文档库 最新最全的文档下载
当前位置:文档库 › 桁架结构体系..

桁架结构体系..

桁架结构体系..
桁架结构体系..

桁架结构体系

在本小节中我们要给大家介绍桁架结构体系的组成、优缺点及适用范围;桁架结构体系的合理布置原则及及受力特点。

桁架结构组成:一般由竖杆,水平杆和斜杆组成(图1-23)。

图1-23 桁架结构

在房屋建筑中,桁架常用来作为屋盖承重结构,这时常称为屋架。

用于屋盖的桁架体系有两类:

(1)平面桁架,用于平面屋架;

(2)空间桁架,用于空间网架。

这两类桁架的共同特点是它们都由一系列只受同向拉力或压力的杆件连接而成。作为桁架结构的整体来说,它们在荷载作用下受弯、受剪;但作为桁架结构中的杆件来说,只承受轴向力,不承受弯矩、剪力和扭矩。

桁架结构的最大特点是,把整体受弯转化为局部构件的受压或受拉,从而有效地发挥出材料的潜力并增大结构的跨度。

桁架结构受力合理、计算简单、施工方便、适应性强,对支座没有横向推力,因而在结构工程中得到了广泛的应用。

屋架的主要缺点是结构高度大,侧向刚度小。

结构高度大,增加了屋面及围护墙的用料,同时也增加了采暖、通风、采光等设备的负荷,并给音响控制带来困难。侧向刚度小,对于钢屋架特别明显,受压的上弦平面外稳定性差,也难以抵抗房屋纵向的侧向力,这就需要设置支撑。

桁架是较大跨度建筑的屋盖中常用的结构型式之一。在一般情况下,当房屋的跨度大于18m时,屋盖结构采用桁架比梁经济。屋架按其所采用的材料区分,有钢屋架、木屋架、钢木屋架和钢筋混凝土屋架等。钢筋混凝土屋架当其下弦采用预应力钢筋时,称为预应力钢筋混凝土屋架。目前,我国预应力钢筋混凝土屋架的跨度已做到60多米,钢屋架的跨度已做到70多米。

一、桁架结构的型式与受力特点

屋架结构的型式很多:

(1)按屋架外形的不同,有三角形屋架、梯形屋架、抛物线屋架、折线型屋架、平行弦屋架等。

(2)根据结构受力的特点及材料性能的不同,也可采用桥式屋架、无斜腹杆屋架或刚接桁架、立体桁架等。

我国常用的屋架有三角形、矩形、梯形、拱形和无斜腹杆屋架等多种型式,见图1-24。

图1-24常用的屋架型式

(a)三角形屋架(b)平行弦屋架(矩形)(c)梯形屋架(再分式)

(d)拱形屋架(e)下撑式屋架(f)无斜腹杆屋架

尽管桁架结构中以轴力为主,其构件的受力状态比梁的结构合理,但在桁架结构各杆件单元中,内力的分布是不均匀的。屋架的几何形状有矩形的(即平行弦屋架)、三角形、梯形、折线形的和抛物线形的等等。它们的内力分布随形状的不同而变化。

在一般情况下,屋架的主要荷载类型是均匀分布的结点荷载。我们首先分析在结点荷载作用下平行弦屋架的内力分布特点,见图1-25。然后,引伸至其它形式的屋架。

从图1-25中可以得出如下结论:

(1)弦杆轴力:

上弦受压,下弦受拉,其轴力由力矩平衡方程式得出(矩心取在屋架结点)。

N=±M0h

(1-1)

式中:(负值表示上弦受压,正值表示下弦受拉)

M0一简支梁相应于屋架各结点处的截面弯矩;

h一屋架高度。

图1-25 桁架内力计算

从上式可以看出,上下弦的轴力N与M0成正比,与h成反比。由于屋架的高度h值不变,而M0愈接近屋架两端愈小,所以中间弦杆轴力大,愈向两端弦杆轴力愈小。

(2)腹杆内力

屋架内部的杆件称为腹杆,包括竖杆与斜杆。腹杆的内力可以根据隔离体的平衡法则,由力的竖向投影方程求得:

Y=±V0

(1-2)式中,Y一斜杆的竖向分力和竖杆的轴力;

V0一简支梁相应于屋架节间的剪力。

从图1-26可以看出,V0值在跨中小两端大,所以相应的腹杆内力也是中间杆件小而两端杆件大,其内力图见图1-26。

以上的分析可以看出:从整体来看,屋架相当于一个受弯构件,弦杆承受弯矩,腹杆承受剪力,而从局部来看,屋架的每个杆件只承受轴力(拉力或压力)。

用同样的方法可以分析三角形和抛物线形屋架的内力分布情况,见图1-36b、c所示。

由于这两种屋架上弦结点的高度中间大,愈向两端愈小,所以,虽然上弦仍受压下弦仍受拉,但是内力大小的分布是各不相同的。

从图1-26可以看出,屋架杆件内力与其形式有着密切的关系。

(1)平行弦屋架内力是不均匀的,弦杆内力由两端向跨度中间增大,腹杆内力由中间向两端增大;

(2)三角形屋架内力分布也是不均匀的,弦杆的内力由中间向两端增大,腹杆内力由两端向中间增大;

图1-26 不同形式的桁架及内力图

(3)抛物线屋架的内力分布比较均匀,从受力角度看,它是比较好的屋架形式,因为它的形状与同跨度同荷载简支梁的弯矩图形相似,也就是说,其形状符合内力变化的规律。

(1)屋架结构的选型

屋架型式的选择一般与下列因素有关:

(1)建筑物的使用要求

(2)跨度和荷载大小

(3)材料供应

(4)施工技术水平

选择屋架型式的一般原则是适用、经济、美观和制造简单。

a.屋架结构的受力

从结构受力来看,抛物线状的拱式结构受力最为合理。但拱式结构上弦为曲线,施工复杂。折线型屋架,与抛物线弯矩图最为接近,故力学性能良好。梯形屋架,因其既具有较好的力学性能,上下弦均为直线施工方便,故在大中跨建筑中被广泛应用。三角形屋架与矩形屋架力学性能较差。三角形屋架一般仅适用于中小跨度,矩形屋架常用作托架或荷载较特殊情况下使用。

b.屋面防水构造

屋面防水构造决定了屋面排水坡度,进而决定屋盖的建筑造型。

一般来说,当屋面防水材料采用粘土瓦、机制平瓦或水泥瓦时,应选用三角形屋架、陡坡梯形屋架。当屋面防水采用卷材防水、金属薄板防水时,应选用拱形屋架、折线形屋架和缓坡梯形屋架。

c.材料的耐久性及使用环境

木材及钢材均易腐蚀,维修费用较高。因此,对于相对湿度较大而又通风不良的建筑,或有侵蚀性介质的工业厂房,不宜选用木屋架和钢屋架,宜选用预应力混凝土屋架,可提高屋架下弦的抗裂性,防止钢筋腐蚀。

d.屋架结构的跨度

跨度在18m以下时,可选用钢筋混凝土一钢组合屋架;这种屋架构造简单、施工吊装方便,技术经济指标较好。跨度在36m以下时,宜选用预应力混凝土屋架,既可节省钢材,又可有效地控制裂缝宽度和挠度。对于跨度在36m以上的大跨度建筑或受到较大振动荷载作用的屋架,宜选用钢屋架,以减轻结构自重,提高结构的耐久性与可靠性。

(2)屋架结构的基本尺寸

屋架结构的基本尺寸包括屋架的矢高、坡度、节间长度。

a.矢高

屋架矢高主要由结构刚度条件确定,屋架的矢高直接影响结构的刚度与经济指标。矢高大、弦杆受力小,但腹杆长、长细比大、易压曲,用料反而会增多。矢高小,则弦杆受力大、截面大、且屋架刚度小、变形大。

因此,矢高不宜过大也不宜过小。屋架的矢高也要根据屋架的结构型式。一般矢高可取

跨度的1/10~1/5。

b.坡度

屋架上弦坡度的确定应与屋面防水构造相适应。

当采用瓦类屋面时,屋架上弦坡度应大些,一般不小于1/3,以利于排水。当采用大型屋面板并做卷材防水时,屋面坡度可平缓些,一般为1/8~1/12。

c.节间长度

屋架节间长度的大小与屋架的结构型式,材料及受荷条件有关。

一般上弦受压,节间长度应小些,下弦受拉,节间长度可大些。屋面荷载应直接作用在节点上,以优化杆件的受力状态。为减少屋架制作工作量,减少杆件与节点数目,节间长度

可取大些。但节间杆长也不宜过大,一般为1.5~4m。

屋架的宽度主要由上弦宽度决定。钢筋混凝土屋架当采用大型屋面板时,上弦宽度主考

虑屋面板的搭接要求,一般不小于20cm。

跨度较大的屋架将产生较大的挠度。因此,制作时要采取起拱的办法抵消荷载作用下产

生的挠度。跨度大于18m的三角形屋架和跨度大于24m的梯形屋架,起拱度一般为跨度1/500。

(3)屋架结构的布置

屋架结构的布置,包括屋架结构的跨度、间距、标高等,主要考虑建筑外观造型及建筑使用功能方面的要求来决定。对于矩形的建筑平面,一般采用等跨度、等间距、等标高布置的同一种类的屋架,以简化结构构造、方便结构施工。

为了构造简单,制作方便,屋架的弦杆通常设计成等截面的。所以确定屋架的形式时应尽量使弦杆沿全长的内力分布基本相同。如果各节间的内力相差太大,容易造成材料的浪费。屋架的腹杆布置要合理,尽量避免非结点荷载。并尽量使长腹杆受拉,短腹杆受压,腹杆数目宜少,使结点汇集的杆件少,构造简单。

结点构造要简单合理。杆件的交角不宜太小,一般在250~750之间。

a.屋架的跨度

屋架的跨度应根据工艺使用和建筑要求确定,一般以3m为模数。对于常用屋架型式的

常用跨度,我国都制订了相应的标准图集可供查用,从而可加快设计及施工的进度。

对于矩形平面的建筑,一般可选用同一种型号的屋架,仅端部或变形缝两侧屋架中的预埋件稍有不同。对于非矩形平面的建筑,各根屋架的跨度就不可能一样,这时应尽量减少其类型以方便施工。

b.屋架的间距

屋架一般宜等间距平行排列,与房屋纵向柱列的间距一致,屋架直接搁置在柱顶。间距的大小除考虑建筑平面柱网布置的要求外,还要考虑屋面结构及吊顶构造的经济合理性。屋

架的间距同时即为屋面板或檩条、吊顶龙骨的跨度,最常见的为6m,有时也有7.5m、9m、12m等。

c.屋架的支座

屋架支座的标高由建筑外形的要求确定,一般为在同层中屋架的支座取同一标高。当一根屋架两端支座的标高不一致时,要注意可能会对支座产生水平推力。屋架的支座形式,在力学上可简化为铰接支座。实际工程中,当跨度较小时,一般把屋架直接搁置在墙、垛、柱或圈梁上。当跨度较大时,则应采取专门的构造措施,以满足屋架端部发生转动的要求。

(4)屋架结构的支撑

屋架支撑的位置在有山墙时设在房屋两端的第二开间内,对无山墙(包括伸缩缝处)的房屋设在房屋两端的第一开间内;在房屋中间每隔一定距离(一般≤60m)亦需设置一道支撑,对于木屋架,距离为20~30m。

支撑体系包括上弦水平支撑、下弦水平支撑与垂直支撑,它们把上述开间相邻的两桁架连结成稳定的整体。在下弦平面通过纵向系杆,与上述开间空间体系相连,以保证整个房屋的空间刚度和稳定性。

支撑的作用有三个:

(1)保证屋盖的空间刚度与整体稳定;

(2)抵抗并传递由屋盖沿房屋纵向传来的侧向水平力,如山墙承受的风力、纵向地震作用等;

(3)防止桁架上弦平面外的压曲,减少平面外长细比,并防止桁架下弦平面外的振动。

1. 贝宁体育馆

位于贝宁科托努市的贝宁友谊体育场的多功能综合体育馆,如图1-27所示。

体育馆可容纳观众5000名,总建筑面积14015m2,屋盖结构考虑到当地的施工条件及实际情况,采用梭形立体桁架,跨度为65.3m,高跨比为1/13,中间起拱1/330。上弦及腹杆采用Q235无缝钢管,下弦用Q345无缝钢管。

图1- 27 贝宁科托努市,贝宁体育馆

2.上海大剧院

上海大剧院是由上海市人民政府投资的大型歌舞剧院,位于上海市中心人民广场西北侧。工程用地面积21644m2,占地面积11530m2,总建筑面积62800m2,地下两层,地上6层,高度为40m。该工程通过国际招标,法国建筑师以其“天地呼应,中西合壁”的构思,独特的立面造型而中标,见图1-28。

图1-28 上海大剧院剖面律

方案中最引人注目的是呈反拱的月牙形屋盖,纵向长100.4m,横向宽94m,纵向悬挑26m,横向悬挑30.9m,反拱圆弧半径R=93m,拱高11.5m。由于其独特的建筑

造型和特殊的功能及工艺要求,大剧院的屋盖体系采用交叉刚接钢桁架结构。屋盖结构纵向为两榀主桁架及两榀次桁架,在每根主桁架下各设三个由电梯井筒壁形成的薄

壁柱,作为整个屋架结构的支座,次桁架仅起到保证屋盖整体性的作用。横向为12榀半月牙形无斜腹杆屋架。

桁架结构体系..

桁架结构体系 在本小节中我们要给大家介绍桁架结构体系的组成、优缺点及适用范围;桁架结构体系的合理布置原则及及受力特点。 桁架结构组成:一般由竖杆,水平杆和斜杆组成(图1-23)。 图1-23 桁架结构 在房屋建筑中,桁架常用来作为屋盖承重结构,这时常称为屋架。 用于屋盖的桁架体系有两类: (1)平面桁架,用于平面屋架; (2)空间桁架,用于空间网架。 这两类桁架的共同特点是它们都由一系列只受同向拉力或压力的杆件连接而成。作为桁架结构的整体来说,它们在荷载作用下受弯、受剪;但作为桁架结构中的杆件来说,只承受轴向力,不承受弯矩、剪力和扭矩。 桁架结构的最大特点是,把整体受弯转化为局部构件的受压或受拉,从而有效地发挥出材料的潜力并增大结构的跨度。 桁架结构受力合理、计算简单、施工方便、适应性强,对支座没有横向推力,因而在结构工程中得到了广泛的应用。 屋架的主要缺点是结构高度大,侧向刚度小。 结构高度大,增加了屋面及围护墙的用料,同时也增加了采暖、通风、采光等设备的负荷,并给音响控制带来困难。侧向刚度小,对于钢屋架特别明显,受压的上弦平面外稳定性差,也难以抵抗房屋纵向的侧向力,这就需要设置支撑。 桁架是较大跨度建筑的屋盖中常用的结构型式之一。在一般情况下,当房屋的跨度大于18m时,屋盖结构采用桁架比梁经济。屋架按其所采用的材料区分,有钢屋架、木屋架、钢木屋架和钢筋混凝土屋架等。钢筋混凝土屋架当其下弦采用预应力钢筋时,称为预应力钢筋混凝土屋架。目前,我国预应力钢筋混凝土屋架的跨度已做到60多米,钢屋架的跨度已做到70多米。

一、桁架结构的型式与受力特点 屋架结构的型式很多: (1)按屋架外形的不同,有三角形屋架、梯形屋架、抛物线屋架、折线型屋架、平行弦屋架等。 (2)根据结构受力的特点及材料性能的不同,也可采用桥式屋架、无斜腹杆屋架或刚接桁架、立体桁架等。 我国常用的屋架有三角形、矩形、梯形、拱形和无斜腹杆屋架等多种型式,见图1-24。 图1-24常用的屋架型式 (a)三角形屋架(b)平行弦屋架(矩形)(c)梯形屋架(再分式) (d)拱形屋架(e)下撑式屋架(f)无斜腹杆屋架 尽管桁架结构中以轴力为主,其构件的受力状态比梁的结构合理,但在桁架结构各杆件单元中,内力的分布是不均匀的。屋架的几何形状有矩形的(即平行弦屋架)、三角形、梯形、折线形的和抛物线形的等等。它们的内力分布随形状的不同而变化。 在一般情况下,屋架的主要荷载类型是均匀分布的结点荷载。我们首先分析在结点荷载作用下平行弦屋架的内力分布特点,见图1-25。然后,引伸至其它形式的屋架。 从图1-25中可以得出如下结论: (1)弦杆轴力:

桁架结构实例分析

桁架结构实例分析 上海大剧院所采用的建筑结构为月牙形钢桁架结构。为满足上海人民日益增长的文化需要和艺术表演需求,特此设计建造了上海大剧院。上海大剧院是以观演为主要功能的公共建筑。其包括演出、餐厅、咖啡厅、画廊以及地下车库组成。除了体现了现代化的剧院建筑成就,还融入了中国传统文化。 其平面布置的格局为中国建筑的传统布局方法—“井”字形划分布局。前为大厅,后为表演及专业技术活动场地。大剧院包括1800座的大剧场和600座的中剧场及300座的小剧场。上海大剧院对于空间的利用达到近乎完美的境地。大剧场分三层看台,采用“法国式”结构。无论从座位设置到观剧视觉和听觉感受效果均达到国际第一流剧院的优级配置标准。此外大剧院还拥有目前国际上容纳面积最大、动作变换最多的舞台设备。 大剧院的展向天空的屋顶如桥梁般承接着宇宙和人类的联系。融合了东西方的文化韵味。白色弧形拱顶和具有光感的玻璃幕墙的有机结合,在灯光的烘托下如水晶宫一般。大剧院的设计特点非常鲜明。首先在营造外观气势上,其拱顶屋架起到了一定作用,延伸了建筑向上的高度以及横向的广度。同时形成了较强的视觉冲击力。此外其向上反翘的拱顶并不只是摆设,还有实际效用。其实在剧院设计上,拱顶设计更具优势。剧院建筑对于声学效果要求很严,大剧院的拱顶由六根柱子支撑,中间留有空隙,因此设计将机房设备安置于此。除了

能有效利用建筑面积外,更能避免地下震动对主题观众厅的噪声影响,架空的钢结构顶部可以有效延缓噪声到达建筑主体的时间,从而减弱固体传声的影响。更增加了剧场内部空间,增加了观众的座位数。 大剧院钢屋该既是覆盖整个大剧院下部结构的屋顶,又是一个称重结构。为了达到建筑和结构的完美统一。大剧院采用了巨型框架的结构体系,它具有侧向刚度较大,给建筑提供大开间和大高度室内空间,能满足建筑多功能要求的特点。大剧院内六个钢筋混凝土电梯筒体作为主框架柱,承担着上部结构全部的竖向荷载、风载及地震荷载,两榀纵向主桁架及十二榀横向月牙形桁架形成主框架梁,承担着全部钢屋盖的竖向荷载,并将这传至电梯筒体,钢屋盖内部三层楼面结构组成巨型结构的次框架部分。充分满足了建筑设计需求。

高层建筑结构转换层

高层建筑结构转换层 层建筑的发展趋势,既集吃、住、办公、娱乐、购物、停车为一体的综合建筑。由于空间功能的复杂化,使得建筑结构也随之变化。为了适应上部小空间下部大空间的功能需要,需在两种结构的交接部位设置过渡结构,也就是转换层。因高层建筑结构的多样性,转换层也呈现多种形式。 关键词:高层结构转换层多样 在我国高层建筑发展的早期阶段,所设计建造的高层建筑大都为单一用途,例如高层住宅、高层旅馆、高层办公楼等。近年来高层建筑发展迅速,建筑朝体型复杂、功能多样的综合性方向发展,因而相应的结构形式也复杂多样。后来陆续开始在高层住宅底层设置生活福利设施,并且开始大量兴建集吃、住、办公、购物、停车等为一体的多功能综合性高层建筑,尤其是在城市主干道两侧,并已成为现代高层建筑的一大趋势。 高层建筑功能综合化的优点: (1)将各种使用功能的建筑单元集中布置并上下组合在一起,使用上更方便省时,为人们提供良好的生活环境和工作条件,适应现代社会高效率、快节奏生活的需要; (2)集中紧凑的建筑布置,达到建筑面积最高利用率,相应集中紧凑的管道线路,有利于节约建设投资及减少能源消耗,也有利于物业管理,

节约管理经费; (3)可减少建筑占地面积,节约土地费用,增加城市的绿化面积。一、多功能综合性高层建筑结构体系的特点 从建筑使用功能而言,在设计中,通常将大柱网的购物商场、餐厅、娱乐设施设于多功能综合性高层建筑的下层部分,而将较小柱网、较小开间的住宅、公寓、旅馆、办公功能的建筑设于中、上层部分。这种建筑使用功能的特点相应决定了多功能综合性高层建筑结构体系的特点。由于不同建筑使用功能要求不同的空间划分布置,相应地,要求不同的结构形式,如何将他们之间通过合理地转换过渡,沿竖向组合在一起,就成为多功能综合性高层建筑结构体系的关键技术。这对高层建筑结构设计提出了新的问题,需要设置一种称为转换层的结构形式,来完成上下不同柱网、不同开间、不同结构形式的转换,简单地说,就是上下两层的结构不一样,必需设置一个转换层来承上启下。结构上的转换层概念,主要是指在整个建筑结构体系中,合理解决竖向结构的突变性转化和平面的连续性变化的结构单元体系。它在主要满足结构安全功能要求的同时,多数情况下解决一些特殊技术性建筑功能要求。比如在结构转换层空间内布置管道、设备等等。这种转换层广泛应用于剪力墙结构及框架剪力墙等结构体系中。 二、转换层的类型及其工程实例 按照不同的结构转换功能,转换层可分为三种类型: 1、高层建筑上层与下层的结构形式不同,通过转换层完成其从上层至下层不同结构形式的变化。

浅析高层建筑桁架转换层结构设计

浅析高层建筑桁架转换层结构设计 发表时间:2019-07-30T11:57:40.153Z 来源:《基层建设》2019年第14期作者:黄桂生 [导读] 摘要:复杂的建筑结构常常需要采用结构转换层来完成上、下层建筑物结构的转换,一般结构层相比,转换层结构具有结构重量大、结构层刚度大、几何尺寸超大、受力复杂等特点。 身份证:45252819750527XXXX 摘要:复杂的建筑结构常常需要采用结构转换层来完成上、下层建筑物结构的转换,一般结构层相比,转换层结构具有结构重量大、结构层刚度大、几何尺寸超大、受力复杂等特点。这意味着转换结构组成了建筑物的主要构件,它们的设计是否合理、安全、经济对整个结构的安全性、结构造价、施工费用等有着重要的影响。通过时钢桁架转换层高层建设结构体系的工程实例的分析,从结构选型的确定等方面进行系统的研究。以得到一些对设计有实际指导意义的结论。 关键词:建筑工程;结构设计;转换层构造 在当前建筑结构设计过程中,为了更好的适合建筑物的各部楼层所体现的安全使用功能的需求,往往需要在各楼层之间布置转换层以消除楼层中间的较大差异。转换层的设置起到传承上部结构荷载,保持结构稳定的作用,是建筑结构中的重要部位,也是建筑结构设计的重点和难点。因此,深入探讨高层建筑转换层结构设计问题,对于促进我国民用高层建筑的发展具有一定的现实意义。 1.转换层高层建筑结构的构造要求 结构设计不仅是对建筑物本身功能的设计,还关系到建筑物的建设成本,这就需要设计人员优化结构设计,降低建设成本。其优化目标就是实现建筑的本体功能性、安全性、经济性与环保性。为了实现这一目标,未来的从事结构设计者将遵循功能性、安全性、经济性、环保性四位一体的设计思路,真正实现未来建筑结构的优化升级,为人类提供一个更好的物质生存与发展环境。 转换层的结构应按“强化转换层及其下部、弱化转换层上部”的原则,使转换层上下主体结构的侧向刚度尽量接近,平滑过渡。抗震设计时。控制转换层上下主体的结构侧向刚度,当转换层设置在3层及3层以上时。其楼层侧向刚度尚不应小于相邻上部楼层侧向刚度的60%。将转换桁架置于整体空间结构中进行整体分析。此时,腹杆作为柱单元。上、下弦杆作为梁单元,按空间协同工作玻三维空间分析程序计算整体的内力和位移。计算时,转换桁架按实际杆件布置参与整体分析,但上、下弦杆的轴向刚度、弯曲刚度中应计入楼板的作用。整体结构计算需采用两个以上不同力学模型的程序进行抗震计算。还应进行弹性时程分析并宜采用弹塑性时程分析校核。转换层的结构设计中应按转换层“强斜腹杆,强节点”。桁架转换层上部框架结构接“强柱弱梁、强边柱弱中柱”的原则,以保证转换层的结构具有较好的延性,确保塑性饺在梁端出现,能够满足工程抗震的要求。转换桁架的相邻层楼板宜双向双层配筋,每个方向贯通钢筋的配筋率不宜小于0.25%,且在楼板边缘、孔洞边缘应结合边粱设置予以加强。转换桁架上、下弦杆的配筋应加上楼板平面内弯曲计算引起的附加钢筋。 2.转换层商层建筑结构实例分析 对于大跨度的钢桁架转换层结构的受力。各方面的影响因素较多,导致结构受力情况比较复杂,对它的受力影响因素进行探讨具有实际意义,可为实际工程的设计与施工提供理论依据。因此,通过对大跨度钢桁架转换层的受力影响因素进行分析,认识钢桁架转换层的受力特点。以期充分利用钢结构构件受力性能好的特点,使其承担较多的荷载作用。以调整端部混凝土结构的受力,减少混凝土结构的荷载作用,使整个结构体系的受力更为合理。下面结合工程实例分析高层转换桁架的受力影响因素及其受力特点,某高层建筑为地上24层,地下2层,总建筑面积72788m2,其中地上58300m2,地下14488m2。平面长92.1M,宽49M。结构檐口标高为108.80m,中间有电梯、楼梯、机房等的高层建筑。 2.1梁式转换与精架转换的比较确定 与最为常见的转换结构形式粱式转换相比,本例中转换粱的跨度很大而且上部荷载较大,采用梁式的转换结构,转换梁的截面必然很大,一方面导致转换梁下部空间无法再利用、自重大、配筋多、不经济等缺点;另一方面导致沿竖向结构质量和刚度分布在转换层的变化不连续。发生突变,对结构的整体抗震性能不利。因此,需要另一种形式的转换构件来解决这个问题,而转换桁架具有传力明确,传力途径清楚,虽构造和施工复杂,但转换桁架不仅为开洞和设置管道创造了条件,而且它们的位置与大小都有很大的灵活性,可以充分利用该转换层的建筑空间,而且桁架转换层的节间采用轻质建筑材料填充甚至可以外露不填充,有利于减轻结构的自重;转换桁架的抗侧力刚度比转换粱要小,也就是说。具有桁架转换层的高层建筑其质量和刚度的突变要比带转换粱的高层建筑缓和。因此带转换桁架的高层建筑其地震反应要比带转换梁的高层建筑小得多,由此可见,在本例工程的三层转换构件采用转换大粱的结构形式是不合适的,而采用转换桁架的结构形式将很好的避免了上述的多个问题且将节约混凝土用量近30%。将是一个较为合理正确的选择。 2.2转换桁架的具体形式的确定 在本例工程的三层转换构件采用确定桁架结构后,设计人员则需要进一步确定桁架的结构形式。根据前面的论述,转换桁架的结构形式有多种,但是根据本例工程的三层转换构件的具体情况,采用何种最合理的结构形式,则必须加以比较分析后方可确定。 2.2.1单层转换桁架与双层转换桁架的确定 采用精架结构作为高层建筑的转换构件时,一般情况是取出一层层高的高度作为转换桁架的高度。对于本项目,转换桁架位于结构的边缘,建筑师为了使转换桁架对于立面的影响降至最小,希望桁架仅在中庭设置,即取一层高度(4.00m)作为转换桁架的高度。在本例中各层的层高情况分别是:底层:6.44ml,二层:4.80m,三层以上:4.00mt,而结构的柱距为9.0m,若仅取4.00m为桁架高度时,在柱与柱之间必须另设一个桁架节点以保证桁架斜腹杆与水平弦杆的角度在合理的450~550之间。若取建筑的两层层高即8.00m为转换桁架的高度,则在柱与柱之间可以不必设置多余的桁架节点,使桁架的结构形式趋于简单。 2.2.2空腹桁架、斜杆桁架、无竖杆桁架的比较确定 作为高层建筑中的转换结构一桁架结构有如下的主要结构形式:空腹桁架、交叉斜杆桁架、无竖杆的交叉斜杆桁架。作为一种相对独立的结构形式,无论采用何种结构形式。应该说都是可以实现的。对于建筑师来说,空腹桁架如果在构件尺寸可以接受的条件下。当然是首选,当然,采用无竖杆的交叉斜杆桁架形式,结构上可以使桁架的构造节点趋于简单,在建筑师看来,也可以接受。 2.2.3单跨桁架与多跨桁架的确定 在确定了以交叉斜杆桁架作为本次项目的转换结构的结构形式后,结构工程师尚发现在这个计算模型中的框架柱的内力较大。作为抗震设计“强柱弱梁”的一般设计原则,框架柱中的内力相对越大,则在柱中率先出现塑性铰的可能性将越大。而在模型计算中同样可以发

桁架结构分析

2013-2014年度学生研究计划(SRP)“桁架结构模型结构优化及试验” 结题论文 姓名骆辉军 学院土木与交通学院 专业土木工程(卓越全英班) 学号 201230221450 指导老师范学明 时间 2014年10月

一.实验背景 随着科学技术的发展和计算机软件技术的应用,应用相关的软件来进行桁架结构模型的优化已经可以成为现实。桁架结构中的桁架指的是桁架梁,是格构化的一种梁式结构。桁架结构常用于大跨度的厂房、展览馆、体育馆和桥梁等公共建筑中。由于大多用于建筑的屋盖结构,桁架通常也被称作屋架。在桥梁结构中,桁架结构也应用广泛。只受结点荷载作用的等直杆的理想铰结体系称桁架结构。它是由一些杆轴交于一点的工程结构抽象简化而成的。合理地设计桁架结构,就能够最大限度地利用材料的强度,起到减轻桁架重量,节省材料的目的,从而也能为工程实际应用提供相关的依据和参考。 但桁架的结构模型形式千变万化,仅仅从理论上分析桁架的受力特征和破坏特征,而不进行相应的试验研究是无法取得实质性的进展的。正是基于这样一个原则,我们需要在理论研究的基础上通过试验来优化桁架的结构模型,在各式各样的桁架结构中挑选出受力合理的结构,最大限度地使材料的强度得以利用。 研究桁架结构模型优化的意义 桁架结构中,各杆件受力均以单向拉、压为主,通过对上下弦杆和腹杆的合理布置,可适应结构内部的弯矩和剪力分布。由于水平方向的拉、压内力实现了自身平衡,整个结构不对支座产生水平推力。结构布置灵活,应用范围非常广。桁架梁和实腹梁(即我们一般所见的梁)相比,在抗弯方面,由于将受拉与受压的截面集中布置在上下两端,增大了内力臂,使得以同样的材料用量,实现了更大的抗弯强度。在抗剪方面,通过合理布置腹杆,能够将剪力逐步传递给支座。这样无论是抗弯还是抗剪,桁架结构都能够使材料强度得到充分发挥,从而适用于各种跨度的建筑屋盖结构。更重要的意义还在于,它将横弯作用下的实腹梁内部复杂的应力状态转化为桁架杆件内简单的拉压应力状态,使我们能够直观地了解力的分布和传递,便于结构的变化和组合。 由于杆件之间的互相支撑作用,且刚度大,整体性好,抗震能力强,所以能够承受来自多个方向的荷载。而且具有结构简单,运输方便等优点,其应用于各个工程领域。古代木构建筑,而今的2008北京奥运会的主体育馆鸟巢;太空中的大型可展天线,地面上的跨海大桥,随处都可见到桁架的身影。由于桁架的结构模型千变万化,不同的桁架结构形式对桥梁或者屋架的受力特征有很大的影响,因而,研究桁架结构模型的优化具有重大的意义。 二.实验的相关资料 1.桁架结构的常见构造方式 桁架指的是桁架梁,是格构化的一种梁式结构,即一种由杆件彼此在两端用铰链连接而成的结构。桁架由直杆组成的一般具有三角形单元的平面或空间结构,桁架杆件主要承受轴向拉力或压力,从而能充分利用材料的强度,在跨度较大时可比实腹梁节省材料,减轻自重和增大刚度。由于大多用于建筑的屋盖结构,桁架通常也被称作屋架。 桁架结构常用于大跨度的厂房、展览馆、体育馆和桥梁等公共建筑中。其主要结构特点在于,各杆件受力均以单向拉、压为主,通过对上下弦杆和腹杆的合理布置,可适应结构内部的弯矩和剪力分布。由于水平方向的拉、压内力实现了自身平衡,整个结构不对支座产生水平推力。结构布置灵活,应用范围非常广。桁架梁和实腹梁(即我们一般所见的梁)相

关于转换桁架在高层建筑结构转换层中的应用

关于转换桁架在高层建筑结构转换层中的应用 摘要:本文对转换结构构件进行弹性有限元应力分析,经优化比选,改采用有粘结预应力转换桁架的结构转换方式,使得转换结构体系轻巧、合理。 关键词转换层,应力分析,转换桁架 1.工程概况 某工程总建筑面积约19000m2,建筑高度58.9m,地上十九层(第六层为设备及结构转换层,层高2.2m),地下一层(层高4.2m)。建筑场地类别为Ⅱ类,7度抗震设防,框架结构抗震等级按三级。因本高层建筑底部一至五层用作办公、会议用途,主要建筑开间尺寸为5.2m至6.9 m (图1),七至十九层为住宅用房,主要建筑开间为3-3.9m(图3),为充分满足住宅用房使用舒适度的要求。有效降低框架梁梁高,从而提高住宅用房房屋净高,在第七至十九层的住宅层故采用小柱距结构体系,利用第六层设备层作为结构转换层(图2),采用结构转换构件实现上、下结构体系的竖向转换。

2.转换构件应力分析及优化 在选择结构转换构件时,最初拟采用梁式转换,通过中国建科院SATWE电算软件进行试算,需支托的上部结构框架柱柱底内力,因需支托的框架柱最大柱底轴力设计值达3236.1kN,经试算,梁断面取430mm×1300mm(C35混凝土)即已达到受弯构件极限配筋率上限,为使结构转换构件具备足够的安全度,同时为了避免因采用该断面尺寸的深受弯构件,导致该结构转换层框架柱净高仅900mm(该结构转换层层高2.2m),在整个竖向结构体系中形成了一层极短的短柱层,对整个结构体系带来不利影响并对本层结构的设计、施工带来困难,为此,利用该结构转换层的整个层高,改采用450mmx2700mm深受弯梁,将该楼层上、下楼板粘连、整浇,避免了形成极短柱层,并提高了转换构件的竖向承载能力。

第三章 桁架结构解析

第三章桁架结构 第一节桁架结构的特点 由简支梁发展成为桁架的过程――简支梁在均布荷载作用下,沿梁轴线弯曲,剪力的分布及截面正应力的分布(分为受压区和受拉区两个三角形)在中和轴处为零。截面上下边缘处的正应力最大,随着跨度的增大,梁高增加。根据正应力的分布特点,要节省材料,减轻自重,先形成工字型梁――继续挖空成空腹形式――最后,中间剩下几根截面很小的连杆时,就发展成为“桁架”。 由此可见,桁架是从梁式结构发展产生出来的。桁架的实质是利用梁的截面几何特征的几何因素――构件截面的惯性矩I增大的同时,截面面积反而可以减小。梁结构的梁高加大时,自重随之增加很多,桁架结构无此弊端。 Z在实际工作中,由于其自重轻,用料经济,易于构成各种外形适应不同的用途,桁架成为一种应用极广泛的形式,除经常用于屋盖结构外,(我们常说的屋架),还用于皮带运输机栈桥、塔架和桥梁等。(如图示各种组合屋架、武汉长江大桥采用的桁架形式等) 一.桁架结构计算的假定(基本特点) 1.杆件与杆件之间相连接的节点均为铰接节点 2.所有杆件的轴线都在同一平面内。(这一平面称为桁架的中心平面) 3.所有外力(包括荷载与支座反力)都作用在桁架的中心平面内,且集中作用在节点上实际桁架与上述假定是有差别的,尤其是节点铰接的假定。例如:木桁架常常为榫接,它与铰接的假定是接近的。而钢桁架有些杆件在节点处是连续的,腹杆采用的是节点板焊接或铆接,节点具有一定的刚性;混凝土节点构造往往采用刚性连接。尽管如此,科学试验和工程实践均表明,上述不符合假定的因素对桁架影响很小,只要采取适当的构造措施,就能保证这些因素产生的应力对结构和杆件不会造成危害。故桁架在计算中仍按“节点铰接”处理。 假定3 “集中力作用在节点上”是保证桁架各杆件仅承受轴向力的前提。对于桁架上直接搁置屋面板或屋架下弦承受吊顶荷载时,当上下弦间有荷载作用时,则会使原来杆件的受力形式发生变化(纯压、纯拉变为压弯、拉弯构件),从而使得上、下弦截面尺寸变大,材料用料增加。为了避免这些情况发生,可以采取下列办法:A.上弦屋面板宽度与桁架上弦的节点长度相等,使屋面板的主肋支承在上弦节点上。B.吊顶梁放置在下弦节点处,屋面板设置檩条在上弦节点处。C.对于钢桁架,采用再分式屋架,保证荷载传至节点上 二、桁架结构的杆件内力 1、以节点荷载作用下的平行弦桁架为例 通过取脱离体,分别对“A”“B”取矩,利用节点平衡法则,可以得出 弦杆内力:N2=-M0/h(压),N3=M0/h 腹杆内力:N1=V0/sinα 竖腹杆内力:N4=V0 M0:按简支梁计算相应于屋架各节点处的截面弯矩 V0:按简支梁计算相应于屋架各节点处的截面剪力

浅谈带预应力混凝土桁架转换层的多高层建筑结构设计

浅谈带预应力混凝土桁架转换层的多高层建筑结构设计 发表时间:2018-11-22T16:53:48.993Z 来源:《建筑学研究前沿》2018年第22期作者:梁国寿 [导读] 转换层对于整个的高层建筑来说正是处在一个比较关键的受力部位。 摘要:随着我国经济的发展以及社会的进步,我国人民的生活水平正在不断的提高,人口的数量也在逐渐的增多,这也就使得现在我国的高层建筑的数量正在逐渐的增多。在高层建筑当中,转换层作为整个结构当中的关键性部位,结构设计成为了现在整个工程质量当中的关键所在,预应力混凝土桁架杆件空隙大,并且同时还具有突出的美观,还有着分割灵活地特点,所以说应该在实际得工程当中进行推广使用,笔者在文章中对带预应力混凝土桁架转换层的高层建筑结构设计进行了简要的分析以及探讨。 关键词:预应力;转换层;高层建筑;设计 引言 转换层对于整个的高层建筑来说正是处在一个比较关键的受力部位,由于高层建筑当中转换层的存在打破了沿着建筑物高度的方向原有的那种均匀性的高度,这也就导致了高层建筑当中力的传递途径被大大的改变了。所以说在进行高层建筑转换层的设计的时候不能够采用均匀的结构来进行设计,随着预应力混凝土在建筑工程当中的广泛应用,从预应力混凝土在建筑工程的应用当中我们能够看出,预应力混凝土结构具有着十分高的承载力以及抗裂性,并且预应力混凝土的自重是比较轻的,相对于建筑工程当中的传统做法来说能够更好的节省钢筋以及混凝土,在对建筑物的质量进行保证的前提之下能够帮助工程创造出更好的经济以及社会效益。 一、布置原则概述 通过很多的工程实践当中我们能够看出,在进行预应力转换桁架的设计的时候通常来说都是需要结合高层建筑的功能要求以及结构传力的实际,一处或者是多处的不止在高层建筑物的高度的方向上,具体的要求上必须要满足规范中要求的桁架转换层上、下层剪切刚度比,保证高层建筑竖向刚度的连续性。同时还需要进行考虑的就是要尽量的去避免抗震建筑设计上的高位转换。如果说在在高层建筑的建筑功能上必须要求继续拧高位转换的话,那么桁架转换层结构就是首选的结构了,这个结构能够有效的减少震害。从实践经验当中我们能够看出,在高层建筑转换桁架的要求必须为竖向承重构件,并且还需要满足的就是必须是抗侧力构件。在平面上进行相应的布置的时候应该遵守的原则就是均匀、分散、对称、周边,需要保证的就是切实的避免因为扭转对建筑物造成伤害。 二、结构设计与构造要求 (一)设计的原则分析 在预应力混凝土桁架转换层的高层建筑结构设计中的设计原则主要可以总结到一下几点:第一,强化转换层及其下部,弱化转换层上部;第二,强斜腹杆、强节点;第三,强柱弱梁、强边柱、弱中柱。 上面说的几点设计原则都是经过了多次的实验以及实践进行证明了的结果,如果在高层建筑结构设计当中按照上面的设计原则进行设计的话,带桁架转换层结构在高层建筑当中的应用是具有着非常好的延性的,能够有效的进行工程抗震。应用第三条原则“强柱弱梁、强边柱、弱中柱”的原则进行转换层结构的实际,能够很好的确保塑性铰在梁端的出现,转换层以上柱底应该避免边柱出现塑性铰,这样进行设计的话能够很好的保证柱比梁的安全储备更大。为了能够更好的实现“强柱弱梁”的设计目标,在对转换梁的上部结构梁进行截面的设计的时候必须要使其先打到屈服,但是在实际进行施工的时候还需要对整体结构空腹桁架的工作特性进行注意,从受拉钢筋的要求进行设计。从连接处对整个设计进行优化,确保整个的结构能够有更好的延性。 (二)斜腹杆桁架设计 经过大量的实践表明,在进行预应力桁架转换层的设计的时候必须要保证的就是强受斜腹杆和强节点。在斜腹杆桁架的上下弦节点的截面必须要满足规范中抗剪的相关的要求,科学设计需要做到的就是保证整体的桁架结构延性好并且在使用的过程当中不容易发生脆性破坏。 (三)斜腹杆桁架构造要求 在受压弦非预应力纵向钢筋在设计的时候最好都是沿着周边进行对称均匀布置的,这些钢筋当中的含钢率必须要保证满足相关的要求,并且适宜全部贯通桁架。受压弦杆箍筋需要进行全杆段的加密,并且他的体积还需要严格控制按照相关规范当中的具体要求进行相关的设计。前面说受拉弦杆非预应力纵向钢筋最好的处理就是要沿着周边进行对称均匀的不止,并且在进行设计的时候需要按照正常状态之下裂缝的宽度是零点二毫米进行严格的施工控制。对于受拉弦杆箍筋的最小面积配箍率来说需要做到的就是必须符合相关规范当中的具体的要求。在桁架的受拉以及受压弦杆的非预应力受力钢筋的结构的位置需要根据实际的情况结合相关的技术规范要求进行接头的焊接。在进行实际的操作实施过程当中可以优先的采用闪光接触对焊的方式进行焊接,除此之外,桁架弦杆的非预应力钢筋最好还需要与支撑锚具的钢垫板进行连接。在对桁架节点进行设计的时候需要采用的就是封闭式箍筋,并且需要对箍筋进行加密同时还需要垂直于弦杆的轴线位置,在进行设计的时候一般都是通过增加拉筋的方法来保证节点能够对混凝土产生有效的约束性能。如果说在高层建筑的转换层的设计当中涉及到了桁架节点尺寸比较大的情况,在进行具体的设计的时候可以参照剪力墙的配筋方式设计水平以及垂直的箍筋,并且还需要做到的就是在箍筋的交点的地方还需要进行隔点布置拉筋。 三、施工建议 从大量的施工经验当中能够看出,预应力桁架在通常的情况下,施工张拉阶段以及使用阶段的受力状态总是会存在着一定的差异的,为了能够有效的减少施工张拉阶段以及试用阶段预应力桁架受力状况的差异,有效的解决因为超静定结构的受力的状态发生变化从而造成的构件之间的变形甚至是开裂的问题,在具体的预应力桁架转换层结构的实施过程当中最好要采取一种名叫“择期张拉”的施工工艺。经过大量的实践验证表明,择期张拉施工技术主要就是采用的分期以及分批的施加预应力,或者是选取经过计算比较适合进行张拉施工的施工楼层来进行张拉工序的实施,但是在进行张拉工序的施工之前必须要做的就是要加强转换桁架下方的支撑工作。 在通常的情况之下,预应力桁架转换层结构在桁架的节点的区域钢筋的分布都是比较稠密的,这种情况再预应力的锚固区表现的更加的突出,所以说在具体的施工过程当中必须要将混凝土进行充分的捣实,只有将混凝土进行充分的捣实才能够有效的避免锚固区混凝土出

结构力学 第二章 结构的几何组成分析

第二章 结构的几何组成分析 李亚智 航空学院·航空结构工程系

2.1 概述 结构要能承受各种可能的载荷,其几何组成要稳固。即受力结构各元件之间不发生相对刚体移动,以维持原来的几何形状。 在任意载荷作用下,若不考虑元件变形,结构保 持其原有几何形状不变的特性称为几何不变性。 在载荷作用下的系统可分为三类。 2.1.1 几何可变系统 特点: 不能承载,只能称作“机构”。 2 1 3 4 P 2’3’

2.1.2 几何不变系统 特点:能承载,元件变形引起几何形状的微小变化,可以称为结构。 2.1.3 瞬时几何可变系统 特点:先发生明显的几何变形,而后几何不变。 P 213 4 2’ 3’ 2’3’ P 2 1 34 5 ∞ →=2321N N 1 2 3 P 内力巨大,不能作为结构。 N 21 N 23 P 2

由以上分析可见,只有几何不变的系统才能承力和传力,作为“结构”。 系统几何组成分析的目的: (1)判断系统是否几何不变,以决定是否能作为结构 使用; (2)掌握几何不变结构的组成规律,便于设计出合理 的结构; (3)区分静定结构和静不定结构,以确定不同的计算 方法。

2.2 几何不变性的判断 2.2.1 运动学方法 将结构中的某些元件看成自由体,拥有一定数量的自由度; 将结构中的另一些元件看成约束。 如果没有足够多的约束去消除自由度,系统就无法保持原有形状。 所谓运动学方法,就是指这种引用“约束”和“自由度”的概念来判断系统几何不变性的方法。

1、自由度与约束(1)自由度的定义 决定一物体在某一坐标系中的位置所需要的独立变量的数目称为自由度,用n 表示。平面一个点有2个独立坐标,故n =2空间一个点有3个独立坐标,故n =3 x y y ?x ?A A ' x y A y A x A z A z A ' O

高层建筑结构转换层的结构设计

高层建筑结构转换层的结构设计 前言 一般而言,当高层建筑下部楼层竖向结构体系或形式与上部楼层差异较大,或者下部楼层竖向结构轴线距离扩大或上、下部结构轴线错位时,就必须在结构改变的楼层布置水平转换构件,即结构转换层。因此,转换结构可根据其建筑功能和结构传力的需要,沿高层建筑高度方向一处或多处灵活布置,且自身的这个空间既可作为正常使用楼层,也可作为技术设备层,但应保证转换层有足够的刚度,以防止沿竖向刚度过于悬殊。对底层大空间多塔楼的商住建筑,塔楼的转换层宜设置在裙房的屋面层,并加大屋面梁、板尺寸和厚度,以避免中间出现刚度特别小的楼层,减小震害。 一、高层建筑转换层结构形式及受力特点 高层建筑转换层的主要结构形式及特点 1、粱式转换 粱式转换层是目前高层建筑中实现垂直转换最常用的结构形式,其传力途径为上部墙—转换粱—下部柱。具有传力直接、明确和清楚

的优点,便于工程计算、分析和设计,且造价较为节省,据资料统计,粱式转换层数量约占转换层总量的77%。转换梁的截面高度为0.8- 6m,高层建筑带转换层结构的绝大多数为梁式转换层。 2、箱式转换 是单向托粱和双向托粱同上、下层较厚的楼板浇筑成一整体共同工作,从而形成刚度较大的箱式转换层。 3、板式转换 当转换层上下柱网错开较多。布置又不规则,难以用梁直接承托时,则需要做成厚板,形成板式转换层,从抗剪和抗冲切考虑,转换板厚度往往很大,实际转换板厚度可达2.0- 2.8m,板式转换层的下层柱可以灵活布置,但自重很大,材料耗用多,拖工难度大。 4、桁架转换 桁架分为空腹桁架与实腹桁架两种。桁架转换层与梁式转换相比,受力状态更明确,可使用空间更大,自重小,抗震性能好,但其节点设计难度大,“强斜腹杆、强节点”是桁架转换层设计的基本原则,而节点的受力状态复杂,容易发生剪切脆性破坏,造成计算配筋

高层建筑转换层结构设计问题

高层建筑转换层结构设计问题探究摘要:文章主要阐述了建筑转换层的特点及设计原则,从而进一步针对建筑转换层结构的布置、抗震设计、转换层上下结构侧向刚度比等方面应注意的问题进行了探讨与研究,从中不断地改善高层建筑结构设计水平及保证工程的质量与使用安全。 关键词:高层建筑;转换层;结构布置;设计原则;问题 abstract: the paper mainly expounds the characteristics of the building conversion layers and the design principle, thus further on the base of the conversion layer structure layout, seismic design, conversion layers structure and the lateral stiffness ratio of the problems should pay attention has carried on the discussion and the research, to constantly improve designing high-rise level and ensure the quality of the construction and use safety. keywords: high building; conversion layers; the structure arrangement; design principle; question 中图分类号:[tu208.3]文献标识码:a 文章编号: 近年来,高层建筑发展迅速,建筑朝体型复杂、功能多样的综合性方向发展,因而相应的结构形式也复杂多样。目前,高层建筑一般需要大空间、大跨度,而住宅用房的空间和跨度相对较小,这样的建筑结构上下不能贯通,水路、电路因其用途不同,也需重新布置,为了满足建筑要求就必须在上下不同结构体系转换的楼层设

论桁架转换层的结构设计

论桁架转换层的结构设计 【摘要】随着高层建筑的增多,作为关键位置的转换层结构设计成为了整个工程的重要问题所在,本文结合实例详细分析了转换桁架的设计步骤以及需注意的细节,希望可以在确保建筑物安全的前提下,能够创造出很好的经济和社会效益。 【关键词】建筑工程;转换桁架;结构设计 对于整个高层建筑来说,转换层处于受力的重要位置,相比其他结构层,转换层具有受力复杂、结构层刚度大、重量大等特点,因此,转换层的设计对于整体结构来说意义重大,其设计的合理、安全、经济性对建筑项目也具有重要的影响。文章将结合某五星级酒店工程具体案例,从转换桁架结构设计方面进行系统的研究,以得到一些对设计有实际指导意义的结论。 1、工程概况 某五星级酒店工程为地下两层地上十层,因建筑功能需要在一至三层局部形成大空间高约15m;在四层形成局部桁架转换,桁架高度为四层整层高6.6m,桁架跨度为三个柱距3*9.6=28.8m;两端与型钢混凝土柱刚接;左右各延伸半跨以平衡负弯矩。桁架弦杆采用型钢砼,腹杆采用焊接箱型截面钢结构。整个结构以SETWE软件计算,通过PMSAP及STS桁架模块进行复核。 图1 结构三维线框图图2 桁架下弦平面布置图 图3 桁架立面图 2、构件设计 2.1桁架构件 桁架上下弦所在楼层及上托楼层屋面等共计八层荷载,首先以SATWE整体建模分析,楼层组装时3、4、5层一次形成刚度,模拟真实条件。再分别以PMSAP 及STS桁架模块复核内力及变形。由于桁架杆件内力大,腹杆采用焊接箱型截面,与上下翼缘采用刚接,为避免端部节点区域的破坏,端斜杆采用受压布置方式,为增强受压稳定性采用具有双受压翼缘的焊接箱型截面。端斜杆最大轴力Nmax=10000kN,采用箱型B600*40;受力较小斜腹杆采用B600*25;上下翼缘采用型钢混凝梁1000*1280内含焊接H型钢H1000*700*40*60;整个桁架采用刚接桁架,与型钢混凝土柱刚接。为确保上下弦楼面及上部楼层楼面竖向位移,严格控制桁架竖向挠度值、并以起拱方式消除部分挠度。 图4 STWE 计算结果

高层建筑转换层结构设计的

城市建筑┃建筑结构┃U RBANISM A ND A RCHITECTURE ┃A RCHITECTURAL S TRUCTURE 53 高层建筑转换层结构设计的探讨 Discussion on the Structure Design of High-rise Building Conversion Layer ■ 蒋晓华 ■ Jiang Xiaohua [摘 要] 随着我国建筑建设技术水平的不断提升,高层建筑成为了当前建筑建设的主要对象,而设计人员在当前对高层建筑进行设计的过程中,开始面临越来越多的转换层的问题。转换层的存在,加大了高层建筑空间结构设计的复杂性,设计人员必须立足于转换层的具体特点,实施针对性的结构设计,才能避免建筑建设问题。本文便是以高层建筑中的转换层为主题,通过探讨转换层的相关含义、类型、设计原则等,着重讨论了优化其结构设计的几点策略。 [关键词] 高层建筑 转换层 结构设计 优化策略 [Abstract] Along with the continuous improvement of China's construction technological level, high-rise buildings become the main target of the current building, and designers in the de- sign of high-rise buildings in the process, began to face increa- sing conversion layer problem. The conversion layer increased the complexity of space in high-rise building structure design, and design personnel must be based on its specific characterri- stics to design the structure, in order to avoid the construction problem. This paper taking the conversion layer of high-rise building as the theme, through the discussion of related meani- ng, conversion layer type, design principles, focuses on the op- timization of several strategies for its structure design. [Keywords] high-rise buildings, the conversion layer, structure design, optimization strategy 近年来,高层建筑建设在城市中的发展势头日益强盛,人们对于高层建筑的功能要求也逐渐地趋于多样化,办公楼层、商店、居民区等混杂在统一栋楼上,这就为不同楼层的空间结构提出了不同的需求,设计人员必须为建筑加设转换层方能同时满足各部门使用群体的要求。而转换层的设计较为复杂,非常容易出现质量问题,因此,设计人员在进行设计的过程中,必须充分把握转换层的类型与特点,以采取适当的结构设计方式,充分注重设计工作的重点与难点,以推动其设计目标的达成。 一、 高层建筑中转换层结构相关问题概述 1. 含义 高层建筑结构具有上部楼层受力小而上部楼层受力大的特点,设计人员普遍会提高下部结构的刚度以及墙、梁、柱等的数量,并在楼层逐渐升高的过程中,减少设计中的墙、柱结构应用,继而使建筑形成稳固的结构支撑柱网,这就决定高层建筑的下部结构空间要大于上部结构的空间,此种设计与常规建筑结构设计方案恰好相反,设计人员必须在空间结构转变的楼层加设水平的转换构件,才能保证设计目标的达成,此种结构设计即为高层建筑的转换层。 2. 形式 目前,高层建筑中转换层的设计,主要采取箱、 梁、板、柱、桁架、框架这几种结构形式,各种结构形式在设计中存在着显著的差别,这些差别便是设计者在进行结构设计时,必须遵从的前提与依据。本文下面就对箱、梁、板以及框架几种结构加以分析。 (1)梁式转换结构(如图1)常用于垂直转换施工,它以上部墙到转换梁再到下部柱的途径传递受力,传递路径直接顺畅,便于进行受力计算以及工程分析,高度大致为0.8~6.0 m,造价比较低。箱式结构(如图2)是在单项和双向的托梁配合的基础上,再与上层和下层楼板共同浇筑而成结构, 具有较高的刚度。 图 1 托梁与双向梁 图2 箱式结构 (2)板式结构(如图3)应用于上层和下层之间的柱网过多错开,且不具有规则的结构布置,梁支托难以实施楼层转换,板的厚度约为2.0~2.8 m,需要能够满足抗剪与抗切的要求,且此种结构便于灵活布设,但是它具有较大的自重,需要耗费诸多 材料。 图3 板式结构 (3)框架结构是以巨型柱或者竖向的筒体为大梁而构成的转换结构,具有较高的抗震性能,其下层的柱体结构布设,必须考虑实际拉应力的状况来选择适当的构件,且要在施工之前加设稳固的临时支撑结构,为目前转换层结构主要发展的趋势。 3. 原则 高层建筑中转换层的存在,非常容易造成建筑物在竖向层面的刚度突变,而不利于建筑对震害进行抵抗,所以,设计人员必须充分考虑这一问题,做好对于转换层结构的布设,其布设的原则如下。 (1)尽量将竖向的构件适当的减少,以降低转换层的刚度突变频率,且尽量将转换层设置于较低的楼层位置,刚度应当适当控制于较小的范围。 (2)设计人员要充分考虑楼层的结构受力状况,根据其受力传递的途径,选择受力结构适当的形式作为其转换层主要结构,以保证设计人员对于结构的分析及质量的控制。 二、 高层建筑中转换层结构优化设计策略 (1)设计人员在对转换层进行设计时,必须结合该建筑的具体设计方案,来选择适当的梁式、箱式或桁架、框架式的结构,以保证其转换层结构和建筑整体结构之间在设计方面的协调性,尽可能使质量中心贴近于刚度中心。比如,建筑的上层结构与下层结构在柱网错开幅度过大或全部错开时,应当选择梁式的转换层结构,以使上部轴网和下部轴网之间尽可能多的对齐。 (2)设计人员还要认真地做好对于落地构件的对称、均匀设计,并适当提高其强度等级与截面尺寸,以钢筋、混凝土材质为材料,保证转换层以下 的抗侧力构件对于抗剪以及抗弯刚度需求的满足。同时,设计人员还要避免建筑竖向结构刚度的过大差异,保证上层与下层二者的转换层结构差值处于1左右,并适当地将落地墙的厚度增加,并缩小洞口的尺寸,或将补偿剪力墙设置在结构中,以使建筑具有适当的空间刚度。 (3)设计人员应当通过根据梁跨中部位支座的正弯矩与负弯矩二者减弱的速度规律(前者快后者慢),将下部的钢筋设计为全部深进锚固结构的形式,可以取消弯筋设置,腰筋的直径要保持在16以上,配置间距控制于200 mm 以内。且,高层建筑的结构转换层不同于其它普通的薄壁杆件,它具有复杂的形状及受力状况,且需要承担相对集中的应力,因此,设计人员必须以整体计算作为基础,认真做好对于各部位构件的局部应力计算,并按照实际的应力分布状况,为转换层结构适当的配筋。 (4)设计人员还要尽量做好对于建筑的空间布设,高层建筑中的结构与设备的转换层一般位于同一楼层,若楼层高度为2.9 m,势必会造成楼层空间的浪费,若楼层高度小于2.2 m,又会造成建筑扭转 刚度与侧移刚度二者的增加,所以,为了应对建筑竖向刚度的突变,设计者还要尽可能地避免其转换层的过高设置(一般位于6层以下),并且可以适当地将结构与设备的转换层分开设置,前者设置于2~3层,而后者设置于4~5层。 (5)设计人员在设计转换层结构时,必须要使剪力墙某部分处于直接接地的布设状况,且框架支柱必须均匀疏密,剪力墙与支柱二者时间的距离适合控制于12 m 以内。同时,剪力墙应当优先选择大开间的布置形式,并适当地将下部结构的强度提升。在对转换大梁进行设计时,设计人员还要保证梁体在承受框架柱的应力的基础上,必须能够全面地承担短肢墙诱发的内力,为了达到这一目标,以加腋法为转换梁的两端进行处理,以提升其结构的抗剪力性能。

相关文档