文档库 最新最全的文档下载
当前位置:文档库 › 噪声系数的原理和测试方法

噪声系数的原理和测试方法

噪声系数的原理和测试方法
噪声系数的原理和测试方法

噪声系数测试方法

针对手机等接收机整机噪声系数测试问题,该文章提出两种简单实用的方法,并分别讨论其优缺点,一种方法是用单独频谱仪进行测试,精度较低;另一种方法是借助噪声测试仪的噪声源来测试,利用冷热负载测试噪声系数的原理,能够得到比较精确的测量结果。

图1是MAXIM公司TD-SCDMA手机射频单元参考设计的接收电路,该通道电压增益大于100dB,与基带单元接口为模拟I/Q信号,我们需要测量该通道的噪声系数。采用现有的噪声测试仪表是HP8970B,该仪表所能测量的最低频率为10MHz,而TD-SCDMA基带I/Q信号最高有用频率成份为640KHz,显然该仪表不能满足我们的测量需求。下面我们将介绍两种测试方案,并讨论其测试精度,最后给出实际测试数据以做对比。

图1:MAXIM公司TD-SCDMA手机射频接收电路。

利用频谱仪直接测试

利用频谱仪直接测量噪声系数的仪器连接如图2所示,其中点频信号源用于整个通道增益的校准,衰减器有两个作用,一是起到改善前端匹配的作用;二是做通道增益校准使用,因接收机增益往往很高,大于

100dB,而一些信号源不能输出非常弱的信号,配合该衰减器即能完成该功能。

测量步骤一:先利用信号源产生一个点频信号(一般我们感兴趣的是接收机小信号时的噪声系数,故此时点频信号电平应接近灵敏度电平),频点与本振信号错开一点,这样在基带I/Q端口可以得到一个点频信号,调节接收机通道增益使I/Q端点频信号幅度适中,测量接收机输入与输出端的点频信号大小可以求得这时的通道增益,记为G。

测量步骤二:接步骤一,关闭信号源,保持接收机所有设置不变,用频谱仪测量I/Q端口在刚才点频频点处的噪声功率谱密度,I端口记为Pncdensity(dBm/Hz), Q端口记为Pnsdensity(dBm/Hz),则接收通道噪声系数有下式给出:

上式中kb表示波尔兹曼常数,F是噪声系数真值,我们用NF表示噪声系数的对数值,NF=10lg(F), G表示整个通道增益,T1为当前热力学温度,T0等于290K。假定T1=T0,容易求得NF的显式表达式如下:

或者:

关于方程2与方程3的正确性,我们可以做如下简单推导。先考虑点频情况,设接收机输入端点频信号为:

接收机I/Q端口点频信号分别为:

现在考虑噪声问题,为简化计算,在此设当前温度为290K,即定义噪声系数的标准温度。根据噪声系数的定义,我们可以将系统产生的噪声等效到输入端口,该噪声与资用噪声功率和应等于资用噪声功率的F倍。

图2:利用频谱仪直接测量噪声系数。

下面我们用一个窄带平稳高斯过程来描述这两部分噪声之和,设噪声带宽为2B,下面方程给出了该噪声的一些特性:

比较方程4与方程7,再参照方程5式与6式,我们可以得到接收机输出端的噪声表达式:

结合方程8与方程7可以直接得到方程2,结合方程9与方程7可以直接得到方程3,注意I与Q端口噪声带宽为B,是射频噪声带宽的一半。图3比较形象地给出了噪声变换过程:

图3:输入输出噪声功率及功率谱密度关系。

从图3还可以看到,在数值上,输出同相噪声功率谱密度与输入同相噪声谱密度除通道增益与噪声系数外,相差6dB,这说明输入同相噪声上下两边带是严格相关的;输出正交噪声谱密度与输入正交相噪声谱密度相比除通道增益与噪声系数外,同样也有6dB增益。

借助标准噪声源精确测试

这里介绍的方法即Y系数法,也称为冷热负载法,一般噪声系数测试仪表就采用该方法,但仪表有它自身的限制,如HP8970B所能测量的最低频率为10MHz,待测件最大增益80dB。我们这里采用通用频谱仪来检测待测件输出噪声大小,从而避开了噪声测试仪表在噪声检测上的限制,再根据Y系数法原理计算出待测件噪声系数。图4给出了该方法的仪器配置图:

图4:Y系数法仪器配置图。

测量步骤一:先将接收机接到点频信号源侧,利用信号源产生一个灵敏度电平的点频信号(因为我们通常感兴趣的是接收机小信号时的噪声系数),频点与本振信号错开一点,这样在基带I/Q端口可以得到一个点频信号。调节接收机通道增益使I/Q端点频信号幅度适中。

测量步骤二:接步骤一,保持接收机所有设置不变,将接收机接到噪声源一侧,噪声源置为冷态,设冷态噪声温度为T1,用频谱仪测量I端口噪声功率谱密度(I与Q有相同的性质,故此处仅提及I端口),记为Poc(dBm/Hz)。

测量步骤三:接步骤二,保持接收机设置不变,噪声源置为热态,设噪声温度为T2,用频谱仪测量I端口噪声功率谱密度,记为Poh(dBm/Hz)。

所谓Y系数法中的Y即测量步骤三与测量步骤二两测量值的比值:

设接收机等效噪声温度为Te。我们可以用冷态源噪声温度,热态源噪声温度,接收机等效噪声温度来表示系数Y,如下式:

设噪声头超噪比为ENR,标准噪声温度为T0(290K),根据超噪比定义可得到下面等式:

根据噪声系数与等效噪声温度定义可以得到下式:

联立方程11、12和13,可以容易求得噪声系数关于ENR、Y、T1、T0的函数关系,其对数表达形式如下:

一般冷态噪声温度接近标准噪声温度,在对精度要求不高时,可以认为T1=T0,上式可以简化为:

上式中Y由方程10给出,是间接测量值,ENR由噪声头给出。根据该等式可以方便求出接收机噪声系数。

两种测试方法的优缺点比较

利用方法一测试MAXIM公司TD-SCDMA手机接收通道噪声系数,先利用点频信号测量通道增益,输入点频信号为-105.6dBm,频点2015.95MHz,MAX2392的LNA与混频器置为高增益高线性状态,VGC电压调到2.63V,本振频点置为2015.8MHz,这时我们在I输出端测到-3.5dBm的150KHz点频信号,从而计算出整个通道增益为102.1dB。现在关掉输入的点频信号,利用频谱仪测量I端口在150KHz频点处噪声功率谱密度,我们用的频谱仪是RS公司FSEA,为使噪声测量结果精确,检波方式设为“SAMPLE”,然后再利用“Maker Noise”功能测试。我们测到噪声功率谱密度为-63.5dBm/Hz。根据方程2可以容易计算出整个通道的噪声系数为:

利用方法二测试MAXIM公司TD-SCDMA手机接收通道噪声系数,接上面的测量,保持MAX2392工作状态不变。在上面测试中得到的I端口150KHz频点处噪声功率谱密度即为冷态噪声源时的噪声功率谱密度,现在仅需测热态时该频点处噪声功率谱密度。在此我们用的是Noise/Com 公司的NC346A噪声头,其在2G 频点处超噪比ENR=5.91dB。利用与方法一中同样的测试方法,我们测到热态时在150KHz处噪声功率谱密度为-60.4dBm。根据方程10可以计算出Y系数为3.1dB,再根据方程15我们可以计算出整个通道的噪声系数为:

比较上面两种方法得到的测量结果,仅差0.3dB,测试结果是比较理想的。这两种方法中,第二种测试方法更精确一些,原因是频谱仪在测量噪声功率谱密度时可能会有误差,频谱仪的中频滤波器的信号带宽与噪声带宽一般不等,有的频谱仪会给出一个修正值,有的则没有,如我们没有考虑该修正值,或仪表在读数上未做修正,则我们测到的噪声功率谱密度就可能有1dB左右偏差,导致最终噪声系数1dB左右偏差。如按第二种方法测试,因为我们仅需知道冷热噪声源时功率谱密度比值,即便在冷热两种噪声源时测到的功率谱密度有偏差,其比值依然是正确的,从而提高了噪声的测量精度。

作者:王险峰

高级射频工程师

祁艳阳

高级射频工程师MAXIM公司

环境噪音测量方法

环境噪音测量方法 一, 方法概要 本方法系使用符合我国国家标准(CNS 7129)1型噪音计(或称声度表)或国际标准或上述性能以上之噪音计,测量环境中噪音位准之方法. 二, 适用范围 本测量方法适用於一般环境及固定性噪音发生源或移动性扩音设施之噪音位准测量. 三, 干扰 (一) 气象条件,地形,地面情况:噪音之传播会受到气象条件,地形,地面情况等之影响,故测量噪音时需记录天气,测量点附近之风向,风速,温度,相对湿度等之气象条件及地形,地面情况. (二) 由风产生噪音的影响:噪音计之声音感应器直接受到强风时,因风切作用而产生杂音(称为风杂音),严重时无法测量正确值,故在室外测定时,可能会产生风杂音时需加装防风罩.但防风罩也有其可使用范围,如超过使用范围时,应停止测量. .四, 仪器及设备 1.测定器:符合我国国家标准(CNS 7129 C7143)1型之噪音计(以下简称噪音计)或国际电工协会标准Class 1噪音计或上述性能以上之噪音计;原则上以噪音计之听感修正回路A加权测定之. 2. 防风罩(W indscreen):为减少声音感应器测量时风造成之影响,因此必须加套防风罩,其材质一般是由多孔性聚乙烯制成,其可容许风速范围由材料,结构,大小而定. 五, 噪音计使用方法

听感修正回路或称频率加权(Frquency-weighting"A"):本测量方法原则上以听感修 正回路A加权测定之,惟测量时应注记现场测量时所使用之加权名称. 六, 结果处理 (一) 测量报告须列出下列各项: 1, 测量人员姓名,服务单位. 2, 测量日期,测量时间,动特性. 3, 气象状态(风向,风速,气温,大气压力,相对湿度及最近降雨日期). 4, 测量结果. 5, 适用之标准 6, 测量位置(测量点及其高度,声音感应器高度等)与音源相对位置及距离,附简图 及照片,周围之情况(周围之建筑物,地形,地貌,防音设施等,附简图). 7, 噪音发生源之种类与特徵. 8, 测量方法(噪音计(含声音校正器)厂牌,型号,序号,噪音计动特性,取样的时距与 次数及其校正纪录与检定,校正有效期限等). 9, 其他(特殊音源之特性及其随时间变化性,可能影响测量结果之因素等). 10, 测量 期间噪音原始数据应存档备查. 实验数据 XuHao Leq l5 L10 L50 L90 L95 SD LEA 84 69.6 74.7 71.5 69.5 68.4 68.1 1.6 94.4 85 66.8 78.9 69.7 64.2 63.6 63.5 3.8 91.6 Lmax Lmin E 测定时间日期 80.7 68.2 0 0h5m0s 14-07-02 87.7 63.3 0 0h5m0s 14-07-02

相位噪声的产生原因和影响

相位噪声的产生原因和影响 概述 相位噪声和抖动是对同一种现象的两种不同的定量方式。在理想情况下,一个频率固定的完美的脉冲信号(以1 MHz为例)的持续时间应该恰好是1微秒,每500ns有一个跳变沿。但不幸的是,这种信号并不存在。如图1所示,信号周期的长度总会有一定变化,从而导致下一个沿的到来时间不确定。这种不确定就是相位噪声,或者说抖动。 相位噪声是频率域的概念。相位噪声是对信号时序变化的另一种测量方式,其结果在频率域内显示。用一个振荡器信号来解释相位噪声。如果没有相位噪声,那么振荡器的整个功率都应集中在频率f=fo处。但相位噪声的出现将振荡器的一部分功率扩展到相邻的频率中去,产生了边带(sideband)。从图2中可以看出,在离中心频率一定合理距离的偏移频率处,边带功率滚降到1/fm,fm是该频率偏离中心频率的差值。 相位噪声通常定义为在某一给定偏移频率处的dBc/Hz值,其中,dBc是以dB为单位的该频率处功率与总功率的比值。一个振荡器在某一偏移频率处的相位噪声定义为在该频率处1Hz带宽内的信号功率与信号的总功率比值。 定义 定义1:相位噪声是指单位Hz的噪声密度与信号总功率之比,表现为载波相位的随机漂移,是评价频率源(振荡器)频谱纯度的重要指标源自: 有线数字电视传输特性与故障解析《中国有线电视》 2005年赵雨境,王恒江 定义2:相位噪声是指光的正弦振荡不稳定,时而出现某处相位的随机跳变.相位噪声导致光源线宽变宽.光强度噪声是指因自发辐射光强的随机变化和外界温度的变化,导致发射 光强的起伏源自: Fabry-Perot干涉式光纤温度传... 《传感器技术》 2001年曹满 婷来源文章摘要:分析了温度对相位的调制作用以及Fabry -Perot干涉结构检测相位变化的原理 ,提出了一种具有高灵敏度和高分辨率的相位调制型全光纤结构 ,并进行了系统的噪声分析。 定义3:是一随机量通常把信号的相似随机起伏中(t)称为相位噪声.(t)随时间变化的随机过程是一平稳的随机过程并使随机量的概率密度分布符合正态分布源自: 受多项噪声影响的二级方差估值的置信度《四川教育学院学报》 1997年林时昌来源文章摘要:有限次(m次)采样测量的二级方差估值(,m)随机地偏离其真值<)。这种随机不确定性不仅和m有关,而且和噪声的性质有关。计算出单项噪声所产生的不确定度;分析了多项噪声对总不确定度的影响,并引用置信度的概念表征测量的不确定度。 定义4:(t)〕sin[2兀厂t+小(t)]相位噪声是指频率信号中由频率源内部噪声调制(调相或调频)产生的随机相位起伏.当被测相位噪声比频谱分析仪自身的相位噪声大时,可直接利用频谱分析仪来测量相位噪声,这是一种简单、方便的相位噪声测量方法源自: 频谱分析仪在测量相位噪声过程中的数值修正《国外电子测量技术》 2002年曹芸来源文章摘要:本文介绍了在使用频谱分析仪测量相位噪声时,影响其测量结果的因素并讨论了如何对频谱分析仪输出结果进行修正。 定义5:则()rk的相角为()kknkqj+q+,其中()nkq是噪声()nk对相位的干扰,称为相位噪声.可见,kq中包含了全部的载波相位信息,kj包含了大量甚至全部的码字信息源自: 相位 处理载波恢复算法研究《信息与电子工程》 2003年袁清升,刘文来源文章摘要:针对

常见的塑料检测标准和方法

常见的塑料检测标准和方法

常见的塑料检测标准和方法 检测产品/类别检测项目/参数 检测标准(方法)名称及编号(含年号)序 号 名称 塑料1 光源暴露试验方 法通则 塑料实验室光源暴露试验方法第1部分:通则ISO 4892-1:1999 2 氙弧灯光老化 汽车外饰材料的氙弧灯加速暴露试验SAE J2527:2004 汽车内饰材料的氙弧灯加速暴露试验SAE J2412:2004 塑料实验室光源暴露试验方法第2部分:氙弧灯ISO 4892-2:2006 /Amd 1:2009 室内用塑料氙弧光暴露试验方法ASTM D4459-06 非金属材料氙弧灯老化的仪器操作方法ASTM G155-05a 塑料暴露试验用有水或无水氙弧型曝光装置的操作ASTM D2565-99(2008) 3 荧光紫外灯老化 塑料实验室光源暴露试验方法第3部分:荧光紫外灯ISO 4892-3:2006 汽车外饰材料UV快速老化测试SAE J2020:2003 塑料紫外光暴露试验方法ASTM D4329-05 非金属材料UV老化的仪器操作方法ASTM G154-06 4 碳弧灯老化 塑料实验室光源暴露试验方法第4部分:开放式碳弧灯 ISO 4892-4:2004/ CORR 1:2005 塑料实验室光源曝露试验方法第4部分:开放式碳弧灯 GB/T16422.4-1996 5 荧光紫外灯老化 机械工业产品用塑料、涂料、橡胶材料人工气候老化试验方法荧 光紫外灯GB/T14522-2008 6 热老化 无负荷塑料制品的热老化 ASTM D3045-92(2010) 塑料热老化试验方法GB/T7141-2008 7 湿热老化 塑料暴露于湿热、水溅和盐雾效应的测定ISO4611:2008 塑料暴露于湿热、水喷雾和盐雾中影响的测定GB/T12000-2003 塑料8 拉伸性能塑料拉伸性能的测定第1部分:总则GB/T1040.1-2006

噪声测定实验教案

噪声测定实验 一实验目的 1掌握AWA5610C声级计的工作原理及其使用方法 2掌握AWA6270A噪声频谱分析仪的工作原理及其使用方法 二实验内容 1使用AWA5610C声级计测量噪音 2使用AWA6270A噪声频谱分析仪测量噪音 三实验原理 1 AWA5610C声级计的工作原理 工作原理是被测的声压信号通过传声器转换成电压信号,然后经衰减器、放大器以及相应的计权网络、滤波器,或者输入记录仪器,或者经过均方根值检波器直接推动以分贝标定 的指示表头。 2 AWA6270A噪声频谱分析仪的工作原理 工作原理是输入信号经衰减器直接外加到混波器,可调变的本地振荡器经与CRT同步的扫瞄产生器产生随时间作线性变化的振荡频率,经混波器与输入信号混波降频后的中频信号(IF)再放大,滤波与检波传送到CRT的垂直方向板。 四实验设备仪器 (一)AWA5610C声级计 AWA5610C型积分声级计是一种袖珍式智能化噪声测量仪 器,可广泛应用于环境噪声的测量与自动监测,也可用于劳动保 护、工业卫生及各种机器、车辆、船舶、电器等工业噪声测量。 本仪器采用了先进的数字检波技术,具有可靠性高、稳定性好、 动态范围宽等优点。 主要技术性能: 驻极体测试电容传声器,灵敏度: 1.传声器:Φ1 2.7mm(1/2”) 约40mV/Pa,频率范围:20Hz~12.5kHz。 2.测量范围:35~130dBA(以2×10-5Pa为参考,下同) 3.频率范围:20Hz~12.5kHz 4.频率计权:A计权 5.时间计权:快(F),慢(S) 图1 AWA5610C声级计 6.检波器特性:真有效值、峰值因数 3 7.准确度:2型 8.测量时间:手控、10s、1min、5min、10min、20min、1h、4h、8h、24h。 9.显示:4位LCD,直接显示测量结果Lp、Leq、Lmax、Lmin、Linst、Tm及日历年、月、日、时、分、秒等。 10.储存:60组数据,包括年、月、日、时、分、设定时间、测量经历时间、最大声级, 最小声级、等效声级。 11.输出接口:RS—232C,可接至微型打印机或计算机。

噪声系数测量手册1:噪声系数定义及测试方法

噪声系数测量手册 Part 1. 噪声系数定义及测试方法 安捷伦科技:顾宏亮一.噪声系数定义 最常见的噪声系数定义是:输入信噪比/ 输出信噪比。它是衡量设备本身噪声品质的重要参数,它反映的是信号经过系统后信噪比恶化的程度。噪声系数是一个大于1的数,也就是说信号经过系统后信噪比是恶化了。噪声系数是射频电路的关键指标之一,它决定了接收机的灵敏度,影响着模拟通信系统的信噪比和数字通信系统的误码率。无线通信和卫星通信的快速发展对器件、子系统和系统的噪声性能要求越来越高。 输入信噪比SNR input=P i/N i 输出信噪比SNR output=P o/N o 噪声系数F =SNR input/SNR output通常用dB来表示NF= 10Log(F) 假设放大器是理想的线性网络,内部不产生任何噪声。那么对于该放大器来说,输出的功率Po以及输出的噪声No 分别等于Pi * Gain以及Ni*Gain。这样噪声系数=(Pi/Ni)/(Po/No)=1。但是现实中,任何放大器的噪声功率输出不仅仅有输入端噪声的放大输出,还有内部自身的噪声(Na)输出,下图为线性双端口网络的图示。 双端口网络噪声系数分析框图 Vs: 信号源电动势Rs: 信号源内阻

Ri: 双端口网络输入阻抗R L: 负载阻抗 Ni: 输入噪声功率Pi: 输入信号功率 No: 输出噪声功率Po: 输出信号功率 Vn: 该信号源内阻Rs的等效噪声电压Ro: 双端口网络输出阻抗 输出噪声功率: N o = N i * Gain + N a ; P o=P i * Gain 噪声系数= (P i * N o)/(N i* P o) = (N i * Gain + N a) /(N i * Gain)= 1 + Na/(N i * Gain) > 1 根据IEEE的噪声系数定义:The noise factor, at a specified input frequency, is defined as the ratio of (1) the total noise power per unit bandwidth available at the output port when noise temperature of the input termination is standard (290 K) to (2) that portion of (1) engendered at the input frequency by the input termination.” a.输入噪声被定义成负载在温度为290K下产生的噪声。 b.输入噪声功率为资用功率,也就是该负载(termination)能产生的最大功率。 c.假定了被测件和负载阻抗互为共轭关系. 如果被测件是放大器,并且噪声源阻抗为50ohm,那么假定了 该放大器的输入阻抗为50ohm。 综合上述的结论,我们可以这样理解噪声系数的定义:当输入噪声功率为290K温度下的负载所产生的最大功率情况下,输入信噪比和输出信噪比的比值。 资用功率指的是信号源能输出的最大功率,也可以称为额定功率。 信号源输出框图 只有当源的内阻和负载相等(复数互为共轭),源输出最大功率. P available= [V S/(R S+ R L)]2 * R L当R S= R L时候P available= V S2/(4*R S) 由此可见,资用功率是源的本身参数,它只和内阻以及电动势有关,和负载没有关系。

相位噪声基础及测试原理和方法

相位噪声基础及测试原理和方法 相位噪声指标对于当前的射频微波系统、移动通信系统、雷达系统等电子系统影响非常明显,将直接影响系统指标的优劣。该项指标对于系统的研发、设计均具有指导意义。相位噪声指标的测试手段很多,如何能够精准的测量该指标是射频微波领域的一项重要任务。随着当前接收机相位噪声指标越来越高,相应的测试技术和测试手段也有了很大的进步。同时,与相位噪声测试相关的其他测试需求也越来越多,如何准确的进行这些指标的测试也愈发重要。 1、引言 随着电子技术的发展,器件的噪声系数越来越低,放大器的动态范围也越来越大,增益也大有提高,使得电路系统的灵敏度和选择性以及线性度等主要技术指标都得到较好的解决。同时,随着技术的不断提高,对电路系统又提出了更高的要求,这就要求电路系统必须具有较低的相位噪声,在现代技术中,相位噪声已成为限制电路系统的主要因素。低相位噪声对于提高电路系统性能起到重要作用。 相位噪声好坏对通讯系统有很大影响,尤其现代通讯系统中状态很多,频道又很密集,并且不断的变换,所以对相位噪声的要求也愈来愈高。如果本振信号的相位噪声较差,会增加通信中的误码率,影响载频跟踪精度。相位噪声不好,不仅增加误码率、影响载频跟踪精度,还影响通信接收机信道内、外性能测量,相位噪声对邻近频道选择性有影响。如果要求接收机选择性越高,则相位噪声就必须更好,要求接收机灵敏度越高,相位噪声也必须更好。 总之,对于现代通信的各种接收机,相位噪声指标尤为重要,对于该指标的精准测试要求也越来越高,相应的技术手段要求也越来越高。 2、相位噪声基础 2.1、什么是相位噪声 相位噪声是振荡器在短时间内频率稳定度的度量参数。它来源于振荡器输出信号由噪声引起的相位、频率的变化。频率稳定度分为两个方面:长期稳定度和短期稳定度,其中,短期稳定度在时域内用艾伦方差来表示,在频域内用相位噪声来表示。 2.2、相位噪声的定义

塑料测试方法国家标准

塑料测试方法国家标准 1.GB1033-70 塑料比重试验方法 2.GB1034-70 塑料吸水性试验方法 3.GB1035-70 塑料耐热性(马丁)试验方法 4.GB1036-70 塑料线膨胀系数试验方法 5.GB1037-70 塑料透湿性试验方法 6.GB1038-70 塑料薄膜透气性试验方法 7.GB1408-78 固体电工绝缘材料工频击穿电压、击穿强度和耐电压试验方法 8.GB1409-78 固体电工绝缘材料在工频、音频、高频下相对介电系数和介质损耗角正切试验方法 9.GB1410-78 固体电工绝缘材料绝缘电阻、体积电阻系统和表面电阻系数试验方法10.GB1411-78 固体电工绝缘材料高压小电流间歇耐电弧试验方法 11.GB1039-79 塑料力学性能试验方法总则 12.GB1040-79 塑料拉伸试验方法 13.GB1041-79 塑料压缩试验方法 14.GB1042-79 塑料弯曲试验方法 15.GB1043-79 塑料简支梁冲击试验方法 16.GB1633-79 热塑性塑料软化点(维卡)试验方法 17.GB1634-79 塑料弯曲负载热变形温度(简称热变形温度)试验方法 18.GB1635-79 塑料树脂灰分测定方法 19.GB1636-79 模塑料表观密度试验方法 20.GB1841-80聚烯烃树脂稀溶液粘度试验方法 21.GB 1842-80 聚乙烯环境应力开裂试验方法 22.GB1843-80 塑料悬臂梁冲击试验方法 23.GB1846-80 聚氯醚树脂稀溶液粘度试验方法 24.GB1847-80 聚甲醛树脂稀溶液粘试验方法 25.GB2406-80 塑料燃烧性能试验方法氧指数法 26.GB2407-80 塑料燃烧性能试验方法炽热棒法 27.GB2408-80 塑料燃烧性能试验方法水平燃烧法 28.GB2409-80 塑料黄色指数试验方法 29.GB2410-80 透明塑料透光率和雾度试验方法 30.GB2411-80 塑料邵氏硬度试验方法 31.GB2412-80 聚丙烯等规指数测试方法 32.GB1657-81 增塑剂折光率的测定 33.GB1662-81 增塑剂结晶点的测定 34.GB1664-81 增塑剂外观色泽的测定(铂-钴比色法) 35.GB1665-81 增塑剂皂化值及酯含量的测定 36.GB1666-81 增塑剂比重的测定(韦氏天平法) 37.GB1667-81 增塑剂比重的测定(比重瓶法) 38.GB1668-81 增塑剂酸值的测定(一) 39.GB1669-81 增塑剂加热减量的测定 40.GB1670-81 增塑剂热稳定性试验 41.GB1671-81 增塑剂闪点的测定(开口杯法) 42.GB1672-81 增塑剂体积电阻系数的测定

噪声测量三种方法

噪声系数测量的三种方法 本文介绍了测量噪声系数的三种方法:增益法、Y系数法和噪声系数测试仪法。这三种方法的比较以表格的形式给出。 前言 在无线通信系统中,噪声系数(NF)或者相对应的噪声因数(F)定义了噪声性能和对接收机灵敏度的贡献。本篇应用笔记详细阐述这个重要的参数及其不同的测量方法。 噪声指数和噪声系数 噪声系数有时也指噪声因数(F)。两者简单的关系为: NF = 10 * log10 (F) 定义 噪声系数(噪声因数)包含了射频系统噪声性能的重要信息,标准的定义为: 从这个定义可以推导出很多常用的噪声系数(噪声因数)公式。 下表为典型的射频系统噪声系数: *HG=高增益模式,LG=低增益模式

噪声系数的测量方法随应用的不同而不同。从上表可看出,一些应用具有高增益和低噪声系数(低噪声放大器(LNA)在高增益模式下),一些则具有低增益和高噪声系数(混频器和LNA在低增益模式下),一些则具有非常高的增益和宽范围的噪声系数(接收机系统)。因此测量方法必须仔细选择。本文中将讨论噪声系数测试仪法和其他两个方法:增益法和Y系数法。 使用噪声系数测试仪 噪声系数测试/分析仪在图1种给出。 图1. 噪声系数测试仪,如Agilent公司的N8973A噪声系数分析仪,产生28VDC脉冲信号驱动噪声源 (HP346A/B),该噪声源产生噪声驱动待测器件(DUT)。使用噪声系数分析仪测量待测器件的输出。由于分析仪已知噪声源的输入噪声和信噪比,DUT的噪声系数可以在内部计算和在屏幕上显示。对于某些应用(混频器和接收机),可能需要本振(LO)信号,如图1所示。当然,测量之前必须在噪声系数测试仪中设置某些参数,如频率范围、应用(放大器/混频器)等。 使用噪声系数测试仪是测量噪声系数的最直接方法。在大多数情况下也是最准确地。工程师可在特定的频率范围内测量噪声系数,分析仪能够同时显示增益和噪声系数帮助测量。分析仪具有频率限制。例如,Agilent N8973A可工作频率为10MHz至3GHz。当测量很高的噪声系数时,例如噪声系数超过10dB,测量结果非常不准确。这种方法需要非常昂贵的设备。 增益法 前面提到,除了直接使用噪声系数测试仪外还可以采用其他方法测量噪声系数。这些方法需要更多测量和计算,但是在某种条件下,这些方法更加方便和准确。其中一个常用的方法叫做“增益法”,它是基于前面给出的噪声因数的定义:

噪声系数测量

RF & Microwave e-Academy Program
Powerful tools that keep you on top of your game
RFMW 202: Noise Figure Basics
Technical data is subject to change. Copyright@2004 Agilent Technologies Printed on Jan, 2004 5988-8495ENA
1

RFMW 202: Noise Figure Basics
Welcome to RFMW 202, the module on the basics of noise figure. This module will take you about 60 minutes for you to complete. If you have not already done so, we recommend that you study the modules RFMW 101 and MEAS 102 before this one.
2

Fundamental Noise Concepts
Fundamental noise concepts
How do we make measurements?
What DUTs can we measure?
What influences the measurement uncertainty?
In this module we will first look at the concepts of noise (why is it important), then on to how to make measurements and we will conclude with some detailed information on measurement uncertainty and tools. Let’s now go straight into concepts of noise.
3

相位噪声性能测试

LMK04000 系列产品的相位噪声性能测试 30082862 加权函数H(f)是低通闭环传递函数,其中包含了诸如电 荷泵增益、环路滤波器响应、VCO增益和反馈通路( 数器等参数。该式表示了图1所示的每一级PLL AN-1910 30082801 图1 具有抖动清除能力的双PLL时钟合成器的架构 https://www.wendangku.net/doc/2713883609.html, ? 2009 National Semiconductor Corporation 300828

https://www.wendangku.net/doc/2713883609.html, 2 A N -1910 2.0 LMK04000系列产品介绍 图2示出了LMK04000精密时钟去抖产品系列的详细的框图。其PLL1的冗余的参考时钟输入(CLKin0,CLKin1),可以支持高达400 MHz 的频率。参考时钟信号可以是单端或者差分式的信号,为了实现操作中稳定性,还可以启用其中的自动开关模式。驱动OSCin 端口的VCXO 的最大容许频率为250 MHz 。OSCin 端口的信号被反馈到PLL2相位比较器上,而且也作为相位和频率基准注入到PLL2中。虽然在图中并未示出,其内部还是可以支持分立形式的、采用外接晶振的VCXO 。PLL2的相位比较器的基准信号输入端还提供了一 个可选用的频率倍增器,这可以使得相位比较的频率得以增加一倍,从而降低了PLL2的带内噪声。PLL2集成了一个内置的VCO ,以及可选的内置环路滤波器部件,这一部分可以提供PLL2环路滤波器的3阶和4阶极点。VCO 的输出带有缓冲,最终由Fout 引脚向外提供信号,该信号也可以经过一个VCO 分频器路由到内部的时钟分发总线上。时钟分发部分则对时钟信号进行缓冲,并将其分配给各个可以独立配置的通道。每个通道具有一个分频器、延迟模块和输出缓冲器。在时钟输出端,各信号格式的组合关系可以根据具体的器件编号来确定。 30082802 图2 LMK04000系列时钟电路的框图 下面的表格示出了LMK04000系列中目前已发布的器件。正如表1所示的那样,其中包含了2个VCO 频带以及 两种可配置的时钟输出格式。本报告中所测量的器件是LMK04031。 表1 LMK04000系列产品的器件编号、输出格式和VCO 频段 NSID 工艺2VPECL/LVPECL 输出 LVDS 输出 LVCMOS 输出 VCO 频率范围LMK04011BISQ BiCMOS 51430~1570 MHz LMK04031BISQ BiCMOS 22 2 1430~1570 MHz LMK04033BISQ BiCMOS 2 2 2 1840~2160 MHz

RF噪声系数的计算方法

噪声系数的计算及测量方法 噪声系数(NF)是RF系统设计师常用的一个参数,它用于表征RF放大器、混频器等器件的噪声,并且被广泛用作无线电接收机设计的一个工具。许多优秀的通信和接收机设计教材都对噪声系数进行了详细的说明. 现在,RF应用中会用到许多宽带运算放大器和ADC,这些器件的噪声系数因而变得重要起来。讨论了确定运算放大器噪声系数的适用方法。我们不仅必须知道运算放大器的电压和电流噪声,而且应当知道确切的电路条件:闭环增益、增益设置电阻值、源电阻、带宽等。计算ADC的噪声系数则更具挑战性,大家很快就会明白此言不虚。 公式表示为:噪声系数NF=输入端信噪比/输出端信噪比,单位常用“dB”。 该系数并不是越大越好,它的值越大,说明在传输过程中掺入的噪声也就越大,反应了器件或者信道特性的不理想。 在放大器的噪声系数比较低的情况下,通常放大器的噪声系数用噪声温度(T)来表示。 噪声系数与噪声温度的关系为:T=(NF-1)T0 或NF=T/T0+1 其中:T0-绝对温度(290K) 噪声系数计算方法 研究噪声的目的在于如何减少它对信号的影响。因此,离开信号谈噪声是无意义的。 从噪声对信号影响的效果看,不在于噪声电平绝对值的大小,而在于信号功率与噪声功率的相对值,即信噪比,记为S/N(信号功率与噪声功率比)。即便噪声电平绝对值很高,但只要信噪比达到一定要求,噪声影响就可以忽略。否则即便噪声绝对电平低,由于信号电平更低,即信噪比低于1,则信号仍然会淹没在噪声中而无法辨别。因此信噪比是描述信号抗噪声质量的一个物理量。 1 噪声系数的定义 要描述放大系统的固有噪声的大小,就要用噪声系数,其定义为

系统相位噪声的指标

系统相位噪声的指标 举个例子说明800MHz CDMA手机接收(参看IS-98标准) 你可以这样想, 所有的接收机的参数要求, 不管是GAIN, NF, 还是IP3 等等, 都是为了一个目的---实现一定的信噪比SNR从而能够对信号进行解调. 不论是灵敏度, 动态范围还是在有干扰信号条件下, 解调是接收机要达到的目的. 对CDMA手机接收机来说, 解调需要的SNR = -1.5 dB (大约值) IS-98里面有一个单音(Single tone)测试, 是测试CDMA接收机在一个单音强干扰情况下的性能. CDMA接收机灵敏度最低要求-104 dBm(带宽1.25 MHz). 也就是说在最差NF条件下, 热噪声功率 = -104 - SNR = -102.5 dBm/1.25MHz 单音测试条件如下 CDMA信号功率 = -101 dBm/1.25MHz 单音频偏 = 900 KHz 单音功率 = -30 dBm 如图所示, 不管是有中频还是零中频结构, 信号和LO混频后落在有用带宽内, 单音和LO 混频后还是会落在900 KHz处(会被中频或基带滤波器滤除), 单音和LO的相位噪声混频后(称为reciprocal mxing, 有人翻译为倒易混频, 即把单音当作一个本振信号, 把LO的相位噪声当作一个宽带信号进行混频, "倒易"意指单音和LO角色互换)的产物会落在有用带宽内, 这种噪声迭加在热噪声之上, 引起系统SNR下降. 接收机系统相位噪声的指标可以由此得出. 因为单音测试主要由双工器隔离度, LNA IP3和相位噪声决定, 因此计算相位噪声的指标要留裕量给其它指标(这里用 6 dB). 根据上面的计算, 我们可以对相位噪声提一个指标: 在900 KHz频偏处要求-139 dBc/Hz.

常见的塑料检测标准和方法

常见的塑料检测标准和方法 检测产品/类别检测项目/参数 检测标准(方法)名称及编号(含年号)序 号 名称 塑料1 光源暴露试验方 法通则 塑料实验室光源暴露试验方法第1部分:通则ISO 4892-1:1999 2 氙弧灯光老化 汽车外饰材料的氙弧灯加速暴露试验SAE J2527:2004 汽车内饰材料的氙弧灯加速暴露试验SAE J2412:2004 塑料实验室光源暴露试验方法第2部分:氙弧灯ISO 4892-2:2006 /Amd 1:2009 室内用塑料氙弧光暴露试验方法ASTM D4459-06 非金属材料氙弧灯老化的仪器操作方法ASTM G155-05a 塑料暴露试验用有水或无水氙弧型曝光装置的操作ASTM D2565-99(2008) 3 荧光紫外灯老化 塑料实验室光源暴露试验方法第3部分:荧光紫外灯ISO 4892-3:2006 汽车外饰材料UV快速老化测试SAE J2020:2003 塑料紫外光暴露试验方法ASTM D4329-05 非金属材料UV老化的仪器操作方法ASTM G154-06 4 碳弧灯老化 塑料实验室光源暴露试验方法第4部分:开放式碳弧灯 ISO 4892-4:2004/ CORR 1:2005 塑料实验室光源曝露试验方法第4部分:开放式碳弧灯 GB/T16422.4-1996 5 荧光紫外灯老化 机械工业产品用塑料、涂料、橡胶材料人工气候老化试验方法荧 光紫外灯GB/T14522-2008 6 热老化 无负荷塑料制品的热老化 ASTM D3045-92(2010) 塑料热老化试验方法GB/T7141-2008 7 湿热老化 塑料暴露于湿热、水溅和盐雾效应的测定ISO4611:2008 塑料暴露于湿热、水喷雾和盐雾中影响的测定GB/T12000-2003 塑料8 拉伸性能塑料拉伸性能的测定第1部分:总则GB/T1040.1-2006

相位噪声基础及测试原理和方法

摘要: 相位噪声指标对于当前的射频微波系统、移动通信系统、雷达系统等电子系统影响非常明显,将直接影响系统指标的优劣。该项指标对于系统的研发、设计均具有指导意义。相位噪声指标的测试手段很多,如何能够精准的测量该指标是射频微波领域的一项重要任务。随着当前接收机相位噪声指标越来越高,相应的测试技术和测试手段也有了很大的进步。同时,与相位噪声测试相关的其他测试需求也越来越多,如何准确的进行这些指标的测试也愈发重要。 1、引言 随着电子技术的发展,器件的噪声系数越来越低,放大器的动态范围也越来越大,增益也大有提高,使得电路系统的灵敏度和选择性以及线性度等主要技术指标都得到较好的解决。同时,随着技术的不断提高,对电路系统又提出了更高的要求,这就要求电路系统必须具有较低的相位噪声,在现代技术中,相位噪声已成为限制电路系统的主要因素。低相位噪声对于提高电路系统性能起到重要作用。 相位噪声好坏对通讯系统有很大影响,尤其现代通讯系统中状态很多,频道又很密集,并且不断的变换,所以对相位噪声的要求也愈来愈高。如果本振信号的相位噪声较差,会增加通信中的误码率,影响载频跟踪精度。相位噪声不好,不仅增加误码率、影响载频跟踪精度,还影响通信接收机信道内、外性能测量,相位噪声对邻近频道选择性有影响。如果要求接收机选择性越高,则相位噪声就必须更好,要求接收机灵敏度越高,相位噪声也必须更好。 总之,对于现代通信的各种接收机,相位噪声指标尤为重要,对于该指标的精准测试要求也越来越高,相应的技术手段要求也越来越高。 2、相位噪声基础 2.1、什么是相位噪声 相位噪声是振荡器在短时间内频率稳定度的度量参数。它来源于振荡器输出信号由噪声引起的相位、频率的变化。频率稳定度分为两个方面:长期稳定度和短期稳定度,其中,短期稳定度在时域内用艾伦方差来表示,在频域内用相位噪声来表示。 2.2、相位噪声的定义 以载波的幅度为参考,在偏移一定的频率下的单边带相对噪声功率。这个数值是指在1Hz的带宽下的相对噪声电平,其单位为dBc/Hz。该定义最早是基于频谱仪法测试相位噪声,不区分调幅噪声和调相噪声。 单边带相位噪声L(f)定义为随机相位波动单边带功率谱密度Sφ(f)的一半,其单位为dBc/Hz。其中Sφ(f)为随机相位波动φ(t)的单边带功率谱密度,其物理量纲是rad2/Hz。

塑料材料测试国标大全

序号业务内容测验类型依据标准试验设备与仪器GB GB1033-86ASTM ASTM D7921 塑料比重试验 ISO ISO 1133电子比重计 GB GB1034-70ASTM D 5702塑料吸水性试验ISO ISO 62红外线水分计 GB GB3682-83ASTM ASTM D-12383 塑料熔体流动速率(MFR ,MVR)试验ISO ISO 1133熔体流动速率仪 GB GB2411-80ASTM ASTM D-22404 橡胶邵氏硬度试验 ISO 邵氏硬度计 GB GB/T 1039GB1040.4GB1040.2ASTM ASTM D3685 塑料拉伸强度试验塑料断裂伸长率试验 ISO ISO 1271ISO3268ISO6239GB GB1042-79ASTM ASTM D7906 塑料弯曲强度试验塑料弯曲模量试验 ISO ISO 178JPL 系列微控电子拉力 机 7 塑料简支梁缺口冲击试验塑料简支梁无缺口冲击试验 GB GB1043-79 简支梁冲击试验机

塑料试样状态调节和试验的标准环境(GB/T2918-1998) 1.0原理:把试样暴露在规定的状态环境或温度中,那么试样与状态调节环境或温度之间即可达到可再现的温度和/或含湿量平衡的状态。 2.0标准环境 标准环境代号空气温度(℃)相对湿度(﹪)备注 23/502350应该使用这种标准环境, 除非另有规定 27/652765对于热带地区如各方商定 可以使用 3.0标准环境的等级 等级温度容许偏差(℃) 相对湿度容许偏差(﹪) 23/5027/65 1(加严)±1±5±5 2(一般)±2±10±10 4.0状态调节 a.状态调节的周期应在材料的相关标准中规定。当在相应标准中未规定状态调节周期时,应采用下列周期:对于标准环境23/50和27/65,不少于88小时。对于18~28﹪的室温,不少于4小时。 5.0试验 除非另有规定,状态调节后的试样应在与状态调节相同的环境或温度下进行试验,在任何情况下,试验都应在将试样从状态调节环境内取出后立即进行。

噪声系数的原理和测试方法

噪声系数测试方法 针对手机等接收机整机噪声系数测试问题,该文章提出两种简单实用的方法,并分别讨论其优缺点,一种方法是用单独频谱仪进行测试,精度较低;另一种方法是借助噪声测试仪的噪声源来测试,利用冷热负载测试噪声系数的原理,能够得到比较精确的测量结果。 图1是MAXIM公司TD-SCDMA手机射频单元参考设计的接收电路,该通道电压增益大于100dB,与基带单元接口为模拟I/Q信号,我们需要测量该通道的噪声系数。采用现有的噪声测试仪表是HP8970B,该仪表所能测量的最低频率为10MHz,而TD-SCDMA基带I/Q信号最高有用频率成份为640KHz,显然该仪表不能满足我们的测量需求。下面我们将介绍两种测试方案,并讨论其测试精度,最后给出实际测试数据以做对比。 图1:MAXIM公司TD-SCDMA手机射频接收电路。 利用频谱仪直接测试 利用频谱仪直接测量噪声系数的仪器连接如图2所示,其中点频信号源用于整个通道增益的校准,衰减器有两个作用,一是起到改善前端匹配的作用;二是做通道增益校准使用,因接收机增益往往很高,大于 100dB,而一些信号源不能输出非常弱的信号,配合该衰减器即能完成该功能。 测量步骤一:先利用信号源产生一个点频信号(一般我们感兴趣的是接收机小信号时的噪声系数,故此时点频信号电平应接近灵敏度电平),频点与本振信号错开一点,这样在基带I/Q端口可以得到一个点频信号,调节接收机通道增益使I/Q端点频信号幅度适中,测量接收机输入与输出端的点频信号大小可以求得这时的通道增益,记为G。

测量步骤二:接步骤一,关闭信号源,保持接收机所有设置不变,用频谱仪测量I/Q端口在刚才点频频点处的噪声功率谱密度,I端口记为Pncdensity(dBm/Hz), Q端口记为Pnsdensity(dBm/Hz),则接收通道噪声系数有下式给出: 上式中kb表示波尔兹曼常数,F是噪声系数真值,我们用NF表示噪声系数的对数值,NF=10lg(F), G表示整个通道增益,T1为当前热力学温度,T0等于290K。假定T1=T0,容易求得NF的显式表达式如下: 或者: 关于方程2与方程3的正确性,我们可以做如下简单推导。先考虑点频情况,设接收机输入端点频信号为: 接收机I/Q端口点频信号分别为:

国家标准塑料及塑料制品性能检测方法标准

1 GB/T 1033-1986 塑料密度和相对密度试验方法 2 GB/T 1034-1998 塑料吸水性试验方法 3 GB/T 1036-1989 塑料线膨胀系数测定方法 4 GB/T 1037-1988 塑料薄膜和片材透水蒸气性试验方法杯式法 5 GB/T 1038-2000 塑料薄膜和薄片气体透过性试验方法压差法 6 GB/T 1039-1992 塑料力学性能试验方法总则 7 GB/T 1040-1992 塑料拉伸性能试验方法 8 GB/T 1041-1992 塑料压缩性能试验方法 9 GB/T 1043-1993 硬质塑料简支梁冲击试验方法 11 GB/T 1408.1-1999 固体绝缘材料电气强度试验方法工频下的试验 13 GB/T 1409-1988 固体绝缘材料在工频、音频、高频(包括米波长在内)下相对介电常数和介质损耗因数的试验方法 14 GB/T 1410-1989 固体绝缘材料体积电阻率和表面电阻率试验方法 15 GB/T 1411-2002 干固体绝缘材料耐高电压、小电流电弧放电的试验 16 GB/T 1446-2005 纤维增强塑料性能试验方法总则 17 GB/T 1447-2005 纤维增强塑料拉伸性能试验方法 18 GB/T 1448-2005 纤维增强塑料压缩性能试验方法 19 GB/T 1449-2005 纤维增强塑料弯曲性能试验方法 20 GB/T 1450.1-2005 纤维增强塑料层间剪切强度试验方法 21 GB/T 1450.2-2005 纤维增强塑料冲压式剪切强度试验方法 22 GB/T 1451-2005 纤维增强塑料简支梁式冲击韧性试验方法 23 GB/T 1458-1988 纤维缠绕增强塑料环形试样拉伸试验方法 24 GB/T 1461-1988 纤维缠绕增强塑料环形试样剪切试验方法 25 GB/T 1462-2005 纤维增强塑料吸水性试验方法 26 GB/T 1463-2005 纤维增强塑料密度和相对密度试验方法 27 GB/T 1633-2000 热塑性塑料维卡软化温度(VST)的测定 28 GB/T 1634.1-2004 塑料负荷变形温度的测定第1部分:通用试验方法 29 GB/T 1634.2-2004 塑料负荷变形温度的测定第2部分:塑料、硬橡胶和长纤维增强复合材料 30 GB/T 1634.3-2004 塑料负荷变形温度的测定第3部分:高强度热固性层压材料 31 GB/T 1636-1979 模塑料表观密度试验方法 32 GB/T 1843-1996 塑料悬臂梁冲击试验方法 33 GB/T 1844.1-1995 塑料及树脂缩写代号第一部分:基础聚合物及其特征性能 34 GB/T 1844.2-1995 塑料及树脂缩写代号第二部分:填充及增强材料 35 GB/T 1844.3-1995 塑料及树脂缩写代号第三部分:增塑剂 36 GB/T 2035-1996 塑料术语及其定义 37 GB/T 2406-1993 塑料燃烧性能试验方法氧指数法 38 GB/T 2407-1980 塑料燃烧性能试验方法炽热棒法 39 GB/T 2408-1996 塑料燃烧性能试验方法水平法和垂直法 40 GB/T 2409-1980 塑料黄色指数试验方法 41 GB/T 2410-1980 透明塑料透光率和雾度试验方法 42 GB/T 2411-1980 塑料邵氏硬度试验方法 43 GB/T 2546.2-2003 塑料聚丙烯(PP)模塑和挤出材料第2部分: 试样制备和

GB1496—79机动车辆噪声测量方法

中华人民共和国国家标准 GB 1496—79 机动车辆噪声测量方法 本标准适用于各类型汽车、摩托车、轮式拖拉机等机动车辆的车外、车 内噪声的测量。 一、测量仪器 1.使用精密声级计或普通声级计和发动机转速表。 2.声级计误差应不超过±2dB(A)。 3.在测量前后,仪器应按规定进行校准。 二、车外噪声测量 (一)测量条件 4.测量场地应平坦而空旷,在测试中心以25m为半径的范围内,不应有大的反射物,如建筑物、围墙等。 5.测试场地跑道应有20m以上的平直、干燥的沥青路面或混凝土路面。路面坡度不超过0.5%。 6.本底噪声(包括风噪声)应比所测车辆噪声至少低10 dB(A)。并保 证测量不被偶然的其他声源所干扰。 注:本底噪声系指测量对象噪声不存在时,周围环境的噪声。 7.为避免风噪声干扰,可采用防风罩,但应注意防风罩对声级计灵敏度的影响。 8.声级计附近除测量者外,不应有其他人员,如不可缺少时,则必须在测量者背后。 9.被测车辆不载重。测量时发动机应处于正常使用温度,车辆带有其他辅助设备亦是噪声源,测量时是否开动,应按正常使用情况而定。

(二)测量场地及测点位置 10.测量场地示意图见图1。 11.测试话筒位于20m跑道中心点0两侧,各距中线7.5m,距地面高度1.2m,用三角架固定,话筒平行于路面,其轴线垂直于车辆行驶方向。 (三)加速行驶车外噪声测量方法 12.车辆须按下列规定条件稳定地到达始端线: 行驶档位:前进档位为4档以上的车辆用第3档,前进档位为4档或4档以下的用第2档。 发动机转速为发动机标定转速的四分之三。如果此时车速超过了50km/h,那 么车辆应以50km/h的车速稳定地到达始端线。 拖拉机以最高档位、最高车速的四分之三稳定地到达始端线。 对于自动换档车辆,使用在试验区间加速最快的档位; 辅助变速装置不应使用。 在无转速表时,可以控制车速进入测量区:以所定档位相当于四分之三标定 转速的车速稳定地到达始端线。 13.从车辆前端到达始端线开始,立即将油门踏板踏到底或节流阀全开,直 线加速行驶,当车辆后端到达终端线时,立即停止加速。车辆后端不包括拖车以

相关文档