文档库 最新最全的文档下载
当前位置:文档库 › 扭振测试仪简介

扭振测试仪简介

扭振测试仪简介
扭振测试仪简介

研旭ANZT6.0扭振测试分析仪

产品简介

研旭扭振测试分析仪:ANZT6是我们于2006年最新推出的第六代通用型扭振测试分析仪。它是经过第一至第五代20多年的不断改进换代更新于2006年才开发成功的,其中第1、2、5代经历三次中央级鉴,并在全国发电、船舶、汽车、坦克、雷达、柴油机等行业和许多高校及研究所广泛应用和国外一些单位采用。获得好评。而第六代仪器较之第五代则有较大的改进和突破,它具有高精度、高速度、高指标、多输出(能同时输出频谱,时域波形谐次跟踪)多通道等实时测试,显示等特点和数十项的后处理功能,使其可更方便的得到适用于各检验机关的测试分析报告(包括扭振应力,扭矩和许用值的比较)。第六代仪器的体积仅为第五代的八分之一,约一巴掌大小,非常紧凑、结实、可靠。

(一)数字部件

通道数:1-2通道

扭角测试:量程:0-10度(峰值);分辨率:1毫度;准确度:n≤3000转/分为百分之一±1个字;n>3000转/分为百分之二±1个字

可测试扭振频率:0.1Hz-1.5KHz

可测试扭角的转速范围;2-20000转/分(此两项指标都突破国际水平)转速测试:量程2-30000转/分,准确度:0.5‰±1个字,分辩率:0.1转/分

频谱分析:输出转速频速率的0.5-20次谐波频谱,准确度:5%,分析带宽:0.1Hz-1.5KHz,可通过改变每转脉冲数设置来细化频谱,捕捉其他频率成分(包括各种分数次谐波成分)。

具有扭角的幅值测试和有效值测试功能选择。

具有整个测试过程转速升降变化曲线的显示和记录功能。

对于超低速扭振的测量采用连续采样法,从而大大提高了测试速度和精度。

在联机现场测试和事后数据处理过程中,采用了多种软硬件措施,大大加强

了抗干扰能力和数据的平稳性、光滑性。采用了正确合理的平滑算法,既可防止过大干扰信号的侵入又可在较快速升降转速过程中或

者长时间转速稳定时,准确捕捉到共振峰值,反应轴系地固有扭振特性。

传感器齿轮数或每转脉冲数:4-2000

最高采样频率:600KH

信号幅度范围:30MV-100V(此三项指标超国际水平)

和PC机通讯的软硬件(USB及串口通讯)可将仪器计算出的频谱数据及扭振

时域波形传送到PC机屏幕显示和存盘,并可将数据组合成谐次转速跟踪曲线及数个谐次的综合曲线(波特图),三维图、扭应力曲线、扭矩曲线、许用应力、许用扭矩曲线及不同实验曲线对比等,可用通用打印机打出,还可以将测试结果传到Word、TXT、Excel等软件中再行处理。

仪器体积:11(宽)×10(深)×4(高)cm,重量约0.4KG。无论是笔记

本电脑还是台式机电脑无需对计算机进行改造或插卡都可以进行操作。适用于任何版本的Windows版本。

本仪器可以不用220v电源。可利用USB通讯线进行工作,从而大大加强了

仪器的安全性和可靠性。本仪器可采用各种类型的传感器,只要符合上述第11、13项的要求即可,例如光电、磁电、光纤、编码器等等。

本仪器是纯数字处理,无模拟环节,可保证频率特性极好的平坦性和数据的精度。

本仪器有自动存盘、手动存盘、自动加手动三种数据存盘方式,以适应不同条件的测试需求,保证测试的客观性。

本仪器还增加了转速随时间变化的全过程记录曲线。这样,本仪器可在线实

时的在一个屏幕上同时观察到两通道的频谱,谐次跟踪曲线,扭角时域曲线,转速变化曲线等八个图形和数据。从而可在实测现场全面分析测试过程的真实情况。(此项功能已超国际水平)

本仪器具有软件智能判断功能,当出现异常频谱时,能报出有关的异常或错误信息。

本仪器具有能抵消横向振动对扭振测试干扰的硬件线路。

(二)模拟部件(任选件),可输出连续完整的扭振时域模拟电压信号,在

0.75Hz-1.5KHz内衰减小于3db。

本仪器附带一台NB-1袖珍型电子扭振标定器,可对仪器进行全转速、全谐次,不同扭角,不同脉冲/转数,及不同信号幅度的标定,检验。此外除还可

以进行不同转速的静态标定外,还可以进行转速快速变化的动态标定。经过如此全面严格的标定后本仪器能够在各种测试条件下保证读数的准确性和客观性。这种标定应该经常进行,每次正式测试以前都应该做一次标定,以保证测试的可靠性。(此指标已超国际水平)

研旭电动式扭振实验台

产品简介

研旭电动式扭振测试台是利用一台普通的三相交流感应电动机(不需要特殊复杂或者进口昂贵专用扭振电机)和一台普通的变频器再加一扭振控制电器柜组成。机械结构最为简单。电动机只经一传动轴带动被测设备(如减振器等)扭振激励的产生和控制由电器柜上一旋转手柄任意调节,象调节音量一样可从无到有,可大可小。即只用一只电动机实现传动、调速、激励三功能合一,属国内外首创。比之其他激振方式而言,成本低,易制作、震动小、噪声低、不磨损、好控制、消耗小、本实验台可作为:

各种扭振仪、传感器的实验、标定设备。

各种减振器,连轴器参数、性能测试设备。

扭振轴系上各种设备的寿命实验设备,从而可以节省用发动机来做试验时的数以吨计的耗油量。

各种扭振控制手段和理论的研发设备。

本实验台可作为扭振原理的教学演示设备。

扭转振动测试大纲

柴油机组轴系扭转振动 测试大纲 编制:______________ 校核:______________ 审批:______________ 中船动力研究院有限公司 2016年08月

1.测试目的 对柴油机组轴系进行扭振的自由振动及强迫振动测试。 2.测试对象 本次测试对象为柴油机-水力测功机机组,由柴油机,水力测功机,基座等组成。柴油机通过联轴器与水力测功机连接,并共同安装在基座上。机组额定转速为750r/min,额定功率为2430kW。 图1 柴油机组示意图 3.测试系统 在柴油机飞轮端安装磁电传感器进行扭振信号的采集,测试系统图如图2所示。 图2 测试系统示意图 表1 测试仪器列表 4.测试步骤

(1)检查测试场地的电源情况。 (2)先在各测点布置传感器,然后按照要求接线,打开测试仪器及计算机。(3)启动机组,传感器将采集到的信号输送到LMS分析仪中进行处理。(4)完成各工况下的信号采集,处理实验数据。 5.测试工况说明 (1)轴系扭转振动自由振动测试 柴油机组空载,机组转速自200r/min连续升至900r/min(900r/min连续降至200r/min),保证转速连续升(降)的持续时间至少在1min左右,同时进行轴系扭振信号的采集。 柴油机组空载,机组转速从200r/min升至900r/min,每次间隔为20r/min。等待转速稳定后,进行扭振信号采集。 (2)轴系扭转振动强迫振动测试 功率负载按分别调整至0%、25%、50%、75%、90%、100%、110%的额定功率,进行轴系扭转振动稳态测试。 6.测试结果 表2 轴系固有频率测试数据记录表

工程车辆传动系统扭转振动特性研究与分析

1工程车辆扭转振动动力学模型的建立 工程车辆传动系统一端通过离合器与发动机相连,输出端通过轮胎与工程车辆平动质量相连,组成了一个多质量的弹性扭转振动系统。在计算整个系统的固有频率和振型时,通常可忽略系统的阻尼,将整个传动系统看成是由多个刚性圆盘通过弹性轴连接的无阻尼振动系统。现在某型装备四缸柴油机的中型装载机传动系统为例,其扭转振动力学模型如图1-1所示。 1.1 当量转动惯量的计算 当量转动惯量J 是指将传动系统中与发动机曲轴不同转速旋转的零部件的转动惯量换算成与曲轴同转速旋转下的转动惯量,这种换算方法的原理是能量守恒。设传动轴的转动惯量为J,实际转速为ω曲轴转速为0ω,则将传动轴换算成曲轴转速0ω的当量转动惯量为 2 2 2 0212121??? ? ??=???? ??==g d d i J J J J J ω ωωω 式中,g i 为变速器的传动比。 1.2当量扭转刚度的计算 设两圆盘之间弹性轴的当量扭转刚度为d K ,则可以根据弹性变形量守恒的原理将系统中的时间扭转刚度K 换算过来。现以后桥半轴为例,相应的当量扭转刚度为 2 01??? ? ??=i i K K g d

式中,0i 为主减速器的传动比。 2传动系统扭转动力学方程 根据图1-1所示的简化的传动系统模型,可建立系统动力学方程组为 -0-)-)()(-----111010111111101010991010343332233232221122121111=+=+-=-+-=+=+)()(()()() (。。。。。。。。 。。 θθθθθθθθθθθθθθθθθθθθθK J K K J T K K J T K K J T K J (1) 方程组(1)中,111-θθ分别为对应质量的扭转角位移;41-T T 分别为发动机1-4缸的有效输出转矩。 为了简单起见,可以将(1)改为矩阵形式的动力学方程一般式,即 T K C J =++θθθ。 。。 式中,当量转动惯量矩阵??????? ? ????? ?? ?=111021 00J J J J J 阻尼矩阵C=[0];刚度矩阵; 圆盘的角位移矩阵[]T 114321 0θθθθθθ =。 一般以发动机振动激励为系统输入矩阵,则 []T T T T T T 004 321 = 2.1扭转系统固有特性的分析 这里的固有特性是指固有频率和主振型,多自由度系统的固有频率和主振型可以根据系统的无阻尼自由振动方程得到,即 0=+θθK J 。。 (2) 假设方程的解为 t n i e ωθA = (3) 式中,A 为系统自由振动时的振幅列向量,[]T m m m m A A A A A 1132 1 =。

扭振测试仪简介

研旭ANZT6.0扭振测试分析仪 产品简介 研旭扭振测试分析仪:ANZT6是我们于2006年最新推出的第六代通用型扭振测试分析仪。它是经过第一至第五代20多年的不断改进换代更新于2006年才开发成功的,其中第1、2、5代经历三次中央级鉴,并在全国发电、船舶、汽车、坦克、雷达、柴油机等行业和许多高校及研究所广泛应用和国外一些单位采用。获得好评。而第六代仪器较之第五代则有较大的改进和突破,它具有高精度、高速度、高指标、多输出(能同时输出频谱,时域波形谐次跟踪)多通道等实时测试,显示等特点和数十项的后处理功能,使其可更方便的得到适用于各检验机关的测试分析报告(包括扭振应力,扭矩和许用值的比较)。第六代仪器的体积仅为第五代的八分之一,约一巴掌大小,非常紧凑、结实、可靠。

(一)数字部件 通道数:1-2通道 扭角测试:量程:0-10度(峰值);分辨率:1毫度;准确度:n≤3000转/分为百分之一±1个字;n>3000转/分为百分之二±1个字 可测试扭振频率:0.1Hz-1.5KHz 可测试扭角的转速范围;2-20000转/分(此两项指标都突破国际水平)转速测试:量程2-30000转/分,准确度:0.5‰±1个字,分辩率:0.1转/分 频谱分析:输出转速频速率的0.5-20次谐波频谱,准确度:5%,分析带宽:0.1Hz-1.5KHz,可通过改变每转脉冲数设置来细化频谱,捕捉其他频率成分(包括各种分数次谐波成分)。 具有扭角的幅值测试和有效值测试功能选择。 具有整个测试过程转速升降变化曲线的显示和记录功能。

对于超低速扭振的测量采用连续采样法,从而大大提高了测试速度和精度。 在联机现场测试和事后数据处理过程中,采用了多种软硬件措施,大大加强 了抗干扰能力和数据的平稳性、光滑性。采用了正确合理的平滑算法,既可防止过大干扰信号的侵入又可在较快速升降转速过程中或 者长时间转速稳定时,准确捕捉到共振峰值,反应轴系地固有扭振特性。 传感器齿轮数或每转脉冲数:4-2000 最高采样频率:600KH 信号幅度范围:30MV-100V(此三项指标超国际水平) 和PC机通讯的软硬件(USB及串口通讯)可将仪器计算出的频谱数据及扭振 时域波形传送到PC机屏幕显示和存盘,并可将数据组合成谐次转速跟踪曲线及数个谐次的综合曲线(波特图),三维图、扭应力曲线、扭矩曲线、许用应力、许用扭矩曲线及不同实验曲线对比等,可用通用打印机打出,还可以将测试结果传到Word、TXT、Excel等软件中再行处理。 仪器体积:11(宽)×10(深)×4(高)cm,重量约0.4KG。无论是笔记 本电脑还是台式机电脑无需对计算机进行改造或插卡都可以进行操作。适用于任何版本的Windows版本。 本仪器可以不用220v电源。可利用USB通讯线进行工作,从而大大加强了 仪器的安全性和可靠性。本仪器可采用各种类型的传感器,只要符合上述第11、13项的要求即可,例如光电、磁电、光纤、编码器等等。 本仪器是纯数字处理,无模拟环节,可保证频率特性极好的平坦性和数据的精度。 本仪器有自动存盘、手动存盘、自动加手动三种数据存盘方式,以适应不同条件的测试需求,保证测试的客观性。

物性分析仪及TPA在果蔬质构测试中的应用综述

物性分析仪及TPA在果蔬质构测试中的应用综述 刘亚平李红波 摘要:质地特性是果蔬极其重要的品质因素,物性分析仪所反映的主要是与力学特性有关的果蔬质地特性,其结果具有较高的灵敏性与客观性,目前已经开始运用于果蔬及其加工制品的物性研究及监测。简述了物性分析仪的原理及质地多面分析法(TPA)测试模式概况,就其在果蔬质构检测中的应用现状、注意事项进行了综述,并展望了其今后的发展方向。 关键词:物性分析仪;果蔬;TPA 新鲜果蔬是人们日常所必须维生素、矿物质和膳食纤维的重要来源,是促进食欲、具有独特的色、香、味、形的保健食品。果蔬组织柔嫩,含水量高,易腐烂变质,不耐贮藏,采后极易失鲜,从而导致品质降低,甚至失去营养价值和商品价值,但通过贮藏保鲜及加工手段就能消除季节性和区域性差别,满足各地消费者对果蔬的消费要求,加强果蔬贮藏 期间的质地特性监测非常重要。 质地在食品物性学中被广泛用来表示食品的组织状态、口感及美味感觉等。评价果实质地特性的参数包括果实的弹性、坚实度、粘性、汁液丰富度等。目前质地测试有两种方法,分别为仪器分析法和感官评定法。大部分情况下两者具有很好的相关性。与感官评定法相比,仪器分析法更容易操作,且重复性好,花费时间更少,也更加方便。目前质构测定在果蔬中的应用处于起步阶段,本文就物性分析仪及TPA 在果蔬质构检测中的应用现状、注意事项及今后发展方向进行了综述。 l 物性分析仪 物性分析仪通过特定的检测方法测定实验对象的质地结构,详细客观的得出相应的参数数据,这些质构指标在一定程度上反映了果实的质地特性和组织结构变化,也间接反映了果蔬保鲜效果,而且此方法迅速准确,特别适用于不易贮藏的果蔬产品和高附加值产品的检测。1.1 物性分析仪简介 物性分析仪(Texture Analyzer),也称物性测试仪或质构仪,它能够根据样品的物性特点做出数据化的准确表述,是精确的感官量化测量仪器。美、英及台湾等国家和地区应用较早,近些年在我国大陆地区才逐渐被推广和被各厂家接纳。现在已经开发出专门用于食品类质构分析的物性分析仪,前期物性仪主要应用于面制品领域,利用不同探头设计的几种程序涵盖了面包、馒头、饺子、面条、蛋糕、饼干等多种面食领域。物性分析仪在国内外被很多研究机构作为重要研究仪器和研究手段,是业内公认的物性(质构)标准检测仪器,尤其近年来随着食品加工行业的不断发展,物性分析仪越来越受到研究人员的青睐。物性分析仪主要包括主机、专用软件、备用探头以及附件。其基本结构一般是由一个能对样品产生变形作用的机械装置,一个用于盛装样品的容器和一个对力、时间和变形率进行记录的记录系统组成。主机与微机相连,主机上的机械臂可以随着凹槽上下移动,探头与机械臂远端相接,与探头相对应的是主机的底座,探头和底座有十几种不同的形状和大小,分别适用于各种标本。仪器主要围绕着距离、时间和作用力对试验对象的物性和质构进行测定,并通过对它们相互关系的处理、研究,获得对象的物性测试结果。也就是说,物性分析仪所反映的主要是与力学特性有关的食品质地特性。测试前,首先按试验对象的测试要求,选用合适探头,并根据待测物的形状大小,调整横梁与操作台的间距,然后选择电极转速及操作台的运动方向,当操作台及待测物运动以后,启动计算机程序进行数据采集,并进行数据处理分析和处理。 目前常见的食品物性分析仪有由英国Stable Micro System(SMS)公司设计生产的TA—XT 食品物性测试仪;美国Food Technology Corporation(FTC)公司设计的TMZ型、TMDX 型等系列食品物性分析系统;瑞典泰沃公司设计生产的TXT型质构仪;美国Brookfield公司生产

扭转振动测试的实验研究

第23卷 第1期 昆 明 理 工 大 学 学 报 Vol.23No.1 1998年2月 JOURNAL OF KUNMIN G UN IV ERSIT Y OF SCIENCE AND TECHNOLO GY Feb.1998 扭转振动测试的实验研究Ξ 张建勋 罗德扬 (昆明理工大学建筑工程及力学系,昆明 650093) 摘要 扭转振动可以看作是匀速轴转动的相位调制.如果可能从回转轴上取出回 转编码信号,在一定条件下,此信号的相位解调就表示轴的扭转振动.进行相位 解调的有效方法是使用FF T分析仪将实信号变为解析信号,而后将其幅值和相 位调制分量分解出来. 利用希尔伯特变换技术进行幅、相解调,这在通讯领域应用较为广泛.而将其用于扭转振动的检测和分析,目前来说还不多见.为此,我们设计了一套实验 装置,利用相应的设备和开发软件进行了一系列实验,得到了一些数据和结果. 由于整个解调过程是数字化的.因而具有精度高、应用范围广、适应性强等一系 列传统模拟方法所不可比拟的优点,并摒弃了复杂、昂贵而精度有限的扭振传感 器. 关键词 希尔伯特变换;扭转振动;相位调制;相位解调;编码信号;扭振传感 器 中图分类号 TG50619 1 扭转振动分析原理和方法 图1显示实现相位解调和扭振分析的测试分析系统.分析系统主要由双通道信号分析仪B K2034和286微机组成,二者间由GPIB通用接口总线联结,并由开发的通讯软件B KU TIL支持.此程序使计算机能监测,控制B K2034的运行和数据输入输出等. 根据扭振分析的理论,实际分析过程可用图2表示.图中,双边框的过程由B K2034实现,单边框内的过程由计算机完成. 从光电编码器输入的被扭振调制的编码脉冲,被输入B K2034,在转速同步脉冲和外部采样脉冲的控制下进行时域同步平均,达到排除与转速频率无关的噪声的干扰.转速脉冲作为同步平均的触发信号,外部采样则保证了频率跟踪.在达到给定的平均次数后, B K2034自动对平均信号用FF T进行谱分析.并显示同步平均谱.带通滤波是由程序控制以人机对话方式进行的,在定了适当的中心频率和带宽后,仅只有带宽内的数据被读入计算机从而实现带通滤波.程序按频移原理及离散付里叶变换的周期特性将滤波谱进行重新排列,完成谱不移并生成数据文件.该数据文件被输入B K2034调用其FF T功能进行付里叶变换.变换后的数据又写入计算机后,由程序控制组成了复信号,并算出它的包络和 Ξ收稿日期:1997-10-15

测定岩石标本物性参数

测定岩(矿)石标本磁物性参数技术方法及工作细则 陕西省核工业地质调查院 2014年四月

测定岩(矿)石标本磁物性参数技术方法及工作细则 一、物性参数 σ) SI 单位为千克每立方米,符号为kg / m 3 换算单位: 103kg / m 3=1 g / cm 3 (2) 磁性单位 :磁化率的单位为:SI(k) 与CGSM 单位换算如下:4πSI(k) = 1 CGSM(k) :磁化强度的单位为:安培每米(A/m ) 与CGSM 单位换算为:A/m=10-3 CGSM( M ) (D)与磁倾角(I)的单位均为:°(度) (3)、电性单位 ρ):电阻率的单位为:Ω·m (欧姆·米) η):极化率的单位为:% (百分数) 可见,岩矿石物性标本应具有地质单元的代表性、统计样本的代表性、空间分布的代表性。岩矿石物性数据应具有地质描述的准确性,参数测定的精确性,数理统计的合理性,构造岩矿石物性数据的可靠性。 专门的岩矿石物性调查工作应单独进行技术设计编写,物探中的物性工作可参考专门的岩矿石物性调查工作编写技术设计,也可作为相应项目的一部分编写设计。 误差计算公式有两种: a) 平均相对误差为:%100Bi Ai -n 1i i n 1i ?+B A =∑=μ

b) 均方误差为: n B A n i i i 2) ( 12 ∑=- ± = ε 式中:μ—平均相对误差;ε—均方误差;n —检查样品数;A i ——第i件样品一次测量结果; B i ——第i件样品另一次测量结果。 二、测定物性参数的仪器设备 (1) 密度测定仪器 ①、密度测定仪器 其种类包括:大称、密度计和电子天平等。大称宜用于第四系松散沉积物的密度测定;密度计和电子天平宜用于固结岩矿石的密度测定。 ②、测定密度仪器的测程为1000~7000kg / m3。 ③、仪器检查与性能测定:按仪器使用说明书规定进行仪器检查与性能测定。根据样品质量的范围,在测定过程中应使用相应质量大小的砝码进行仪器标定。 ④、仪器维护:维护砝码的清洁,以保证砝码质量的稳定。 (2) 磁性测定仪器 ①、磁性测定仪器:类型主要有:无定向磁力仪、线圈感应式岩样磁力仪、卡帕桥、旋转式磁力仪、磁勘查所使用的高精度磁力仪等。 ②、磁性仪器灵敏度要求:专门测定磁性仪器要求的灵敏度不低于 10-6SI,其他类仪器的灵敏度应为10-6SI 量级,能够测量强磁性样品的磁性。 ③、仪器检查与性能测定 按仪器使用说明书规定进行仪器检查与性能测定。根据磁性强弱,应有相应测程的标准磁性样品进行仪器标定。 ④、仪器维护与使用 宜在无磁空间或磁场稳定的空间使用磁性测定仪器,使用中应注意仪器的防尘、防潮,防止电磁干扰 (3) 电性测定仪器 ①、电性测定仪器 种类主要有:改进的微机激电仪、电阻率桥等。

瞬态法热物性测试仪

SHT-20 热物性瞬态自动测试仪简介及使用说明

0概述 众所周知,固体材料的热导率、热扩散系数、比热等热物理性质,随着材料,材料的结构、密度、多孔性、导电性、含湿率和温度的不同而变化。有些材料还与方向有关。对应于不同的材料和不同的试验条件,测量值会有很大的差异。测量材料的热物理性质,在科学研究和工程应用上,具有至关重要的意义;热物性测量与力学测量、电学测量、光学测量等一样,是物性研究和应用的基本测量技术之一。 材料热物理性质可以用稳态法或瞬态法进行测量。目前,国内、外主要使用稳态法测量材料的热导率。本仪器采用瞬态法测量材料的热扩散系数、热导率和定压比热等热物理性质。所谓瞬态测量,是指在加热升温,或停止加热后的降温过程中,实现对材料热物理性质的测量。瞬态测量不要求恒温环境,测量系统也无需达到或保持热平衡状态。 SHT-20材料热物性瞬态自动测量仪,是一种新型的材料热物性测量仪器,也是替代稳态法测量仪器的升级换代产品。 本仪器用平面热源加热,在室温附近,可以分别用脉冲法或恒流法等两种不同的测量方法,测量材料的热扩散系数、热导率和定压比热。 本仪器可广泛用于冶炼、能源、环保、建筑、热力工程和新材料研制等行业,作为科学研究,物性检测、生产过程控制与产品质量检验等领域;也可以用于理工科学生的物理实验、建筑物理实验,材料物理实验中,作为热物性测量的主导仪器。 该仪器将A/D 转换技术、数值计算技术、计算机应用技术和瞬态测量技术等多种高新技术,运用于材料的热物性测量中,实现了热物性测量的自动化。仪器的结构合理,运行稳定,质量可靠,准确度高,运行成本不到稳态测量的十分之一,测量时间不超过300秒。 一仪器规格及主要技术指标 1.1规格、参数 试件尺寸:主试件: mm xmm mm mm mm xmm 202;200200≤≤××辅试件1:xmm D 3≥辅试件2:xmm d 2≥平面热源:有效发热面积mm mm 200200×1.2直流稳流电源 输入:电功率:100W 交流:220V 频率:50Hz 输出:直流电流在0.01-1.000A 之间精密可调。在热测量过程中,电流波动幅度: A I 001.0≤?1.3运行环境 温度:室温湿度:<85% 1.4主要技术指标 温度范围:室温—100℃ 热导率测量范围:0.03—1000[W/(mK)]热扩散系数测量范围:0.01—1000[mm 2/s]热导率不确定度:≤±1%

汽车曲轴扭振理论分析

国际机械工程与力学会议记录 2007年11月,中国江苏省无锡市 汽车曲轴扭振理论分析 S. Mahjob, S. J. Seydalian, M. Heidari Department of Mechanical Engineering, Imam Hossein University, Babai superhighway, Tehran, Iran E-mail: j.seadalian@https://www.wendangku.net/doc/2716218255.html, 摘要: 汽车曲轴受到因气缸周期性冲击而产生的周期波动的扭矩的作用。气压力和因往复质量而产生的惯性力构成了作用于曲轴组的激发力矩。这些力对曲轴产生交替变化的力矩,从而导致发动机的振动,进而引起汽车产生振动和噪声。尽管大多数的物理结构都是连续的,但是通常可以通过离散参数模型来表示它们的运动。这篇论文系统分析了曲轴扭转振动对发动机转速的影响。共有五种理论分析模型,分别为5自由度、6自由度、17自由度和21自由度。扭转振动分析被用来确定系统的自由振动频率。自由度的范围从5到21。不同模型的分析结果与实验模型比较,从而获得最佳模型。通过用最佳的理论模型代替实验模型并且提高发动机转速,发现在不同速度下理论模型的性能和实验模型很接近。 1. 简介: 研究机械结构的动态特性定义为模态分析。这篇论文介绍了曲轴扭振对发动机性能的影响。并建立的数学模型模拟曲轴的振动。这个模型包括5、6、17、19和21自由度的曲轴。论文中分析和测试的曲轴为RENALT 曲轴。 不同模型的实验结果非常吻合。 有限元分析是另外一种分析方法,结合了质量和刚度矩阵,主要用来做敏感性分析和动态行为的预测。但是考虑到结构的复杂性,往往结构的实际性能与分析结果存在一定误差。理论分析的方法比较复杂,但是它为下一步分析提供了一个逻辑和方法。[这在本文中有详细说明。 2. 理论方法 固有频率和振型由以下方程决定:单位矩阵I 、质量矩阵M 、特征值λ、刚度矩阵K 、固有频率ω、特征向量X }0{]][[}]{[.. =+θθK M (1) 振型: 0}]{[1=--i i X M λ (2) 固有频率: 02 =-i M K ω ? 00121=-?=---i i K M I K M λω (3)

车辆动力系统扭振分析与测试

10.16638/https://www.wendangku.net/doc/2716218255.html,ki.1671-7988.2017.08.044 车辆动力系统扭振分析与测试 李连 (重庆车辆检测研究院有限公司,重庆401122) 摘要:文章对某前置后驱型微车的动力传动系的扭转振动特性进行研究。首先根据车辆传动系统的结构特点,利用多体动力学理论对该车传动系统各部件进行等效转化,利用Excite Designer软件建立传动系扭转振动的多体动力学模型,计算分析在不同离合器扭转刚度下的传动系扭振特性和变速箱输入端转速波动情况。最后通过测量装配不同扭转刚度离合器时车辆噪声振动,对模型计算结果进行了辅助验证。研究表明,离合器扭转刚度的变化对车辆传动系的扭振影响很大,低扭转刚度的离合器能有效抑制因发动机转速波动引起的传动系统的扭振,并对车辆的NVH性能提升有一定的贡献。 关键词:动力传动系;扭转振动;离合器 中图分类号:U467.2 文献标识码:A 文章编号:1671-7988 (2017)08-130-03 Vehicle powertrain torsional vibration analysis and testing Li Lian ( Chongqing vehicle test research institute co., LTD, Chongqing 401122 ) Abstract: In this paper, it is studied for torsional vibration characteristics of a kind of rear-drive vehicle's powertrain. Firstly, according to the structural characteristics of the vehicle drive system, equivalent transformations of the various components of the vehicle drive system is established through the multi-body dynamics model. Then, the torsional vibration characteristics are analyzed with clutches in driveline with different torsional stiffnesses. At last, NVH tests are carried out to verify the analysis results. The study shows that the clutch torsional stiffness is of important influence on vehicle vibration and noise in a way that low torsional stiffness clutch can effectively isolate the transmission of torsional vibration caused by engine and it would make contribution to the vehicle NVH performance. Keywords: Powertrain; Torsional vibration; Clutch CLC NO.: U467.2 Document Code: A Article ID: 1671-7988 (2017)08-130-03 前言 对于前置后驱车型,动力传动系统一般由发动机、离合器、变速器、传动轴、主减速器、半轴等组成,各部件的转动惯量和扭转刚度分布很不均匀,是一个复杂的多自由度扭振系统,由传动系统的扭振引起的车内轰鸣声问题是整车NVH中常见的问题之一。在汽车工程设计中,对汽车动力传动系统的扭转振动及噪声的控制于整车设计有着重大意义。 1、问题描述 本文针对某款前置后驱式微车的NVH性能进行了分析,车辆在低速过程(1000rpm~1500rpm)轰鸣声较大。轰鸣噪声产生的原因初步判断为:传动系统的宽频扭振在传递过程中,激起了后悬架的模态,振动被放大后,通过传动轴中间支撑 作者简介:李连,就职于重庆车辆检测研究院有限公司。

物理性能测试仪器-中华人民共和国科学技术部

物理性能测试仪器 原值50万以上的对外提供共享服务的大型科学仪器设备总量为20333台(套),其中物理性能测试仪器的数量为1875台(套),占总量的9.2%。物理性能测试仪器中,力学性能测试仪器1002台(套),其他227台(套),光电测量仪器215台(套),颗粒度测量仪器178台(套),声学振动仪器175台(套),大地测量仪器46台(套),探伤仪器32台(套)。

1 脉冲激光溅射沉积系统PLD-450 JGF600 中国上海大学上海 2 激光再生放大器PRO-FIKXP 美国上海大学上海 3 荧光光谱仪FLSP920 英国上海大学上海 4 动态力学分析仪Q800 DMA 美国上海大学上海 5 物理特性测量系统 PPMS-9T 美国上海大学上海 6 水分吸附仪IGAsorp 英国上海大学上海 7 声源定位分析系统GFAI Star48 德国上海市环境科学研究院上海 8 电子万能测试机5569 美国上海市伤骨科研究所上海 9 比表面积和孔隙度分析仪ASAP2020-M 美国上海市检测中心上海 10 光散射法颗粒计数器CLS-1000 美国上海市检测中心上海 11 光测量系统8164B 德国上海市检测中心上海 12 光功率计校准装置IQ-12000 加拿大上海市检测中心上海 13 耐光及耐气候色牢度试验机Ci3000+ 美国上海市服装研究所上海 14 日晒色牢度试验机Ci4000 美国上海市服装研究所上海 15 脉冲试验台BI 1002 ARF 意大利上海市塑料研究所上海 16 拉力试验机Z010 德国上海市塑料研究所上海 17 臭氧老化试验机Argentox Ozone 500 德国上海橡胶制品研究所上海 18 激光粒度分析仪Mastersizer 2000 英国上海市涂料研究所上海 19 万能材料实验机LR-50 英国上海市合成树脂研究所上海 20 拉力机AG-50kNE 日本上海市合成树脂研究所上海 21 万能材料试验机SHT5106 中国上海市机械制造工艺研究所有限公司上海 22 电液伺服疲劳试验机及电子引伸计810 Material test system 美国上海市机械制造工艺研究所有限公司上海 23 试验机配套高温炉及引伸仪ZWICK 德国上海市机械制造工艺研究所有限公司上海 24 便携式超声波相控阵检测仪Olympus OmniScan MX 美国上海市机械制造工艺研究所有限公司上海 25 万能试验机300t SHT4306-W 中国上海市机械制造工艺研究所有限公司上海 26 微机电子万能试验机CMT4204,CMT5305 中国上海市机械制造工艺研究所有限公司上海 27 万能材料试验机附试验机配套高温炉及引伸仪BXC-FR250 德国上海市机械制造工艺研究所有限公司上海 28 轴承压摆疲劳试验台PLS-700 中国上海市轴承技术研究所上海 29 关节轴承磨损试验机PLS-100 中国上海市轴承技术研究所上海 30 关节轴承磨损试验机PLS-300 中国上海市轴承技术研究所上海 31 轴承高速摆动试验台NSDZ-50 中国上海市轴承技术研究所上海 32 液压万能专用试验机ZGPJ19200 中国上海市轴承技术研究所上海 33 巴克豪森应力测试仪Bearing Sca 芬兰上海市轴承技术研究所上海 34 轴承高速摆动试验台NSDZ-20 中国上海市轴承技术研究所上海 35 部件温度冲击设备TC405-Ⅱ中国上海半导体照明工程技术研究中心上海 36 高低温交变湿热箱HUT410P 中国上海半导体照明工程技术研究中心上海 37 快速温度变化试验箱TU403-10 中国上海半导体照明工程技术研究中心上海 38 熔融玻璃旋转粘度计RSV-1600 中国中国建材国际工程集团有限公司上海 39 光谱椭偏仪SenPro 德国中国建材国际工程集团有限公司上海

扭振测量与分析

扭振测量和QTV介绍 1.引言 噪声及振动问题,在旋转部件开发中,是一个必须充分重视的因素。就车辆而言,旋转机械或旋转部件包括:发动机(引擎),动力传动系, 变速装置, 压缩机和泵等等。对它们的动力特性, 必须了解得非常透彻, 力图实现宁静、平顺、安全地运转。通常, 对线振动和角振动的测量和分析, 是分头进行的。旋转件横向振动的测量方法, 是大家熟悉的,研究得已经比较透彻,为了充分把握结构的动力特性, 通常会实施多通道并行的测量和分析。而扭振测量则需使用专门的设备, 它们一般并不集成在一总体动力学测试系统内。 2.扭振的“源—传导—接收”模型 研究动力学问题的一般方法,是建立所谓“源—传导—接收”模型(图1)。在某一部位(接收部位)观测到的响应,视为由源和源在结构上沿某途径传导产生的效果。由于结构的共振或反共振效应,源可能在传导过程中被放大或者被衰减。此外,它们可能沿多个不同途径,传导至接收部位。 图1 扭振的“源——传导——接收”模型 接收部位或响应部位的振动,通常是刚体运动伴随柔体运动的复合现象。前者一般不产生交变应力,后者则会引起交变应力,并成为某种耐久性问题的根源。传递途径分析(TPA)涉及到某接收部位对源的干扰,这种干扰经由其可能的传导途径,并依赖于传导途径固有的动力学特性,影响整个结构的响应。 用同样的方法,我们来研究扭转振动。先是有一个“源”,譬如说,发动机给出的交变输入力矩。力矩传递过程,牵涉到轴系、齿轮传动系或皮带传动系等的动力特性。最终表现出来的,是旋转件的转速变化。如果沿整个轴,各部位的转速变化都是相同的、一致的,那么在严格的意义上,这不能算作是扭振,仅仅只是转速在变罢了(这相当于线振动分析中的刚体模态)。仅当沿轴不同部位检测到的转速增量有幅值和相位的相对变化时,扭振才确实发生了。当激励频率接近于扭振谐振频率时,会导致旋转件产生很大的内应力。如果未设置专门的监测设备,就有可能发生严重的耐久性问题。 习惯上,凡是在平均转速上、下发生得转速波动,都被称之为扭转振动,无论转轴的不同截面之间是否真正存在相对扭转。

扭振的测量

扭振的测量 概括而言,因为所有的动设备在运行中都存在一定程度的扭振,但与横向振动不同,扭振难于用简单、直接的方法测量,经常被忽视。如果因此视而不见,扭振就会成为设备损坏的隐形杀手,给企业带来巨大的直接和间接的损失。 无论ISO标准还是API标准,都要求正常运行时,设备的临界转速(其实也包括周边可能受影响的结构固有频率。只是要求更高,要求其固有频率高于可能的稳态运行的频率的10倍)应该在稳态运行时,可能的激振频率的±10%之外(也有更严的要求:在15%~20%之外)。扭振固有频率同样可能被激起,所以和横向振动一样,也必须知道你的转子系统的扭振固有频率。 转子的裂纹大多由扭振破坏引起,键、键槽等的损坏通常也与扭振密切相关,还有齿轮损坏、联轴器损坏、热涨(冷缩)配合的失效等也可能是扭振的失效引起。 扭矩的测量,必须要两个探头,在转子的两个截面测量,单个截面、单个探头只能测量扭振动态信号。扭矩的大小正比于转子角转速的变化(欧拉定义)。扭矩的变化通常发生于运行转速的变化,并因此产生扭振。 我们从力学理论中知道,扭矩测量的方法通常是应变片法,但在高速旋转的转子上贴应变片,信号还要传递出来,测量的频率范围还有一定的要求等,哪个方面都是难点。应力-应变-单位轴向长度变化的角度等有确定的关系,可以用角度的测量来表达扭矩及扭振。而角度的关系实质是一种时间的关系。

市场上缺乏测量扭振的通用、成熟产品。英国有一家公司生产一种短节式的测量系统,但必须串进原机组的轴系中,所以是一种需要在设计阶段就考虑好,比较贵的系统。本特利的3500/42M(MOD 183484, 162572)和System1的Classic支持这种装置。 这个方法其实也是一种测量时间间隔的方法(TIM):计算相邻两个 脉冲的时间间隔,而时间间隔的变化与特定转速下的扭振有关。但近年来发展了一类简便方法,不改变原转子系统,使用已有的固定安装的键相(每转一个脉冲)信号,或者使用斑马带或多齿齿轮(MEW)产生的每转多个脉冲信号,高速采样,分析其中的扭振信号。特点是:成本低,快捷,仅需要单个探

某船舶推进轴系扭振计算分析-不错的论文(精)

第22卷 第5期(总第131期)2011年10月 船舶 SHIP&BOAT Vol.22No.5October,2011 [船舶轮机] 某船舶推进轴系扭振计算分析 金立平 (吉林省地方海事局 [关键词]船舶推进轴系;有限元;转动惯量;扭振[摘 要]提高轴系扭振计算精度,必须有精确的原始参数,以准确掌握船舶轴系扭振情况。在有限元分析软件 中,建立曲柄半拐等的三维模型,用有限元分析方法精确的确定了各质量、轴段的转动惯量、扭转刚度等精确原始参数。基于建立的实船轴系当量系统,计算出了各结自由振动的频率及对应的共振转速,自由端和飞轮输出端的振幅,分析了轴段应力和扭矩随曲轴转角及转速的变化关系。结果表明在整个转速范围内,扭转振幅小于限定值,轴段的最大扭矩和应力均小于材料许用值,本船舶轴系扭转振动状况是良好的。 [中图分类号]U664.21 [文献标志码]A [文章编号]1001-9855(2011)05-0046-04 长春130061)Torsionalvibrationcalculationandanalysisofashippropulsionshaft JINLi-ping (JiLinLocalMaritimeSafetyAdministration,Changchun130061) Keywords:marinepropulsionshafting;FEM;inertiamoment;torsionalvibration Abstract:Thepreciseoriginalparametersarecriticalforimprovingthecalculationaccuracyofshafttorsi onalvibration.Athree-dimensionalmodeofahalfcrankisestablishedinthefiniteelementanalysissoftwaretoaccurate lycalculatetheoriginalparameterssuchasthemomentofinertiaandtorsionalstiffnessofeachs haftsection.Basedontheestablishedrealshipshaftingequivalentsystem,thispapercalculatedt hefreevibrationfrequencyandthecorrespondingresonancespeed,aswellasthevibrationampl itudeofthefreeendandtheflywheeloutputend,analyzedtherelationshipofthestressandtorque ofshaftsandthecrankangleandenginespeed.Theresultsshowthatinthewholespeedrange,thet

扭振测量与分析

扭振测量和Q T V介绍 1.引言 噪声及振动问题,在旋转部件开发中,是一个必须充分重视的因素。就车辆而言,旋转机械或旋转部件包括:发动机(引擎),动力传动系, 变速装置, 压缩机和泵等等?。对它们的动力特性, 必须了解得非常透彻, 力图实现宁静、平顺、安全地运转?。通常, 对线振动和角振动的测量和分析, 是分头进行的??。旋转件横向振动的测量方法, 是大家熟悉的,研究得已经比较透彻?,为了充分把握结构的动力特性, 通常会实施多通道并行的测量和分析?。而扭振测量则需使用专门的设备, 它们一般并不集成在一总体动力学测试系统内?。 2.扭振的“源—传导—接收”模型 研究动力学问题的一般方法,是建立所谓“源—传导—接收”模型(图1)。在某一部位(接收部位)观测到的响应,视为由源和源在结构上沿某途径传导产生的效果。由于结构的共振或反共振效应,源可能在传导过程中被放大或者被衰减。此外,它们可能沿多个不同途径,传导至接收部位。 图1 扭振的“源——传导——接收”模型接收部位或响应部位的振动,通常是刚体运动伴随柔体运动的复合现象。前者一般不产生交变应力,后者则会引起交变应力,并成为某种耐久性问题的根源。传递途径分析(TPA)涉及到某接收部位对源的干扰,这种干扰经由其可能的传导途径,并依赖于传导途径固有的动力学特性,影响整个结构的响应。 用同样的方法,我们来研究扭转振动。先是有一个“源”,譬如说,发动机给出的交变输入力矩。力矩传递过程,牵涉到轴系、齿轮传动系或皮带传动系等的动力特性。最终表现出来的,是旋转件的转速变化。如果沿整个轴,各部位的转速变化都是相同的、一致的,那么在严格的意义上,这不能算作是扭振,仅仅只是转速在变罢了(这相当于线振动分析中的刚体模态)。仅当沿轴不同部位检测到的转速增量有幅值和相位的相对变化时,扭振才确实发生了。当激励频率接近于扭振谐振频率时,会导致旋转件产生很大的内应力。如果未设置专门的监测设备,就有可能发生严重的耐久性问题。 习惯上,凡是在平均转速上、下发生得转速波动,都被称之为扭转振动,无论转轴的不同截面之间是否真正存在相对扭转。

传动系统振动

汽车动力传动系振动分析 [摘要 ]综述了车辆动力传动系振动的研究进展从振动的角度看 ,车辆动力传动系可分为弯曲振动系统和扭转振动系统目前主要采用试验模态分析和有限元等研究方法对动力传动系弯曲振动特性进行研究 ,建立了较为理想的弯曲振动分析模型在动力传动系扭转振动的研究方面 ,许多学者对此进行了有益探索研究 ,并取得了一定的进展但限于分析条件 ,车辆动力传动系弯曲、扭转振动耦合的研究尚不十分完善 ,尤其在国内 ,这一研究尚处于起步阶段因此 ,在动力传动系弯曲、扭转振动的研究已相对成熟的基础上 ,动力传动系的弯曲、扭转振动耦合对其振动特性影响的研究将是今后一段时间的主要研究内容 车辆是一个复杂的振动系统,它是由多个具有固有振动特性的子系统组成,作为子系统之一 的动力传动系,即包括动力总成、传动轴、驱动桥总成组成的系统是车辆振动和噪声的重要激励源从振动的角度看,车辆动力传动系可分为两个振动系统:弯曲振动系统和扭转振动系统车辆动力传动系的弯曲振动系统和扭转振动系统不仅有各自的固有振动特性,而且还存在一定程度的振动耦合这些不同形式的振动及其耦合,是影响车辆行驶平顺性,乘坐舒适性及动力传动系零部件使用寿命的主要原因之一,因此对车辆动力传动系的整体振动进行深入细致的研究,显得十分必要 1 动力传动系弯曲振动研究 车辆动力传动系弯曲振动在很大的频率段内对车辆振动和噪声有着重要影响,动力传动系低频段内的刚体振动直接影响车辆的乘坐舒适性,而较高频段内的弹性振动将会引起车辆的结构共振和声学共振近年来,随着对提高乘坐舒适性、减小汽车振动要求的提高,对动力传动系弯曲振动特性的进一步研究,已显得十分迫切,国内外对动力传动系弯曲振动的研究起步较早,在理论研究方面取得一定进展,试验研究也较为成熟建立由离散的集中质量、弹簧、阻尼器组成的力学模型是对动力传动系弯曲振动特性进行研究分析的一种行之有效的方法後藤进[1 ]建立了具有 1 1个自由度的动力传动系的弯曲振动力学模型,并通过试验验证,试验结果和计算结果取得较好一致文献[2 ]也建立了动力传动系弯曲振动多自由度力学模型,指出系统的弯曲振动是由发动机运动部件往复惯性力、传动轴的不平衡等引起的,并通过实验测定有关参数值,计算系统的固有频率、振型隋军[3、4]建立包括动力总成及传动轴的5个自由度的弯曲振动力学模型,计算系统的固有振动特性和响应,指出动力总成的弯曲振动是汽车飞轮壳损坏的主要原因这种建模方法及其实用性已为大量的计算和试验分析结果所证实,并且已总结出了确定模型集中质量、弹性和阻尼的一般原则,能有效地用于分析解决车辆动力传动系弯曲振动问题日臻完善的试验模态分析技术,在动力传动系弯曲振动特性的研究中得到广泛应用试验模态分析在动力传动系弯曲振动特性研究中的应用,经历了从单个总成发展到多个总成直至整个动力传动系的过程隋军[4]、张建文[5]对动力传动系动力总成进行了试验模态分析,认为动力总成的弯曲振动是造成汽车离合器壳开裂的主要原因余龄[6]利用试验模态分析技术测定了包括动力总成及传动轴的组合系统的一阶弯曲振动频率,张金换[7]则通过模态试验分析研究动力传动系传动轴的临界转速孙方宁[8, 9]、俄延华[1 0 ]在整车条件下,对动力传动系弯曲振动进行模态试验,得到整个动力传动系弯曲振动的模态参数高云凯[1 1 ]在台架及整车条件下,对汽车动力总成弯曲振动试验模态分析中的非线性特性进行研究,结果表明这一非线性特性仅存在于整车条件下的试验模态分析试验模态分析具有快速、简便地识别结构固有特性的特点,但其精度主要取决于试验者的经验和所使用的测试仪器、分析程序模态综合法是对动力传动系弯曲振动进行分析的有效方法,其基本思想是将动力传动系分为若干个子系统,在完成对各子系统的模态分析后,建立自由模态的综合方程,再利用平衡条件和约束条件将自由度简化,最后获得一个自由度大为缩减又保持了系统特性的运动方程,即组合系统方程孙方宁[8, 9]将一大型客车动力传动系划分为五个子系统,通过试验模态分析获得各子系统的模态参数,然后利用模态综合方法建立整个系统的理论分析模型,编制计算程序,对该大型客车动力传动系弯曲振动的固有振动特性进行计算,并在激振试验台上进行整个动力传动系弯曲振动的试验模态分析,结果表明理论计算和试验结果具有很好的一致性应用模态综合方法,只需获得动力传动系各子系统的模态参数,就可以通

相关文档