文档库 最新最全的文档下载
当前位置:文档库 › fluent边界条件(二)

fluent边界条件(二)

fluent边界条件(二)
fluent边界条件(二)

周期性边界条件

周期性边界条件用来解决,物理模型和所期待的流动的流动/热解具有周期性重复的特点。FLUENT提供了两种类型的周期性边界条件。第一种类型不允许通过周期性平面具有压降(对于FLUENT4用户来说:这一类型的周期性边界是指FLUENT4中的圆柱形边界)。第二种类型允许通过平移周期性边界具有压降,它是你能够模拟完全发展的周期性流动(在FLUENT4中是周期性边界)。

本节讨论了无压降的周期性边界条件。在周期性流动和热传导一节中,完全发展的周期性模拟能力得到了详尽的描述。

周期性边界的例子

周期性边界条件用于模拟通过计算模型内的两个相反平面的流动是相同的情况。下图是周期性边界条件的典型应用。在这些例子中,通过周期性平面进入计算模型的流动和通过相反的周期性平面流出流场的流动是相同的。正如这些例子所示,周期性平面通常是成对使用的。

Figure 1: 在圆柱容器中使用周期性边界定义涡流

周期性边界的输入

对于没有任何压降的周期性边界,你只需要输入一个东西,那就是你的所模拟的几何外形是旋转性周期还是平移性周期。(对于有周期性压降的周期流还要输入其它的东西,请参阅周期性流动和热传导一节。)

旋转性周期边界是指关于旋转对称几何外形中线形成了一个包括的角度。本节中的图一就是旋转性周期。平移性周期边界是指在直线几何外形内形成周期性边界。下面两图是平移性周期边界:

Figure 1: 物理区域

Figure 2: 所模拟的区域

对于周期性边界,你需要在周期性面板(下图)中指定平移性边界还是旋转性边界,该面板是从设定边界条件菜单中打开的。

Figure 3: 周期性面板

(对于耦合解算器,周期性面板中将会有附加的选项,这一选项允许你指定压力跳跃,详细内容请参阅周期性流动和热传导一节。)

如果区域是旋转性区域,请选择旋转性区域类型。如果是平移性就选择平移性区域类型。对

于旋转性区域,解算器会自动计算通过周期性区域的旋转角度。旋转轴是为邻近单元指定的旋转轴。

注意:对于使用旋转周期性边界来说,你不必指定邻近单元区域为移动的。例如,你能够使用具有管的平切片的非旋转坐标系来模拟三维管流,管的切片需要具有旋转性周期。

你可以使用Grid/Check菜单选项(参阅检查网格一节)来计算和显示周期性边界所有表面的旋转角度的最大值、最小值和平均值。如果最大值、最小值和平均值之间的差别可以忽略,那么网格有一个问题:对于指定轴来说网格几何外形不是周期性的。

周期性边界的默认设定

默认为平移周期性边界条件

周期性边界的计算程序

FLUENT在周期性边界处理流动就像反向周期性平面是和前面的周期性边界直接相邻一样,因此,当计算流过邻近流体单元的周期性边界时,就会使用与反向周期性平面相邻的流体单元的流动条件。

轴边界的计算程序

轴边界条件

轴边界类型必须使用在对称几何外形的中线处(见下图)。它也可以用在圆柱两极的四边形和六面体网格的中线上(比如:像FLUENT4之类的结构网格生成代码所产生的网格)。在轴边界处,你不必定义任何边界条件。

Figure 1: 在轴对称几何外形的中线处轴边界条件的使用

轴边界的计算程序

要确定轴上特定点的适当物理值,FLUENT使用邻近单元中的单元值。

流体条件

流体区域是一组所有现行的方程都被解出的单元。对于流体区域只需要输入流体材料类型。你必须指明流体区域内包含哪种材料,以便于使用适当的材料属性。

如果你模拟组分输运或者燃烧,你就不必在这里选择材料属性,当你激活模型时,组分模型面板中会指定混合材料。相似地,对于多相流动你也不必指定材料属性,当你在多相流模型面板中激活模型时,你会选择它们。

可选择的输入允许你设定热、质量、动量、湍流、组分以及其它标量属性的源项。你也可以为流体区域定义运动。如果邻近流体区域内具有旋转周期性边界,你就需要指定旋转轴。如果你使用k-e模型或者Spalart-Allmaras模型来模拟湍流,你可以选择定义流体区域为层流区域。如果你用DO模型模拟辐射,你可以指定流体是否参加辐射。对于多孔区域的信息,请参阅多孔介质条件一节。

流体区域的输入

在流体面板中(下图),你需要设定所有的流体条件,该面板是从设定边界条件菜单中打开的。

Figure 1: 流体面板

定义流体材料

要定义流体区域内包含的材料,请在材料名字下拉列表中选择适当的选项。这一列表中会包含所有已经在使用材料面板中定义的流体材料(或者从材料数据库中加载)。

如果你模拟组分输运或者多相流,在流体面板的下拉列表中不会出现材料名。对于组分计算,所有流体区域的混合材料将会是你在组分模型面板中所指定的材料。对于多相流,所有流体

区域的材料将会是你在多相流模型面板中所指定的材料。

定义源项

如果你希望在流体区域内定义热、质量、动量、湍流、组分以及其它标量属性的源项,你可以激活源项选项来实现。详情请参阅定义质量、动量、能量和其它源项一节。

指定层流区域

如果你使用k-e模型或者Spalart-Allmaras模型来模拟湍流,在指定的流体区域关掉湍流模拟是可能的(即:使湍流生成和湍流粘性无效,但是湍流性质的输运仍然保持)。如果你知道在某一区域流动是层流这一功能是很有用的。比方说:如果你知道机翼上的转唳点的位置,你可以在层流单元区域边界和湍流区域边界创建一个层流/湍流过渡边界。这一功能允许你模拟机翼上的湍流过渡。要在流体区域内取消湍流模拟,请在流体面板中打开层流区域选项。

指定旋转轴

如果邻近流体区域存在旋转性周期边界,或者区域是旋转的,你必须指定旋转轴。要定义旋转轴,请设定旋转轴方向和起点。这个轴和任何邻近壁面区域或任何其它单元区域所使用的旋转轴是独立的。对于三维问题,旋转轴起点是从旋转轴起点中输入的起点,方向为旋转轴方向选项中输入的方向。对于二维非轴对称问题,你只需要指定旋转轴起点,方向就是通过指定点的z方向。(z向是垂直于几何外形平面的,这样才能保证旋转出现在该平面内)。对于二维轴对称问题,你不必定义轴,旋转通常就是关于x轴的,起点为(0,0)。

定义区域运动

对于旋转和平移坐标系要定义移动区域,请在运动类型下菜单(如果你用滚动条向右滚动到旋转轴起点和方向,就是可见的了)中选择运动参考坐标系。然后在面板的扩展部分设定适当的参数。

要对移动或者滑移网格定义移动区域,在移动类型下拉列表中选择移动网格,然后在扩展面板中设定适当的参数。详情请参阅滑动网格。

对于包括线性、平移运动的流体区域问题,通过设定X, Y,和Z分量来指定平移速度。对于包括旋转运动的问题,在旋转速度中指定旋转速度。旋转轴的定义请参阅指定旋转轴一节。关于在移动参考系中模拟流动的详细内容请参阅移动区域的流动一节。

定义辐射参数

如果你使用DO辐射模型,你可以用参加辐射选项指定流体区域是否参加辐射的计算。详情请参阅辐射边界条件一节。

固体条件

固体区域是仅用来解决热传导问题的一组区域。作为固体处理的材料可能事实上是流体,但

是假定其中没有对流发生。固体区域仅需要输入材料类型。你必须表明固体区域包含哪种材料,以便于计算是使用适当的材料。可选择的输入允许你设定体积热生成速度(热源)。你也可以定义固体区域的运动。如果在邻近的固体单元内有旋转性周期边界,你就需要指定旋转轴。如果你模拟DO辐射模型,你可以指定固体材料是否参加辐射的计算。

固体区域的输入

流体区域的输入

在固体面板中(下图),你需要设定所有的固体条件,该面板是从设定边界条件菜单中打开的。

Figure 1: 固体面板

定义流体材料

要定义固体区域内包含的材料,请在材料名字下拉列表中选择适当的选项。这一列表中会包含所有已经在使用材料面板中定义的固体材料(或者从材料数据库中加载)。

定义热源

如果你希望在固体区域内定义热源项,你可以激活源项选项来实现。详情请参阅定义质量、动量、能量和其它源项一节。

指定旋转轴

如果邻近固体区域存在旋转性周期边界,或者区域是旋转的,你必须指定旋转轴。要定义旋转轴,请设定旋转轴方向和起点。这个轴和任何邻近壁面区域或任何其它单元区域所使

用的旋转轴是独立的。对于三维问题,旋转轴起点是从旋转轴起点中输入的起点,方向为旋转轴方向选项中输入的方向。对于二维非轴对称问题,你只需要指定旋转轴起点,方向就是通过指定点的z方向。(z向是垂直于几何外形平面的,这样才能保证旋转出现在该平面内)。对于二维轴对称问题,你不必定义轴,旋转通常就是关于x轴的,起点为(0,0)。

定义区域运动

对于旋转和平移坐标系要定义移动区域,请在运动类型下菜单(如果你用滚动条向右滚动到旋转轴起点和方向,就是可见的了)中选择运动参考坐标系。然后在面板的扩展部分设定适当的参数。

要对移动或者滑移网格定义移动区域,在移动类型下拉列表中选择移动网格,然后在扩展面板中设定适当的参数。详情请参阅滑动网格。

对于包括线性、平移运动的流体(???原文是流体,按理说应该是固体)区域问题,通过设定X, Y,和Z分量来指定平移速度。对于包括旋转运动的问题,在旋转速度中指定旋转速度。旋转轴的定义请参阅指定旋转轴一节。

关于在移动参考系中模拟流动的详细内容请参阅移动区域的流动一节。

定义辐射参数

如果你使用DO辐射模型,你可以用参加辐射选项指定固体区域是否参加辐射的计算。详情请参阅辐射边界条件一节。

多孔介质条件

多孔介质模型可以应用于很多问题,如通过充满介质的流动、通过过滤纸、穿孔圆盘、流量分配器以及管道堆的流动。当你使用这一模型时,你就定义了一个具有多孔介质的单元区域,而且流动的压力损失由多孔介质的动量方程中所输入的内容来决定。通过介质的热传导问题也可以得到描述,它服从介质和流体流动之间的热平衡假设,具体内容可以参考多孔介质中能量方程的处理一节。

多孔介质的一维化简模型,被称为多孔跳跃,可用于模拟具有已知速度/压降特征的薄膜。多孔跳跃模型应用于表面区域而不是单元区域,并且在尽可能的情况下被使用(而不是完全的多孔介质模型),这是因为它具有更好的鲁棒性,并具有更好的收敛性。详细内容请参阅多孔跳跃边界条件。

多孔介质模型的限制

如下面各节所述,多孔介质模型结合模型区域所具有的阻力的经验公式被定义为“多孔”。事实上多孔介质不过是在动量方程中具有了附加的动量损失而已。因此,下面模型的限制就可以很容易的理解了。

●流体通过介质时不会加速,因为事实上出现的体积的阻塞并没有在模型中出现。这对于

过渡流是有很大的影响的,因为它意味着FLUENT不会正确的描述通过介质的过渡时间。

●多孔介质对于湍流的影响只是近似的。详细内容可以参阅湍流多孔介质的处理一节。

多孔介质的动量方程

多孔介质的动量方程具有附加的动量源项。源项由两部分组成,一部分是粘性损失项 (Darcy),另一个是内部损失项:

∑∑==+=31

3

1

2

1

j j j j ij

j ij i v v C v D S ρμ 其中S_i 是i 向(x, y, or z)动量源项,D 和C 是规定的矩阵。在多孔介质单元中,动量损失对于压力梯度有贡献,压降和流体速度(或速度方阵)成比例。 对于简单的均匀多孔介质:

j j i i v v C v S ραμ2

1

2+=

其中a 是渗透性,C_2时内部阻力因子,简单的指定D 和C 分别为对角阵1/a 和C_2其它项为零。

FLUENT 还允许模拟的源项为速度的幂率:

()

i C C j

i v v

C v C S 10011

-==

其中C_0和C_1为自定义经验系数。

注意:在幂律模型中,压降是各向同性的,C_0的单位为国际标准单位。

多孔介质的Darcy 定律

通过多孔介质的层流流动中,压降和速度成比例,常数C_2可以考虑为零。忽略对流加速以及扩散,多孔介质模型简化为Darcy 定律:

να

μ-=?p

在多孔介质区域三个坐标方向的压降为:

=?=?3

1j x j xj x n v p αμ

∑=?=?3

1j y j yj

y n v p αμ

=?=?3

1j z j zj

z n v p αμ

其中1/a_ij 为多孔介质动量方程1中矩阵D 的元素v_j 为三个方向上的分速度,D n_x 、 D

n_y 、以及D n_z 为三个方向上的介质厚度。

在这里介质厚度其实就是模型区域内的多孔区域的厚度。因此如果模型的厚度和实际厚度不同,你必须调节1/a_ij 的输入。.

多孔介质的内部损失

在高速流动中,多孔介质动量方程1中的常数C_2提供了多孔介质内部损失的矫正。这一常数可以看成沿着流动方向每一单位长度的损失系数,因此允许压降指定为动压头的函数。

如果你模拟的是穿孔板或者管道堆,有时你可以消除渗透项而只是用内部损失项,从而得到下面的多孔介质简化方程:

∑==??3

122

1

j j j ij i v v C x p ρ 写成坐标形式为: ∑=?=

?3

122

1

j j j x

xj x v v n C p ρ ∑=?=?3

1221

j j j x

yj y v v n C p ρ ∑=?=?3

1

22

1

j j j x

zj z v v n C p ρ

多孔介质中能量方程的处理

对于多孔介质流动,FLUENT 仍然解标准能量输运方程,只是修改了传导流量和过度项。在多孔介质中,传导流量使用有效传导系数,过渡项包括了介质固体区域的热惯量:

()()()()h s h f k

i ik j j j i i eff

i f i f i s s f f S S x u

Dt

Dp

J h x x T k x h u x h h t φφφτφ

φρρφφρ-++??++??

-???

? ??????=??+-??∑'

''11

其中:

h_f=流体的焓

h_s=固体介质的焓 f=介质的多孔性

k_eff=介质的有效热传导系数 S^h_f=流体焓的源项 S^h_s=固体焓的源项

多孔介质的有效传导率

多孔区域的有效热传导率k_eff 是由流体的热传导率和固体的热传导率的体积平均值计算得到:

()s f eff k k k φφ-+=1

其中:

f=介质的多孔性

k_f=流体状态热传导率(包括湍流的贡献k_t)

k_s=固体介质热传导率

如果得不到简单的体积平均,可能是因为介质几何外形的影响。有效传导率可以用自定义函数来计算。然而,在所有的算例中,有效传导率被看成介质的各向同性性质。

多孔介质中的湍流处理

在多孔介质中,默认的情况下FLUENT会解湍流量的标准守恒防城。因此,在这种默认的方法中,介质中的湍流被这样处理:固体介质对湍流的生成和耗散速度没有影响。如果介质的渗透性足够大,而且介质的几何尺度和湍流涡的尺度没有相互作用,这样的假设是合情合理的。但是在其它的一些例子中,你会压制了介质中湍流的影响。

如果你使用k-e模型或者Spalart-Allmaras模型,你如果设定湍流对粘性的贡献m_t为零,你可能会压制了湍流对介质的影响。当你选择这一选项时,FLUENT会将入口湍流的性质传输到介质中,但是它对流动混合和动量的影响被忽略了。除此之外,在介质中湍流的生成也被设定为零。要实现这一解策略,请在流体面板中打开层流选项。激活这个选项就意味着多孔介质中的m_t为零,湍流的生成也为零。如果去掉该选项(默认)则意味着多孔介质中的湍流会像大体积流体流动一样被计算。。

概述

模拟多孔介质流动时,对于问题设定需要的附加输入如下:

1.定义多孔区域

2.确定流过多孔区域的流体材料

3.设定粘性系数(多孔介质动量方程3中的1/a_ij)以及内部阻力系数(多孔介质动量方

程3中的C_2_ij),并定义应用它们的方向矢量。幂率模型的系数也可以选择指定。

4.定义多孔介质包含的材料属性和多孔性

5.设定多孔区域的固体部分的体积热生成速度(或任何其它源项,如质量、动量)(此项

可选)。

6.如果合适的话,限制多孔区域的湍流粘性。

7.如果相关的话,指定旋转轴和/或区域运动。

在定义粘性和内部阻力系数中描述了决定阻力系数和/或渗透性的方法。如果你使用多孔动量源项的幂律近似,你需要输入多孔介质动量方程5中的C_0和C_1来取代阻力系数和流动方向。

在流体面板中(下图)你需要设定多孔介质的所有参数,该面板是从边界条件菜单中打开的(详细内容请参阅边界条件的设定一节)

Figure 1:多孔区域的流体面板

定义多孔区域

正如定义边界条件概述中所提到的,多孔区域是作为特定类型的流体区域来模拟的。亚表明流体区域是多孔区域,请在流体面板中激活多孔区域选项。面板会自动扩展到多孔介质输入状态。

定义穿越多孔介质的流体

在材料名字下拉菜单中选择适当的流体就可以定义通过多孔介质的流体了。如果你模拟组分输运或者多相流,流体面板中就不会出现材料名字下拉菜单了。对于组分计算,所有流体和/或多孔区域的混合材料就是你在组分模型面板中指定的材料。对于多相流模型,所有流体和/或多孔区域的混合材料就是你在多相流模型面板中指定的材料。

定义粘性和内部阻力系数

粘性和内部阻力系数以相同的方式定义。使用笛卡尔坐标系定义系数的基本方法是在二维问题中定义一个方向矢量,在三维问题中定义两个方向矢量,然后在每个方向上指定粘性和/或阻力系数。在二维问题中第二个方向没有明确定义,它是垂直于指定的方向矢量和z 向矢量所在的平面的。在三维问题中,第三个方向矢量是垂直于所指定的两个方向矢量所在平面的。对于三维问题,第二个方向矢量必须垂直于第一个方向矢量。如果第二个方向矢量指定失败,解算器会确保它们垂直而忽略在第一个方向上的第二个矢量的任何分量。所以你应该确保第一个方向指定正确。

在三维问题中也可能会使用圆锥(或圆柱)坐标系来定义系数,具体如下:

定义阻力系数的过程如下:

1.定义方向矢量。

●使用笛卡尔坐标系,简单指定方向1矢量,如果是三维问题,指定方向2矢量。每

一个方向都应该是从(0,0)或者(0,0,0)到指定的(X,Y)或(X,Y,Z)矢量。(如果方向不正

确请按上面的方法解决)

●对于有些问题,多孔介质的主轴和区域的坐标轴不在一条直线上,你不必知道多孔

介质先前的方向矢量。在这种情况下,三维中的平面工具或者二维中的线工具可以

帮你确定这些方向矢量。

1.捕捉"Snap"平面工具(或者线工具)到多孔区域的边界。(请遵循使用面工具和

线工具中的说明,它在已存在的表面上为工具初始化了位置)。

2.适当的旋转坐标轴直到它们和多孔介质区域成一条线。

3.当成一条线之后,在流体面板中点击从平面工具更新或者从线工具更新按钮。

FLUENT会自动将方向1矢量指向为工具的红(三维)或绿(二维)箭头所

指的方向。

●要使用圆锥坐标系(比方说环状、锥状顾虑单元),请遵循下面步骤(这一选项只

用于三维问题):

1.打开圆锥选项

2.指定圆锥轴矢量和在锥轴上的点。圆锥轴矢量的方向将会是从(0,0,0)到指定的

(X,Y,Z)方向的矢量。FLUENT将会使用圆锥轴上的点将阻力转换到笛卡尔坐

标系。

3.设定锥半角(锥轴和锥表面之间的角度,如下图),使用柱坐标系,锥半角为0.

Figure 1:锥半角

●对于有些问题,锥形过滤单元的主轴和区域的坐标轴不在一条直线上,你不必知道

锥轴先前的方向矢量以及锥轴上的点。在这种情况下,三维中的平面工具或者二维

中的线工具可以帮你确定这些方向矢量。一种方法如下:

1.在点击捕捉到区域按钮之前,你可以在下拉菜单中选择垂直于锥轴矢量的轴过

滤单元的边界区域。

2. 点击捕捉到区域按钮,FLUENT 会自动将平面工具捕捉到边界。它也会设定锥

轴矢量和锥轴上的点(需注意的是你还要自己设定锥半角)。

● 另一种方法为:

1. 捕捉"Snap"平面工具到多孔区域的边界。(请遵循使用面工具和线工具中的说

明,它在已存在的表面上为工具初始化了位置)。 2. 旋转和平移工具坐标轴,直到工具的红箭头指向锥的轴向。工具的起点在轴上。 3. 当轴和工具的起点成一条线时,在流体面板中点击从平面工具更新按钮。

FLUENT 会自动设定轴向矢量以及在轴上的点(注意:你还是要自己设定锥的半角)。

2. 在粘性阻力中指定每个方向的粘性阻力系数1/a ,在内部阻力中指定每一个方向上的内

部阻力系数C_2(你可能需要将滚动条向下滚动来查看这些输入)。如果你使用锥指定方法,方向1为锥轴方向,方向2为垂直于锥表面(对于圆柱就是径向)方向,方向3圆周(q )方向。

在三维问题中可能有三种可能的系数,在二维问题中有两种:

● 在各向同性算例中,所有方向上的阻力系数都是相等的(如海绵)。在各向同性算

例中你必须将每个方向上的阻力系数设定为相等。

● 在三维问题中只有两个方向上的系数相等,第三个方向上的阻力系数和前两个不

等,或者在二维问题中两个方向上的系数不等,你必须准确的指定每一个方向上的系数。例如,如果你得多孔区域是由具有小洞的细管组成,细管平行于流动方向,流动会很容易的通过细管,但是流动在其它两个方向上(通过小洞)会很小。如果你有一个平的盘子垂直于流动方向,流动根本就不会穿过它而只在其它两个方向上。

● 在三维问题中还有一种可能就是三个系数各不相同。例如,如果多孔区域是由不规

则间隔的物体(如针脚)组成的平面,那么阻碍物之间的流动在每个方向上都不同。此时你就需要在每个方向上指定不同的系数(请注意指定各向同性系数时,多孔介质的解策略的注解)。

推导粘性和内部损失系数的方法在定义粘性和内部阻力系数一节中介绍。

当你使用多孔介质模型时,你必须记住FLUENT 中的多孔单元是100%打开的,而且你所指定1/a_ij 和/或C_2_ij 的值必须是基于这个假设的。然而,假如你知道通过真实装置压降和速度之间的的变化,它只是部分地对流动开放。下面的练习会告诉你如何对FLUENT 模型计算适当的C_2值。

假定穿孔圆盘只有25%对流动开放。已知通过圆盘的压降为0.5。在圆盘内真实流体速度基础上,即通过%25开放区域的的基础上,损失系数由下式定义的损失系数K_L 为0.5:

?

?

?

??=?2

%252

1

open L v K p ρ

要计算适当的C_2值,请注意在FLUENT 模型中:

1. 通过穿孔圆盘的速度假定圆盘为100%开放的。

2. 损失系数必须转化为多孔区域每个单位长度的动压头损失。

对于第一条,第一步是计算并调节损失因子K_L',它应该是在100%开放区域的速度基础上的:

??

? ??=?'2

%10021open L v K p ρ

或者注意对于相同的流速,v_25% open = 4 ?v_100% open,

8145.02

2%1002%25=??

?

???=?='open

open L L

v v K K

调节之后的损失系数为8。对于第二条,你必须将它转换为穿孔圆盘每个单位厚度的损失系数。假定圆盘的厚度为1.0 mm 。内部损失系数为(国际标准单位):

132800010

8

--'===

m thickness K C L

注意,对于各向异性介质,这些信息必须分别从每一个坐标方向上计算。

第二个例子,考虑模拟充满介质的流动。在湍流流动中,充满介质的流动用渗透性和内部损失系数来模拟。推导适当常数的方法包括了Ergun 方程[49]的使用,对于在很大范围雷诺数内和许多类型的充满形式,有一个半经验的关系式:

()()Vv D D p p p 332

2175.11150ε

ερνεεμ-+-=?

当模拟充满介质的层流流动时,上面方程中的第二项可能是个小量,从而得到Blake-Kozeny

方程[49]:

()νε

εμ32

21150-=?p D p 在这些方程中,m 是粘性,D_p 是平均粒子直径,e 空间所占的分数(即空间的体积除以总

体积)。比较多孔介质中Darcy 定律的方程1和内部损失系数为9的方程1,则每一方向上的渗透性和内部损失系数定义为:

()

2

3

21150εεα-=p

D ()3215.3ε

ε-=

p D C 第三个例子我们会考虑Van Winkle 等人[146],[121]的方程,并表明如何通过具有方孔圆盘的多孔介质输入来计算压力损失。

作者所声明的应用在通过在等边三角形上的方洞圆盘的湍流中的表达式为:

()()()

212P f A A CA m

-?=ρρ 其中:

m(dot)=通过圆盘的质量流速 A_f=剩下的面积或者洞的总面积 A_p=圆盘的面积(固体和洞)

C=对于不同D/t 的不同雷诺数范围被列成不同的表的系数 D/t=洞的直径和圆盘厚度的比例

对于t/D > 1.6和Re > 4000,系数C 近似为0.98,其中雷诺数是基于洞的直径与速度的 使用下式整理方程17:

p A m

ρν= 除以圆盘的厚度D x = t 有:

()t A A C

v x p f p 1

1212

2

2-??? ??=??ρ 其中v 是表面速度而不是洞内的速度。与多孔介质内部损失系数中的方程1比较可以看出,对于垂直于圆盘方向,常数C_2可由下式计算:

()t A A C

C f p 1

12

2

2-= 考虑通过由随机方向的纤维或者玻璃材料组成的垫子或者过滤器的层流。对于可以二选一的

方程Blake-Kozeny(方程11),我们可能会选择将实验数据列成表。很多类型的纤维都由这一类相关的数据[70]。

固体体积分数f 玻璃丝织品的无量纲渗透性Q 0.262 0.25 0.258 0.26 0.221 0.40 0.218 0.41 0.172 0.80

其中Q =2

a α,a 为纤维直径。使用多孔介质的Darcy 定律中的方程1可以很容易从给定的纤维直径和体积分数种计算出α。

使用幂律模型 对于多孔介质动量源项(多孔介质动量方程中的方程5),如果你使用幂律模型近似,你只要在流体面板的幂律模型中输入系数C_0和C_1就可以了。如果C_0或C_1为非零值,解算器会忽略面板中除了多孔介质幂律模型之外的所有输入。

定义热传导 如果你选择在多孔介质中模拟热传导,你必须指定多孔介质中的材料以及多孔性。要定义多孔介质的材料,向下拉流体面板中阻力输入下面的滚动条,然后在多孔热传导的固体材料下拉列表中选中适当的固体。 然后在多孔热传导下设定多孔性。多孔性f 是多孔介质中流体的体积分数(即介质的开放体积分数)。多孔性用于介质中的热传导预测,处理方法请参阅多孔介质能量方程的处理一节。它还对介质中的反应源项和体力的计算有影响。这个源项和介质中流体的体积成比例。如果你想要模拟完全开放的介质(固体介质没有影响),你应该设定多孔性为1.0。当多

孔性为1.0时,介质的固体部分对于热传导和(或)热源项/反应源项没有影响。注意:多孔性永远不会影响介质中的流体速度,这已经在多孔介质的动量方程一节中介绍了。不管你将多孔性设定为何值,,FLUENT所预测的速度都是介质中的表面速度。

定义源项

如果你想在多孔流动的能量方程中包括热的影响,请激活源项选项并设定非零的能量源项。FLUENT会计算多孔区域所生成的能量,该能量为能量源项值乘以组成多孔区域的单元所有体积值。你也可以定义质量、动量、湍流、组分或者其它标量的源项,详细内容请参阅、质量、动量、能量和其它源项的定义。

在多孔区域内压制湍流源项

如多孔介质的湍流处理中所讨论的,湍流在多孔介质中的计算和大量(bulk)流体流动是一样的。如果你使用k-e模型或者Spalart-Allmaras模型,你想要压制湍流在多孔区域的影响可以打开流体区域面板中的层流区域选项(从而使得多孔区域的湍流生成为零)。

指定旋转轴并定义区域运动

旋转轴和区域运动的输入和标准流体区域的输入是相同的,详细情况可以参阅流体区域的输入一节。

多孔介质的解策略

一般说来,在模拟多孔介质时,你可以使用标准的解算步骤以及解参数的设置。然而你会发现如果多孔区域在流动方向上压降相当大(比如:渗透性a很低或者内部因子C_2很大)的话,解的收敛速度就会变慢。这就表明由于动量源项中出现了多孔介质的压降(方程的矩阵不再是对角占优了),收敛性问题就出现了。解决多孔介质区域收敛性差最好的补救办法就是对于通过介质的流向压降有一个很好初始预测。猜测的办法之一就是,在介质流体单元的上游或者下游补偿一个压力值,详细内容请参阅所选单元的补偿值一节。必须记住的是,当补偿压力时,你所输入的压力可以定义为解算器所使用的gauge压力(即在操作条件面板中定义的相对于操作压力的压力)。

另一个处理收敛性差的方法是临时取消多孔介质模型(在流体面板中关闭多孔区域)然后获取一个不受多孔区域影响的初始流场。取消多孔区域后,FLUENT会将多孔区域处理为流体区域并按相应的流体区域来计算。一旦获取了初始解,或者计算很容易收敛,你就可以激活多孔模型继续计算包含多孔区域的流场(对于大阻力多孔介质不推荐使用该方法)。

对于高度各向异性的多孔介质,有时会造成收敛性的麻烦。对于这些问题你可以将多孔介质的各向异性系数(1/a_ij和C_2_i,j)限制在二阶或者三阶的量级。即使在某一方向上介质的阻力为无穷大,你也不需要将它设定超过初始流动方向上的1000倍。

多孔介质的后处理

可以通过检查速度分量和压力值来确定多孔区域对于流场的影响。你可能对下列变量或函数的图形(XY图,等值线图或者矢量图)或者文档报告感兴趣:

X,Y,Z速度(在速度类别中)

静压(在压力类别中)

这些变量会在后处理面板的变量选择下拉菜单制定类别中出现。

需要注意的是多孔区域的热报告不影响固体介质的属性。所报告的多孔区域内的热容、传导率以及焓是流体的属性不包括固体介质的影响。

排气扇边界条件

排气扇模型是集总模型,可用于确定具有已知特征的排气扇对于大流域流场的影响。排气扇边界类型允许你输入控制通过排气扇单元头部(压升)和流动速率(速度)之间关系的经验曲线。你也可以制定排气扇旋转速度的径向和切向分量。排气扇模型并精确模拟经过排气扇叶片的详细流动。它所预测的是通过排气扇的流量。排气扇的使用可能和其它流动源项关联,或作为模拟中流动的唯一源项。在后面的算例中,系统的流动速度由系统的损失和排气扇曲线之间的相互平衡决定。

FLUENT还提供了与用户自定义模型之间的连接,这个模型在计算时更新了压力跳跃函数。该功能在自定义排气扇模型一节介绍。

排气扇方程

模拟通过排气扇的压升

在FLUENT的排气扇模型中,排气扇被看成无限薄,通过排气扇的不连续压升被指定为通过排气扇速度的函数。它们之间的关系可能是常数,多项式、分段线性函数或者分段多项式函数,也可以是自定义函数。

多于多项式情况,关系式为:

∑=-

=?

N

n

n n

v f

p

1

1

其中D p为压力升高(单位:Pa),f_n为压力跳跃多项式系数,v垂直于排气扇的当地流体速度。速度v既可以是正也可以是负。你必须正确的模拟排气扇以保证从排气扇流过之后流体有个压力升高的现象。

对于排气扇区域内所有表面,你可以选择使用垂直于排气扇的质量平均速度来确定单独的压力跳跃值。

模拟排气扇漩涡速度

对于三维问题,对流的切向何径向速度值可以加到排气扇表面来产生涡流。这些速度可以指定为到排气扇中心的径向距离的函数。它们之间的关系可以是常数、多项式函数或者自定义函数。注意:所有涡流速度输入都使用国际单位。

对于多项式函数,切向何径向速度公式为:

∑-=

-

=

N

n

n

n

N v

f

U

1

6 1

;

θ

∑-=

-

=

N

n

n n

r

N v

g

U

1

6 1

;

其中U_q和U_r分别为排气扇表面的切向和径向速度,单位为。m/s,f_n和g_n是切向和径向速度的多项式系数,r为到排气扇中心的距离。

排气扇的用户输入

概述

一旦排气扇区域被确定(在边界条件面板),你需要在排气扇面板(下图)中设定所有的模型输入。该面板是从边界条件菜单中打开的,详细内容清参阅边界条件的设定一节。

Figure 1: 排气扇面板

对于排气扇,需要输入如下:

1.确定排气扇区域

2.定义通过排气扇的压力跳跃

3.为排气扇定义离散相边界条件(对于离散相计算)

4.需要的话,定义漩涡速度(只用于三维)

确定排气扇区域

因为排气扇被定义为无限薄,所以它必须被模拟为单元之间的界面而不是单元区域。因此排气扇区域是内部表面区域类型(其中表面是是二维中的线段或者三维中的三角形/四

边形)。当你将网格读入到FLUENT中时,如果排气扇区域被确定为内部区域,请使用边界条件(见改变边界区域类型)将适当的内部区域改变为排气扇区域。菜单:Define/Boundary Conditions...。内部区域改变为排气扇区域后,你可以打开排气扇面板并指定压力跳跃,以及(可选)漩涡速度。

定义压力跳跃

要定义压力跳跃,你需要指定速度的多项式函数、分段线性函数、分段多项式函数或者常数,也可以是自定义函数。你还应该检查区域平均方向矢量,保证流过排气扇有个压力升高。由解算器计算的区域平均方向是排气扇区域的表面平均方向矢量。如果这个方向指向和排气扇吹的方向一致就不用选择排气扇翻转方向了,否则选择排气扇翻转方向。

对于压力跳跃,请遵循下面的步骤定义多项式函数、分段线性函数、分段多项式函数:

1.检查排气扇面板,其中的压力跳跃轮廓指定选项是关闭的。

2.在压力跳跃右边的下拉菜单中选择多项式、分段线性或者分段多项式(如果所所要选择

的类型已被选中,你就可以点击编辑按钮打开定义函数的面板了)。

3.在定义压力跳跃函数的面板中(如下图)输入适当的数值。这些轮廓输入面板和温度相

关属性的轮廓输入面板用法相同。请参阅使用温度相关函数定义属性来查看如何使用它。

Figure 1: 压力跳跃定义的多项式轮廓面板

4. 设定下面所述的任何可选参数(此步可选)。

当你用这些函数的任何类型来定义压力跳跃时,你可以限定计算压力跳跃的速度值的最大和最小极限。打开多项式速度范围极限选项就可以设定速度范围的最大最小值了。如果计算的法向速度范围超出了你所指定的最大/最小速度范围,那么解算器就会用极限值来替换它。

你也可以选用垂直于风扇的质量平均速度来确定风扇区域内所有表面的单一的压力跳跃值。打开从平均条件计算压力跳跃可以激活这个选项。

要定义常数压力跳跃,请遵循如下步骤:

1.在排气扇面板中打开指定压力跳跃轮廓选项。

2.在压力跳跃右边的下拉菜单中选择常数。

3.输入压力跳跃场中的D p值。

如果更方便的话,你也可以使用如下步骤:

1.打开压力跳跃的轮廓指定选项。

2.在压力跳跃轮廓下面的下拉菜单中选择常数,然后输入压力跳跃轮廓场的D p值。

对于自定义压力跳跃函数或者边界轮廓中定义的函数,请遵循如下步骤:

1.打开压力跳跃的轮廓指定选项。

2.在压力跳跃轮廓下面的下拉菜单中选择适当的函数,然后输入压力跳跃轮廓场的D p

值。

关于自定义函数的信息请参阅自定义函数一节,关于边界轮廓文件的信息请参阅边界轮廓一节。

下面的例子告诉了我们如何确定压力跳跃的函数。考虑简单的二维管流(如图2)。进入长2.0m宽0.4m的导管的常密度空气的速度为15 m/s。管的中心是个排气扇。

Figure 2: 定位于二维导管的排气扇

当风扇的转速是2000rpm时,假定风扇的特征如下:

Q (m^3/s)D p (Pa)

250.0

20175

15350

10525

5700

0875

其中Q时通过风扇的流动,D p时通过风扇的压升。在本例中,风扇的特征为压力升高和速度呈线性关系。要将这些特征转换为压力和速度的关系,必须知道风扇的截面信息。在本例中,假定导管是1.0米深,面积为0.4平方米。相应的速度值如下:

v (m/s)D p (Pa)

62.50.0

50.0175

37.5350

25.0525

12.5700

0875

下面的对于一条线的方程是关系的多项式形式:

?

875-

=

v

p14

为风扇定义离散相边界条件

如果你是模拟粒子的离散相问题,你可以设定粒子在风扇处的轨迹。关于边界条件的设定清参阅离散相边界条件一节。

各类边界条件fluent

Fluent技巧 边界条件 定义边界条件概述 边界条件包括流动变量和热变量在边界处的值。它是FLUENT分析得很关键的一部分,设定边界条件必须小心谨慎。 边界条件的分类:进出口边界条件:压力、速度、质量进口、进风口、进气扇、压力出口、压力远场边界条件、质量出口、通风口、排气扇;壁面、repeating, and pole boundaries:壁面,对称,周期,轴;内部单元区域:流体、固体(多孔是一种流动区域类型) ;内部表面边界:风扇、散热器、多孔跳跃、壁面、内部。(内部表面边界条件定义在单元表面,这意味着它们没有有限厚度,并提供了流场性质的每一步的变化。这些边界条件用来补充描述排气扇、细孔薄膜以及散热器的物理模型。内部表面区域的内部类型不需要你输入任何东西。) 下面一节将详细介绍上面所叙述边界条件,并详细介绍了它们的设定方法以及设定的具体合适条件。周期性边界条件在本章中介绍,模拟完全发展的周期性流动将在周期性流动和热传导一章中介绍。 使用边界条件面板 边界条件(Figure 1)对于特定边界允许你改变边界条件区域类型,并且打开其他的面板以设定每一区域的边界条件参数 菜单:Define/Boundary Conditions... Figure 1: 边界条件面板 改变边界区域类型 设定任何边界条件之前,必须检查所有边界区域的区域类型,如有必要就作适当的修改。比方说:如果你的网格是压力入口,但是你想要使用速度入口,你就要把压力入口改为速度入口之后再设定。 改变类型的步骤如下:: 1.在区域下拉列表中选定所要修改的区域 2.在类型列表中选择正确的区域类型 3.当问题提示菜单出现时,点击确认 确认改变之后,区域类型将会改变,名字也将自动改变 (如果初始名字时缺省的请参阅边界条件区域名字一节),设定区域边界条件的面板也将自动打开。 !注意:这个方法不能用于改变周期性类型,因为该边界类型已经存在了附加限制。创建边界条件一节解释了如何创建和分开周期性区域。需要注意的是,只能在图一中每一个类别中改变边界类型(注意:双边区域表面是分离的不同单元区域.) Figure 1: 区域类型的分类列表 设定边界条件 在FLUENT中,边界条件和区域有关而与个别表面或者单元无关。如果要结合具有相同边界条件的两个或更多区域请参阅合并区域一节。 设定每一特定区域的边界条件,请遵循下面的步骤: 1.在边界条件区域的下拉列表中选择区域。 2. 点击Set...按钮。或者,1.在区域下拉列表中选择区域。 2.在类型列表中点击所要选择的类型。或者在区域列表中双击所需区域.,选择边界条件区域将会打开,并且你可以指定适当的边界条件

FLUENT中各种边界条件的适用范围

FLUENT中各种边界条件的适用范围 速度入口边界条件:用于定义流动入口边界的速度和标量。 压力入口边界条件:用来定义流动入口边界的总压和其它标量。 质量流动入口边界条件:用于已知入口质量流速的可压缩流动。在不可压缩流动中不必指定入口的质量流,因为当密度是常数时,速度入口边界条件就确定了质量流条件。压力出口边界条件:用于定义流动出口的静压(在回流中还包括其它的标量)。当出现回流时,使用压力出口边界条件来代替质量出口条件常常有更好的收敛速度。 压力远场边界条件:用于模拟无穷远处的自由可压缩流动,该流动的自由流马赫数以及静态条件已知。这一边界类型只用于可压缩流。 质量出口边界条件:用于在解决流动问题之前,所模拟的流动出口的流速和压力的详细情况还未知的情况。在流动出口是完全发展的时候这一条件是适合的,这是因为质量出口边界条件假定出了压力之外的所有流动变量正法向梯度为零。不适合于可压缩流动。 进风口边界条件:用于模拟具有指定的损失系数、流动方向以及周围(入口)环境总压和总温的进风口。 进气扇边界条件:用于模拟外部进气扇,它具有指定的压力跳跃、流动方向以及周围(进口)总压和总温。 通风口边界条件:用于模拟通风口,它具有指定的损失系数以及周围环境(排放处)的静压和静温。 排气扇边界条件:用于模拟外部排气扇,它具有指定的压力跳跃以及周围环境(排放处)的静压。 速度入口边界条件:速度入口边界条件用于定义流动速度以及流动入口的流动属性相关标量。这一边界条件适用于不可压缩流,如果用于可压缩流它会导致非物理结果,这是因为它允许驻点条件浮动。应该注意不要让速度入口靠近固体妨碍物,因为这会导致流动入口驻点属性具有太高的非一致性。 压力入口边界条件:压力入口边界条件用于定义流动入口的压力以及其它标量属性。它即可以适用于可压缩流,也可以用于不可压缩流。压力入口边界条件可用于压力已知但是流动速度和/或速率未知的情况。这一情况可用于很多实际问题,比如浮力驱动的流动。压力入口边界条件也可用来定义外部或无约束流的自由边界。 质量流动入口边界条件:用于已知入口质量流速的可压缩流动。在不可压缩流动中不必指定入口的质量流,因为当密度是常数时,速度入口边界条件就确定了质量流条件。当要求达到的是质量和能量流速而不是流入的总压时,通常就会使用质量入口边界条件。调节入口总压可能会导致解的收敛速度较慢,所以如果压力入口边界条件和质量入口条件都可以接受,应该选择压力入口边界条件。 压力出口边界条件:压力出口边界条件需要在出口边界处指定静(gauge)压。静压值的指定只用于亚声速流动。如果当地流动变为超声速,就不再使用指定压力了,此时压力要从内部流动中推断。所有其它的流

FLUENT进行流体动力学分析时,分析边界条件的种类及应用要点

FLUENT进行流体动力学分析时,分析边界条件的种类及应用要点。答:FLUENT 软件提供了十余种类型的进、出口边界条件,分别如下: (1) 速度入口(velocity-inlet):给出入口边界上的速度。 给定入口边界上的速度及其他相关标量值。该边界条件适用于不可压速流动问题,对可压缩问题不适合,否则该入口边界条件会使入口处的总温或总压有一定的波动。 (2) 压力入口(pressure-inlet):给出入口边界上的总压。 压力入口边界条件通常用于流体在入口处的压力为已知的情形,对计算可压和不可压问题都适合。压力进口边界条件通常用于进口流量或流动速度为未知的流动。压力入口条件还可以用于处理自由边界问题。 (3) 质量入口(mess-flow-inlet):给出入口边界上的质量流量。 质量入口边界条件主要用于可压缩流动;对于不可压缩流动,由于密度是常数,可以用速度入口条件。质量入口条件包括两种:质量流量和质量通量。质量流量是单位时间内通过进口总面积的质量。质量通量是单位时间单位面积内通过的质量。如果是二维轴对称问题,质量流量是单位时间内通过2π弧度的质量,而质量通量是通过单位时间内通过1 弧度的质量。 (4) 压力出口(pressure-outlet):给定流动出口边界上的静压。 对于有回流的出口,该边界条件比outflow 边界条件更容易收敛。给定出口边界 上的静压强(表压强)。该边界条件只能用于模拟亚音速流动。如果当地速度已经超过音速,该压力在计算过程中就不采用了。压力根据内部流动计算结果给定。其他量都是根据内部流动外推出边界条件。该边界条件可以处理出口有回流问题,合理的给定出口回流条件,有利于解决有回流出口问题的收敛困难问题。(5) 无穷远压力边界 (pressure-far-field):该边界条件用于可压缩流动。 如果知道来流的静压和马赫数,FLUENT 提供了无穷远压力边界条件来模拟该类问题。该边界条件适用于用理想气体定律计算密度的问题。为了满足无穷远压力边界条件,需要把边界放到我们关心区域足够远的地方。

fluent边界条件(二)

周期性边界条件 周期性边界条件用来解决,物理模型和所期待的流动的流动/热解具有周期性重复的特点。FLUENT提供了两种类型的周期性边界条件。第一种类型不允许通过周期性平面具有压降(对于FLUENT4用户来说:这一类型的周期性边界是指FLUENT4中的圆柱形边界)。第二种类型允许通过平移周期性边界具有压降,它是你能够模拟完全发展的周期性流动(在FLUENT4中是周期性边界)。 本节讨论了无压降的周期性边界条件。在周期性流动和热传导一节中,完全发展的周期性模拟能力得到了详尽的描述。 周期性边界的例子 周期性边界条件用于模拟通过计算模型内的两个相反平面的流动是相同的情况。下图是周期性边界条件的典型应用。在这些例子中,通过周期性平面进入计算模型的流动和通过相反的周期性平面流出流场的流动是相同的。正如这些例子所示,周期性平面通常是成对使用的。 Figure 1: 在圆柱容器中使用周期性边界定义涡流 周期性边界的输入 对于没有任何压降的周期性边界,你只需要输入一个东西,那就是你的所模拟的几何外形是旋转性周期还是平移性周期。(对于有周期性压降的周期流还要输入其它的东西,请参阅周期性流动和热传导一节。) 旋转性周期边界是指关于旋转对称几何外形中线形成了一个包括的角度。本节中的图一就是旋转性周期。平移性周期边界是指在直线几何外形内形成周期性边界。下面两图是平移性周期边界:

Figure 1: 物理区域 Figure 2: 所模拟的区域 对于周期性边界,你需要在周期性面板(下图)中指定平移性边界还是旋转性边界,该面板是从设定边界条件菜单中打开的。 Figure 3: 周期性面板 (对于耦合解算器,周期性面板中将会有附加的选项,这一选项允许你指定压力跳跃,详细内容请参阅周期性流动和热传导一节。) 如果区域是旋转性区域,请选择旋转性区域类型。如果是平移性就选择平移性区域类型。对

fluent边界条件2

壁面边界条件 壁面边界条件用于限制流体和固体区域。在粘性流动中,壁面处默认为非滑移边界条件,但是你也可以根据壁面边界区域的平动或者转动来指定切向速度分量,或者通过指定剪切来模拟滑移壁面(你也可以在FLUENT中用对称边界类型来模拟滑移壁面,但是使用对称边界就需要在所有的方程中应用对称条件。详情请参阅对称边界条件一节)。 在当地流场的详细资料基础上可以计算出流体和壁面之间的剪应力和热传导。 壁面边界的输入 概述 壁面边界条件需要输入下列信息: ●热边界条件(对于热传导计算) ●速度边界条件(对于移动或旋转壁面) ●剪切(对于滑移壁面,此项可选可不选) ●壁面粗糙程度(对于湍流,此项可选可不选) ●组分边界条件(对于组分计算) ●化学反应边界条件(对于壁面反应) ●辐射边界条件(对于P-1模型、DTRM或者DO模型的计算) ●离散相边界条件(对于离散相计算) 在壁面处定义热边界条件 如果你在解能量方程,你就需要在壁面边界处定义热边界条件。在FLUENT中有五种类型的热边界条件: ●固定热流量 ●固定温度 ●对流热传导 ●外部辐射热传导 ●外部辐射热传导和对流热传导的结合 如果壁面区域是双边壁面(在两个区域之间形成界面的壁面,如共轭热传导问题中的流/固界面)就可以得到这些热条件的子集,但是你也可以选择壁面的两边是否耦合。详情请参阅在壁面处定义热边界条件。 下面各节介绍了每一类型的热条件的输入。如果壁面具有非零厚度,你还应该设定壁面处薄壁面热阻和热生成的相关参数,详情请参阅在壁面处定义热边界条件。 热边界条件由壁面面板输入(Figure 1),它是从边界条件打开的(见设定边界条件一节)。

fluent边界条件(一)

边界条件 定义边界条件概述 边界条件包括流动变量和热变量在边界处的值。它是FLUENT分析得很关键的一部分,设定边界条件必须小心谨慎。 边界条件的分类:进出口边界条件:压力、速度、质量进口、进风口、进气扇、压力出口、压力远场边界条件、质量出口、通风口、排气扇;壁面、repeating, and pole boundaries:壁面,对称,周期,轴;内部单元区域:流体、固体(多孔是一种流动区域类型) ;内部表面边界:风扇、散热器、多孔跳跃、壁面、内部。(内部表面边界条件定义在单元表面,这意味着它们没有有限厚度,并提供了流场性质的每一步的变化。这些边界条件用来补充描述排气扇、细孔薄膜以及散热器的物理模型。内部表面区域的内部类型不需要你输入任何东西。) 下面一节将详细介绍上面所叙述边界条件,并详细介绍了它们的设定方法以及设定的具体合适条件。周期性边界条件在本章中介绍,模拟完全发展的周期性流动将在周期性流动和热传导一章中介绍。 使用边界条件面板 边界条件(Figure 1)对于特定边界允许你改变边界条件区域类型,并且打开其他的面板以设定每一区域的边界条件参数 菜单:Define/Boundary Conditions... Figure 1: 边界条件面板 改变边界区域类型 设定任何边界条件之前,必须检查所有边界区域的区域类型,如有必要就作适当的修改。比方说:如果你的网格是压力入口,但是你想要使用速度入口,你就要把压力入口改为速度入口之后再设定。 改变类型的步骤如下:: 1.在区域下拉列表中选定所要修改的区域

2.在类型列表中选择正确的区域类型 3.当问题提示菜单出现时,点击确认 确认改变之后,区域类型将会改变,名字也将自动改变(如果初始名字时缺省的请参阅边界条件区域名字一节),设定区域边界条件的面板也将自动打开。 !注意:这个方法不能用于改变周期性类型,因为该边界类型已经存在了附加限制。创建边界条件一节解释了如何创建和分开周期性区域。需要注意的是,只能在图一中每一个类别中改变边界类型(注意:双边区域表面是分离的不同单元区域.) Figure 1: 区域类型的分类列表 设定边界条件 在FLUENT中,边界条件和区域有关而与个别表面或者单元无关。如果要结合具有相同边界条件的两个或更多区域请参阅合并区域一节。 设定每一特定区域的边界条件,请遵循下面的步骤: 1.在边界条件区域的下拉列表中选择区域。 2. 点击Set...按钮。或者,1.在区域下拉列表中选择区域。 2.在类型列表中点击所要选择的类型。或者在区域列表中双击所需区域.,选择边界条件区域将会打开,并且你可以指定适当的边界条件 在图像显示方面选择边界区域 在边界条件中不论你合适需要选择区域,你都能用鼠标在图形窗口选择适当的区域。如果你是第一次设定问题这一功能尤其有用,如果你有两个或者更多的具有相同类型的区域而且你想要确定区域的标号(也就是画出哪一区域是哪个)这一功能也很有用。要使用该功能请按下述步骤做: 1.用网格显示面板显示网格。 2.用鼠标指针(默认是鼠标右键——参阅控制鼠标键函数以改变鼠标键的功能)在图形窗口中点击边界区域。在图形显示中选择的区域将会自动被选入在边界条件面板中的区域列表中,它的名字和编号也会自动在控制窗口中显示改变边界条件名字 每一边界的名字是它的类型加标号数(比如pressure-inlet-7)。在某些情况下你可能想要对边界区域分配更多的描述名。如果你有两个压力入口区域,比方说,你可能想重名名它们

(完整版)fluent边界条件设置

边界条件设置问题 1、速度入口边界条件(velocity-inlet):给出进口速度及需要计算的所有标量值。该边界条件适用于不可压缩流动问题。 Momentum 动量?thermal 温度radiation 辐射species 种类 DPM DPM模型(可用于模拟颗粒轨迹)multipahse 多项流 UDS(User define scalar 是使用fluent求解额外变量的方法) Velocity specification method 速度规范方法:magnitude,normal to boundary 速度大小,速度垂直于边界;magnitude and direction 大小和方向;components 速度组成?Reference frame 参考系:absolute绝对的;Relative to adjacent cell zone 相对于邻近的单元区 Velocity magnitude 速度的大小 Turbulence 湍流 Specification method 规范方法 k and epsilon K-E方程:1 Turbulent kinetic energy湍流动能;2 turbulent dissipation rate 湍流耗散率 Intensity and length scale 强度和尺寸:1湍流强度 2 湍流尺度=0.07L(L为水力半径)intensity and viscosity rate强度和粘度率:1湍流强度2湍流年度率 intensity and hydraulic diameter强度与水力直径:1湍流强度;2水力直径

(整理)FLUENT边界条件(2)—湍流设置.

FLUENT边界条件(2)—湍流设置 (fluent教材—fluent入门与进阶教程于勇第九章) Fluent:湍流指定方法(Turbulence Specification Method) 2009-09-16 20:50 使用Fluent时,对于velocity inlet边界,涉及到湍流指定方法(Turbulence Specification Method),其中一项是Intensity and Hydraulic Diameter (强度和水利直径),本文对其进行论述。 其下参数共两项, (1)是Turbulence Intensity,确定方法如下: I=0.16/Re_DH^0.125 (1) 其中Re_DH是Hydraulic Diameter(水力直径)的意思,即式(1)中的雷诺数是以水力直径为特征长度求出的。 雷诺数 Re_DH=u×DH/υ(2) u为流速,DH为水利直径,υ为运动粘度。 水利直径见(2)。 (2)水利直径 水力直径是水力半径的二倍,水力半径是总流过流断面面积与湿周之比。 水力半径 R=A/X (3) 其中,A为截面积(管子的截面积)=流量/流速 X为湿周(字面理解水流过各种形状管子外圈湿一周的周长) 例如:方形管的水利半径 R=ab/2(a+b) 水利直径 DH=2×R (4) 举例如下: 如果水流速度u=10m/s,圆形管路直径2cm,水的运动粘度为1×10-6 m2/s。 则 DH=2×3.14*r^2/(2*3.14*r)=2*3.14*0.01^2/(3.14*0.02)=0.01 r为圆管半径 Re_DH=u×DH/υ=10*0.02/10e-6=20000 I=0.16/Re_DH^0.125=0.16/20000^0.125=0.0463971424017634≈5%

FLUENT边界条件(4)—SYMMETRY与aixs

FLUENT边界条件(4)—SYMMETRY与aixs FLUENT中的边界类型有两个很相似的类型,symmetric与axis,使用的时候很容易弄混淆。 symmetric(对称):可用于二维和三维中,通常用于几何对称及物理对称。 axis(轴):常用于三维中,和二维中一些几何对称但流场不对称的场合 它们的一些特点: 1、在二维几何中,对称边界axis必须沿着x轴方向,且要求几何位于x轴上方。 2、几何都是对称的。axis可用于利用二维模拟三维的情况。symmetry在三维几何中主要用于面的对称。 它们间的一些区别: 1、在将三维几何简化为二维的过程中,若采用symmetry,是无法考虑沿切向的物理分量的。比如说计算直管流动,若采用symmetry进行模拟,则假设流动沿切向是无速度梯度的。而此时利用axis边界,则可以考虑到切向物理量的变化。当然,他们的几何也有区别,利用symmetry需要建立的模型是轴切面,而利用axis则只需要一个旋转面就可以。 2、axis几乎只用于二维模型中,而symmetry既可用于二维模型,也可用于三维模型中。 3、axis多用于旋转几何体中,symmetry既可用于旋转几何体,也可用于镜像几何体。 4、symmetry边界有其明确的物理意义:沿该边界法向,速度为零,所有物理量梯度为零。而axis则无这样的定义,仅仅指的是旋转轴而已。 上面说的是边界类型,在fluent的2D求解器中有Axisymmetry与Axisymmetry Swirl,在实例文档中是这样描述的: Your problem may be axisymmetric with respect to geometry and flow conditions but still include swirl or rotation. In this case, you can model the flow in 2D (i.e., solve the axisymmetric problem) and include the prediction of the circumferential (or swirl) velocity. It is important to note that while the assumption of axisymmetry implies that there are no circumferential gradients in the flow, there may still be non-zero swirl velocities. 什么意思呢?

Fluent出入口边界条件设置及实例解析.

问:用了很长时间的fluent ,但一直没有把压力出入口边界条件弄明白。请大侠给予正确指导... 有的文档说亚声速流下initial 是0或者不填,而有的出版物则把total 和initial 设置成几乎想等的值,或者差值为大气压,很困惑! 比如说在一个喷射(亚声速流)流场中,实际条件为喷嘴入口压力40MPa ,出口压力20MPa ,即流场内围压20MPa ,这时,在压力入口边界条件的总压、初始表压以及压力出口的表压分别应该设置多少?如果是超声速流,又有什么区别? 还有,operating condition下的operating pressure是否设置成0或者大气压有什么说法吗? A :有的出版物则把total 和initial 设置成几乎想等的值。 我在使用时一般也是采用这样的方法,严格来讲是有公式来计算的。但是这个值一般只是用于初始化,对结果影响不大,所以简单来讲就设置成和出口的一样。 这个值对流场的初始化有一定的影响,设置成0也不是不可以,但会增加迭代步数。 对于喷射而言,建议lz 将operating condition下的operating pressure设置为 0 ,即是绝对压力。 二 最近用Fluent 做模拟的时候一直在使用压力出口边界,对其中出口温度、组分浓度等值的设置不是很明白,就仔细看了下Fluent User Guide,对压力出口边界描述如下: Pressure outlet boundary conditions require the specification of a static (gauge pressure at the outlet boundary........All other flow quantities are extrapolated from the interior。因此,压力出口边界可以这样表述,即,给定出口压力,对流动中的其他物理量均有流场内部值差值得到。 那边界条件面板中设定的温度(等)值有什么用呢?

FLUENT边界条件经典材料

第五章,边界条件 5-1, FLUENT 程序边界条件种类 FLUENT 的边界条件包括: 1, 流动进、出口边界条件 2, 壁面,轴对称和周期性边界 3, Internal cell zones: fluid, solid (porous is a type of fluid zone ) 4, Internal face boundaryies: fan, radiator, porous jump, wall, interior 5-2,流动进口、出口边界条件 FLUENT 提供了10种类型的流动进、出口条件,它们分别是: 一般形式: 可压缩流动: 压力进口 质量进口 压力出口 压力远场 不可压缩流动: 特殊进出口条件: 速度进口 进口通分,出口通风 自由流出 吸气风扇,排气风扇 1, 速度进口:给出进口速度及需要计算的所有标量值 2, 压力进口:给出进口的总压和其它需要计算的标量进口值 3, 质量流进口:主要用于可压缩流动,给出进口的质量流量。对于不可压缩流动,没有必要给出该边界 条件,因为密度是常数,我们可以用速度进口条件。 4, 压力出口:给定流动出口的静压。对于有回流的出口,该边界条件比outflow 边界条件更容易收敛。 5, 压力远场:该边界条件只对可压缩流动适合。 6, outflow : 该边界条件用以模拟在求解问题之前,无法知道出口速度或者压力;出口流动符合完全发 展条件,出口处,除了压力之外,其它参量梯度为零。该边界条件不适合可压缩流动。 7, inlet vent :进口风扇条件需要给定一个损失系数,流动方向和环境总压和总温。 8, intake fan :进口风扇条件需要给定压降,流动方向和环境总压和总温。 9, out let vent :排出风扇给定损失系数和环境静压和静温。 10, exhaust fan.:排除风扇给定压降,环境静压。 进口 出口 壁面 orifice (interior) orifice_plate and orifice_plate-shadow 流体 Example: Face and Cell zones associated with Pipe Flow through orifice plate

最新fluent边界条件

f l u e n t边界条件

壁面边界条件 壁面边界条件用于限制流体和固体区域。在粘性流动中,壁面处默认为非滑移边界条件,但是你也可以根据壁面边界区域的平动或者转动来指定切向速度分量,或者通过指定剪切来模拟滑移壁面(你也可以在FLUENT中用对称边界类型来模拟滑移壁面,但是使用对称边界就需要在所有的方程中应用对称条件。详情请参阅对称边界条件一节)。 在当地流场的详细资料基础上可以计算出流体和壁面之间的剪应力和热传导。壁面边界的输入 概述 壁面边界条件需要输入下列信息: ●热边界条件(对于热传导计算) ●速度边界条件(对于移动或旋转壁面) ●剪切(对于滑移壁面,此项可选可不选) ●壁面粗糙程度(对于湍流,此项可选可不选) ●组分边界条件(对于组分计算) ●化学反应边界条件(对于壁面反应) ●辐射边界条件(对于P-1模型、DTRM或者DO模型的计算) ●离散相边界条件(对于离散相计算) 在壁面处定义热边界条件 如果你在解能量方程,你就需要在壁面边界处定义热边界条件。在FLUENT中有五种类型的热边界条件:

●固定热流量 ●固定温度 ●对流热传导 ●外部辐射热传导 ●外部辐射热传导和对流热传导的结合 如果壁面区域是双边壁面(在两个区域之间形成界面的壁面,如共轭热传导问题中的流/固界面)就可以得到这些热条件的子集,但是你也可以选择壁面的两边是否耦合。详情请参阅在壁面处定义热边界条件。 下面各节介绍了每一类型的热条件的输入。如果壁面具有非零厚度,你还应该设定壁面处薄壁面热阻和热生成的相关参数,详情请参阅在壁面处定义热边界条件。 热边界条件由壁面面板输入(Figure 1),它是从边界条件打开的(见设定边界条件一节)。

FLUENT参数设置(新手)

4月1日 写给Fluent新手(续) 31 数值模拟过程中,什么情况下出现伪扩散的情况?以及对于伪扩散在数值模拟过程中如何避免? 假扩散(false diffusion)的含义: 基本含义:由于对流—扩散方程中一阶导数项的离散格式的截断误差小于二阶而引起较大数值计算误差的现象。有的文献中将人工粘性(artificial viscosity)或数值粘性(numerical viscosity)视为它的同义词。 拓宽含义:现在通常把以下三种原因引起的数值计算误差都归在假扩散的名称下 1.非稳态项或对流项采用一阶截差的格式; 2.流动方向与网格线呈倾斜交叉(多维问题); 3.建立差分格式时没有考虑到非常数的源项的影响。 克服或减轻假扩散的格式或方法, 为克服或减轻数值计算中的假扩散(包括流向扩散及交叉扩散)误差,应当: 1. 采用截差阶数较高的格式; 2. 减轻流线与网格线之间的倾斜交叉现象或在构造格式时考虑到来流方向的影响。 3. 至于非常数源项的问题,目前文献中,还没有为克服这种影响而专门构造的格式,但是高阶格式显然对减轻其影响是有利的。 32 FLUENT轮廓(contour)显示过程中,有时候标准轮廓线显示通常不能精确地显示其细节,特别是对于封闭的3D物体(如柱体),其原因是什么?如何解决? FLUENT等高线(contour)显示过程中,可以通过调节显示的水平等级来调节其显示细节,Levels...最大值允许设置为100.对于封闭的3D物体,可以通过建立Surface,监视Surface上的量来显示计算结果。或者计算之后将结果导入到Tecplot中,作切片图显示。

Fluent出入口边界条件设置及实例解析

问:用了很长时间的fluent,但一直没有把压力出入口边界条件弄明白。请大侠给予正确指导... 有的文档说亚声速流下initial是0或者不填,而有的出版物则把total和initial设置成几乎想等的值,或者差值为大气压,很困惑! 比如说在一个喷射(亚声速流)流场中,实际条件为喷嘴入口压力40MPa,出口压力20MPa,即流场内围压20MPa,这时,在压力入口边界条件的总压、初始表压以及压力出口的表压分别应该设置多少?如果是超声速流,又有什么区别? 还有,operating condition下的operating pressure是否设置成0或者大气压有什么说法吗? A:有的出版物则把total和initial设置成几乎想等的值。 我在使用时一般也是采用这样的方法,严格来讲是有公式来计算的。但是这个值一般只是用于初始化,对结果影响不大,所以简单来讲就设置成和出口的一样。 这个值对流场的初始化有一定的影响,设置成0也不是不可以,但会增加迭代步数。 对于喷射而言,建议lz将operating condition下的operating pressure设置为0 ,即是绝对压力。 二 最近用Fluent做模拟的时候一直在使用压力出口边界,对其中出口温度、组分浓度等值的设置不是很明白,就仔细看了下Fluent User Guide,对压力出口边界描述如下: Pressure outlet boundary conditions require the specification of a static (gauge) pressure at the outlet boundary........All other flow quantities are extrapolated from the interior。因此,压力出口边界可以这样表述,即,给定出口压力,对流动中的其他物理量均有流场内部值差值得到。 那边界条件面板中设定的温度(等)值有什么用呢? 是出现回流时的回流值。 三 Fluent内部计算采用的都是相对压强。在Define——Operating Conditions…中,所示的Operating Pressure是操作压强。默认的操作压强为一个大气压101325Pa. 下面叙述一下笔者对采用Operating Pressure原因的理解。

相关文档
相关文档 最新文档