 D .5 7.若不等式222424ax ax x x +-<+ 对任意实数x 均成立,则实数a 的取值范围是 ( ) A .(22)-, B .(2)(2)-∞-?+∞, , C .(22]-, D .(2]-∞, 8.已知函数()(3)(2ln 1)x f x x e a x x =-+-+在(1,)+∞上有两个极值点,且()f x 在 (1,2)上单调递增,则实数a 的取值范围是( ) A .(,)e +∞ B .2(,2)e e C .2(2,)e +∞ D .22(,2)(2,)e e e +∞U 9.已知某几何体的三视图(单位:cm )如图所示,则该几何体的体积是( )

(完整)2019-2020年高考数学大题专题练习——圆锥曲线(一).doc

2019-2020 年高考数学大题专题练习——圆锥曲线(一) x 2 y2 2 的直线与 12 1.设 F , F为椭圆的左、右焦点,动点P 的坐标为 ( -1,m),过点 F 4 3 椭圆交于 A, B 两点 . (1)求 F1,F 2的坐标; (2)若直线 PA, PF 2, PB 的斜率之和为 0,求 m 的所有 整数值 . x2 2 2.已知椭圆y 1,P是椭圆的上顶点.过P作斜率为 4 k(k≠0)的直线l 交椭圆于另一点A,设点 A 关于原点的 对称点为 B. (1)求△PAB 面积的最大值; (2)设线段 PB 的中垂线与 y 轴交于点 N,若点 N 在椭圆内 部,求斜率 k 的取值范围 . 2 2 5 x y = 1 a > b > 0 ) 的离心率为,定点 M ( 2,0 ) ,椭圆短轴的端点是 3.已知椭圆 C : 2 + 2 a b ( 3 B1, B2,且MB1 MB 2. (1)求椭圆C的方程; (2)设过点M且斜率不为0 的直线交椭圆C于 A, B 两点,试问 x 轴上是否存在定点P ,使 PM 平分∠APB ?若存在,求出点P 的坐标,若不存在,说明理由.

x2 y2 4.已知椭圆C 的标准方程为 1 ,点 E(0,1) . 16 12 (1 )经过点 E 且倾斜角为3π 的直线 l 与椭圆 C 交于A、B两点,求 | AB | .4 (2 )问是否存在直线p 与椭圆交于两点M 、 N 且 | ME | | NE | ,若存在,求出直线p 斜率 的取值范围;若不存在说明理由. 5.椭圆 C1与 C2的中心在原点,焦点分别在x 轴与y轴上,它们有相同的离心率e= 2 ,并 2 且 C2的短轴为 C1的长轴, C1与 C2的四个焦点构成的四边形面积是2 2 . (1)求椭圆 C1与 C2的方程; (2) 设P是椭圆 C2上非顶点的动点,P 与椭圆C1长轴两个顶点 A , B 的连线 PA , PB 分别与椭圆 C1交于E,F点 . (i)求证:直线 PA , PB 斜率之积为常数; (ii) 直线AF与直线BE的斜率之积是否为常数?若是,求出该值;若不是,说明理由.

2019届高考数学专题12数列求和

培优点十二 数列求和 1.错位相减法 例1:已知{}n a 是等差数列,其前n 项和为n S ,{}n b 是等比数列,且112a b ==,4427a b +=, 4410S b -=. (1)求数列{}n a 与{}n b 的通项公式; (2)记1121n n n n T a b a b a b -=++ +,n *∈N ,求证:12210n n n T a b +=-+. 【答案】(1)31n a n =-,2n n b =;(2)见解析. 【解析】(1)设{}n a 的公差为d ,{}n b 的公比为q , 则3441127327a b a d b q +=?++=,34411104610S b a d b q -=?+-=, 即33 2322786210d q d q ?++=??+-=??,解得:32d q =??=?, 31n a n ∴=-,2n n b =. (2)()()2 31234222n n T n n =-?+-?+ +?,① ()()23+1231234222n n T n n =-?+-?+ +?,② -②①得 ()10223112n n =?---, ∴所证恒等式左边()102231n n =?--,右边()210231102n n n a b n =-+=--+?, 即左边=右边,所以不等式得证. 2.裂项相消法 例2:设数列{}n a ,其前n 项和23n S n =-,{}n b 为单调递增的等比数列,123512b b b =,1133a b a b +=+ . (1)求数列{}n a ,{}n b 的通项公式; (2)若()()21n n n n b c b b = --,求数列{} n c 的前n 项和n T .

2019年全国一卷高考数学试题分析

2019年高考数学试题整体分析 1.试题突出特色: “突出数学学科特色,着重考查考生的理性思维能力,综合运用数学思维方法 分析问题、解决问题的能力。”2019年高考数学卷一个突出的特点是,试题突出 学科素养导向,注重能力考查,全面覆盖基础知识,增强综合性、应用性,以反映 我国社会主义建设的成果和优秀传统文化的真实情境为载体,贴近生活,联系社会 实际,在数学教育、评价中落实立德树人的根本任务。 2.试题考查目标: (1)素养导向,落实五育方针 2019年高考数学科结合学科特点,在学科考查中体现五育要求,整份试卷 站在落实“五育”方针的高度进行整体设计。理科Ⅰ卷第4题以著名的雕塑 “断臂维纳斯”为例,探讨人体黄金分割之美,将美育教育融入数学教育。文 科Ⅰ 卷第17题以商场服务质量管理为背景设计,体现对服务质量的要求,倡 导高质量的劳动成果。理科Ⅰ卷第(15)题引入了非常普及的篮球运动,以其 中普遍存在的比赛结果的预估和比赛场次的安排提出问题,要求考生应用数学 方法分析、解决体育问题。这些试题在考查学生数学知识的同时,引导学生加 强体育锻炼,体现了对学生的体育教育。(2)突出重点,灵活考查数学本质2019年高考数学试题,突出学科素养导向,将理性思维作为重点目标,将基 础性和创新性作为重点要求,以数学基础知识为载体,重点考查考生的理性思维和 逻辑推理能力。固本强基,夯实发展基础。理科(4)题源于北师大版必修五67页;理科(22)题源于北师大版4-4第53页;理科(16)和华师大附中五月押题卷(14)几乎一模一样。理科(21)题可视为2011清华大学七校联考自主招生考试 题的第15题改编。题稳中有变,助力破解应试教育。主观题在各部分内容的布局 和考查难度上进行动态设计,打破了过去压轴题的惯例。这些改革释放了一个明显 的信号:对重点内容的考查,在整体符合《考试大纲》和《考试说明》要求的前提下,在各部分内容的布局和考查难度上都可以进行调整和改变,这在一定程度上有 助于考查考生灵活应变的能力和主动调整适应的能力,有助于学生全面学习掌握重 点知识和重点内容,同时有助于破解僵化的应试教育。 (3)情境真实,综合考查应用能力数学试题注重考查数学应用素养,体现综合性 和应用性的考查要求。试卷设置的情境真实、贴近生活,同时具有深厚的文化底蕴,体现数学原理和方法在解决问题中的价值和作用。 理科Ⅰ卷第(6)题以我国古代典籍《周易》中描述事物变化的“卦”为背景设置 了排列组合试题,体现了中国古代的哲学思想。理科第(21)题情境结合社会现实,贴近生活,反映了数学应用的广阔领域,体现了数学的应用价值,有利于在中学数 学教育中激发学生学习数学的热情,提高对数学价值的认识,提升数学素养,对中 学的素质教育有很好的导向和促进作用。

2019年高考试题汇编理科数学--数列

(2019全国1理)9.记n S 为等差数列{}n a 的前n 项和.已知40S =,55a =,则( ) A.25n a n =- B.310n a n =- C.228n S n n =- D.2 122 n S n n =- 答案: A 解析: 依题意有415146045 S a d a a d =+=??=+=?,可得13 2a d =-??=?,25n a n =-,24n S n n =-. (2019全国1理)14.记n S 为等比数列{}n a 的前n 项和,若113 a =,2 46a a =,则5S = . 答案: 5S = 121 3 解答: ∵113 a = ,2 46a a = 设等比数列公比为q ∴32 5 11()a q a q = ∴3q = ∴5S = 121 3 2019全国2理)19. 已知数列{}n a 和{}n b 满足11=a ,01=b ,4341+-=+n n n b a a ,4341--=+n n n a b b . (1)证明: {}n n b a +是等比数列,{}n n b a -是等差数列; (2)求{}n a 和{}n b 的通项公式. 答案: (1)见解析 (2)21)21(-+=n a n n ,2 1)21(+-=n b n n . 解析: (1)将4341+-=+n n n b a a ,4341--=+n n n a b b 相加可得n n n n n n b a b a b a --+=+++334411, 整理可得)(2111n n n n b a b a += +++,又111=+b a ,故{}n n b a +是首项为1,公比为2 1 的等比数列. 将4341+-=+n n n b a a ,4341--=+n n n a b b 作差可得8334411+-+-=-++n n n n n n b a b a b a , 整理可得211+-=-++n n n n b a b a ,又111=-b a ,故{}n n b a -是首项为1,公差为2的等差数列. (2)由{}n n b a +是首项为1,公比为 21的等比数列可得1)2 1 (-=+n n n b a ①;

2019年高考数学模拟试题(含答案)

2019年高考数学模拟试题(含答案) 一、选择题 1.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数学之和为偶数的概率是( ) A . 12 B . 13 C . 23 D . 34 2.若圆与圆22 2:680C x y x y m +--+=外切,则m =( ) A .21 B .19 C .9 D .-11 3.右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入,a b 分别为14,18,则输出的a =( ) A .0 B .2 C .4 D .14 4.已知平面向量a =(1,-3),b =(4,-2),a b λ+与a 垂直,则λ是( ) A .2 B .1 C .-2 D .-1 5. ()()3 1i 2i i --+=( ) A .3i + B .3i -- C .3i -+ D .3i - 6.数列2,5,11,20,x ,47...中的x 等于( ) A .28 B .32 C .33 D .27 7.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,其分布列为P (X ),则P (X =4)的值为 A .1220 B .2755 C . 2125 D . 27 220 8.在样本的频率分布直方图中,共有11个小长方形,若中间一个长方形的面积等于其他

十个小长方形面积的和的,且样本容量是160,则中间一组的频数为( ) A .32 B .0.2 C .40 D .0.25 9.设双曲线22221x y a b -=(0a >,0b >)的渐近线与抛物线2 1y x =+相切,则该双曲 线的离心率等于( ) A .3 B .2 C .6 D .5 10.在[0,2]π内,不等式3 sin 2 x <-的解集是( ) A .(0)π, B .4,33 ππ?? ??? C .45,33ππ?? ??? D .5,23ππ?? ??? 11.将函数()sin 2y x ?=+的图象沿轴向左平移8 π 个单位后,得到一个偶函数的图象,则?的一个可能取值为( ) A . B . C .0 D .4 π- 12. sin 47sin17cos30 cos17- A .3 B .12 - C . 12 D 3二、填空题 13.若双曲线22 221x y a b -=()0,0a b >>两个顶点三等分焦距,则该双曲线的渐近线方程 是___________. 14.曲线2 1 y x x =+ 在点(1,2)处的切线方程为______________. 15.在ABC 中,60A =?,1b =3sin sin sin a b c A B C ________. 16.在区间[1,1]-上随机取一个数x ,cos 2 x π的值介于1[0,]2 的概率为 . 17.已知函数()sin ([0,])f x x x π=∈和函数1 ()tan 2 g x x = 的图象交于,,A B C 三点,则ABC ?的面积为__________. 18.学校里有一棵树,甲同学在A 地测得树尖D 的仰角为45?,乙同学在B 地测得树尖D 的仰角为30,量得10AB AC m ==,树根部为C (,,A B C 在同一水平面上),则 ACB =∠______________. 19.记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =_____________. 20.已知正三棱锥P ABC -的底面边长为3,外接球的表面积为16π,则正三棱锥

江苏省高考数学命题变化趋势-word文档资料

江苏省高考数学命题变化趋势 根据2009年高考江苏卷数学科考试说明,2009年高考江苏数学卷的命题,从命题指导思想、考试内容及要求,到考试形式及试卷结构,总体上保持稳定,试题仍由必做题与附加题组成。文科(选测历史)考生仅需做试题中的必做题,理科(选测物理)考生需对试题中的必做题和附加题两部分作答;理科附加题部分的考查内容与要求没有变化。考试说明只是在对数学基本能力的一个方面的考查要求上有所变化。 推荐:2009年高考大纲名师解读 1.对比变化 与2019年相比,在命题指导思想方面,对运算求解能力的考查要求更为明确,具体内容为:“能够根据法则公式进行运算及变形;能够根据问题的条件寻找与设计合理、简捷的运算途径;能够根据要求对数据进行估计或近似计算。”从中还可以看出,对运算能力的要求有所提高,强调灵活选择与设计运算途径。数学试卷中对知识的考查要求由低到高分为A、B、C三个层次,B、C两个层次是考查的重点,而函数与数列及其它C级要求的知识点还是考查的传统难点。 2.命题突出数学学科特点 更注重对数学基础知识和基本技能的考查,贴近我省高中数学的教学实际。另外,高考数学试卷既注意全面,又突出重

点,注重知识内在联系的考查,注重对中学数学中所蕴涵的数学思想和方法的考查 3.体现新课程改革 “既注重对考生知识、方法、能力的考查,又关注考生的情感态度与价值观”,09年高考数学试卷的命制,将既体现推动高中数学新课程改革,体现课程标准对知识与技能、过程与方法、情感态度与价值观等目标要求,又考查考生进入高等学校继续学习所必需的基本能力。 4.命题展望 (1)集合的考查重点是抽象思维能力,考查集合与集合之间的关系,将加强对集合的计算与化简的考查,并有可能从有限集合向无限集合来发展,考查“充分与必要条件”、命题的真伪,主要是对数学概念有准确的记忆和深层次的理解. (2)向量作为一项工具将广泛应用于高中各个学科当中.特别是与解析几何、函数、立体几何的有机结合将成为一种趋势,向量将不再停留在问题的表述语言水平上,其综合性程度将会逐渐增强.向量和平面几何结合的选择填空题将是高考命题的一个亮点. (3)函数的奇偶性和单调性向抽象函数拓展,函数与导数结合是高考的热门话题.函数的图象要注意利用平移变换、伸缩变换、对称变换,注意函数图象的对称性、函数值的变

2019高考数学大题必考题型及解题技巧分析

快戳!数学6大必考题型全总结!掌握好轻松考到140+! 高考数学大题必考题型及解题技巧分析 1 排列组合篇 1. 掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。 2. 理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。 3. 理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。 4. 掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。

5. 了解随机事件的发生存在着规律性和随机事件概率的意义。 6. 了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。 7. 了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。 8. 会计算事件在n次独立重复试验中恰好发生k次的概率。 2 立体几何篇 高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立体几何中的计算型问题,而解答题着重考查立

体几何中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。 知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。 2. 判定两个平面平行的方法: (1)根据定义--证明两平面没有公共点;

2019-2020高考数学一模试卷(附答案)

2019-2020高考数学一模试卷(附答案) 一、选择题 1.一个正方体内接于一个球,过球心作一个截面,如图所示,则截面的可能图形是( ) A .①③④ B .②④ C .②③④ D .①②③ 2.()62111x x ??++ ??? 展开式中2x 的系数为( ) A .15 B .20 C .30 D .35 3.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高. 成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为 A .甲、乙、丙 B .乙、甲、丙 C .丙、乙、甲 D .甲、丙、乙 4.已知函数()()sin f x A x =+ω?()0,0A ω>>的图象与直线()0y a a A =<<的三个相邻交点的横坐标分别是2,4,8,则()f x 的单调递减区间是( ) A .[]6,63k k ππ+,k Z ∈ B .[]63,6k k ππ-,k Z ∈ C .[]6,63k k +,k Z ∈ D .[]63,6k k -,k Z ∈ 5.在等比数列{}n a 中,44a =,则26a a ?=( ) A .4 B .16 C .8 D .32 6.函数()1 ln 1y x x = -+的图象大致为( ) A . B .

C . D . 7.ABC ?的内角A B C 、、的对边分别是a b c 、、,若2B A =,1a =, 3b = ,则 c =( ) A .23 B .2 C .2 D .1 8.如图,AB 是圆的直径,PA 垂直于圆所在的平面,C 是圆上一点(不同于A 、B )且PA = AC ,则二面角P -BC -A 的大小为( ) A .60? B .30° C .45? D .15? 9.已知,a b ∈R ,函数32 ,0 ()11(1),03 2x x f x x a x ax x C .1,0a b >-< D .1,0a b >-> 10.在同一直角坐标系中,函数11,log (02a x y y x a a ? ?==+> ??? 且1)a ≠的图象可能是( ) A . B . C . D . 11.在样本的频率分布直方图中,共有11个小长方形,若中间一个长方形的面积等于其他十个小长方形面积的和的,且样本容量是160,则中间一组的频数为( )

2019年高考数学试题分类汇编——集合

2019年高考数学试题分类汇编 集合部分(共12道试题) 试题编号2019001 (2019北京文1)(共20题的第1题 8道选择题第1题 150分占5分) 已知集合{}12A x x =-<<,{}1B x x =>,则A B =U ( ) A.()1,1- B.()1,2 C.()1,-+∞ D.()1,+∞ 答案:C 解:因为{}12A x x =-<<,{}1B x x =>,所以{}1A B x x =>-U , 故选C 。 试题编号2019002 (2019全国卷Ⅱ文1)(共23题的第1题 12道选择题第1题 150分占5分) 已知集合{}=1A x x >-,{}2B x x =<,则A B =I ( ) A.()1,-+∞ B.(),2-∞ C.()1,2- D.? 答案:C 解:{}{}{}=1212A B x x x x x x >-<=-<

2019年高考专题:数列试题及答案

2019年高考专题:数列 1.【2019年高考全国III 卷文数】已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =( ) A .16 B .8 C .4 D .2 【解析】设正数的等比数列{a n }的公比为q ,则23111142 1111534a a q a q a q a q a q a ?+++=?=+?, 解得11,2 a q =??=?,2 314a a q ∴==,故选C . 2.【2019年高考全国I 卷文数】记S n 为等比数列{a n }的前n 项和.若133 14 a S ==,,则S 4=___________. 【解析】设等比数列的公比为q ,由已知22 3111314S a a q a q q q =++=++= ,即2 104 q q ++=. 解得12q =-,所以4 4 1411()(1)521181()2 a q S q -- -= ==---. 3.【2019年高考全国III 卷文数】记n S 为等差数列{}n a 的前n 项和,若375,13a a ==,则10S = ___________. 【解析】设等差数列{}n a 的公差为d ,根据题意可得 317 125,613a a d a a d =+=??=+=?得11,2a d =??=? 101 109109 101012100.22S a d ??∴=+=?+?= 4.【2019年高考江苏卷】已知数列* {}()n a n ∈N 是等差数列, n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是__________. 【解析】由题意可得:()()()25811191470 98 9272a a a a d a d a d S a d ?+=++++=? ??=+=?? , 解得:152 a d =-??=?,则8187 840282162S a d ?=+=-+?=.

2019春季高考模拟数学试题

**市2019年春季高考第二次模拟考试 数学试题 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。满分120分,考试时间120分钟。 第Ⅰ卷(选择题,共60分) 注意事项: 1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。 一、选择题(本大题共20个小题,每小题3分,共60分。在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项选出) 1.设全集U={1,2,3,4,5,6},集合A={2,4,6},则?uA= ( ) A.{2,4,6} B.{1,3,5} C.{1,2,3,4,5,6} D.Φ 2. 01=+x 是0322 =--x x 的( ) A.充分不必要条件 B. 必要不充分条件 C. 充要条件 D.既不充分也不必要条件 3. 函数y = ) A.{x ∣x > 10或 x < -10 } B. {x ∣-10≤x ≤10且0x ≠} C. }1|{>x x D. x x |{≤10,且x ≠0} 4. 若命题q p ∨是真命题,q p ∧是假命题,则下列命题中真命题共有( ) ①p q ?∨ ②()p q ?∨ ③()p q ?∧ ④p q ∧? A. 1个 B. 2个 C. 3个 D. 4个 5. 如果a b >且0ab >,那么正确的是: A. 11 a b > B. 11a b < C.22a b > D.a b > 6. 函数12 log y x = 在(),0-∞上的增减性是( ) A. 单调递减 B. 单调递增 C. 先增后减 D. 先减后增 7.二次函数()2 24f x x x =-+,当[]2,4x ∈时的最小值是( ) A. 2 B. 3 C. 4 D. 7

2019高考理科数学模拟试题

2019高考理科数学模拟试题(一) 考试时间:120分钟 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第Ⅰ卷(选择题) 一、选择题(本题共12小题,每小题5分,共60分,每小题只有一个选项符合题意) 1.已知集合M={x|y=x2+1},N={y|y=},则M∩N=() A.{(0,1)}B.{x|x≥﹣1}C.{x|x≥0}D.{x|x≥1} 2.复数z=的共轭复数的虚部为() A.﹣i B.﹣ C.i D. 3.已知命题p:存在向量,,使得?=||?||,命题q:对任意的向量,,,若?=?,则=.则下列判断正确的是() A.命题p∨q是假命题B.命题p∧q是真命题 C.命题p∨(¬q)是假命题D.命题p∧(¬q)是真命题 4.2017年5月30日是我们的传统节日﹣﹣”端午节”,这天小明的妈妈为小明煮了5个粽子,其中两个腊肉馅三个豆沙馅,小明随机取出两个,事件A=“取到的两个为同一种馅”,事件B=“取到的两个都是豆沙馅”,则P(B|A)=()A.B.C.D. 5.已知锐角α的终边上一点P(sin40°,1+cos40°),则α等于()A.10°B.20°C.70°D.80° 6.已知函数,若,b=f(π),c=f(5),则() A.c<b<a B.c<a<b C.b<c<a D.a<c<b 7.阅读程序框图,如果输出的函数值在区间内,则输入的实数x的取值范围是()

A.(﹣∞,﹣2]B.[﹣2,﹣1]C.[﹣1,2]D.[2,+∞) 8.一个几何体的三视图如图所示,则这个几何体的体积为() A.B.C.D. 9.在约束条件下,当6≤s≤9时,目标函数z=x﹣y的最大值的变化范 围是() A.[3,8]B.[5,8]C.[3,6]D.[4,7] 10.已知正实数a,b满足a+b=3,则的最小值为() A.1 B.C.D.2 11.已知a∈R,若f(x)=(x+)e x在区间(0,1)上只有一个极值点,则a 的取值范围为() A.a>0 B.a≤1 C.a>1 D.a≤0

相关文档
相关文档 最新文档