文档库 最新最全的文档下载
当前位置:文档库 › 自然对数

自然对数

自然对数
自然对数

自然对数

以常数e为底数的对数叫做自然对数,记作lnN(N>0)。自然对数在物理学、生物学等自然科学中有重要的意义。

1数学表示方法

自然对数的一般表示方法为

数学中也常见以

表示自然对数。若为了避免与基为10的常用对数混淆,可用“全写”

2概念

它的含义是单位时间内,持续的翻倍增长所能达到的极限值

有关概念

自然对数的底数e是由一个重要极限给出的。我们定义:当n趋于无限时,

e是一个无限不循环小数,其值约等于2.718281828459…,它是一个超越数。对数函数

当自然对数中真数为连续自变量时,称为对数函数,记作

(x为自变量,y为因变量).

e的级数展开式

易证明:函数展开为x的幂级数(Maclaurin级数)是

特别地,当x=1时就得到了e的展开式

3意义

物理学意义

在热力学第二定律中,系统的宏观状态所对应的微观态的多少表现为宏观态的无序程度,同时也决定了宏观过程的方向性。看起来,一个宏观状态对应的微观状态的多少是个很重要的物理量,它标志着这个宏观态的无序程度,从中还可以推知系统将朝什么方向变化。物理学中用字母Ω表示一个宏观状态所对应的微观状态的数目。

为了研究方便,物理学家们用得更多的是一个与Ω相关的物理量,这就是今天常常听到的——熵(entropy),用字母S表示。玻尔兹曼在1877年提出了熵与微观态的数目Ω的关系,即S∝lnΩ,后来普朗克把它写成了等式S=klnΩ,式中k叫做玻尔兹曼常量。如前所述,既然微观态的数目Ω是分子运动无序性的一种量度,由于Ω越大,熵S也越大,那么熵S自然也是系统内分子运动无序性的量度。在引入熵之后,关于自然过程的方向性就可以表述为:在任何自然过程中,一个孤立系统的总熵不会减小。这就是用熵的概念表示的热力学第二定律。为此,不少人也把热力学第二定律叫做熵增加原理。

由熵的定义可以知道,熵较大的宏观状态就是无序程度较大的宏观状态,也就是出现概率较大的宏观状态。在自发过程中熵总是增加的,其原因并非因为有序是不可能的,而是因为通向无序的渠道要比通向有序的渠道多得多。把事情搞得乱糟糟的方式要比把事情做得整整齐齐的方式多得多。要让操场上的一群学生按班级、按身高,或按任何规则来站队都是比较麻烦的:每个学生都要找到自己的位置。但是要让已经站好队的学生解散,那就非常简单:每个学生随便朝一个方向跑去,队形就乱了。从微观的角度看,热力学第二定律是一个统计规律:一个孤立系统总是从熵小的状态向熵大的状态发展,而熵值较大代表着无序,所以自发的宏观过程总是向无序度更大的方向发展。

生物学意义

在连锁交换定律中,重组率或重组值是指双杂合体测交产生的重组型配子的比例,即重组率=重组配字数/总配子数(亲组合+重组和)×100%,重组是交换的结果,所以重组率(recombination fraction)通常也称作交换率(crossing over percentage)或交换值。可是仔细推敲起来,这两个数值是不尽相同。

如果我们假定,沿染色体纵长的各点上交换的发生大体上是随机的。那么可以这样认为,如果两个基因座相距很近,由交换而分开较少,重组率就低;如果两基因座离开很远,交换发生的次数较多,重组率就高。所以可以根据重组率的大小计算有关基因间的相对距离,把基因顺序地排列在染色体上,绘制出基因图。生物学家就是这样做的。

如果有关的两个基因座在染色体上分开较远,举例说重组率在12%-15%以上,那么进行杂交试验时,其间可能发生双交换或四交换等更高数目的偶数交换,形成的配子却仍然是非重组型的。这时如简单地把重组率看作数交换率,那么交换率就要被低估了。因为遗传图是以1%交换率作为图距单位的,所以如交换率低

估了,图距自然也随之缩小了,这就需要校正。校正的公式较多,可根据自己得出的连锁与交换试验的结果,提出单是适用于某一生物的校正公式。一般来说,

一个合适的校正公式应该满足下列两个条件:①最大的重组率不超过0.5或50%,因为这数值说明两个基因之间遵循自由组合定律;②较小的重组率应该大致上是加性的。常用的的较简单的公式是Haldane推导的作图函数R=[1-e^(-2x)]/2,式中R代表重组率,x代表交换率。这公式表示重组率与图距的关系,而图距的单位是1%交换率。

说明一下Haldane曲线的几点性质:①曲线的起始一小段基本上是直线,斜率接近于1,重组率可以直接看作是图距,所以重组率是加性的。②在曲线的曲度较大的区域,重组率就不是加性的了。当图距比较大,两端的基因的重组率就要小于相邻两个重组率之和,即Rab+Rbc>Rac,例如abc是三个连锁基因,两两间的重组率R值是非加性的,0.23+0.32>0.40。吧Haldane公式加以改写:

x=-ln(1-2R)/2,把上面R值代入公式,求得x值如下:在0.31+0.51,稍大于0.81,x值大致上成为加性的了。③标记基因间的图距很大时,重组率与图距无关,接近或等于1/2。

所以重组率大致代表交换率,但当重组率逐渐增大时,重组率往往小于交换率,需要加以校正。在实际应用时,要看研究的生物而定。像黑腹果蝇那样,各染色体上定位的基因已经很多,标记的区域已划分得很细,就无需用作图函数来校正了。但对一种新的生物开始进行连锁研究,可供利用的标记基因很少,这是最好用作图函数来加以校正,以得到更接近实际的图距。

4历史

约翰·纳皮尔在1614年以及Jost Bürgi(英语:Jost Bürgi)在6年后,分别发表了独立编制的对数表,当时通过对接近1的底数的大量乘幂运算,来找到指定范围和精度的对数和所对应的真数,当时还没出现有理数幂的概念,1742年William Jones(英语:William Jones (mathematician))才发表了幂指数概念。按后来人的观点,Jost Bürgi的底数1.0001相当接近自然对数的底数e,而约翰·纳皮尔的底数0.99999999相当接近1/e。实际上不需要做开高次方这种艰难运算,约翰·纳皮尔用了20年时间进行相当于数百万次乘法的计算,Henry Briggs(英语:Henry Briggs (mathematician))建议纳皮尔改用10为底数未果,他用自己的方法于1624年部份完成了常用对数表的编制。

形如f(x) = x的曲线都有一个代数反导数,除了特殊情况p = ?1对应于双曲线的弓形面积(英语:Quadrature (mathematics)),即双曲线扇形;其他情况都由1635年发表的卡瓦列里弓形面积公式(英语:Cavalieri's quadrature formula)给出,其中抛物线的弓形面积由公元前3世纪的阿基米德完成(抛物线的弓形面积(英语:The Quadrature of the Parabola)),双曲线的弓形面积需要发明一个新函数。1647年Grégoire de Saint-Vincent(英语:Grégoire de Saint-Vincent)将对数联系于双曲线xy=1的弓形面积,他发现x轴上[a,b]两点对应的双曲线线段与原点围成的双曲线扇形同[c,d]对应的扇形,在

a/b=c/d时面积相同,这指出了双曲线从x = 1到x = t的积分f(t)满足:1649年,Alphonse Antonio de Sarasa(英语:Alphonse Antonio de Sarasa)将双曲线下的面积解释为对数。大约1665年,伊萨克·牛顿推广了二项式定理,他将1/(1+x)展开并逐项积分,得到了自然对数的无穷级数。“自然对数”最早描述见于尼古拉斯·麦卡托在1668年出版的著作《Logarithmotechnia》中,他也独立发现了同样的级数,即自然对数的麦卡托级数。大约1730年,欧拉定义互为逆函数的指数函数和自然对数为:

e在科学技术中用得非常多,一般不使用以10为底数的对数。以e为底数,许多式子都能得到简化,用它是最“自然”的,所以叫“自然对数”。

我们可以从自然对数最早是怎么来的来说明其有多“自然”。以前人们做乘法就用乘法,很麻烦,发明了对数这个工具后,乘法可以化成加法,即:log(ab) = loga + logb。

但是能够这么做的前提是,我要有一张对数表,能够知道loga和logb是多少,然后求和,能够知道log多少等于这个和。虽然编对数表很麻烦,但是编好了就是一劳永逸的事情,因此有个大数学家开始编对数表。但他遇到了一个麻烦,就是这个对数表取多少作为底数最合适?10吗?或是2?为了决定这个底数,他做了如下考虑:

1.所有乘数/被乘数都可以化到0-1之内的数乘以一个10的几次方,这个用科学记数法就行了。

2.那么只考虑做一个0-1之间的数的对数表了,那么我们自然用一个0-1之间的数做底数(如果用大于1的数做底数,那么取完对数就是负数,不好看)。

3.这个0-1间的底数不能太小,比如0.1就太小了,这会导致很多数的对数都是零点几;而且“相差很大的两个数的对数值却相差很小”,比如0.1做底数时,两个数相差10倍时,对数值才相差1。换句话说,像0.5和0.55这种相差不大的数,如果用0.1做底数,那么必须把对数表做到精确到小数点以后很多位才能看出他们对数的差别。

4.为了避免这种缺点,底数一定要接近于1,比如0.99就很好,0.9999

就更好了。总的来说就是1 - 1/X ,X越大越好。在选了一个足够大的X(X越大,对数表越精确,但是算出这个对数表就越复杂)后,你就可以算(1-1/X)1 = P1 ,

(1-1/X)2 = P2 ,

……

那么对数表上就可以写上P1的对数值是1,P2的对数值是2……(以1-1/X 作为底数)。而且如果X很大,那么P1,P2,P3……间都靠得很紧,基本可以满足均匀地覆盖了0.1-1之间的区间。

5.最后他再调整了一下,用(1- 1/X)X作为底,这样P1的对数值就是1/X,P2的对数值就是2/ X,……PX的对数值就是1,这样不至于让一些对数值变得太大,比如若X=10000,有些数的对数值就要到几万,这样调整之后,各个数的对数值基本在0-1之间。两个值之间最小的差为1/X。

6.让对数表更精确,那么X就要更大,数学家算了很多次,1000,1万,十万,最后他发现,X变大时,这个底数(1 - 1/X)X趋近于一个值。这个值就是1/e,自然对数底的倒数(虽然那个时候还没有给它取名字)。其实如果我们第一步不是把所有值放缩到0.1-1之间,而是放缩到1-10之间,那么同样的讨论,最后的出来的结果就是e了--- 这个大数学家就是著名的欧拉(Euler),自然对数的名字e也就来源于欧拉的姓名。

当然后来数学家对这个数做了无数研究,发现其各种神奇之处,出现在对数表中并非偶然,而是相当自然或必然的。因此就叫它自然对数底了。

螺线

涡形或螺线型是自然事物极为普遍的存在形式,比如:一缕袅袅升上蓝天的炊烟,一朵碧湖中轻轻荡开的涟漪,数只缓缓攀援在篱笆上的蜗牛和无数在恬静的夜空携拥着旋舞的繁星……螺线表达自然律。螺线特别是对数螺线的美学意义可以用指数的形式来表达:φkρ=αe。其中,α和k为常数,φ是极角,ρ

是极径,e是自然对数的底。为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为“自然律”。因此,“自然律”的核心是e,其值为2.71828……,是一个无限不循环数。

自然律之美

“自然律”是e及由e经过一定变换和复合的形式。e是“自然律”的精髓,在数学上它是函数:(1+1/x)x

当X趋近无穷时的极限。人们在研究一些实际问题,如物体的冷却、细胞的繁殖、放射性元素的衰变时,都要研究(1+1/x)x,当X趋近无穷时的极限。正是这种从无限变化中获得的有限,从两个相反方向发展(当X趋向正无穷大的时,上式的极限等于e=2.71828……,当X趋向负无穷大时候,上式的结果也等于

e=2.71828……)得来的共同形式,充分体现了宇宙的形成、发展及衰亡的最本质的东西。

渊源及发展

1.宇宙与生命

现代宇宙学表明,宇宙起源于“大爆炸”,熵定律,即热力学第二定律相吻合。熵定律指出,物质的演化总是朝着消灭信息、瓦解秩序的方向,逐渐由复杂到简单、由高级到低级不断退化的过程。退化的极限就是无序的平衡,即熵最大的状态,一种无为的死寂状态。这过程看起来像什么?只要我们看看天体照相中的旋涡星系的照片即不难理解。如果我们一定要找到亚里士多德所说的那种动力因,那么,可以把宇宙看成是由各个预先上紧的发条组织,或者干脆把整个宇宙看成是一个巨大的发条,历史不过是这种发条不断争取自由而放出能量的过程。

生命体的进化却与之有相反的特点,它与热力学第二定律描述的熵趋于极大不同,它使生命物质能避免趋向与环境衰退。任何生命都是耗散结构系统,它之所以能免于趋近最大的熵的死亡状态,就是因为生命体能通过吃、喝、呼吸等新陈代谢的过程从环境中不断吸取负熵。新陈代谢中本质的东西,乃是使有机体成功的消除了当它自身活着的时候不得不产生的全部熵。

2.自然律的价值

“自然律”一方面体现了自然系统朝着一片混乱方向不断瓦解的崩溃过程(如元素的衰变),另一方面又显示了生命系统只有通过一种有序化过程才能维持自身稳定和促进自身的发展(如细胞繁殖)的本质。正是具有这种把有序和无序、生机与死寂寓于同一形式的特点,“自然律”才在美学上有重要价值。

如果荒僻不毛、浩瀚无际的大漠是“自然律”无序死寂的熵增状态,那么广阔无垠、生机盎然的草原是“自然律”有序而欣欣向荣的动态稳定结构。因此,大漠使人感到肃穆、苍茫,令人沉思,让人回想起生命历程的种种困顿和坎坷;而草原则使人兴奋、雀跃,让人感到生命的欢乐和幸福。

3.自然律的表达

e=2.71828……是“自然律”的一种量的表达。“自然律”的形象表达是螺线。螺线的数学表达式通常有下面五种:(1)对数螺线;(2)阿基米德螺线;(3)连锁螺线;(4)双曲螺线;(5)回旋螺线。对数螺线在自然界中最为普遍存在,其它螺线也与对数螺线有一定的关系,不过我们仍未找到螺线的通式。对数螺线是1638年经笛卡尔引进的,后来瑞士数学家雅各·伯努利曾详细研究过它,发现对数螺线的渐屈线和渐伸线仍是对数螺线,极点在对数螺线各点的切线仍是对数螺线,等等。伯努利对这些有趣的性质惊叹不止,竟留下遗嘱要将对数螺线画在自己的墓碑上。

4.螺线的哲学

英国著名画家和艺术理论家荷迦兹深深感到:旋涡形或螺线形逐渐缩小到它们的中心,都是美的形状。事实上,我们也很容易在古今的艺术大师的作品中找到螺线。为什么我们的感觉、我们的“精神的”眼睛经常能够本能地和直观地从这样一种螺线的形式中得到满足呢?这难道不意味着我们的精神,我们的“内在”世界同外在世界之间有一种比历史更原始的同构对应关系吗?

我们知道,作为生命现象的基础物质蛋白质,在生命物体内参与着生命过程的整个工作,它的功能所以这样复杂高效和奥秘无穷,是同其结构紧密相关的。化学家们发现蛋白质的多钛链主要是螺旋状的,决定遗传的物质——核酸结构也是螺旋状的。

古希腊人有一种称为风鸣琴的乐器,当它的琴弦在风中振动时,能产生优美悦耳的音调。这种音调就是所谓的“涡流尾迹效应”。让人深思的是,人类经过漫长岁月进化而成的听觉器官的内耳结构也具涡旋状。这是为便于欣赏古希腊人的风鸣琴吗?还有我们的指纹、发旋等等,这种审美主体的生理结构与外在世界的同构对应,也就是“内在”与“外在”和谐的自然基础。

有人说数学美是“一”的光辉,它具有尽可能多的变换群作用下的不变性,也即是拥有自然普通规律的表现,是“多”与“一”的统一,那么“自然律”也同样闪烁着“一”的光辉。谁能说清e=2.71828……给数学家带来多少方便和成功?人们赞扬直线的刚劲、明朗和坦率,欣赏曲线的优美、变化与含蓄,殊不知任何直线和曲线都可以从螺线中取出足够的部分来组成。有人说美是主体和客体的同一,是内在精神世界同外在物质世界的统一,那么“自然律”也同样有这种统一。人类的认识是按否定之否定规律发展的,社会、自然的历史也遵循着这种辩证发展规律,是什么给予这种形式以生动形象的表达呢?螺线!

5.自然律的哲学

有人说美在于事物的节奏,“自然律”也具有这种节奏;有人说美是动态的平衡、变化中的永恒,那么“自然律”也同样是动态的平衡、变化中的永恒;有人说美在于事物的力动结构,那么“自然律”也同样具有这种结构——如表的游丝、机械中的弹簧等等。

“自然律”是形式因与动力因的统一,是事物的形象显现,也是具象和抽象的共同表达。有限的生命植根于无限的自然之中,生命的脉搏无不按照宇宙的旋律自觉地调整着运动和节奏……有机的和无机的,内在的和外在的,社会的和自

然的,一切都合而为一。这就是“自然律”揭示的全部美学奥秘吗?不!“自然律”永远具有不能穷尽的美学内涵,因为它象征着广袤深邃的大自然。正因为如此,它才吸引并且值得人们进行不懈的探索,从而显示人类不断进化的本质力量。(原载《科学之春》杂志1984年第4期,原题为:《自然律——美学家和艺术家的瑰宝》)

7近似值

用计算机可以计算出e的近似值,如下:

0~500

e=2.71828 18284 59045 23536 02874 71352 66249 77572 47093 69995 95749 66967 62772 40766 30353 54759 45713 82178 52516 64274

27466 39193 20030 59921 8174135966 29043 57290 03342 95260

59563 07381 32328 62794 34907 63233 82988 07531 95251 01901

15738 34187 93070 21540 89149 93488 41675 09244 76146 06680

82264 80016 84774 11853 74234 54424 37107 53907 77449 92069

55170 27618 38606 26133 13845 83000 75204 49338 26560 29760

67371 13200 70932 87091 27443 74704 72306 96977 20931 01416

92836 81902 55151 08657 46377 21112 52389 78442 50569 53696

77078 54499 69967 94686 44549 05987 93163 68892 30098 79312

500~1000

77361 78215 42499 92295 76351 48220 82698 95193 66803 31825

28869 39849 64651 05820 93923 98294 88793 32036 25094 43117

30123 81970 68416 14039 70198 37679 32068 32823 76464 80429

53118 02328 78250 98194 55815 30175 67173 61332 06981 12509

96181 88159 30416 90351 59888 85193 45807 27386 67385 89422

87922 84998 92086 80582 57492 79610 48419 84443 63463 24496

84875 60233 62482 70419 78623 20900 21609 90235 30436 99418

49146 31409 34317 38143 64054 62531 52096 18369 08887 07016

76839 64243 78140 59271 45635 49061 30310 72085 10383 75051

01157 47704 17189 86106 87396 96552 12671 54688 95703 50354

1000后

02123 40784 98193 34321 06817 01210 05627 88023 51930 33224

74501 58539 04730 41995 77770 93503 66041 69973 29725 08868

76966 40355 57071 62268 44716 25607 98826 51787 13419 51246

65201 03059 21236 67719 43252 78675 39855 89448 96970 96409

75459 18569 56380 23637 01621 12047 74272 28364 89613 42251

64450 78182 44235 29486 36372 14174 02388 93441 24796 35743

70263 75529 44483 37998 01612 54922 78509 25778 25620 92622

64832 62779 33386 56648 16277 25164 01910 59004 91644 99828

93150 56604 72580 27786 31864 15519 56532 44258 69829 46959

30801 91529 87211 72556 34754 63964 47910 14590 40905 86298

49679 12874 06870 50489 58586 71747 98546 67757 57320 56812

88459 20541 33405 39220 00113 78630 09455 60688 16674 00169

84205 58040 33637 95376 45203 04024 32256 61352 78369 51177

88386 38744 39662 53224 98506 54995 88623 42818 99707 73327 61717 83928 03494 65014 34558 89707 19425 86398 77275 47109 62953 74152 11151 36835 06275 26023 26484 72870 39207 64310 05958 41166 12054 52970 30236 47254 92966 69381 15137 32275 36450 98889 03136 02057 24817 65851 18063 03644 28123 14965 50704 75102 54465 01172 72115 55194 86685 08003 68532 28183 15219 60037 35625 27944 95158 28418 82947 87610 85263 98139 55990 06737 64829 22443 75287 18462 45780 36192 98197 13991 47564 48826 26039 03381 44182 32625 15097 48279 87779 96437 30899 70388 86778 22713 83605 77297 88241 25611 90717 66394 65070 63304 52795 46618 55096 66618 56647 09711 34447 40160 70462 62156 80717 48187 78443 71436 98821 85596 70959 10259 68620 02353 71858 87485 69652 20005 03117 34392 07321 13908 03293 63447 97273 55955 27734 90717 83793 42163 70120 50054 51326 38354 40001 86323 99149 07054 79778 05669 78533 58048 96690 62951 19432 47309 95876 55236 81285 90413 83241 16072 26029 98330 53537 08761 38939 63917 79574 54016 13722 36187 89365 26053 81558 41587 18692 55386 06164 77983 40254 35128 43961 29460 35291 33259 42794 90433 72990 85731 58029 09586 31382 68329 14771 16396 33709 24003 16894 58636 06064 58459 25126 99465 57248 39186 56420 97526 85082 30754 42545 99376 91704 19777 80085 36273 09417 10163 43490 76964 23722 29435 23661 25572 50881 47792 23151 97477 80605 69672 53801 71807 76360 34624 59278 77846 58506 56050 78084 42115 29697 52189 08740 19660 90665 18035 16501 79250 46195 01366 58543 66327 12549 63990 85491 44200 01457 47608 19302 21206 60243 30096 41270 48943 90397 17719 51806 99086 99860 66365 83232 27870 93765 02260 14929 10115 17177 63594 46020 23249 30028 04018 67723 91028 80978 66605 65118 32600 43688 50881 71572 38669 84224 22010 24950 55188 16948 03221 00251 54264 94639 81287 36776 58927 68816 35983 12477 88652 01411 74110 91360 11649 95076 62907 79436 46005 85194 19985 60162 64790 76153 21038 72755 71269 92518 27568 79893 02761 76114 61625 49356 49590 37980 45838 18232 33686 12016 24373 65698 46703 78585 33052 75833 33793 99075 21660 69238 05336 98879 56513 72855 93883 49989 47074 16181 55012 53970 64648 17194 67083 48197 21448 88987 90676 50379 59036 69672 49499 25452 79033 72963 61626 58976 03949 85767 41397 35944 10237 44329 70935 54779 82629 61459 14429 36451 42861 71585 87339 74679 18975 71211 95618 73857 83644 75844 84235 55581 05002 56114 92391 51889 30994 63428 41393 60803 83091 66281 88115 03715 28496 70597 41625 62823 60921 68075 15017 77253 87402 56425 34708 79089 13729 17228 28611 51591 56837 25241 63077 22544 06337 87593 10598 26760 94420 32619 24285 31701 87817 72960 23541 30606 72136

04600 03896 61093 64709 51414 17185 77701 41806 06443 63681 54644 40053 31608 77831 43174 44081 19494 22975 59931 40118 88683 31483 28027 06553 83300 46932 90115 74414 75631 39997 22170 38046 17092 89457 90962 71662 26074 07187 49975 35921 27560 84414 73782 33032 70330 16823 71936 48002 17328 57349 35947 56433 41299 43024 85023 57322 14597 84328 26414 21684 87872 16733 67010 61509 42434 56984 40187 33128 10107 94512 72237 37886 12605 81656 68053 71439 61278 88732 52737 38903 92890 50686 53241 38062 79602 59303 87727 69778 37928 68409 32536 58807 33988 45721 87460 21005 31148 33513 23850 04782 71693 76218 00490 47955 97959 29059 16554 70505 77751 43081 75112 69898 51884 08718 56402 60353 05583 73783 24229 24185 62564 42550 22672 15598 02740 12617 97192 80471 39600 68916 38286 65277 00975 27670 69777 03643 92602 24372 84184 08832 51848 77047 26384 40379 53016 69054 65937 46161 93238 40363 89313 13643 27137 68884 10268 11219 89127 52230 56256 75625 47017 25086 34976 53672 88605 96675 27408 68627 40791 28565 76996 31378 97530 34660 61666 98042 18267 72456 05306 60773 89962 42183 40859 88207 18646 82623 21508 02882 86359 74683 96543 58856 68550 37731 31296 58797 58105 01214 91620 76567 69950 65971 53447 63470 32085 32156 03674 82860 83786 56803 07306 26576 33469 77429 56346 43716 70939 71930 60876 96349 53288 46833 61303 88294 31040 80029 68738 69117 06666 61468 00015 12114 34422 56023 87447 43252 50769 38707 77751 93299 94213 72772 11258 84360 87158 34835 62696 16619 80572 52661 22067 97540 62106 20806 49882 91845 43953 01529 98209 25030 05498 25704 33905 53570 16865 31205 26495 61485 72492 57386 20691 74036 95213 53373 25316 66345 46658 85972 86659 45113 64413 70331 39367 21185 69553 95210 84584 07244 32383 55860 63106 80696 49248 51232 63269 95146 03596 03729 72531 98368 42336 39046 32136 71011 61928 21711 15028 28016 04488 05880 23820 31981 49309 63695 96735 83274 20249 88245 68494 12738 60566 49135 25267 06046 23445 05492 27581 15170 93149 21879 59271 80019 40968 86698 68370 37302 20047 53143 38181 09270 80300 17205 93553 05207 00706 07223 39994 63990 57131 15870 99635 77735 90271 96285 06114 65148 37526 20956 53467 13290 02599 43976 63114 54590 26858 98979 11583 70934 19370 44115 51219 20117 16488 05669 45938 13118 38437 65620 62784 63104 90346 29395 00294 58341 16482 41149 69758 32601 18007 31699 43739 35069 66295 71241 02732 39138 74175 49230 71862 45454 32220 39552 73529 52402 45903 80574 45028 92246 88628 53365 42213 81572 21311 63288 11205 21464 89805 18009 20247 19391 71055 53901 13943 31668 15158 28843 68760 69611 02505 17100 73927 62385 55338 62725 53538 83096 06716 44662 37092 26468

09671 25406 18695 02143 17621 16681 40097 59528 14939 07222 60111 26811 53108 38731 76173 23235 26360 58381 73151 03459 57365 38223 53499 29358 22836 85100 78108 84634 34998 35184 04451 70427 01893 81994 24341 00905 75376 25776 75711 18090 08816 41833 19201 96262 34162 88166 52137 47173 25477 72778 34887 74366 51882 87521 56685 71950 63719 36565 39038 94493 66421 76400 31215 27870 22236 64636 35755 50356 55769 48886 54950 02708 53923 61710 55021 31147 41374 41061 34445 54419 21013 36172 99628 56948 99193 36918 47294 78580 72915 60885 10396 78195 94298 33186 48075 60836 79551 49663 64489 65592 94818 78517 84038 77332 62470 51945 05041 98477 42014 18394 77312 02815 88684 57072 90544 05751 06012 85258 05659 47030 46836 34459 26525 52137 00806 87520 09593 45360 73162 26118 72817 39280 74623 09468 53678 23106 09792 15993 60019 94623 79934 34210 68781 34973 46959 24646 97525 06246 95861 69091 78573 97659 51993 92993 99556 75427 14654 91045 68607 02099 01260 68187 04984 17807 91739 24071 94599 63230 60254 70790 17745 27513 18680 99822 84730 86076 65368 66855 51646 77029 11336 82756 31072 23346 72611 37054 90795 36583 45386 37196 23585 63126 18387 15677 41187 38527 72292 25947 43373 78569 55384 56246 80101 39057 27871 01651 29666 36764 45187 24656 53730 40244 36841 40814 48873 29578 47348 49000 30194 77888 02046 03246 60842 87535 18483 64959 19508 28883 23206 52212 81041 90448 04724 79492 91342 28495 19700 22601 31043 00624 10717 97150 27934 33263 40799 59605 31446 05323 04885 28972 91765 98760 16667 81193 79323 72453 85720 96075 82277 17848 33616 13582 61289 62261 18129 45592 74627 67137 79448 75867 53657 54486 14076 11931 12595 85126 55759 73457 30153 33642 63076 79854 43385 76171 53334 62325 27057 20053 03988 28949 90342 59566 23297 57824 88735 02925 91668 25894 45689 46559 92658 45476 26945 28780 51650 17206 74785 41788 79822 76806 53665 06419 10973 43452 88783 38621 72615 62695 82654 47820 56729 87756 42632 53215 94294 41803 99432 17000 09054 26507 63095 58846 58951 71709 14760 74371 36893 31946 90909 81904 50129 03070 99566 22662 03031 82649 36573 36984 19555 77696 37876 24918 85286 56866 07600 56602 56054 45711 33728 68402 05574 41603 08370 52312 24258 72234 38854 12317 94813 88550 07568 93811 24935 38631 86352 87083 79984 56926 19981 79452 33640 87429 59118 07474 53419 55142 03517 26184 20084 55091 70845 68236 82008 97739 45584 26792 14273 47756 08796 44279 20270 83121 50156 40634 13416 17166 44806 98154 83764 49157 39001 21217 04154 78725 91998 94382 53649 50514 77137 93991 47205 21952 90793 96137 62110 72384 94290 61635 76045 96231 25350 60685 37651 42311 53496 65683 71511 66042 20796 39446

66211 63255 15772 90709 78473 15627 82775 98788 13649 19512

57483 32879 37715 71459 09106 48416 42678 30994 97236 74420

17586 22694 02159 40792 44805 41255 36043 13179 92696 73915

75424 19296 60731 23937 63542 13923 06178 76753 95871 14361

04089 40996 60894 71418 34069 83629 93675 36262 15452 47298

46421 37528 91079 88438 13060 95552 62272 08375 18629 83706

67872 24430 19579 37937 86072 10725 42772 89071 73285 48743

74355 78196 65117 16618 33088 11291 20245 20404 86822 00072

34403 50254 48202 83425 41878 84653 60259 15064 45271 65770

00445 21097 73558 58976 22655 48494 16217 14989 53238 34216

00114 06295 07184 90427 78925 85527 43035 22139 68356 79018

07640 60421 38307 30877 44601 70842 68827 22611 77180 84266

43336 51780 00217 19034 49234 26426 62922 61456 00433 73838

68335 55534 34530 04264 81847 39892 15627 08609 56506 29340

40526 49432 44261 44566 59212 91225 64889 35696 55009 15430

64261 34252 66847 25949 14314 23939 88454 32486 32746 18428

46655 98533 23122 10466 25989 01417 12103 44608 42716 16619

00125 71958 70793 21756 96985 44013 39762 20967 49454 18540

71184 46433 94699 01626 98351 60784 89245 14058 94094 63952

67807 35457 97003 07051 16368 25194 87701 18976 40028 27648

41416 05872 06184 18529 71891 54019 68825 32893 09149 66534

57535 71427 31848 20163 84644 83249 90378 86069 00807 27093

27673 12758 19665 63941 14896 17168 32980 45513 97295 06687

60474 09154 20428 42999 35410 25829 11350 22416 90769 43166

85742 42522 50902 69390 34814 85645 13030 69925 19959 04363

84028 42926 74125 73422 44776 55841 77886 17173 72654 62085

49829 44989 46787 35092 95816 52632 07225 89923 68768 45701

78230 38096 56788 31122 89305 80914 05726 10865 88484 58731

01658 15116 75333 27674 88701 48291 67419 70151 25597 82572

70740 64318 08601 42814 90241 46780 47232 75976 84269 63393

57735 42930 18673 94397 16388 61176 42090 04068 66339 88568

41681 00387 23892 14483 17607 01166 84503 88721 23643 67043

31409 11557 33280 18297 79887 36590 91665 96124 02021 77855

88548 76176 16198 93707 94380 05666 33648 84365 08914 48055

71039 76521 46960 27662 58359 90519 87042 30017 94655 36788 ...... 8复数类型

问题:求复数a+bi的自然对数

解答:把复数a+bi写成指数形式,也就是re^(iθ)。

(r为复数a+bi的模,即r=√(a^2+b^2),θ为复数a+bi的辐角主值)

a+bi=re^(iθ)

我们注意到:r=e^ln(r)。如:2=e^ln(2)等。

所以re^(iθ)=e^ln(r)·e^(iθ)=e^(ln(r)+iθ)

即a+bi=e^(ln(r)+iθ)

而根据自然对数的定义,若x=e^n,那么ln(x)=n

所以ln(a+bi)=ln(r)+iθ

例:求ln(-1)

这里r=1(实数的模就是实数的绝对值,|-1|=1),θ=π(-1的辐角主值是180°,即π弧度)。

代入,ln(-1)=ln(1)+πi=πi

实际上,ln(-1)=πi,可根据自然对数的定义推出e^(πi)=-1,移项,得

e^(πi)+1=0。这就是最美的公式。

9e与π

数学讲求规律和美学,可是圆周率π和自然对数e那样基本的常量却那么混乱,就如同两个“数学幽灵”。人们找不到π和e的数字变化的规律,可能的原因:例如:人们用的是十进制,古人掰指头数数,因为是十根指头,所以定下了十进制,而二进制才是宇宙最朴素的进制,也符合阴阳理论,1为阳,0为阴。再例如:人们把π和e与那些规整的数字比较,所以觉得e和π很乱,因此涉及“参照物”的问题。那么,如果把π和e都换算成最朴素的二进制,并且把π和e这两个混乱的数字相互比较,就会发现一部分数字规律,e的小数部分的前17位与π的小数部分的第5-21位正好是倒序关系,这么长的倒序,或许不是巧合。

说明[ ]符号内为17位倒序区。

二进制π取部分值为

11.0010[01000011111101101]010100010001000010110100011

二进制e取部分值为

10.[10110111111000010]101000101100010100010101110110101

17位倒序区的意义:或许暗示e和π的发展初期可能按照某种彼此相反的规律发展,之后e和π都脱离了这个规律。

欧拉公式把e和π联系在了一起,即e的π乘以i次方所得的结果加1等于0,这被认为数学上最美的公式。

欧拉公式把数学中五个重要的常量1、0、e、π、i汇聚在了一起。

对数函数练习题(有答案)

对数函数练习题(有答案) 1.函数y =log (2x -1)(3x -2)的定义域是( ) A .????12,+∞ B .????23,+∞ C .????23,1∪(1,+∞) D .??? ?12,1∪(1,+∞) 2.若集合A ={ x |log 2x =2-x },且 x ∈A ,则有( ) A .1>x 2>x B .x 2>x >1 C .x 2>1>x D .x >1>x 2 3.若log a 3>log b 3>0,则 a 、b 、1的大小关系为( ) A .1<a <b B .1 <b <a C .0 <a <b <1 D .0 <b <a <1 4.若log a 45<1,则实数a 的取值范围为( ) A .a >1 B .0<a <45 C .45<a D .0<a <45 或a >1 5.已知函数f (x )=log a (x -1)(a >0且 a ≠1)在x ∈(1,2)时,f (x )<0,则f (x )是 " A .增函数 B .减函数 C .先减后增 D .先增后减 6.如图所示,已知0<a <1,则在同一直角坐标系中,函数y =a -x 和y =log a (-x )的图象只可能为( ) 7.函数y =f (2x )的定义域为[1,2],则函数y =f (log 2x )的定义域为 ( ) A .[0,1] B .[1,2] C .[2,4] D .[4,16] 8.若函数f (x )=log 12 ()x 3-ax 上单调递减,则实数a 的取值范围是 ( ) A .[9,12] B .[4,12] C .[4,27] D .[9,27] 9.函数y =a x -3+3(a >0,且a ≠1)恒过定点__________. 10.不等式????1310-3x <3-2x 的解集是_________________________. | 11.(1)将函数f (x )=2x 的图象向______平移________个单位,就可以得到函数g (x )=2x -x 的图象.(2)函数 f (x )=????12|x -1| ,使f (x )是增区间是_________. 12.设 f (log 2x )=2x (x >0).则f (3)的值为 . 13.已知集合A ={x |2≤x ≤π,x ∈R}.定义在集合A 上的函数f (x )=log a x (0<a <1)的最大值比最小值大1,则底数a 为__________.

对数函数知识点总结(供参考)

对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数,记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 说明:○1 注意底数的限制0>a ,且1≠a ; ○2 x N N a a x =?=log ; ○3 注意对数的书写格式. 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ;0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log = ; (2)a b b a log 1log =. (二)对数函数 1、对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函 数,其中x 是自变量,函数的定义域是(0,+∞). 注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如:x y 2log 2=,5 log 5x y = 都不是对数函数,而只能称 其为对数型函数. ○ 2 对数函数对底数的限制:0(>a ,且)1≠a . 对数函数·例题解析 例1.求下列函数的定义域: (1)2log x y a =; (2))4(log x y a -=; (3))9(log 2 x y a -=.

对数函数及其性质练习题及答案解析

1.函数f (x )=lg(x -1)+4-x 的定义域为( ) A .(1,4] B .(1,4) C .[1,4] D .[1,4) 解析:选A.????? x -1>04-x ≥0 ,解得10时,y =x x log 2x =log 2x ;当x <0时,y =x -x log 2(-x )=-log 2(-x ),分别作图象可知选D. 3.(2010年高考大纲全国卷Ⅰ)已知函数f (x )=|lg x |,若a ≠b ,且f (a )=f (b ),则ab =( ) A .1 B .2 C.1 2 D.14 解析:选A.如图由f (a )=f (b ), 得|lg a |=|lg b |. 设0<a <b ,则lg a +lg b =0. ∴ab =1. 4.函数y =log a (x +2)+3(a >0且a ≠1)的图象过定点________. 解析:当x =-1时,log a (x +2)=0,y =log a (x +2)+3=3,过定点(-1,3). 答案:(-1,3) 1.下列各组函数中,定义域相同的一组是( ) A .y =a x 与y =log a x (a >0,且a ≠1) B .y =x 与y =x C .y =lg x 与y =lg x D .y =x 2与y =lg x 2 解析:选C.A.定义域分别为R 和(0,+∞),B.定义域分别为R 和[0,+∞),C.定义域都是(0,+∞),D.定义域分别为R 和x ≠0. 2.函数y =log 2x 与y =log 12x 的图象关于( ) A .x 轴对称 B .y 轴对称 C .原点对称 D .直线y =x 对称 解析:选A.y =log 12x =-log 2x . 3.已知a >0且a ≠1,则函数y =a x 与y =log a (-x )的图象可能是( )

对数与对数函数知识梳理

对数与对数函数 【考纲要求】 1.掌握对数的概念、常用对数、对数式与指数式互化,对数的运算性质、换底公式与自然对数; 2.掌握对数函数的概念、图象和性质. 3.正确使用对数的运算性质;底数a 对图象的影响及对数函数性质的作用. 4.通过对指数函数的概念、图象、性质的学习,培养观察、分析归纳的能力,进一步体会数形结合的思想方法; 【知识网络】 【考点梳理】 考点一、对数概念及其运算 我们在学习过程遇到2x =4的问题时,可凭经验得到x=2的解,而一旦出现2x =3时,我们就无法用已学过的知识来解决,从而引入出一种新的运算——对数运算. (一)对数概念: 1.如果()01b a N a a =>≠,且,那么数 b 叫做以a 为底N 的对数, 记作:log a N=b.其中a 叫做对数的底数,N 叫做真数. 2.对数恒等式: log log a b N a a N a N N b ?=?=?=? 3.对数()log 0a N a >≠,且a 1具有下列性质: (1)0和负数没有对数,即0N >; (2)1的对数为0,即log 10a =; (3)底的对数等于1,即log 1a a =. (二)常用对数与自然对数 通常将以10为底的对数叫做常用对数,N N lg log 10简记作. 以e 为底的对数叫做自然对数, log ln e N N 简记作. (三)对数式与指数式的关系 由定义可知:对数就是指数变换而来的,因此对数式与指数式联系密切,且可以互相转化. 它们的关系可由下图表示. 对数与对数函数 图象与性质 对数运算性质 对数函数的图像与 对数的概念 指对互化运算

对数公式的运算

对数公式的运用 1.对数的概念 如果a(a>0,且a≠1)的b次幂等于N,即a b=N,那么数b叫做以a为底N的对数,记作:log a N=b,其中a叫做对数的底数,N叫做真数. 由定义知: ①负数和零没有对数; ②a>0且a≠1,N>0; ③log a1=0,log a a=1,a logaN=N(对数恒等式),log a a b=b。 特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN; 以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作log e N,简记为lnN. 2.对数式与指数式的互化 式子名称a b=N 指数式a b=N(底数)(指数)(幂值) 对数式log a N=b(底数) (真数) (对数) 3.对数的运算性质 如果a>0,a≠1,M>0,N>0,那么 (1)log a(MN)=log a M+log a N. (2)log a(M/N)=log a M-log a N. (3)log a M n=nlog a M(n∈R). 问:①公式中为什么要加条件a>0,a≠1,M>0,N>0? ②log a a n=? (n∈R) ③对数式与指数式的比较.(学生填表) 式子a b=N,log a N=b名称:a—幂的底数b—N— a—对数的底数b—N— 运算性质: a m·a n=a m+n a m÷a n= a m-n (a>0且a≠1,n∈R) log a MN=log a M+log a N log a MN= log a M n= (n∈R) (a>0,a≠1,M>0,N>0) 难点疑点突破 对数定义中,为什么要规定a>0,,且a≠1? 理由如下: ①a<0,则N的某些值不存在,例如log-28=? ②若a=0,则N≠0时b不存在;N=0时b不惟一,可以为任何正数? ③若a=1时,则N≠1时b不存在;N=1时b也不惟一,可以为任何正数? 为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数?

对数函数知识点及典型例题讲解

对数函数知识点及典型例题讲解 1.对数: (1) 定义:如果,那么称为,记作,其中称为对数的底,N称为真数. ①以10为底的对数称为常用对数,记作___________. ②以无理数为底的对数称为自然对数,记作_________. (2) 基本性质: ①真数N为 (负数和零无对数);②;③; ④对数恒等式:. (3) 运算性质: ① log a(MN)=___________________________; ② log a=____________________________; ③ log a M n= (n∈R). ④换底公式:log a N= (a>0,a≠1,m>0,m≠1,N>0) ⑤ . 2.对数函数: ①定义:函数称为对数函数,1) 函数的定义域为( ;2) 函数的值域为; 3) 当______时,函数为减函数,当______时为增函数; 4) 函数与函数互为反函数. ② 1) 图象经过点( ),图象在;2) 对数函数以为渐近线(当时,图象向上无限接近y轴;当时,图象向下无限接近y轴); 4) 函数y=log a x与的图象关于x轴对称. ③函数值的变化特征: ①②③①②③ 例1 计算:(1) (2)2(lg)2+lg·lg5+; (3)lg-lg+lg. 解:(1)方法一利用对数定义求值设=x,则(2+)x=2-==(2+)-1,∴x=-1.方法二利用对数的运算性质求解 = =(2+)-1=-1.

(2)原式=lg(2lg+lg5)+=lg(lg2+lg5)+|lg-1| =lg+(1-lg)=1. (3)原式=(lg32-lg49)-lg8+lg245 = (5lg2-2lg7)-×+ (2lg7+lg5) =lg2-lg7-2lg2+lg7+lg5=lg2+lg5 =lg(2×5)= lg10=. 变式训练1:化简求值. (1)log2+log212-log242-1; (2)(lg2)2+lg2·lg50+lg25; (3)(log32+log92)·(log43+log83). 解:(1)原式=log2+log212-log2-log22=log2 (2)原式=lg2(lg2+lg50)+lg25=2lg2+lg25=lg100=2. (3)原式=( 例2 比较下列各组数的大小. (1)log3与log5;(2)log1.10.7与(3)已知logb<loga<logc,比较2b,2a,2c的大小关系.解:(1)∵log3<log31=0,而log5>log51=0,∴log3<log5. (2)方法一∵0<<1,<,∴0>, ∴, 即由换底公式可得log1.10.7<方法二作出y=与y=的图象. 如图所示两图象与x=相交可知log1.10.7<为减函数,且, ∴b>a>c,而y=2x是增函数,∴2b>2a>2c. 变式训练2:已知0<a<1,b>1,ab>1,则log a的大小关系是() B. C. D. 解: C 例3已知函数f(x)=log a x(a>0,a≠1),如果对于任意x∈[3,+∞)都有|f(x)|≥1成立,试求a的取值范围. 解:当a>1时,对于任意x∈[3,+∞),都有f(x)>0. 所以,|f(x)|=f(x),而f(x)=log a x在[3,+∞)上为增函数, ∴对于任意x∈[3,+∞),有f(x)≥log a3. 因此,要使|f(x)|≥1对于任意x∈[3,+∞)都成立. 只要log a3≥1=log a a即可,∴1<a≤3. 当0<a<1时,对于x∈[3,+∞),有f(x)<0, ∴|f(x)|=-f(x). ∵f(x)=log a x在[3,+∞)上为减函数, ∴-f(x)在[3,+∞)上为增函数. ∴对于任意x∈[3,+∞)都有

自然对数表

自然对数表 1.0 0.0000 0.0100 0.0198 0.0296 0.0392 0.0488 0.0583 0.0677 0.0770 0.0862 1.1 0.0953 0.1044 0.1133 0.1222 0.1310 0.1398 0.1484 0.1570 0.1655 0.1740 1.2 0.1823 0.1906 0.1989 0.2070 0.2151 0.2231 0.2311 0.2390 0.2469 0.2546 1.3 0.2624 0.2700 0.2776 0.2852 0.2927 0.3001 0.3075 0.3148 0.3221 0.3293 1.4 0.3365 0.3436 0.3507 0.3577 0.3646 0.3716 0.3784 0.3853 0.3920 0.3988 1.5 0.4055 0.4121 0.4187 0.4253 0.4318 0.4383 0.4447 0.4511 0.4574 0.4637 1.6 0.4700 0.4762 0.4824 0.4886 0.4947 0.5008 0.5068 0.5128 0.5188 0.5247 1.7 0.5306 0.5365 0.5423 0.5481 0.5539 0.5596 0.5653 0.5710 0.5766 0.5822 1.8 0.5878 0.5933 0.5988 0.6043 0.6098 0.6152 0.6206 0.6259 0.6313 0.6366 1.9 0.6419 0.6471 0.6523 0.6575 0.6627 0.6678 0.6729 0.6780 0.6831 0.6881 2.0 0.6931 0.6981 0.7031 0.7080 0.7129 0.7178 0.7227 0.7275 0.7324 0.7372 2.1 0.7419 0.7467 0.7514 0.7561 0.7608 0.7655 0.7701 0.7747 0.7793 0.7839 2.2 0.7885 0.7930 0.7975 0.8020 0.8065 0.8109 0.8154 0.8198 0.8242 0.8286 2.3 0.8329 0.8372 0.8416 0.8459 0.8502 0.8544 0.8587 0.8629 0.8671 0.8713 2.4 0.8755 0.8796 0.8838 0.8879 0.8920 0.8961 0.9002 0.9042 0.9083 0.9123 2.5 0.9163 0.9203 0.9243 0.9282 0.9322 0.9361 0.9400 0.9439 0.9478 0.9517 2.6 0.9555 0.9594 0.9632 0.9670 0.9708 0.9746 0.9783 0.9821 0.9858 0.9895 2.7 0.9933 0.9969 1.0006 1.0043 1.0080 1.0116 1.0152 1.0188 1.0225 1.0260 2.8 1.0296 1.0332 1.0367 1.0403 1.0438 1.0473 1.0508 1.0543 1.0578 1.0613 2.9 1.0647 1.0682 1.0716 1.0750 1.0784 1.0818 1.0852 1.0886 1.0919 1.0953 3.0 1.0986 1.1019 1.1053 1.1086 1.1119 1.1151 1.1184 1.1217 1.1249 1.1282 3.1 1.1314 1.1346 1.1378 1.1410 1.1442 1.1474 1.1506 1.1537 1.1569 1.1600 3.2 1.1632 1.1663 1.1694 1.1725 1.1756 1.1787 1.1817 1.1848 1.1878 1.1909 3.3 1.1939 1.1969 1.2000 1.2030 1.2060 1.2090 1.2119 1.2149 1.2179 1.2208 3.4 1.2238 1.2267 1.2296 1.2326 1.2355 1.2384 1.2413 1.2442 1.2470 1.2499 3.5 1.2528 1.2556 1.2585 1.2613 1.2641 1.2669 1.2698 1.2726 1.2754 1.2782 3.6 1.2809 1.2837 1.2865 1.2892 1.2920 1.2947 1.2975 1.3002 1.3029 1.3056 3.7 1.3083 1.3110 1.3137 1.3164 1.3191 1.3218 1.3244 1.3271 1.3297 1.3324 3.8 1.3350 1.3376 1.3403 1.3429 1.3455 1.3481 1.3507 1.3533 1.3558 1.3584 3.9 1.3610 1.3635 1.3661 1.3686 1.3712 1.3737 1.3762 1.3788 1.3813 1.3838 4.0 1.3863 1.3888 1.3913 1.3938 1.3962 1.3987 1.4012 1.4036 1.4061 1.4085 4.1 1.4110 1.4134 1.4159 1.4183 1.4207 1.4231 1.4255 1.4279 1.4303 1.4327 4.2 1.4351 1.4375 1.4398 1.4422 1.4446 1.4469 1.4493 1.4516 1.4540 1.4563 4.3 1.4586 1.4609 1.4633 1.4656 1.4679 1.4702 1.4725 1.4748 1.4770 1.4793 4.4 1.4816 1.4839 1.4861 1.4884 1.4907 1.4929 1.4951 1.4974 1.4996 1.5019 4.5 1.5041 1.5063 1.5085 1.5107 1.5129 1.5151 1.5173 1.5195 1.5217 1.5239 4.6 1.5261 1.5282 1.5304 1.5326 1.5347 1.5369 1.5390 1.5412 1.5433 1.5454 4.7 1.5476 1.5497 1.5518 1.5539 1.5560 1.5581 1.5602 1.5623 1.5644 1.5665 4.8 1.5686 1.5707 1.5728 1.5748 1.5769 1.5790 1.5810 1.5831 1.5851 1.5872 4.9 1.5892 1.5913 1.5933 1.5953 1.5974 1.5994 1.6014 1.6034 1.6054 1.6074 5.0 1.6094 1.6114 1.6134 1.6154 1.6174 1.6194 1.6214 1.6233 1.6253 1.6273 5.1 1.6292 1.6312 1.6332 1.6351 1.6371 1.6390 1.6409 1.6429 1.6448 1.6467

对数函数知识点

对数函数知识点 1 ?对数函数的概念 形如y =log a x(a . 0且a = 1)的函数叫做对数函数. 说明:(1) 一个函数为对数函数的条件是: ①系数为1 ; ②底数为大于0且不等于1的正常数; ③自变量为真数? 对数型函数的定义域: 特别应注意的是:真数大于零、底数大于零且不等于1。 2、由对数的定义容易知道对数函数y二log a x(a ? 0,a = 1)是指数函数y=a x(a .0,a=1)的反函数。 反函数及其性质 ①互为反函数的两个函数的图象关于直线y=x对称。 ②若函数y = f(x)上有一点(a,b),则(b,a)必在其反函数图象上,反之若(b, a)在反函数图象上,则(a,b)必在原函数图象上。 ③利用反函数的性质,由指数函数y二a x(a .0,a")的定义域x R,值域y?0, 容易得到对数函数y"og a x(a .0,a=1)的定义域为x 0,值域为R,利用上节学过的 对数概念,也可得出这一点。 3 4

要牢记y = 2X, y =(1)x, y = 10x, y = (£)x的反函数 y =log2X, y =log! x, y =lg x, y =log ! x的图象,并由此归纳出表中结论。 2 10 5、比较大小 比较对数的大小,一般遵循以下几条原则: ①如果两对数的底数相同,则由对数函数的单调性(底数a -1为增;0 :::a :::1为减)比较。 ②如果两对数的底数和真数均不相同,通常引入中间变量进行比较。 ③如果两对数的底数不同而真数相同,女口y = log ai x与y = log a2x的比较(a 0,印=1, a2 0,a2 = 1). 当a, a2 ? 1时,曲线y1比y的图象(在第一象限内)上升得慢,即当x 1时,m;当0:::x”:1时,y1 y2.而在第一象限内,图象越靠近x轴对数函数的底数越大(同[考题2]的含义)当0 ::: a? ::? <1时,曲线y比月2的图象(在第四象限内)下降得快,即当x 1时, y ■■■ y ;当0 ”:x ::: 1时,y1 y即在第四象限内,图象越靠近x轴的对数函数的底数越小。 6、求参数范围 凡是涉及对数的底含参数的问题,要注意对对数的底数的分析,需要分类讨论时,一定 要分类讨论。

对数函数典型例题

对数运算与对数函数复习 例1.求下列函数的定义域: (1)2log x y a =; (2))4(log x y a -=; (3))9(log 2x y a -=. 例2.比较下列各组数中两个值的大小: (1)2log 3.4,2log 8.5; (2)0.3log 1.8,0.3log 2.7; (3)log 5.1a ,log 5.9a . (4)0.91.1, 1.1log 0.9,0.7log 0.8; 例3.求下列函数的值域: (1)2log (3)y x =+;(2)22log (3)y x =-;(3)2log (47) a y x x =-+(0a >且1a ≠).

例4.(1)已知:36log ,518,9log 3018求==b a 值. 例5.判断函数2()log )f x x =的奇偶性。

对数运算与对数函数复习练习 一、选择题 1.3 log 9log 28的值是( ) A .32 B .1 C .2 3 D .2 2.函数)2(x f y =的定义域为[1,2],则函数)(log 2x f y =的定义域为( ) A .[0,1] B .[1,2] C .[2,4] D .[4,16] 3.函数2x log y 5+=(x ≥1)的值域是( ) A .R B .[2,+∞] C .[3,+∞] D .(-∞,2) 4.如果0-+ C .0)a 1(log )a 1(>+- D .0)a 1(log )a 1(<-+ 5.如果02log 2log b a >>,那么下面不等关系式中正确的是( ) A .0b>1 D .b>a>1 6 若a>0且a ≠1,且14 3log a <,则实数a 的取值范围是( ) A .0或 D .4 3a 0<<或a>1 7.设0,0,a b <<且,722ab b a =+那么1lg |()|3 a b +等于( ) A .1(lg lg )2a b + B .1lg()2ab C .1(lg ||lg ||)3a b + D .1lg()3 ab 8.如果1x >,12log a x =,那么( ) A .22a a a >> B .22a a a >> C .22a a a >> D .22a a a >> 二、填空题(共8题) 8.计算=+?+3log 22450lg 2lg 5lg . 10.若4 12x log 3=,则x =________ 11 .函数f(x)的定义域是[-1,2],则函数)x (log f 2的定义域是_____________ 12.函数x )31 (y =的图象与函数x log y 3-=的图象关于直线___________对称.

对数函数及其性质-对数的公式互化-详尽的讲解

2.1 对数与对数运算 1.对数的概念 一般地,如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数. 说明:(1)实质上,上述对数表达式,不过是指数函数y =a x 的另一种表达形式,例如:34=81与4=log 381这两个式子表达是同一关系,因此,有关系式a x =N ?x =log a N ,从而得对数恒等式:a log a N =N . (2)“log ”同“+”“×”“ ”等符号一样,表示一种运算,即已知一个数和它的幂求指数的运算,这种运算叫对数运算,不过对数运算的符号写在数的前面. (3)根据对数的定义,对数log a N (a >0,且a ≠1)具有下列性质: ①零和负数没有对数,即N >0; ②1的对数为零,即log a 1=0; ③底的对数等于1,即log a a =1. 2.对数的运算法则 利用对数的运算法则,可以把乘、除、乘方、开方的运算转化为对数的加、减、乘、除运算,反之亦然.这种运算的互化可简化计算方法,加快计算速度. (1)基本公式 ①log a (MN )=log a M +log a N (a >0,a ≠1,M >0,N >0),即正数的积的对数,等于同一底数的各个因数的对数的和. ②log a M N =log a M -log a N (a >0,a ≠1,M >0,N >0),即两个正数的商的对数,等于被除数 的对数减去除数的对数. ③log a M n =n ·log a M (a >0,a ≠1,M >0,n ∈R ),即正数的幂的对数等于幂的底数的对数乘以幂指数. (2)对数的运算性质注意点 ①必须注意M >0,N >0,例如log a [(-3)×(-4)]是存在的,但是log a (-3)与log a (-4)均不存在,故不能写成log a [(-3)×(-4)]=log a (-3)+log a (-4). ②防止出现以下错误:log a (M ±N )=log a M ±log a N ,log a (M ·N )=log a M ·log a N ,log a M N = log a M log a N ,log a M n =(log a M )n . 3.对数换底公式 在实际应用中,常碰到底数不为10的对数,如何求这类对数,我们有下面的对数换底

指数函数和对数函数·换底公式·例题

指数函数和对数函数·换底公式·例题 例1-6-38log34·log48·log8m=log416,则m 为 [ ] 解 B 由已知有 [ ] A.b>a>1 B.1>a>b>0 C.a>b>1 D.1>b>a>0

解 A 由已知不等式得 故选A. [ ] 故选A.

[ ] A.[1,+∞] B.(-∞,1] C.(0,2) D.[1,2) 2x-x2>0得0<x<2.又t=2x-x2=-(x-1)2+1在[1,+∞)上是减函数, [ ] A.m>p>n>q B.n>p>m>q

C.m>n>p>q D.m>q>p>n 例1-6-43 (1)若log a c+log b c=0(c≠0),则ab+c-abc=____; (2)log89=a,log35=b,则log102=____(用a,b表示). 但c≠1,所以lga+lgb=0,所以ab=1,所以ab+c-abc=1. 例1-6-44函数y=f(x)的定义域为[0,1],则函数f[lg(x2-1)]的定义域是____. 由题设有0≤lg(x2-1)≤1,所以1≤x2-1≤10.解之即得. 例1-6-45已知log1227=a,求log616的值.

例1-6-46比较下列各组中两个式子的大小:

例1-6-47已知常数a>0且a≠1,变数x,y满足 3log x a+log a x-log x y=3 (1)若x=a t(t≠0),试以a,t表示y; (2)若t∈{t|t2-4t+3≤0}时,y有最小值8,求a和x的值.解 (1)由换底公式,得 即 log a y=(log a x)2-3log a x+3 当x=a t时,log a y=t2-3t+3,所以 y=a r2-3t+3 (2)由t2-4t+3≤0,得1≤t≤3.

对数函数知识点

对数函数知识点 1.对数函数的概念 形如 y log a x( a 0且 a 1) 的函数叫做对数函数 . 说明:( 1)一个函数为对数函数的条件是: ①系数为 1; ②底数为大于 0 且不等于 1 的正常数; ③自变量为真数 . 对数型函数的定义域: 特别应注意的是:真数大于零、底数大于零且不等于 1。 2 、 由 对 数 的 定 义 容 易 知 道 对 数 函 数 y log a x (a 0, a 1) 是指数函数 y a x (a 0, a 1) 的反函数。 反函数及其性质 ①互为反函数的两个函数的图象关于直线 y x 对称。 ②若函数 y f ( x) 上有一点 (a, b ) ,则 (b, a) 必在其反函数图象上, 反之若 (b, a) 在反函 数图象上,则 ( a, b) 必在原函数图象上。 ③利用反函数的性质,由指数函数 y a x (a 0, a 1) 的定义域 x R ,值域 y 0 , 容易得到对数函数 y log a x(a 0, a 1) 的定义域为 x 0 ,值域为 R ,利用上节学过的 对数概念,也可得出这一点。 3、.对数函数的图象和性质 定义 y log a x (a 0且 a 1) 底数 a 1 0 a 1 图象 定义域 (0, ) 值域 R 单调性 增函数 减函数 共点性 图象过点 (1,0) ,即 log a 1 函数值x (0,1) y ( ,0); x [1, ) x (0,1) y (0, ); x [1, ) 特征 y [0, ) y ( ,0] 对称性 函数 y log a x 与 y log 1 x 的图象关于 x 轴对称 a 4.对数函数与指数函数的比较 名称 指数函数 对数函数 一般形式 y a x (a 0, a 1) y log a x (a 0, a 1)

对数函数性质及练习(有答案)

对数函数及其性质 1.对数函数的概念 (1)定义:一般地,我们把函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). (2)对数函数的特征: 特征???? ? log a x 的系数:1log a x 的底数:常数,且是不等于1的正实数 log a x 的真数:仅是自变量x 判断一个函数是否为对数函数,只需看此函数是否具备了对数函数的特征. 比如函数y =log 7x 是对数函数,而函数y =-3log 4x 和y =log x 2均不是对数函数,其原因 是不符合对数函数解析式的特点. 【例1-1】函数f (x )=(a 2 -a +1)log (a +1)x 是对数函数,则实数a =__________. 解析:由a 2 -a +1=1,解得a =0,1.又a +1>0,且a +1≠1,∴a =1.答案:1 【例1-2】下列函数中是对数函数的为__________. (1)y =log (a >0,且a ≠1);(2)y =log 2x +2; (3)y =8log 2(x +1);(4)y =log x 6(x >0,且x ≠1); (5)y =log 6x . 解析: 2.对数函数y =log a x (a >0,且a ≠1)的图象与性质

(1)图象与性质 谈重点对对数函数图象与性质的理解对数函数的图象恒在y轴右侧,其单调性取决于底数.a>1时,函数单调递增;0<a<1时,函数单调递减.理解和掌握对数函数的图象和性质的关键是会画对数函数的图象,在掌握图象的基础上性质就容易理解了.我们要注意数形结合思想的应用. (2)指数函数与对数函数的性质比较 (3)底数a对对数函数的图象的影响 ①底数a与1的大小关系决定了对数函数图象的“升降”:当a>1时,对数函数的图象“上

专题:对数函数知识点总结及类型题归纳

专题:对数函数知识点总结 1.对数函数的定义: 一般地,函数 x y a log =( )叫做对数函数 .定义域是 2. 对数函数的性质为 思考:函数log a y x =与函数x y a =)10(≠>a a 且的定义域、值域之间有什么关系? ___________________________________________________________________________ 对数函数的图象与指数函数的图象关于_______________对称。 一般的,函数y=a x 与y=log a x (a>0且a ≠1)互称相对应的反函数,它们的图象关于直线y=x 对称 y=f(x)存在反函数,一般将反函数记作y=f -1 (x) 如:f(x)=2x ,则f -1 (x)=log 2x,二者的定义域与值域对调,且图象关 于直线y=x 对称 函数与其反函数的定义域与值域对调,且它们的图象关于直线y=x 对称 专题应用练习 一、求下列函数的定义域

(1)0.2log (4);y x =-; (2)log 1a y x =- (0,1).a a >≠; (3)2(21)log (23)x y x x -=-++ (4)2log (43)y x =- (5) y=lg 1 1 -x (6) y=x 3log =log(5x-1)(7x-2)的定义域是________________ = )8lg(2x - 的定义域是_______________ 3.求函数2log (21)y x =+的定义域___________ 4.函数y=13 log (21)x -的定义域是 5.函数y =log 2(32-4x )的定义域是 ,值域是 . 6.函数5log (23)x y x -=-的定义域____________ 7.求函数2 log ()(0,1)a y x x a a =->≠的定义域和值域。 8.求下列函数的定义域、值域: (1)2log (3)y x =+; (2)2 2log (3)y x =-; (3)2log (47)a y x x =-+(0a >且1a ≠). 9.函数f (x )=x 1 ln (432322+--++-x x x x )定义域 10.设f(x)=lg x x -+22,则f )2 ()2(x f x +的定义域为 11.函数f(x)=)1(lo g 1 |2|2---x x 的定义域为 12.函数f(x)= 2 29)2(1x x x g --的定义域为 ; 13.函数f (x )= x 1 ln (432322+--++-x x x x )的定义域为 14 2 2 2 log log log y x =的定义域是 1. 设f (x )=lg(ax 2 -2x +a ), (1) 如果f (x )的定义域是(-∞, +∞),求a 的取值围; (2) 如果f (x )的值域是(-∞, +∞),求a 的取值围. 15.已知函数)32(log )(22 1+-=ax x x f (1)若函数的定义域为R ,数a 的取值围 (2)若函数的值域为R ,数a 的取值围

对数函数 典型例题

对数函数 例1求下列函数的定义域 (1)y=log2(x2-4x-5); (2)y=log x+1(16-4x) (3)y= . 解:(1)令x2-4x-5>0,得(x-5)(x+1)>0, 故定义域为{x|x<-1,或x>5}. (2)令得 故所求定义域为{x|-1<x<0,或0<x<2}. (3)令,得 故所求定义域为 {x|x<-1- ,或-1- <x<-3,或x≥2}. 说明求与对数函数有关的定义域问题,首先要考虑,真数大于零.底数大于零不等于1,若处在分母的位置,还要考虑不能使分母为零. 例2求下列函数的单调区间. (1)y=log2(x-4);(2)y=log0.5x2. 解:(1)定义域是(4,+∞),设t=x-4,当x>4时,t随x的增大而增大,而y=log2t,y又随t的增大而增大, ∴(4,+∞)是y=log2(x-4)的递增区间. (2)定义域{x|x∈R,且x≠0},设t=x2,则y=log0.5t 当x>0时,t随x的增大而增大,y随t的增大而减小, ∴(0,+∞)是y=log0.5x2的递减区间. 当x<0时,t随x的增大而减小,y随t的增大而减小, ∴(-∞,0)是y=log0.5x2的递增区间.

例3比较大小: (1)log0.71.3和log0.71.8. (2)(lg n)1.7和(lgn)2(n>1). (3)log23和log53. (4)log35和log64. 解:(1)对数函数y=log0.7x在(0,+∞)内是减函数.因为1.3<1.8,所以 log0.71.3>log0.71.8. (2)把lgn看作指数函数的底,本题归为比较两个指数函数的函数值的大小,故需对底数lgn讨论. 若1>lgn>0,即1<n<10时,y=(lgn)x在R上是减函数,所以(lgn)1.2>(lgn)2; 若lgn>1,即n>10时,y=(lgn)2在R上是增函数,所以(lgn)1.7>(lgn)2.(3)函数y=log2x和y=log5x当x>1时,y=log2x的图像在y=log5x图像上方.这里 x=3,所以log23>log53. (4)log35和log64的底数和真数都不相同,须找出中间量“搭桥”,再利用对数函数的单调性即可求解. 因为log35>log33=1=log66>log64,所以log35>log64. 评析要注意正确利用对数函数的性质,尤其是第(3)小题,可直接利用例2中的说明得到结论. 例4已知函数f(x)=log a(a-a x)(a>1), (1)求f(x)的定义域、值域. (2)判断并证明其单调性. (3)解不等式f-1(x2-2)>f(x). 解:(1)要使函数有意义,必须满足a-a x>0,即a x

用Mathematica研究自然对数的底数e

用Mathematica 研究自然对数的底数e 作 者:陈 龙 摘要:e 是一个奇妙有趣的无理数,它取自瑞士数学家欧拉的英文字头。e 与π被认为是数学中最重要的两个超越数,e 、 π及i (i 为虚数单位)三者间存在1-=i e π的关系。本文利用Mathematica 软件研究了自然对数的底数e ,介绍了e 的 一些相关知识、e 与自然对数的关系以及e 的值的计算方法等。 关键词:Mathematica ,e ,自然对数 一、引言 远在公元前,圆周率π就被定义为“周长与直径之比”。自古以来,π的近似值一直取为 3.14或 7 22() 742851.3 =。通过许多数学家的努力,π的近似值位数不断增加。目前用电脑计算圆周率。由于电脑速度等功能不断改进,今后π的近似值位数会越来越多。 另外一个奇妙有趣的无理数是e ,它取自瑞士数学家欧拉(Euler ,1707-1783)的英文字头。欧拉首先发现此数并称之为自然数e 。但是,这种所谓的自然数与常见正整数1,2,3,……截然不同。确切地讲,e 应称为“自然对数a e log 的底数”。 e 与π被认为是数学中最重要的两个超越数(transcendental number ,若一数为()0=x f 之根,其中f 为某一至少一次的整系数多项式,则此数称为代数数(algebraic number ),否则称为超越数)。e 、 π及i (i 为虚数单位)三者间存在1-=i e π的关系。本文主要介绍e 的一些知识以及用 Mathematica 软件来计算e 。 二、欧拉数e 考虑数列{}n a ,n a = ∑=n i i 0 !1=!1!21!111n ++++ ,1≥n ,其中!n =()1231????- n n ,1≥n ,1!0=,应用下述关于级数收敛的基本定理之一可证明出其极限存在。 定理1.设数列{}n a 为单调且有界,则当∞→n 时,a a n →(a 为一有限数)。 首先,对n a = ∑=n i i 0 !1 ,显然{}n a 为单调递增数列。其次,1a =2,2a =25,而3≥n 时, n a =1+1+ n ???++??+?+ 321 432132121 <1+1+1322 1 212121-++++n = 1+2 11211-??? ??-n <3, 即数列{}a 以3为一上界。故有定理1知,数列{}a 收敛至一实数,由于此极限值与圆周率π一样在许

相关文档