文档库 最新最全的文档下载
当前位置:文档库 › 课程设计差动变压器位移传感器

课程设计差动变压器位移传感器

课程设计差动变压器位移传感器
课程设计差动变压器位移传感器

摘要

------差动变压器位移传感器的基本知识介绍传感器是能感受规定的被测量并按照一定的规律将其转换成可用输出信号的器件或装置。在有些学科领域,传感器又称为敏感元件、检测器、转换器等。

通常传感器由敏感元件和转换元件组成。

其中,敏感元件是指传感器中能直接感受或响应被测量的部分;转换元件是指传感器中将敏感元件感受或响应的被测量转换成适于传输或测量的电信号的部分。由于传感器的输出信号一般都很薄弱,因此需要有信号调理与转换电路对其进行放大等。

电感式传感器是利用电磁感应原理,将被测非电量的变化转换成线圈的自感或互感变化的机电转换装置。它也常用来检测位移、振动、力、应变、流量、比重等物理量。

电感式传感器的种类很多。根据传感器转换原理不同,可分为自感式、互感式、涡流式、压磁式和感应同步器等。根据结构形式不同,可分为气隙式和螺管式两种。根据改变的参数不同,又可分为变气隙厚度式、变气隙面积式、变铁芯导磁率式三种。

电感传感器具有以下优点:结构简单,工作可靠,寿命长;灵敏度高,分辨率高;测量精度高,线性好;性能稳定,重复性好;输出阻抗小,输出功率大;抗干扰能力强,适合在恶劣环境中工作。电感传感器的缺点是:频率低,动态响应慢,不宜作快速动态测量;存在交流零位信号;要求附加电源的频率和幅值的稳定度高;其灵敏度、线性度和测量范围相互制约,测量范围越大,灵敏度越低。

关键字:相敏检波转换电路差动变压器

目录

第一章螺线管式差动变压器传感器---------------------3 1)工作原理-------------------------------------------3

2)特性分析---------------------------------------------4 第二章差动变压器的测量电路---------------------- ---5 1)差动整流电路及其仿真--------------------------5 2)相敏检波电路及其仿真--------------------------7 3)零点残余误差补偿--------------------------- ----9 第三章差动变压器的改进-------------------------------10

1)接放大器---------------------------------------------10

2)接低通滤波器---------------------------------------11 第四章设计总结------------------------------------- -----13 参考文献------------------------------------- -----13

第一章螺线管式差动变压器传感器

差动变压器式传感器简介

把被测的非电量变化转换为线圈互感变化的传感器称为互感式传感器。这种传感器是根据变压器的基本原理制成的,并且次级绕组用差动形式连接,故称差动变压器式传感器。

差动变压器结构形式较多,有变隙式、变面积式和螺线管式等,下图为差动变压器的结构示意图。在非电量测量中,应用最多的是螺线管式差动变压器,它可以测量1~100mm机械位移,并具有测量精度高、灵敏度高、结构简单、性能可靠等优点

1. 工作原理

图中,Rp和Lp分别为初级线圈的损耗电阻和自感,Rs1和Rs2为两个次级线圈的电阻,Ls1和Ls2表示两个次级线圈的自感,M1和M2为初级线圈与两个次级线圈的互感系数,Ep 为加在初级线圈上的激励电压,Es1和Es2为两次级线圈上产生的感应电动势,Es为Es1和Es2形成的差动输出电压。

根据变压器的工作原理,当在初级线圈上加上适当频率的激励电压时,在两个次级线圈上就会产生感应电动势。若变压器的结构完全对称,当铁心处于初始平衡位置时,差动变压器输出为0.当铁心偏离平衡位置时,两个次级线圈的互感系数发生极性相反的变化,互感Ma≠Mb,两次级绕组的互感电势Es1≠Es2,输出电压Es=Es1-Es2≠0,即差动变压器有电压输出,此电压的大小与极性反映被测体位移的大小使得差动变压器输出不为0,并且输出电压Es随着铁心偏离中心位置将逐渐加大。差动变压器输出电压与铁心位移成正比,即可根据电压大小可判断位移大小。

差动变压器等效电路差动变压器的输出特性曲线

第二章差动变压器的测量电路及其仿真

差动变压器输出的是交流电压,若要用交流模拟或者数字电压表测量,只能反映铁芯位移的大小,不能反映移动的方向。另外其测量值必定含有零点残余电压。为了达到能判别移动方向和消除零点残余电压的目的,实际应用中,常采用的测量电路主要有差动整流电路和相敏检波电路。一般经过相敏检波和差动整流输出地信号,还需经过低通滤波电路,把调制时引入的高频信号滤掉,只让铁芯运动产生的有用信号通过。

1)差动整流电路

根据半导体二级管单向导通原理进行解调的。如传感器的一个次级线圈的输出瞬时电压极性,在f点为“+”,e点为“–”,则电流路径是fgdche。反之,如f点为“–”,e点为“+”,则电流路径是ehdcgf。可见,无论次级线圈的输出瞬时电压极性如何,通过电阻R的电流总是从d到c 。同理可分析另一个次级线圈的输出情况。

衔铁向上运动转换电路及仿真图

衔铁向下运动转换电路及仿真图

2)相敏检波电路

相敏检波器的电路原理如图所示。它由四个特性相同的二极管1D ~4D 沿同一方向串联成一个桥式电路,各桥臂上通过附加电阻将电桥预调平衡。比较电压Ek 与差动变压器输出电压具有相同的频率。经过相敏检波电路调理后,其直流输出电压信号的极性反映铁芯位移的方向。

衔铁向下运动转换电路及仿真图

衔铁向上运动转换电路及其仿真图

3)零点残余误差补偿

(1)零点残余电压,又称为零位电压。差动式变压器传感器的衔铁处于中间平衡

位置时输出的微小电压,如图所示。

(2)消除零点残余电压方法:

从设计和工艺上保证结构对称性

为保证线圈和磁路的对称性,首先,要求提高加工精度,线圈选配成对,采用磁路可调节结构。其次,应选高磁导率、低矫顽力、低剩磁感应的导磁材料。并应经过热处理,消除残余应力,以提高磁性能的均匀性和稳定性。由高次谐波产生的因素可知,

磁路工作点应选在磁化曲线的线性段。

②选用合适的测量线路

采用相敏检波电路不仅可鉴别衔铁移动方向,而且把衔铁在中间位置时,因高次谐波引起的零点残余电压消除掉。如图,采用相敏检波后衔铁反行程时的特性曲线由1变到2,从而消除了零点残余电压。

③采用补偿线路

第三章差动变压器位移传感器的改进

1)差动电压接放大器电路及其仿真

2)整流信号接滤波电路

低通滤波器容许低频信号通过,但减弱或减小频率高于截止频率的信号的通过。RC 滤波器具有电路简单、抗干扰性能强,有较强的低频性能,电阻、电容元件标准、易于选择的特点。因此,在测试系统中,选用一阶RC低通滤波器。

滤波电路图

整流信号接滤波电路

可计算得截至频率为1000/2*2.5*3.14=64Hz

故该滤波器可将高频干扰信号滤掉,而且不影响有用信号。

第四章设计总结

在为期2周的课程设计中,我受益匪浅,收获颇丰。

这次传感器课程设计我的题目是“差动变压器位移传感器”,从理论设计方案及论证到传感器结构设计、理论分析、参数计算,测量电路设计、分析、参数计算,再到传感器的静态、动态性能实验的测试分析、实验设计,使我对传感器知识有了更深一层的理解和掌握,尤其是带有相敏检波电路的差动式传感器,对其中差动电桥、运算放大器、相敏检波器、低通滤波器的结构原理及参数选择有了更进一步的了解。这些都培养了我独立工作、动脑思考、动手操作、认真严谨、一丝不苟的好习惯,锻炼并提升了我的实际操作能力,使我所学的理论知识有了实用的价值,得以与实践操作充分结合。在设计过程中,我遇到了不少困难,但通过请教老师同学、仔细分析理解,都逐一得到了解决。我发现只有细心、耐心、恒心才能将事情做好,设计方案中一个小小的数字错误,简单的一个器件的选择错误,都有可能对设计方案造成巨大的影响。我还意识到我的实验能力有所不足,在理论上也有很多的缺陷。所以,在以后的学习生活中,我需要更努力地学习理论知识,同时注重理论和实践的结合。

最后,衷心感谢学院给我们提供这次宝贵的机会,感谢各位老师在课程设计过程中的耐心指导,使我们提升了专业技能,为以后的工作做准备,使我们能够更好地为社会服务。

参考文献

张玉龙等传感器电路设计手册中国计量出版社 1989年

李科杰等新编传感器技术手册国防工业出版社 2002年

吴桂秀传感器应用制作入门浙江科学技术出版社 2004年

杨宝清孙宝元传感器及其应用手册 2004年

单成祥传感器的理论与设计基础及应用国防工业出版社 1999年

殷淑英传感器应用技术冶金工业出版社 2008年

变压器保护校验方法

RCS-978系列变压器保护测试 一、RCS-978型超高压线路成套保护 RCS-978配置: 主保护:稳态比率差动,工频变化量比率差动,零序比率差动, 谐波制动, 后备保护:复合电压闭锁(启动)方向过流 零序方向过流保护 间隙零序过流过压保护 零序过压 稳态比率差动 一、保护原理 基尔霍夫电流定律,流入=流出 (1)差动元件的动作特性 在国内生产的微机型变压器差动保护中,差动元件的动作特性较多采用具有二段折线的动作特性曲线,如下图: 在上图中,I op.min 为差动元件起始动作电流幅值,也称为最小动作电流; I res.min 为最小制动电流,又称为拐点电流; K=tan α为制动特性斜率,也称为比率制动系数。 微机变压器差动保护的差动元件采用分相差动,其动作具有比率制动特性。 动作特性为: 拐点前(含拐点): .min .min ()op op res res I I I I ≥≤

拐点后: .min .min .min () ()op op res res res res I I K I I I I ≥+-> 式中 I op ——差动电流的幅值 I res ——制动电流的幅值 也有某些变压器差动保护采用三折线的制动曲线。 (2)动作方程和制动方程:差动电流Iop 和制动电流Ires 的获取 差动电流(即动作电流):取各侧差动电流互感器(TA )二次电流相量和的绝对值。 以双绕组变压器为例, op h l I I I =+ 在微机保护中,变压器制动电流的取得方法比较灵活。国内微机保护有以下几种取得方式: ① /2res h l I I I =- ② ()/2res h l I I I =+ ③ max{,}res h l I I I = ④ ()/2res op h l I I I I =-- ⑤ res l I I = 二、测试要点:标么值的概念 另:注意,978可以自动辅助计算当前的差流, 但其同时显示的“制流X 相”并不是当前X 相的制动电流,而是当前 X 相制动电流下的动作电流边界!!! 三、试验举例: 保护定值:动作门槛:0.3 差动速断电流:4 I 侧(Y 接线)二次侧额定电流:3.935; II 侧(Y 接线)二次侧额定电流:3.765; III 侧(D 接线)二次侧额定电流:3.955 由于该保护的补偿系数由标么值的方式计算,则每一侧的补偿系数是该侧二次侧额定电流的倒数。 1.选择“差动菜单”——“扩展差动” 2.在“Id,r 定义”页面,选择“测试项目”为“比例制动”;“动作电流Id ”为“K1×I1+

差动变压器及应用

. 差动变压器及其应用 5月专号)一、差动变压器简介(摘自日刊《传感器技术》1986年差动变压器是一种将机械位移变换成电信号的电磁感应式位移传感器。它主要是靠圆筒线圈内的可动铁芯的位移,在圆筒线圈的输入线圈和输出线圈之间建立起相互感应关系,可动铁芯的位移可以通过测定与其成正比的输出线圈的感应电压来获得。、差动变压器的特点1级之间有200mm)线性范围的种类很多,容易根据用途进行选择,通常在±2mm~±(1 个左右类型的品种。10 )结构简单,所以耐振性和耐冲击性都很强。(2 )不磨损,不变质,耐久性优良。(3)输出电压对铁心的位移有精确的比例,即直线性好。一般这种传感器中全行程偏差小4(0.3%。1%于,在高档品可以保证在±0.2%~±)因为灵敏度高,可以获得大的输出电压,不要求外围电路高级化也能检测到微小的位(5 移。)因为输出变化平滑,故能进行高分辨率的检测。(6 )零点稳定,以其作为测定的基准点对维持精度有好处。(7 的高的响应速度。到100Hz (8)能够得到从500Hz 2、差动变压器原理典型的差所示,由圆筒形线圈和与其完全分离的铁芯构成。差动变压器的构造原理如图1-1动变压器的圆筒线圈有三只,各是总长度的三分之一,中间是一次线圈,两侧是二次线圈。加入圆筒线圈中的铁芯用来在线圈中链接磁力线而构成磁路。(这由于与两端线圈的互感就产生了电动势(即激磁),当在中间的一次线圈加上交流电压时一点与普通变压器相同)。因为二次线圈彼此极性相反地串联,两个二次线圈中的感应电动势相位相反,将其相加的 结果,在输出端产生二者的电位差。相对于线圈长度方向的中心处,两个二次线圈的感应电压。大小相等方向相反,因而输出为零。这个位置被称为差动变压器的机械零点(或简称为零点)当铁芯从零点相某一方向改变位置时,位移方向的二次线圈的电压就增大,另一个二次线圈的电压则减小。产品设计保证产生的电位差与铁芯的位移成正比。当铁芯从零点向与刚才相反的方向移动 .. . °。相对于铁芯位移的二次线但是相位与刚才的情况相差180时,就会同样产生成正比的电压,圈电压和输出电压差的关系示于图1-2。电压差和铁芯位移成正比的范围称为直线范围,其比例性称为线性,是差动变压器最重要 的一项指标。X

(一) 差动变压器的性能实验

实验三电磁式传感器 (一)差动变压器的性能实验 一、实验目的:了解差动变压器的工作原理和特性。 二、基本原理:差动变压器同一只初级线圈和二只次级线圈及一个铁芯组成,根据内外层排列不同,有二段式 和三段式,本实验采用三段式结构。当传感器随着被测体移动时,由于初级线圈和次级线圈之间的互感发生变化促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级反向串接(同名端连接),就引出差动输出。其输出电势反映出被测体的移动量。 三、需用器件与单元:差动变压器实验模板、测微头、双线示波器、差动变压器、电感式传感器、音频信号源 (音频振荡器)、直流电源、万用表。 四、实验步骤: 1、根据图3-1,将差动变压器装在差动变压器实验模板上。 图3-1 差动变压器电容传感器安装示意图 2、在模块上近图3-2接线,音频振荡器信号必须从主控箱中的L v端子输出,调节音频振荡器的频率,输出频率 为4~5KHz(可用主控箱的数显表的频率档Fin输入来监测)。调节幅度使输出幅度为峰一峰值 V p-p=2V(可用示波器监测:X轴为0.25ms/div、Y轴CH1为1V/div、CH2为20mv/div)。判别初次级线圈及次级线圈同名端方法如下:设任一线圈为初级线圈,并设另外两个线圈的任一端为同名端,按图3-2接线。当铁芯左、右移动时,观察示波器中显示的初级线圈波形,次级线圈波形,当次级波形输出幅值变化很大,基本上能过零点,而且相位与初级圈波形(L v音频信号V p-p=2V波形)比较能同相和反相变化,说明已连接的初、次级线圈及同名端是正确的,否则继续改变连接再判别直到正确为止。图中(1)、(2)、(3)、(4)为模块中的实验插孔。 图3-2 双线示波与差动变压器连结示意图

差动保护试验方法总结

数字式发电机、变压器差动保护试 验方法 关键词: 电机变压器差动保护 摘要:变压器、发电机等大型主设备价值昂贵,当他们发生故障时,变压器、发电机的主保护纵向电流差动保护应准确及时地将他们从电力系统中切除,确保设备不受损坏。模拟发电机、变压器实际故障时的电流情况来进行差动试验,验证保护动作的正确性至关重要。 关键词:数字式差动保护试验方法 我们知道,变压器、发电机的电气主保护为纵向电流差动保护,该保护原理成熟,动作成功率高,从常规的继电器保护到晶体管保护再到现在的微机保护,保护原理都没有多大改变,只是实现此保护的硬件平台随着电子技术的发展在不断升级,使我们的日常操作维护更方便、更容易。传统继电器差动保护是通过差动CT的接线方式与变比大小不同来进行角度校正及电流补偿的,而微机保护一般接入保护装置的CT全为星型接法,

然后通过软件移相进行角差校正,通过平衡系数来进行电流大小补偿,从而实现在正常运行时差流为零,而变压器内部故障时,差流很大,保护动作。由于变压器正常运行和故障时至少有6个电流(高、低压侧),而我们所用的微机保护测试仪一般只能产生3个电流,因此要模拟主变实际故障时的电流情况来进行差动试验,就要求我们对微机差动保护原理理解清楚,然后正确接线,方可做出试验结果,从而验证保护动作的正确性。 下面我们以国电南京自动化设备总厂电网公司的ND300系列的发变组差动保护为例来具体说明试验方法,其他厂家的应该大同小异。这里我们选择ND300系列数字式变压器保护装置中的NDT302型号作为试验对象。该型号的差动保护定值(已设定)见表1: 表1NDT302变压器保护装置保护定值单

变压器差动保护整定计算

变压器差动保护整定计算 1. 比率差动 装置中的平衡系数的计算 1).计算变压器各侧一次额定电流: n n n U S I 113= 式中n S 为变压器最大额定容量,n U 1为变压器计算侧额定电压。 2).计算变压器各侧二次额定电流: LH n n n I I 12= 式中n I 1为变压器计算侧一次额定电流,LH n 为变压器计算侧TA 变比。 3).计算变压器各侧平衡系数: b n n PH K I I K ?= -2min 2,其中)4,min(min 2max 2--=n n b I I K 式中n I 2为变压器计算侧二次额定电流,min 2-n I 为变压器各侧二次额定电流值中最小值,max 2-n I 为变压器各侧二次额定电流值中最大值。

平衡系数的计算方法即以变压器各侧中二次额定电流为最小的一侧为基准,其它侧依次放大。若最大二次额定电流与最小二次额定电流的比值大于4,则取放大倍数最大的一侧倍数为4,其它侧依次减小;若最大二次额定电流与最小二次额定电流的比值小于4,则取放大倍数最小的一侧倍数为1,其它侧依次放大。装置为了保证精度,所能接受的最小系数ph K 为,因此差动保护各侧电流平衡系数调整范围最大可达16倍。 差动各侧电流相位差的补偿 变压器各侧电流互感器采用星形接线,二次电流直接接入本装置。电流互感器各侧的极性都以母线侧为极性端。 变压器各侧TA 二次电流相位由软件调整,装置采用Δ->Y 变化调整差流平衡,这样可明确区分涌流和故障的特征,大大加快保护的动作速度。对于Yo/Δ-11的接线,其校正方法如下: Yo 侧: )0('I I I A A ? ??-= )0(' I I I B B ? ? ? -= )0('I I I C C ? ??-= Δ侧: 3/ )('c a a I I I ? ??-=

差动变压器的性能(自检实验二)

实 验 报 告 实验项目名称:差动变压器的性能 同组人 试验时间 年 月 日,星期 , 节 实验室 K2,508传感器实验室 指导教师 一、 实验目的 了解差动变压器原理、位移特性、零点残余电压补偿方法、振动测量的方法。 二、 实验原理 差动变压器是把被测的非电量变化转换成线圈互感量得变化。这种传感器是根据变压器的基本原理制成的,并且次级绕组用差动的形式连接,故称之为差动变压器。 图2.1 螺线管式差动变压器 如图2.1所示,1-活动衔铁;2-导磁外壳;3-骨架;4-匝数为W 1初级绕组;5-匝数为W 2a 次级绕组;6-匝数W 2b 次级绕组。 设1U ? 为一次一次绕组激励电压;1M 、2M 分别为一次绕组与两个二次绕组间的互感;1L 为一次绕组的电感;1r 为一次绕组的有效电阻。 当次级开路时,初级线圈激励电流为: 1 111 U I r j L ω? ? = + 根据电磁感应定律,两个次级绕组的感应电动势分别为: 211a E j M I ω? ? =-、221b E j M I ω? ? =- 次级绕组反相串联后的电势差为: 121 22211 ()a b j M M U U E E r j L ωω? ? ? ? -=-=- +

由上面公式可得差动变压器输出电压特性,如图2.2 图2.2 差动变压器输出电压特性曲线 差动变压器往往会产生零点残余电压,主要原因是: 1、由于两个二次测量线圈的等效参数不对称,使其输出的基波感应电动势的 幅值和相位不同,调整磁芯位置时,也不能达到幅值和相位同时相同。 2、由于铁芯的B-H特性的非线性,产生高次谐波不同,不能相互抵消。 为减小零点残余电压,我们一般会做如下措施: 1、在设计和工艺上,力求做到磁路对称,线圈对称,铁芯材料均匀。 2、在电路上进行补偿,一般会加串联电阻、并联电容、反馈电阻或反馈电容 等。 三、所需单元及部件: 1、STIM-01模块、STIM-08模块、STIM-02模块、STIM-03模块、差动变压器。 2、1-10KHZ音频信号、1-30HZ低频信号、示波器。 3、电子连线若干。 四、实验步骤: 1、(1)将信号发生器LF/AF按钮置于AF位置,并用示波器观察输出波形,将输出波形频率调节到4KHZ,幅值调节调节至Vp-p=5V。 (2)按图30.3连接好各实验模块,接上各模块电源。

课程设计差动变压器位移传感器

摘要 ------差动变压器位移传感器的基本知识介绍传感器是能感受规定的被测量并按照一定的规律将其转换成可用输出信号的器件或装置。在有些学科领域,传感器又称为敏感元件、检测器、转换器等。 通常传感器由敏感元件和转换元件组成。 其中,敏感元件是指传感器中能直接感受或响应被测量的部分;转换元件是指传感器中将敏感元件感受或响应的被测量转换成适于传输或测量的电信号的部分。由于传感器的输出信号一般都很薄弱,因此需要有信号调理与转换电路对其进行放大等。 电感式传感器是利用电磁感应原理,将被测非电量的变化转换成线圈的自感或互感变化的机电转换装置。它也常用来检测位移、振动、力、应变、流量、比重等物理量。 电感式传感器的种类很多。根据传感器转换原理不同,可分为自感式、互感式、涡流式、压磁式和感应同步器等。根据结构形式不同,可分为气隙式和螺管式两种。根据改变的参数不同,又可分为变气隙厚度式、变气隙面积式、变铁芯导磁率式三种。 电感传感器具有以下优点:结构简单,工作可靠,寿命长;灵敏度高,分辨率高;测量精度高,线性好;性能稳定,重复性好;输出阻抗小,输出功率大;抗干扰能力强,适合在恶劣环境中工作。电感传感器的缺点是:频率低,动态响应慢,不宜作快速动态测量;存在交流零位信号;要求附加电源的频率和幅值的稳定度高;其灵敏度、线性度和测量范围相互制约,测量范围越大,灵敏度越低。 关键字:相敏检波转换电路差动变压器

目录 第一章螺线管式差动变压器传感器---------------------3 1)工作原理-------------------------------------------3 2)特性分析---------------------------------------------4 第二章差动变压器的测量电路---------------------- ---5 1)差动整流电路及其仿真--------------------------5 2)相敏检波电路及其仿真--------------------------7 3)零点残余误差补偿--------------------------- ----9 第三章差动变压器的改进-------------------------------10 1)接放大器---------------------------------------------10 2)接低通滤波器---------------------------------------11 第四章设计总结------------------------------------- -----13 参考文献------------------------------------- -----13

变压器纵差动保护动作电流的整定原则是什么

变压器纵差动保护动作电流的整定原则是什么? .(1)大于变压器的最大负荷电流; (2)躲过区外短路时的最大不平衡电流; (3)躲过变压器的励磁涌流。 39.什么是自动重合闸?电力系统为什么要采用自动重合 闸? 答:自动重合闸装置是将因故障跳开后的断路器按需要自动投入的一种自动装置。电力系统运行经验表明,架空线路绝大多数的故障都是瞬时性的,永久性故障一般不到10%。因此,在由继电保护动作切除短路故障之 后,电弧将瞬间熄灭,绝大多数情况下短路处的绝缘可以自动恢复。因此,自动将断路器重合,不仅提高了供电的安全性,减少了停电损失,而且还提高了电力系统的暂态稳定水平,增大了高压线路的送电容量。所以,架空线路要采用自动重合闸装置。 什么是主保护、后备保护、辅助保护? 答:主保护是指能满足系统稳定和安全要求,以最快速度有选择地切除被保护设备和线路故障的保护。 后备保护是指当主保护或断路器拒动时,起后备作用的保护。后备保 护又分为近后备和远后备两种:(1)近后备保护是当主保护拒动时, 由本线路或设备的另一套保护来切除故障以实现的后备保护(2)远后 备保护是当主保护或断路器拒动时,由前一级线路或设备的保护来切 除故障以实现的后备保护. 辅助保护是为弥补主保护和后备保护性能的不足,或当主保护及后备 保护退出运行时而增设的简单保护。 、何谓主保护、后备保护?何谓近后备保护、远后备保护?(8分) 答:所谓主保护是指能以较短时限切除被保护线路(或元件)全长上的故障的保护装置。(2分) 考虑到主保护或断路器可能拒动而配置的保护,称为后备保护。(2分) 当电气元件的主保护拒动时,由本元件的另一套保护起后备作用,称为近后备。(2分)

差动变压器数据处理

、实验数据及数据处理 (一)差动变压器性能实验 差动变压器位移X值与输出电压Vp-p数据表 X(mm) 8.8 9.0 9.2 9.4 9.6 9.8 10.0 10.2 10.4 10.6 10.8 11.0 11.2 Vp-p(mV) 250 225 175 130 90 55 35 50 90 130 170 210 255 灵敏度S \ -125 -250 -225 -200 -175 -100 75 200 200 200 200 225

(二)差动变压器零点残余电压补偿实验 补偿后 200mV 补偿前 600mV (三)差动变压器的静态标定 X(mm) 8.8 9.0 9.2 9.4 9.6 9.8 10.0 10.2 10.4 10.6 10.8 11.0 11.2 V(V) 0.615 0.509 0.406 0.305 0.202 0.099 0 -0.106 -0.206 -0.309 -0.411 -0.512 -0.614 8.9 9.1 9.3 9.5 9.7 9.9 10.1 10.3 10.5 10.7 10.9 11.1 灵敏度S \ -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5

(四)差动变压器的应用—振动测量实验 测量值 f(Hz) 3 5 7 9 11 13 15 17 19 21 23 25 27 29 Vp-p(V) 0.62 0.80 0.96 1.14 1.72 6.48 1.36 0.62 0.42 0.32 0.24 0.20 0.16 0.14 计算值Xp-p(mm)

差动变压器位移测量电路仿真设计

课程名:机电一体化学号:02307225 姓名:顾小温差动变压器位移测量电路仿真设计 一、引言 差动变压式传感器是将测量信号的变化转化成线性互感系数变化的传感器,其工作原理是利用电磁感应,将被测位移量的变化转换成变压器线圈的互感系数的变化,再由测量电路转换成电压或电流的变化量输出,实现由非电量到电量的转换。变压器初级线圈输入交流电压,次级线圈则感应出电动势。这种传感器结构简单,线性好,灵敏度高,测量范围大,受外界干扰影响小,使用寿命长,因而被广泛应用于工业生产各个领域。 本测量系统电路部分由音频振荡器、零点残余电压补偿、相敏检波、低通滤波、数字显示等组成,与差动变压式传感器及测微头一起构成了一个位移测量系统. 二、总体方案 2.1测量电路的工作原理 正弦波震荡器通过稳压电源的供电产生幅值与频率都稳定的正弦信号U1。将此信号接入差动变压器的初级绕组上,以此作为激励。此时次级绕组上产生感应电动势U2。铁心与测微头连在一起,侧微头移动,则铁心移动,以此引起互感系数变化,此时输出电压U2随之变化。这时输出电压U2只能反映位移的大小并不能反映出位移的方向。当经过相敏检波器检波后得到的电压U3,U3包含位移的完整变换规律,在经过低通滤波电路得到U0,这个电压即可以反映位移的大小也可以反映位移的方向。 2.2差动变压器 正弦波震荡器通过稳压电源的供电产生幅值与频率都稳定的正弦信号U1。将此信号接入差动变压器的初级绕组上,以此作为激励。此时次级绕组上产生感应电动势U2。铁心与测微头连在一起,侧微头移动,则铁心移动,以此引起互感系数变化,此时输出电压U2随之变化 U2= KU1X 其中K为与差动变压器有关的比例系数,X为位移变化。

变压器差动保护试验方法

我们知道,变压器、发电机的电气主保护为纵向电流差动保护,该保护原理成熟,动作成功率高,从常规的继电器保护到晶体管保护再到现在的微机保护,保护原理都没有多大改变,只是实现此保护的硬件平台随着电子技术的发展在不断升级,使我们的日常操作维护更方便、更容易。传统继电器差动保护是通过差动CT的接线方式与变比大小不同来进行角度校正及电流补偿的,而微机保护一般接入保护装置的CT全为星型接法,然后通过软件移相进行角差校正,通过平衡系数来进行电流大小补偿,从而实现在正常运行时差流为零,而变压器内部故障时,差流很大,保护动作。由于变压器正常运行和故障时至少有6个电流(高、低压侧),而我们所用的微机保护测试仪一般只能产生3个电流,因此要模拟主变实际故障时的电流情况来进行差动试验,就要求我们对微机差动保护原理理解清楚,然后正确接线,方可做出试验结果,从而验证保护动作的正确性。 下面我们以国电XX自动化设备总厂电网公司的ND300系列的发变组差动保护为例来具体说明试验方法,其他厂家的应该XX小异。这里我们选择ND300系列数字式变压器保护装置中的NDT302型号作为试验对象。该型号的差动保护定值(已设定)见表1: 表1NDT302变压器保护装置保护定值单

下面我们先来分析一下微机差动保护的算法原理(三相变压器)。这里以Y/△-11主变接线为例,传统继电器差动保护是通过把主变高压侧的二次CT接成△,把低压侧的二次CT接成Y型,来平衡主变高压侧与低压侧的30度相位差的,然后再通过二次CT变比的不同来平衡电流大小的,接线时要求接入差动继电器的电流要相差180度,即是逆极性接入。具体接线见图1: 图1

差动变压位移传感器.

lvdt位移传感器是目前位移测量当中广泛应用的传感器之一,在很多应用领域占有重要地位。 lvdt位移传感器工作原理 LVDT(差动变压器位移传感器为电磁感应原理,与传统的电力变压器不 同,LVDT是一种开磁路弱磁耦合的测量元件。LVDT的结构由铁心、衔铁、初级线圈、次级线圈组成,初级线圈、次级线圈分布在线圈骨架上,线圈内部有一个可自由移动的杆状衔铁。用不同线径的漆包线,在骨架上绕制一组初级线圈,两组次级线圈,其工作方式依赖于在线圈骨架内磁芯的移动,当初级线圈供给一定频率的交变电压时,铁芯在线圈内移动就改变了空间的磁场分布,从而改变了初、次级线圈之间的互感量,次级线圈就产生感应电动势,随着铁心的位置不同,互感量也不同,次级产生的感应电动势也不同,这样就将铁芯的位移量变成了电压信号输出。 lvdt位移传感器主要特点: 1、使用寿命长:由于铁芯和线圈内壁存在间隙,铁芯在运动的时候与线圈不接触,无摩擦损耗;同时采用优良的生产工艺把骨架和所绕漆包线两者固化为一整体,不会产生断线,开裂等故障,加上其它的优化设计,因此传感器的使用寿命理论上可以是无限的,据国外某机构测试此类传感器的MTBF可达到30万小时,在实际的正常使用中可达到数十年,其最终故障往往是人为造成或变送器电路元器件的寿命决定的。 2、多样的环境适应性:LVDT是少数几种可以应用在多种恶劣环境下的位移传感器,通过特殊方式进行密封处理的传感器可以防潮、防盐雾,可以放置于承压的液体中、气体密闭容器中,甚至于某些腐蚀性环境中,对核辐射电磁辐射干扰不敏感,能抗振动,具有较宽的工作温度范围-25℃~85℃和满足国军标—55℃~125℃工作温度。机电分体的位移传感器单独使用可以在200℃下工作。 3、响应速度快:基于非接触测量的实现,对于某些快速运动物体的冲击振动测量,此类传感器可以提供很宽的频率响应。

变压器纵差动保护动作电流的整定原则

变压器纵差动保护动作电流的整定原则差动保护初始动作电流的整定原则,是按躲过正常工况下的最大不平衡电流来整定;拐点电流的整定原则,应使差动保护能躲过区外较小故障电流及外部故障切除后的暂态过程中产生的最大不平衡电流。比率制动系数的整定原则,是使被保护设备出口短路时产生的最大不平衡电流在制动特性的边界线之下。 为确保变压器差动保护的动作灵敏、可靠,其动作特性的整定值(除BCH型之外)如下: Idz0=(0.4,0.5)IN, Izd0=(0.6,0.7)IN, Kz=0.4,0.5 式中,Idz0为差动保护的初始动作电流;I,zd0为拐点电流;Kz =tgα点电流等于零的;IN为额定电流(TA二次值)。 电流速断保护限时电流速断保护定时限过电流保护的特点 速断保护是一种短路保护,为了使速断保护动作具有选择性,一般电力系统中速断保护其实都带有一定的时限,这就是限时速断,离负荷越近的开关保护时限设置得越短,末端的开关时限可以设置为零,这就成速断保护,这样就能保证在短路故障发生时近故障点的开关先跳闸,避免越级跳闸。定时限过流保护的目的是保护回路不过载,与限时速断保护的区别在于整定的电流相对较小,而时限相对较长。这三种保护因为用途的不同,不能说各有什么优缺点,并且往往限时速断和定时限过流保护是结合使用的。 瞬时电流速断保护与限时电流速断保护的区别就是,瞬时是没有带时限的,动作值达到整定值就瞬时出口跳闸,不经过任何延时。而限时电流速断是带有延时的,动作值达到整定值后经过一定的延时才启动出口跳闸;

瞬时电流速断保护与限时电流速断保护的区别,限时电流速断保护与过电流保护有什么不同, 瞬时电流速断和限时电流速断除了时间上的区别外就是他们在整定的大小和范围的不同,瞬时速断保护的范围比限时的要小,整定动作值要比限时速断的要大。 过电流保护和限时电流速断的区别? 电流速断,限时电流速断和过电流保护都是反映电流升高而动作的保护装置。 区别:速断是按躲开某一点的最大短路电流来整定,限时速断是按照躲开下一级相邻元件电流速断保护的动作电流来整定,而过流保护是按躲开最大负荷电流来整定的。 由于电流速断不能保护线路的全长,限时电流速断又不能作为相邻元件的后备保护,因此保证迅速而又有选择的切除故障,常将三者组合使用,构成三段电流保护。 过电流保护的整定值为什么要考虑继电器的返回系数,而电流速断保护则不需要考虑, 这是综合考虑保护的灵敏性和可靠性的结果。为了保证保护的灵敏性,动作的整定值 应当尽量小,但是过电流的动作值与额定运行电流相差不大,这样有可能造成保护误动作,从而降低了供电的可靠性。所以我们为过电流保护加了时限,过电流必须要持续一定的时间才会动作,如果在时限内电流降到返回值以下,那么保护就复归不用动作了,从而在不降低灵敏性的情况下增加了可靠性。而电流速断本身动作电流比较大,且没有时间的限制,只要电流一超过速断的整定值,马上动作跳闸,所以不需要设置返回值。 何谓线路过电流保护,瞬时电流速断保护?和它们的区别, 两种保护的基本原理是相同的。

差动保护带负荷测试

差动保护带负荷测试 1引言 差动保护原理简单、使用电气量单纯、保护范围明确、动作不需延时,一直用于变压器做主保护,其运行情况直接关系到变压器的安危。怎样才知道差动保护的运行情况呢?怎样才知道差动保护的整定、接线正确呢?唯有用负荷电流检验。但检验时要测哪些量?测得的数据又怎样分析、判断呢?下面就针对这些问题做些讨论。 2变压器差动保护的简要原理 差动保护是利用基尔霍夫电流定理工作的,当变压器正常工作或区外故障时,将其看作理想变压器,则流入变压器的电流和流出电流(折算后的电流)相等,差动继电器不动作。当变压器内部故障时,两侧(或三侧)向故障点提供短路电流,差动保护感受到的二次电流和的正比于故障点电流,差动继电器动作。 3变压器差动保护带负荷测试的重要性 变压器差动保护原理简单,但实现方式复杂,加上各种差动保护在实现方式细节上的各不相同,更增加了其在具体使用中的复杂性,使人为出错机率增大,正确动作率降低。比如许继公司的微机变压器差动保护计算Y-△接线变压器Y

型侧额定二次电流时不乘以,而南瑞公司的保护要乘以。这些细小的差别,设计、安装、整定人员很容易疏忽、混淆,从而造成保护误动、拒动。为了防范于未然,就必需在变压器差动保护投运时进行带负荷测试。 4变压器差动保护带负荷测试内容 要排除设计、安装、整定过程中的疏漏(如线接错、极性弄反、平衡系数算错等等),就要收集充足、完备的测试数据。 1.差流(或差压)。变压器差动保护是靠各侧CT二次电流和——差流——工作的,所以,差流(或差压)是差动保护带负荷测试的重要内容。电流平衡补偿的差动继电器(如LCD-4、LFP-972、CST-31A型差动继电器),用钳形相位表或通过微机保护液晶显示屏依次测出A相、B相、C相差流,并记录;磁平衡补偿的差动继电器(如BCH-1、BCH-2、DCD-5型差动继电器),用0.5级交流电压表依次测出A相、B相、C相差压,并记录。 2.各侧电流的幅值和相位。只凭借差流判断差动保护正确性是不充分的,因为一些接线或变比的小错误,往往不会产生明显的差流,且差流随负荷电流变化,负荷小,差流跟着变小,所以,除测试差流外,还要用钳形相位表在保护屏端子排依次测出变压器各侧A相、B相、C相电流的幅值和相位(相位以一相PT二次电压做参考),并记录。此处不

差动变压器位移传感器

课程设计任务书

目录 1摘要 (2) 2引言 (4) 3.螺线管式差动变压器传感器 (4) 3.1差动变压器式传感器简介 (4) 3.2 工作原理 (4) 4.差动变压器的测量电路及其仿真 (6) 4.1差动整流电路 (7) 4.2相敏检波电路: (9) 4.3零点残余误差补偿 (13) 5.差动变压器位移传感器的改进 (14) 5.1差动电压接放大器电路及其仿真 (14) 5.2整流信号接滤波电路 (15) 6.使用器件清单 (17) 7 总结 (17)

1.摘要 ------差动变压器位移传感器的基本知识介绍 传感器是能感受规定的被测量并按照一定的规律将其转换成可用输出信号的器件或装置。在有些学科领域,传感器又称为敏感元件、检测器、转换器等。 通常传感器由敏感元件和转换元件组成。 其中,敏感元件是指传感器中能直接感受或响应被测量的部分;转换元件是指传感器中将敏感元件感受或响应的被测量转换成适于传输或测量的电信号的部分。由于传感器的输出信号一般都很薄弱,因此需要有信号调理与转换电路对其进行放大等。 电感式传感器是利用电磁感应原理,将被测非电量的变化转换成线圈的自感或互感变化的机电转换装置。它也常用来检测位移、振动、力、应变、流量、比重等物理量。 电感式传感器的种类很多。根据传感器转换原理不同,可分为自感式、互感式、涡流式、压磁式和感应同步器等。根据结构形式不同,可分为气隙式和螺管式两种。根据改变的参数不同,又可分为变气隙厚度式、变气隙面积式、变铁芯导磁率式三种。 电感传感器具有以下优点:结构简单,工作可靠,寿命长;灵敏度高,分辨率高;测量精度高,线性好;性能稳定,重复性好;输出阻抗小,输出功率大;抗干扰能力强,适合在恶劣环境中工作。电感传感器的缺点是:频率低,动态响应慢,不宜作快速动态测量;存在交流零位信号;要求附加电源的频率和幅值的稳定度高;其灵敏度、

主变压器差动保护动作的原因及处理

主变压器差动保护动作的原因及处理 一、变压器差动保护范围: 变压器差动保护的保护范围,是变压器各侧的电流互感器之间的一次连接部分,主要反应以下故障: 1、变压器引出线及内部绕组线圈的相间短路。 2、变压器绕组严重的匝间短路故障。 3、大电流接地系统中,线圈及引出线的接地故障。 4、变压器CT故障。 二、差动保护动作跳闸原因: 1、主变压器及其套管引出线发生短路故障。 2、保护二次线发生故障。 3、电流互感器短路或开路。 4、主变压器内部故障。 5、保护装置误动 三、主变压器差动保护动作跳闸处理的原则有以下几点: 1、检查主变压器外部套管及引线有无故障痕迹和异常现象。 2、如经过第1项检查,未发现异常,但曾有直流不稳定接地隐患或带直流接地运行,则考虑是否有直流两点接地故障。如果有,则应及时消除短路点,然后对变压器重新送电。差动保护和瓦斯保护共同组成变压器的主保护。差动保护作为变压器内部以及套管引出线相间短路的保护以及中性点直接接地系统侧的单相接地短路保护,同时对变压器内部绕组的匝间短路也能反应。瓦斯保护能反应变压器内部的绕组相间短路、中性点直接地系统侧的单相接地短路、绕组匝间短路、铁芯或其它部件过热或漏油等各种故障。 差动保护对变压器内部铁芯过热或因绕组接触不良造成的过热无法反应,且当绕组匝间短路时短路匝数很少时,也可能反应不出。而瓦斯保护虽然能反应变压器油箱内部的各种故障,但对于套管引出线的故障无法反应,因此,通过瓦斯保护与差动保护共同组成变压器的主保护。 四、变压器差动保护动作检查项目: 1、记录保护动作情况、打印故障录波报告。 2、检查变压器套管有无损伤、有无闪络放电痕迹变压器本体有无因内部故障引起的其它异常现象。 3、差动保护范围内所有一次设备瓷质部分是否完好,有无闪络放电痕迹变压器及各侧刀闸、避雷器、瓷瓶有无接地短路现象,有无异物落在设备上。 4、差动电流互感器本身有无异常,瓷质部分是否完整,有无闪络放电痕迹,回路有无断线接地。 5、差动保护范围外有无短路故障(其它设备有无保护动作)差动保护二次回路有无接地、短路等现象,跳闸时是否有人在差动二次回路上工作。 五、动作现象及原因分析: 1、差动保护动作跳闸的同时,如果同时有瓦斯保护动作,即使只报轻瓦斯信号,变压器内部故障的可能性极大。 2、差动保护动作跳闸前如变压器套管、引线、CT有异常声响及其它故障现

差动变压器及应用

差动变压器及其应用 一、差动变压器简介(摘自日刊《传感器技术》1986年5月专号) 差动变压器是一种将机械位移变换成电信号的电磁感应式位移传感器。它主要是靠圆筒线圈内的可动铁芯的位移,在圆筒线圈的输入线圈和输出线圈之间建立起相互感应关系,可动铁芯的位移可以通过测定与其成正比的输出线圈的感应电压来获得。 1、差动变压器的特点 (1)线性范围的种类很多,容易根据用途进行选择,通常在±2mm~±200mm级之间有10个左右类型的品种。 (2)结构简单,所以耐振性和耐冲击性都很强。 (3)不磨损,不变质,耐久性优良。 (4)输出电压对铁心的位移有精确的比例,即直线性好。一般这种传感器中全行程偏差小于1%,在高档品可以保证在±0.2%~±0.3%。 (5)因为灵敏度高,可以获得大的输出电压,不要求外围电路高级化也能检测到微小的位移。 (6)因为输出变化平滑,故能进行高分辨率的检测。 (7)零点稳定,以其作为测定的基准点对维持精度有好处。 (8)能够得到从500Hz到100Hz的高的响应速度。 2、差动变压器原理 差动变压器的构造原理如图1-1所示,由圆筒形线圈和与其完全分离的铁芯构成。典型的差动变压器的圆筒线圈有三只,各是总长度的三分之一,中间是一次线圈,两侧是二次线圈。加入圆筒线圈中的铁芯用来在线圈中链接磁力线而构成磁路。 当在中间的一次线圈加上交流电压时(即激磁),由于与两端线圈的互感就产生了电动势(这一点与普通变压器相同)。 因为二次线圈彼此极性相反地串联,两个二次线圈中的感应电动势相位相反,将其相加的结果,在输出端产生二者的电位差。相对于线圈长度方向的中心处,两个二次线圈的感应电压大小相等方向相反,因而输出为零。这个位置被称为差动变压器的机械零点(或简称为零点)。当铁芯从零点相某一方向改变位置时,位移方向的二次线圈的电压就增大,另一个二次线圈的电压则减小。 产品设计保证产生的电位差与铁芯的位移成正比。当铁芯从零点向与刚才相反的方向移动

差动变压器式位移传感器lvdt设计原理

[8] ANALOG DEVICES. LVDT signal conditioner AD598. 一、引言 差动变压器式传感器的特点是灵敏度高、分辨力大,能测出0.1um更小的机械位移变化;传感器的输出信号强,有利于信号的传输;重复性好,在一定位移范围内,输出特性的线性度好,并且比较稳定,因此广泛应用于压力、位移传感器的设计制造中,尤其在航空、航天等环境恶劣、环境温度高的压力测量方面,也得到了广泛的应用。 二、方案论证 1.参数要求 给定原始数据及技术要求 1).最大输入位移为100mm 2)灵敏度不小于80V/m 3)非线性误差不大于10% 4)零位误差不大于1mv 5).电源为9v,400HZ 6).最大尺寸结构为160mmX21mm 2.方案讨论 根据给定技术要求选择电感变换元件的类型及测量电路的形式,如图1所示 图1、传感器的组成框图 1)传感器电感变换元件类型的选择 (1)测量范围小,如位移零点几微米至数百微米,且当线性范围也小时,常用E形 或II形平膜硅钢片叠成的电感式传感器或差动变压器。 (2) 螺线管,常用于测量1mm以上至数百毫米的大位移,其线性范围也较大。2)测量电路的选择 测量电路主要依据选定的电感变换器的种类、用途、灵敏度、精度及输出形式等技术要求来确定。 3.螺管型差动变压器的工作原理 差动输出电动势为。所以,差动变压器输出电动势为两副边线圈互感之差的函数。 螺管型差动变压器结构复杂,常用二节式、三节式、一节式的灵敏度高,但三节式的零点较好。 差动变压器的工作原理类似变压器的作用原理。这种类型的传感器主要包括有衔铁、一次绕组和二次绕组等。一、二次绕组间的耦合能随衔铁的移动而变化,即绕组间的互感随被测位移改变而变化。由于在使用时采用两个二次绕组反向串接,以差动方式输出,所以

变压器差动保护原理

变压器差动保护 一:这里讲的是差动保护的一种,即变压器比例制动式完全纵差保护(以下简称差动); 二:差动保护的定义 由于在各种参考书中没有找到差动保护的具体定义,这里只根据自己所掌握的知识给差动保护下一个定义:当区内发生某些短路性故障的时候,在变压器各侧电流互感器CT的二次回路中将产生大小相同,相位不同的短路电流,当这些短路电流的向量和即差流达到一定值时,跳开变压器各侧断路器的保护,就是变压器差动保护 三:下面我以两圈变变压器为例,针对以上所述变压器差动保护的定义,对差动保护进行阐述: 1、图一所示:为一两圈变变压器,降压变,具体参数如下:主变高压侧电压U高=110KV,主变低压侧电压U低=10KV,变压器容量Sn=240000KV A, 高压侧CT变比1000/5,低压侧的CT变比是1500/5.计算平衡系数。 I1’:流过变压器高压侧的一次电流;

I”:流过变压器低压侧的一次电流; I2’:流过变压器高压侧所装设电流互感器即CT1的二次电流; I2”:流过变压器低压侧所装设电流互感器即CT1的二次电流; nh:高压侧电流互感器CT1变比; nl:低压侧电流互感器CT2变比; nB:变压器的变比; 各参数之间的关系:I1’/ I2’= nh I”/ I2”= nl I2’= I2”I1’/ I”= nh/ nl=1/ nB 2、区内:CT1到CT2的范围之内; 3、反映故障类型:高压侧内部相间短路故障,高压侧(中性点直接接地) 单相接地故障以及匝间、层间短路故障; 四:差动的特性 1、比率制动:如图二所示,为差动保护比率特性的曲线图: 下面我们就以上图讲一下差动保护的比率特性: o:图二的坐标原点; f:差动保护的最小制动电流; d:差动保护的最小动作电流; p:比率制动斜线上的任一点; e:p点的纵坐标; b:p点的横坐标; 动作区:在of范围内,由于电流小于最小制动电流,因此在此范围内,只要电流大于最小动作电流Iopo,差动保护动作;当电流大于f点时, 由于电流大于最小制动电流,此时保护开始进行比率制动运算,曲 线抬高,此时只有当电流在比率制动曲线以上时保护动作;因此, 图中阴影部分,即差动保护的动作区; 制动区:当电流在落在曲线以下而大于最小动作电流的时候,由于受比率制动系数的制约,保护部动作,这个区域就是差动保护的制动区; 比率制动系数K:实际上比率制动系数,就是图二中斜线的斜率,因此我们

差动变压器测位移实验

实验十四差动变压器测位移实验 一、实验目的:了解差动变压器测位移时的应用方法 二、基本原理:差动变压器的工作原理参阅实验十一(差动变压器性能实验)。差动变压器在应用时要想法消除零点残余电动势和死区,选用合适的测量电路,如采用相敏检波电路,既可判别衔铁移动(位移)方向又可改善输出特性,消除测量范围内的死区。图14—1是差动变压器测位移原理框图。 图14—1差动变压器测位移原理框图 三、需用器件与单元:主机箱中的±2V~±10V(步进可调)直流稳压电源、±15V直流稳压电源、音频振荡器、电压表;差动变压器、差动变压器实验模板、移相器/相敏检波器/低通滤波器实验模板;测微头、双踪示波器。 四、实验步骤: 1、相敏检波器电路调试:将主机箱的音频振荡器的幅度调到最小(幅度旋钮逆时针轻轻转到底),将±2V~±10V可调电源调节到±2V档,再按图14—2示意接线,检查接线无误后合上主机箱电源开关,调节音频振荡器频率f=5kHz,峰峰值Vp-p=5V(用示波器测量。提示:正确选择双踪示波器的“触发”方式及其它设置,触发源选择内触发CH1、水平扫描速度TIME/DIV 在0.1mS~10μS范围内选择、触发方式选择AUTO ;垂直显示方式为双踪显示DUAL、垂直输入耦合方式选择直流耦合DC、灵敏度VOLTS/DIV在1V~5V范围内选择。当CH1、CH2输入对地短接时移动光迹线居中后再去测量波形。)。调节相敏检波器的电位器钮使示波器显示幅值相等、相位相反的两个波形。到此,相敏检波器电路已调试完毕,以后不要触碰这个电位器钮。关闭电源。

图14—2相敏检波器电路调试接线示意图 1、调节测微头的微分筒,使微分筒的0刻度值与轴套上的10mm刻度值对准。按图14—3示意图安装、接线。将音频振荡器幅度调节到最小(幅度旋钮逆时针轻转到底);电 压表的量程切换开关切到20V档。检查接线无误后合上主机箱电源开关。 图14—3差动变压器测位移组成、接线示意图 3、调节音频振荡器频率f=5KHz、幅值Vp-p=2V(用示波器监测)。 4、松开测微头安装孔上的紧固螺钉。顺着差动变压器衔铁的位移方向移动测微头的安装套(左、右方向都可以),使差动变压器衔铁明显偏离L1初级线圈的中点位置,再调节移 相器的移相电位器使相敏检波器输出为全波整流波形(示波器CH2的灵敏度VOLTS/DIV在

差动变压器式位移传感器的设计过程

1. 基磁绕组长度b 的确定 由于 ?? ? ? ? ???=?=?-=max 2 22221l l b k l k r 有 b= γ 2max l ?(2-2) 取非线性误差 1.5%=γ; 最大动态范围max l ?=4mm; 由式2-2求得激励绕组长度b=23.09mm; 2k =9.38410-?。 2. 衔铁长度c l 的确定 2 12l b d l l c +++=(2-3) 式2-3中 1l 、2l --衔铁在两个副边绕组m 中的长度; d --初次线圈间骨架厚度; b --原边线圈的长度; m --两副边绕组长度。 初始状态时有021l l l ==,则衔铁的长度c l 为 b d l l b d l l c ++=+++=)(22000(2-4) 设计时,一般取b =0l ,故有d b l 23+=,通常取b d <<,则有式2-5 b l c 3=(2-5) 求得c l =69.27mm; 取骨架厚度d=1.5mm 。 3. 副边线圈m 的确定

假设: (1)衔铁插入到两个副边绕组的长度分别为1l 、2l ,且在初始状态时: 021l l l ==; (2)最大动态范围max l ?为已知给定值。则δ+?+=m ax 0l l m 应该成立,才能保证衔铁工作时不会超出线圈以外。一般取b l =0,则有式2-6 δ +?+=m ax l b m (2-6) 式2-5中,δ—保证在最大动态范围max l ?时衔铁仍不会超出线圈之外的保险余量。一般取 mm mm 10~2=δ,在b 值较小时,δ值可取大一些。 此处取mm 10=δ,求得m =37.09mm 。 4. 衔铁半径c r 和骨架外径R 的确定 一般衔铁长度c l 与衔铁半径c r 之比可取为 20=c c r l (2-7) 骨架外径R 与内径r 之比可取为 8~2/=r R (2-8) 在设计骨架内径r 与衔铁半径c r 应尽量取得相近,即c r r ≈,这样可简化计算工作量。 由c l =69.27mm ,求得为mm c 46.3r =,R 为10.38mm (取3/=r R )。 5. 激磁电压频率的选定 电源电压的频率会影响到灵敏度铁损和耦合电容以及线圈阻抗的损耗等。其结果都将影响输出电压的大小,所以对电源频率的选择也是一个非常重要的参数,由于上述原因,电源频率需要根据频率特性来选取。 在忽略传感器的涡流损失,铁损失和耦合电容等影响,其等效电路如图2-3所示。

相关文档