文档库 最新最全的文档下载
当前位置:文档库 › 半导体激光器工作原理及主要参数

半导体激光器工作原理及主要参数

半导体激光器工作原理及主要参数
半导体激光器工作原理及主要参数

半导体激光器工作原理及主要参数

OFweek激光网讯:半导体激光器又称为激光二极管(LD,Laser Diode),是采用半导体材料作为工作物质而产生受激发射的一类激光器。常用材料有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)。激励方式有电注入、电子束激励和光泵浦激励三种形式。半导体激光器件,一般可分为同质结、单异质结、双异质结。同质结激光器和单异质结激光器室温时多为脉冲器件,而双异质结激光器室温时可实现连续工作。半导体激光器的优点在于体积小、重量轻、运转可靠、能耗低、效率高、寿命长、高速调制,因此半导体激光器在激光通信、光存储、光陀螺、激光打印、激光医疗、激光测距、激光雷达、自动控制、检测仪器等领域得到了广泛的应用。

半导体激光器工作原理是:通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时便产生受激发射作用。半导体激光器的激励方式主要有三种:电注入式、电子束激励式和光泵浦激励式。电注入式半导体激光器一般是由GaAS(砷化镓)、InAS(砷化铟)、Insb(锑化铟)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射。电子束激励式半导体激光器一般用N型或者P型半导体单晶(PbS、CdS、ZhO等)作为工作物质,通过由外

部注入高能电子束进行激励。光泵浦激励式半导体激光器一般用N型或P型半导体单晶(GaAS、InAs、InSb等)作为工作物质,以其它激光器发出的激光作光泵激励。

目前在半导体激光器件中,性能较好、应用较广的是:具有双异质结构的电注入式GaAs 二极管半导体激光器。

半导体光电器件的工作波长与半导体材料的种类有关。半导体材料中存在着导带和价带,导带上面可以让电子自由运动,而价带下面可以让空穴自由运动,导带和价带之间隔着一条禁带,当电子吸收了光的能量从价带跳跃到导带中去时就把光的能量变成了电,而带有电能的电子从导带跳回价带,又可以把电的能量变成光,这时材料禁带的宽度就决定了光电器件的工作波长。

小功率半导体激光器(信息型激光器),主要用于信息技术领域,例如用于光纤通信及光交换系统的分布反馈和动态单模激光器(DFB-LD)、窄线宽可调谐激光器、用于光盘等信息处理领域的可见光波长激光器(405nm、532nm、635nm、650nm、670nm)。这些

器件的特征是:单频窄线宽、高速率、可调谐、短波长、光电单片集成化等。

大功率半导体激光器(功率型激光器),主要用于泵浦源、激光加工系统、印刷行业、生物医疗等领域。

半导体激光器主要参数:

波长nm:激光器工作波长,例如405nm、532nm、635nm、650nm、670nm、690nm、780nm、810nm、860nm、980nm。

阈值电流Ith:激光二极管开始产生激光振荡的电流,对小功率激光器而言其值约在数

十毫安。

工作电流Iop:激光二极管达到额定输出功率时的驱动电流,此值对于设计调试激光驱动电路较重要。

垂直发散角θ⊥:激光二极管的发光带在与PN结垂直方向张开的角度,一般在15°~40°左右。

水平发散角θ∥:激光二极管的发光带在与PN结平行方向张开的角度,一般在6°~ 10°左右。

监控电流Im :激光二极管在额定输出功率时在PIN管上流过的电流。

半导体激光器主要向两个方向发展:一类是以传递信息为主的信息型激光器;另一类是以提高光功率为主的功率型激光器。在泵浦固体激光器等应用的推动下,高功率半导体激光器取得了突破性进展,其标志是半导体激光器的输出功率显著增加,国外千瓦级的高功率半导体激光器已经商品化,国内样品器件输出已达到600W。未来,半导体激光器的发展趋势主要在高速宽激光器、大功率激光器、短波长激光器、中红外激光器等方面。

大功率半导体激光器件最新发展现状分析

大功率半导体激光器件最新发展现状分析 1 引言 半导体激光器由于具有体积小、重量轻、效率高等众多优点,诞生伊始一直是激光领域的关注焦点,广泛应用于工业、军事、医疗、通信等众多领域。但是由于自身量子阱波导结构的限制,半导体激光器的输出光束质量与固体激光器、CO2激光器等传统激光器相比较差,阻碍了其应用领域的拓展。近年来,随着半导体材料外延生长技术、半导体激光波导结构优化技术、腔面钝化技术、高稳定性封装技术、高效散热技术的飞速发展,特别是在直接半导体激光工业加工应用以及大功率光纤激光器抽运需求的推动下,具有大功率、高光束质量的半导体激光器飞速发展,为获得高质量、高性能的直接半导体激光加工设备以及高性能大功率光纤激光抽运源提供了光源基础。 2 大功率半导体激光器件最新进展 作为半导体激光系统集成的基本单元,不同结构与种类的半导体激光器件的性能提升直接推动了半导体激光器系统的发展,其中最为主要的是半导体激光器件输出光束发散角的降低以及输出功率的不断增加。 2.1 大功率半导体激光器件远场发散角控制 根据光束质量的定义,以激光光束的光参数乘积(BPP)作为光束质量的衡量指标,激光光束的远场发散角与BPP成正比,因此半导体激光器高功率输出条件下远场发散角控制直接决定器件的光束质量。从整体上看,半导体激光器波导结构导致其远场光束严重不对称。快轴方向可认为是基模输出,光束质量好,但发散角大,快轴发散角的压缩可有效降低快轴准直镜的孔径要求。慢轴方向为多模输出,光束质量差,该方向发散角的减小直接提高器件光束质量,是高光束半导体激光器研究领域关注的焦点。 在快轴发散角控制方面,如何兼顾快轴发散角和电光效率的问题一直是该领域研究热点,尽管多家研究机构相续获得快轴发散角仅为3o,甚至1o的器件,但是基于功率、光电效率及制备成本考虑,短期内难以推广实用。2010年初,德国费迪南德-伯恩研究所(Ferdinand-Braun-Inst itu te)的P. Crump等通过采用大光腔、低限制因子的方法获得了30o快轴发散角(95%能量范围),光电转换效率为55%,基本达到实用化器件标准。而目前商用高功率半导体激光器件的快轴发散角也由原来的80o左右(95%能量范围)降低到50o以下,大幅度降低了对快轴准直镜的数值孔径要求。 在慢轴发散角控制方面,最近研究表明,除器件自身结构外,驱动电流密度与热效应共同影响半导体激光器慢轴发散角的大小,即长腔长单元器件的慢轴发散角最易控制,而在阵列器件中,随着填充因子的增大,发光单元之间热串扰的加剧会导致慢轴发散角的增大。2009年,瑞士Bookham公司制备获得的5 mm腔长,9XX nm波段10 W商用器件,成功将慢轴发散角(95%能量范围)由原来的10o~12o降低到7o左右;同年,德国Osram公司、美国相干公司制备阵列器件慢轴发散角(95%能量范围)也达7o水平。 2.2 半导体激光标准厘米阵列发展现状 标准厘米阵列是为了获得高功率输出而在慢轴方向尺度为1 cm的衬底上横向并联集成多个半导体激光单元器件而获得的半导体激光器件,长期以来一直是大功率半导体激光器中最常用的高功率器件形式。伴随着高质量、低缺陷半导体材料外延生长技术及腔面钝化技术的提高,现有CM Bar的腔长由原来的0.6~1.0 mm增大到2.0~5.0mm,使得CM Bar输出功率大幅度提高。2008年初,美国光谱物理公司Hanxuan Li等制备的5 mm腔长,填充因子为83%的半导体激光阵列,利用双面微通道热沉冷却,在中心波长分别为808 nm,940 nm,980 nm处获得800 W/bar,1010W/bar,950 W/bar的当前实验室最高CM Bar连续功率输出水平。此外,德国的JENOPTIK公司、瑞士的Oclaro公司等多家半导体激光供应商也相续制备获得千瓦级半导体激光阵列,其中Oclaro公司的J. Müller等更是明确指出,在现有技术

半导体激光器的发展与运用

半导体激光器的发展与运用 0 引言激光器的结构从同质结发展成单异质结、双异质结、量子 阱 (单、多量子阱)等多种形式, 制作方法从扩散法发展到液相外延(LP日、气相外延(VPE)、分子束外延(MBE)、金属有机化合物气相淀积(MOCVD)、化学束外延(CBE 以及它们的各种结合型等多种工艺[5].半导体激光器的应用范围十分广泛,而且由于它的体积小,结构简单,输入能量低,寿命长,易于调制和价格低等优点, 使它已经成为当今光电子科学的核心技术,受到了世界各国的高度 重视。 1 半导体激光器的历史 半导体激光器又称激光二极管(LD)。随着半导体物理的发展,人们早在20 世纪50 年代就设想发明半导体激光器。 20 世纪60 年代初期的半导体激光器是同质结型激光器, 是一种只能以脉冲形式工作的半导体激光器。在1962 年7 月召开的固体器件研究国际会议上,美国麻省理工学院林肯实验室的两名学者克耶斯(KeyeS和奎斯特(Quist、报告了砷化镓材料的光发射现象。 半导体激光器发展的第二阶段是异质结构半导体激光器,它是由两种不同带隙的半导体材料薄层,如GaAs,GaAIAs所组成的激光器。单异质结注人型激光器(SHLD,它是利用异质结提供的势垒把注入电子限制在GaAsP 一N 结的P 区之内,以此来降低阀值电流密度的激光

器。 1970 年,人们又发明了激光波长为9 000? 在室温下连续工作的双异质结GaAs-GaAlAs(砷化稼一稼铝砷)激光器. 在半导体激光器件中,目前比较成熟、性能较好、应用较广的是具有双异质结构的电注人式GaAs 二极管激光器. 从20 世纪70 年代末开始, 半导体激光器明显向着两个方向发展,一类是以传递信息为目的的信息型激光器;另一类是以提高光功率为目的的功率型激光器。在泵浦固体激光器等应用的推动下, 高功率半导体激光器(连续输出功率在100W 以上,脉冲输出功率在5W 以上, 均可称之谓高功率半导体激光器)在20 世纪90 年代取得了突破性进展,其标志是半导体激光器的输出功率显著增加,国外千瓦级的高功率半导体激光器已经商品化,国内样品器件输出 已达到600W另外,还有高功率无铝激光器、红外半导体激光器和量子级联激光器等等。其中,可调谐半导体激光器是通过外加的电场、磁场、温度、压力、掺杂盆等改变激光的波长,可以很方便地对输出 光束进行调制。 20 世纪90 年代末,面发射激光器和垂直腔面发射激光器得到了迅速的发展。 目前,垂直腔面发射激光器已用于千兆位以太网的高速网络,为了满足21 世纪信息传输宽带化、信息处理高速化、信息存储大容量以及军用装备小型、高精度化等需要,半导体激光器的发展趋势主要是向高速宽带LD大功率LD短波长LD盆子线和量子点激光器、中红外LD

44瓦超高功率808nm半导体激光器设计和制作

44瓦超高功率808 nm半导体激光器设计与制作 仇伯仓,胡海,何晋国 深圳清华大学研究院 深圳瑞波光电子有限公司 1. 引言 半导体激光器采用III-V化合物为其有源介质,通常通过电注入,在有源区通过电子与空穴复合将注入的电能量转换为光子能量。与固态或气体激光相比,半导体激光具有十分显著的特点:1)能量转换效率高,比如典型的808 nm高功率激光的最高电光转换效率可以高达65%以上 [1],与之成为鲜明对照的是,CO2气体激光的能量转换效率仅有10%,而采用传统灯光泵浦的固态激光的能量转换效率更低, 只有1%左右;2)体积小。一个出射功率超过10 W 的半导体激光芯片尺寸大约为0.3 mm3, 而一台固态激光更有可能占据实验室的整整一张工作台;3)可靠性高,平均寿命估计可以长达数十万小时[2];4)价格低廉。半导体激光也同样遵从集成电路工业中的摩尔定律,即性能指标随时间以指数上升的趋势改善,而价格则随时间以指数形式下降。正是因为半导体激光的上述优点,使其愈来愈广泛地应用到国计民生的各个方面,诸如工业应用、信息技术、激光显示、激光医疗以及科学研究与国防应用。随着激光芯片性能的不断提高与其价格的持续下降,以808 nm 以及9xx nm为代表的高功率激光器件已经成为激光加工系统的最核心的关键部件。高功率激光芯片有若干重要技术指标,包括能量转换效率以及器件运行可靠性等。器件的能量转换效率主要取决于芯片的外延结构与器件结构设计,而运行可靠性主要与芯片的腔面处理工艺有关。本文首先简要综述高功率激光的设计思想以及腔面处理方法,随后展示深圳清华大学研究院和深圳瑞波光电子有限公司在研发808nm高功率单管激光芯片方面所取得的主要进展。 2.高功率激光结构设计 图1. 半导体激光外延结构示意图

半导体激光器的发展与应用

题目:半导体激光器的发展与应用学院:理 专业:光 姓名:刘

半导体激光器的发展与应用 摘要:激光技术自1960年面世以来便得到了飞速发展,作为激光技术中最关键的器件激光器的种类层出不穷,这其中发展最为迅速,应用作为广泛的便是半导体激光器。半导体激光器的独特性能及优点,使其获得了广泛应用。本文就简要回顾半导体激光器的发展历程,着重介绍半导体激光器在日常生活与军用等各个领域中的应用。 关键词:激光技术、半导体激光器、军事应用、医学应用

引言 激光技术最早于1960年面世,是一种因刺激产生辐射而强化的光。激光被广泛应用是因为它具有单色性好、方向性强、亮度高等特性。激光技术的原理是:当光或电流的能量撞击某些晶体或原子等易受激发的物质,使其原子的电子达到受激发的高能量状态,当这些电子要回复到平静的低能量状态时,原子就会射出光子,以放出多余的能量;而接着,这些被放出的光子又会撞击其它原子,激发更多的原子产生光子,引发一连串的“连锁反应”,并且都朝同一个方前进,形成强烈而且集中朝向某个方向的光。这种光就叫做激光。激光几乎是一种单色光波,频率范围极窄,又可在一个狭小的方向内集中高能量,因此利用聚焦后的激光束可以对各种材料进行打孔。激光因为拥有这种特性,所以拥有广泛的应用。 激光技术的核心是激光器,世界上第一台激光器是1960年由T.H.梅曼等人制成的第红宝石激光器,激光器的种类很多,可按工作物质、激励方式、运转方式、工作波长等不同方法分类。但各种激光器的基本工作原理均相同,产生激光的必不可少的条件是粒子数反转和增益大过损耗,所以装置中必不可少的组成部分有激励(或抽运)源、具有亚稳态能级的工作介质两个部分。 半导体物理学的迅速发展及随之而来的晶体管的发明,使科学家们早在50年代就设想发明半导体激光器。在1962年7月美国麻省理工学院林肯实验室的两名学者克耶斯(Keyes)和奎斯特(Quist)报告了砷化镓材料的光发射现象,通用电气研究实验室工程师哈尔(Hall)与其他研究人员一道研制出世界上第一台半导体激光器。 半导体激光器是用半导体材料作为工作物质的一类激光器,由于物质结构上的差异,产生激光的具体过程比较特殊。常用材料有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等。激励方式有电注入、电子束激励和光泵浦三种形式。自1962年世界上第一只半导体激光器是问世以来,经过几十年来的研究,半导体激光器得到了惊人的发展,它的波长从红外、红光到蓝绿光,被盖范围逐渐扩大,各项性能参数也有了很大的提高!半导体激光器具有体积小、效率高等优点,因此可广泛应用于激光通信、印刷制版、光信息处理等方面。

半导体激光器的发展及其应用

浅谈半导体激光器及其应用 摘要:近十几年来半导体激光器发展迅速,已成为世界上发展最快的一门激光技术。由于半导体激光器的一些特点,使得它目前在各个领域中应用非常广泛,受到世界各国的高度重视。本文简述了半导体激光器的概念及其工作原理和发展历史,介绍了半导体激光器的重要特征,列出了半导体激光器当前的各种应用,对半导体激光器的发展趋势进行了预测。 关键词:半导体激光器、激光媒质、载流子、单异质结、pn结。 自1962年世界上第一台半导体激光器发明问世以来,半导体激光器发生了巨大的变化,极大地推动了其他科学技术的发展,被认为是二十世纪人类最伟大的发明之一。近十几年来,半导体激光器的发展更为迅速,已成为世界上发展最快的一门激光技术。半导体激光器的应用范围覆盖了整个光电子学领域,已成为当今光电子科学的核心技术。由于半导体激光器的体积小、结构简单、输入能量低、寿命较长、易于调制以及价格较低廉等优点,使得它目前在光电子领域中应用非常广泛,已受到世界各国的高度重视。 一、半导体激光器 半导体激光器是以直接带隙半导体材料构成的Pn 结或Pin 结为工作物质的一种小型化激光器。半导体激光工作物质有几十种,目前已制成激光器的半导体材料有砷化镓、砷化铟、锑化铟、硫化镉、碲化镉、硒化铅、碲化铅、铝镓砷、铟磷砷等。半导体激光器的激励方式主要有三种,即电注入式、光泵式和高能电子束激励式。绝大多数半导体激光器的激励方式是电注入,即给Pn 结加正向电压,以使在结平面区域产生受激发射,也就是说是个正向偏置的二极管。因此半导体激光器又称为半导体激光二极管。对半导体来说,由于电子是在各能带之间进行跃迁,而不是在分立的能级之间跃迁,所以跃迁能量不是个确定值, 这使得半导体激光器的输出波长展布在一个很宽的范围上。它们所发出的波长在0.3~34μm之间。其波长范围决定于所用材料的能带间隙,最常见的是AlGaAs双异质结激光器,其输出波长为750~890nm。 半导体激光器制作技术经历了由扩散法到液相外延法(LPE), 气相外延法(VPE),分子束外延法(MBE),MOCVD 方法(金属有机化合物汽相淀积),化学束外延(CBE)以及它们的各种结合型等多种工艺。半导体激光器最大的缺点是:激光性能受温度影响大,光束的发散角较大(一般在几度到20度之间),所以在方向性、单色性和相干性等方面较差。但随着科学技术的迅速发展, 半导体激光器的研究正向纵深方向推进,半导体激光器的性能在不断地提高。以半导体激光器为核心的半导体光电子技术在21 世纪的信息社会中将取得更大的进展, 发挥更大的作用。 二、半导体激光器的工作原理 半导体激光器是一种相干辐射光源,要使它能产生激光,必须具备三个基本条件: 1、增益条件:建立起激射媒质(有源区)内载流子的反转分布,在半导体中代表电子能量的是由一系列接近于连续的能级所组成的能带,因此在半导体中要实现粒子数反转,必须在两个能带区域之间,处在高能态导带底的电子数比处在低能态价带顶的空穴数大很多,这靠给同质结或异质结加正向偏压,向有源层内注入必要的载流子来实现, 将电子从能量较低的价带激发到能量较高的导带中去。当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用。 2、要实际获得相干受激辐射,必须使受激辐射在光学谐振腔内得到多次反馈而形成激光振荡,激光器的谐振腔是由半导体晶体的自然解理面作为反射镜形成的,通常在不出光的那一端镀上高反多层介质膜,而出光面镀上减反膜。对F—p 腔(法布里—珀罗腔)半导体激光器可以很方便地利用晶体的与p-n结平面相垂直的自然解理面构成F-p腔。 3、为了形成稳定振荡,激光媒质必须能提供足够大的增益,以弥补谐振腔引起的光损耗及从腔

半导体激光器工作原理及主要参数

半导体激光器工作原理及主要参数 OFweek激光网讯:半导体激光器又称为激光二极管(LD,Laser Diode),是采用半导体材料作为工作物质而产生受激发射的一类激光器。常用材料有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)。激励方式有电注入、电子束激励和光泵浦激励三种形式。半导体激光器件,一般可分为同质结、单异质结、双异质结。同质结激光器和单异质结激光器室温时多为脉冲器件,而双异质结激光器室温时可实现连续工作。半导体激光器的优点在于体积小、重量轻、运转可靠、能耗低、效率高、寿命长、高速调制,因此半导体激光器在激光通信、光存储、光陀螺、激光打印、激光医疗、激光测距、激光雷达、自动控制、检测仪器等领域得到了广泛的应用。 半导体激光器工作原理是:通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时便产生受激发射作用。半导体激光器的激励方式主要有三种:电注入式、电子束激励式和光泵浦激励式。电注入式半导体激光器一般是由GaAS(砷化镓)、InAS(砷化铟)、Insb(锑化铟)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射。电子束激励式半导体激光器一般用N型或者P型半导体单晶(PbS、CdS、ZhO等)作为工作物质,通过由外 部注入高能电子束进行激励。光泵浦激励式半导体激光器一般用N型或P型半导体单晶(GaAS、InAs、InSb等)作为工作物质,以其它激光器发出的激光作光泵激励。 目前在半导体激光器件中,性能较好、应用较广的是:具有双异质结构的电注入式GaAs 二极管半导体激光器。 半导体光电器件的工作波长与半导体材料的种类有关。半导体材料中存在着导带和价带,导带上面可以让电子自由运动,而价带下面可以让空穴自由运动,导带和价带之间隔着一条禁带,当电子吸收了光的能量从价带跳跃到导带中去时就把光的能量变成了电,而带有电能的电子从导带跳回价带,又可以把电的能量变成光,这时材料禁带的宽度就决定了光电器件的工作波长。 小功率半导体激光器(信息型激光器),主要用于信息技术领域,例如用于光纤通信及光交换系统的分布反馈和动态单模激光器(DFB-LD)、窄线宽可调谐激光器、用于光盘等信息处理领域的可见光波长激光器(405nm、532nm、635nm、650nm、670nm)。这些 器件的特征是:单频窄线宽、高速率、可调谐、短波长、光电单片集成化等。 大功率半导体激光器(功率型激光器),主要用于泵浦源、激光加工系统、印刷行业、生物医疗等领域。 半导体激光器主要参数: 波长nm:激光器工作波长,例如405nm、532nm、635nm、650nm、670nm、690nm、780nm、810nm、860nm、980nm。 阈值电流Ith:激光二极管开始产生激光振荡的电流,对小功率激光器而言其值约在数 十毫安。

半导体激光器的设计

半导体激光器设计 半导体激光器产生激光的机理,即必须建立特定激光能态间的粒 子数反转,并有光学谐振腔。由于半导体材料物质结构的特异性和 其中电子运动的特殊性,一方面产生激光的具体过程有许多特殊之处,另一方面所产生的激光光束也有独特的优势,使其在社会各方面广 泛应用。从同质结到异质结,从信息型到功率型,激光的优越性也愈 发明显,光谱范围宽, 相干性增强,使半导体激光器开启了激光应用 发展的新纪元。 1半导体激光器的工作原理 激光产生原理 半导体激光器是一种相干辐射光源,要使它能产生激光,必须具 备三个基本条件: (1)增益条件:建立起激射媒质(有源区)内载流子的反转分布,在 半导体中代表电子能量的是由一系列接近于连续的能级所组成的能带,因此在半导体中要实现粒子数反转,必须在两个能带区域之间,处 在高能态导带底的电子数比处在低能态价带顶的空穴数大很多,这靠 给同质结或异质结加正向偏压,向有源层内注入必要的载流子来实现。将电子从能量较低的价带激发到能量较高的导带中去。当处于粒子 数反转状态的大量电子与空穴复合时,便产生受激发射作用。 (2)要实际获得相干受激辐射,必须使受激辐射在光学谐振腔内 得到多次反馈而形成激光振荡,激光器的谐振腔是由半导体晶体的自

然解理面作为反射镜形成的,通常在不出光的那一端镀上高反多层介质膜,而出光面镀上减反膜.对F—p腔 (法布里一珀罗腔)半导体激 光器可以很方便地利用晶体的与P—n结平面相垂直的自然解理面 一[110]面构成F—P腔。 (3)为了形成稳定振荡,激光媒质必须能提供足够大的增益,以弥补谐振腔引起的光损耗及从腔面的激光输出等引起的损耗,不断增加腔内的光场.这就必须要有足够强的电流注入,即有足够的粒子数反转,粒子数反转程度越高,得到的增益就越大,即要求必须满足一定的电流阀值条件.当激光器达到阀值时,具有特定波长的光就能在腔内谐振并被放大,最后形成激光而连续地输出. 可见在半导体激光器中,电子和空穴的偶极子跃迁是基本的光发射和光放大过程。 1.2 双异质结基本结构 将有源层夹在同时具有宽带隙和低折射率的两种半导体材料之间,以便在垂直于结平面的方向(横向)上有效地限制载流子和光子。用此结构于1970年实现了GaAlAs/GaAs激射波长为0.89 μm 的半导体激光器在室温下能连续工作。 图表示出双异质结激光器的结构示意图和相应的能带图在正向 偏压下

半导体激光器工作原理

半导体激光器工作原理 半导体激光器工作原理是:通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时便产生受激发射作用。半导体激光器的激励方式主要有三种:电注入式、电子束激励式和光泵浦激励式。电注入式半导体激光器一般是由GaAS(砷化镓)、InAS(砷化铟)、Insb (锑化铟)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射。电子束激励式半导体激光器一般用N型或者P型半导体单晶(PbS、CdS、ZhO等)作为工作物质,通过由外部注入高能电子束进行激励。光泵浦激励式半导体激光器一般用N型或P型半导体单晶(GaAS、InAs、InSb等)作为工作物质,以其它激光器发出的激光作光泵激励。

目前在半导体激光器件中,性能较好、应用较广的是:具有双异质结构的电注入式GaAs二极管半导体激光器。 半导体光电器件的工作波长与半导体材料的种类有关。半导体材料中存在着导带和价带,导带上面可以让电子自由运动,而价带下面可以让空穴自由运动,导带和价带之间隔着一条禁带,当电子吸收了光的能量从价带跳跃到导带中去时就把光的能量变成了电,而带有电能的电子从导带跳回价带,又可以把电的能量变成光,这时材料禁带的宽度就决定了光电器件的工作波长。 小功率半导体激光器(信息型激光器),主要用于信息技术领域,例如用于光纤通信及光交换系统的分布反馈和动态单模激光器(DFB-LD)、窄线宽可调谐激光器、用于光盘等信息处理领域的可见光波长激光器(405nm、532nm、635nm、650nm、670nm)。这些器件的特征是:单频窄线宽、高速率、可调谐、短波长、光电单片集成化等。大功率半导体激光器(功率型激光器),主要用于泵浦源、激光加工系统、印刷行业、生物医疗等领域。 半导体激光器主要参数: 1.波长nm:激光器工作波长,例如405nm、532nm、635nm、650nm、670nm、690nm、780nm、810nm、860nm、980nm。 2.阈值电流Ith:激光二极管开始产生激光振荡的电流,对小功率激光器而言其值约在数十毫安。 3.工作电流Iop:激光二极管达到额定输出功率时的驱动电流,此

半导体激光器设计

半导体激光器设计 摘要:半导体激光器产生激光的机理,即必须建立特定激光能态间的粒子数反转,并有光学谐振腔。由于半导体材料物质结构的特异性和其中电子运动的特殊性,一方面产生激光的具体过程有许多特殊之处,另一方面所产生的激光光束也有独特的优势,使其在社会各方面广泛应用。从同质结到异质结,从信息型到功率型,激光的优越性也愈发明显,光谱范围宽,相干性增强,使半导体激光器开启了激光应用发展的新纪元。 关键词:受激辐射;光场;同质结;异质结;大功率半导体激光器 、八— 0刖言 半导体激光器是指以半导体材料为工作物质的激光器,又称半导体激光二极管(LD), 是20世纪60年代发展起来的一种激光器。半导体激光器的工作物质有几十种,例如砷化傢(GaAs),硫化镉(CdS)等,激励方式主要有电注入式,光泵式和高能电子束激励式三种。半导体激光器从最初的低温(77K)下运转发展到室温下连续工作;从同质结发展成单异质结双异质结,量子阱(单,多量子阱)等多种形式。半导体激光器因其波长的扩展,高功率激光阵列的出现以及可兼容的光纤导光和激光能量参数微机控制的出现而迅速发展.半导体激 光器的体积小,重量轻,成本低,波长可选择,其应用遍布临床,加工制造,军事,其中尤以大功率半导体激光器方面取得的进展最为突出。 1半导体激光器的工作原理 1.1激光产生原理 半导体激光器是一种相干辐射光源,要使它能产生激光,必须具备三个基本条件:(1)增益条件:建立起激射媒质(有源区)内载流子的反转分布,在半导体中代表电子能量的是由一系列接近于连续的能级所组成的能带,因此在半导体中要实现粒子数反转,必须在两个能带区域之间,处在高能态导带底的电子数比处在低能态价带顶的空穴数大很多,这靠给同质结或异质结加正向偏压,向有源层内注入必要的载流子来实现。将电子从能量较低的价带激发到能量较高的导带中去。当处于粒子数反转状态的大量电子与空穴复合时,便产生受激

半导体激光器封装技术及封装形式

半导体激光器封装技术及封装形式 半导体激光器的概念半导体激光器是用半导体材料作为工作物质的激光器,由于物质结构上的差异,不同种类产生激光的具体过程比较特殊。常用工作物质有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等。激励方式有电注入、电子束激励和光泵浦三种形式。半导体激光器件,可分为同质结、单异质结、双异质结等几种。同质结激光器和单异质结激光器在室温时多为脉冲器件,而双异质结激光器室温时可实现连续工作。 半导体激光器的工作原理半导体激光器是依靠注入载流子工作的,发射激光必须具备三个基本条件: (1)要产生足够的粒子数反转分布,即高能态粒子数足够的大于处于低能态的粒子数;(2)有一个合适的谐振腔能够起到反馈作用,使受激辐射光子增生,从而产生激光震荡;(3)要满足一定的阀值条件,以使光子增益等于或大于光子的损耗。 半导体激光器工作原理是激励方式,利用半导体物质(即利用电子)在能带间跃迁发光,用半导体晶体的解理面形成两个平行反射镜面作为反射镜,组成谐振腔,使光振荡、反馈,产生光的辐射放大,输出激光。 半导体激光器优点:体积小、重量轻、运转可靠、耗电少、效率高等。 半导体激光器的封装技术一般情况下,半导体激光器的发光波长随温度变化为0.2-0.3nm/℃,光谱宽度随之增加,影响颜色鲜艳度。另外,当正向电流流经pn结,发热性损耗使结区产生温升,在室温附近,温度每升高1℃,半导体激光器的发光强度会相应地减少1%左右,封装散热;时保持色纯度与发光强度非常重要,以往多采用减少其驱动电流的办法,降低结温,多数半导体激光器的驱动电流限制在20mA左右。 但是,半导体激光器的光输出会随电流的增大而增加,很多功率型半导体激光器的驱动电流可以达到70mA、100mA甚至1A级,需要改进封装结构,全新的半导体激光器封装设计理念和低热阻封装结构及技术,改善热特性。例如,采用大面积芯片倒装结构,选用导

半导体激光器的应用与分类

半导体激光器的应用与分类 半导体光发射器是电流注入型半导体PN结光发射器件,具有体积小、重量轻、直接调制、宽带宽,转换效率高、高可靠和易于集成等特点,被广泛应用。按照其发光特性,可分为激光二极管(又称半导体激光器或二极管激光器,Laser Diode,LD),通常光谱宽度不]于5nm(采取专门措施可不大于0.1nm);发光二极管(Light Emitting Diode,LED),光谱宽度一般不小于50nm;超辐射发光二极管(Superluminescent Dmde,SLD),光谱宽度不大于5nm(采取专门措施可不大于0.1nm);发光二极管(Light Emiltting,LED),光谱宽度一般不小于50nm;超辐射发光二极管(Superluminescent SLD),光谱宽度为30~50nm,本节重点介绍几种半导体激光器,钽电容简要介绍超辐射发光二极管。 半导体激光器的分类有多种方法。按波长分:中远红外激光器、近红外激光器、可见光激光器、紫外激光器等;按结构分:双异质结激光器、大光腔激光器、分布反馈激光器、垂直腔面发射激光器;按应用领域分:光通信激光器、光存储激光器、大功率泵浦激光器、引信用脉冲激光器等;按管心组合方式分:单管、阵列(线阵、面阵);按注入电流工作方式分:脉冲、连续、准连续等。 LD主要技术摄技术指标有光功率、中心波长、光谱宽度、阈值电流、工作电流、工作电压、斜率效率和电光转换效率等。 半导体激光器的光功率是指在规定驱动电流条件下输出的光功率,该指标直接与工作电流对应,这体现了半导体激光器的电流驱动特性。如果是连续驱动条件,T491T336M004AT则输出功率就是连续光功率,如果是脉冲驱动条件,输出的光功率可用峰值功率或平均功率来衡量。hymsm%ddz 半导体激光器的中心波长是指激光器所发光谱曲线的中心点所对应的波长,通常用该指标来标称激光器的发光波长。光谱宽度是标志个导体激光器光谱纯度的一个指标,通常用光谱曲线半高度对应的光谱全宽来表示。 半导体激光器的光场是发散的而且是不对称的。在垂直PN结平面方向(快轴方向),发散角较大,通常在20°~45°之间;在平行PN结平面方向(慢轴方向),发散角较小,通常在6°~12°之间。由此可以看出,半导体二极管激光器的光场在空间分布呈椭圆形。

半导体激光器

半导体激光器 半导体激光器 半导体激光器是用半导体材料作为工作物质的一类激光器,由于物质结构上的差异,产生激光的具体过程比较特殊。常用材料有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等。激励方式有电注入、电子束激励和光泵浦三种形式。半导体激光器件,可分为同质结、单异质结、双异质结等几种。同质结激光器和单异质结激光器室温时多为脉冲器件,而双异质结激光器室温时可实现连续工作。 半导体激光器的分类 (1)异质结构激光器(2)条形结构激光器(3)AIGaAs/GaAs激光器(4)InGaAsP/InP激光器(5)可见光激光器(6)远红外激光器(7)动态单模激光器(8)分布反馈激光器(9)量子阱激光器(10)表面发射激光器(11)微腔激光器 半导体激光器 半导体激光(Semiconductor laser)在1962年被成功激发,在1970年实现室温下连续输出。后来经过改良,开发出双异质接合型激光及条纹型构造的激光二极管(Laser diode)等,广泛使用于光纤通信、光盘、激光打印机、激光扫描器、激光指示器(激光笔),是目前生产量最大的激光器。激光二极体的优点是效率高、体积小、重量轻且价格低。尤其是多重量子井型的效率有20~40%,P-N型也达到数%~25%,总而言之能量效率高是其最大特色。另外,它的连续输出波长涵盖了红外线到可见光范围,而光脉冲输出达50W(带宽100ns)等级的产品也已商业化,作为激光雷达或激发光源可说是非常容易使用的激光的例子。 仪器简介

Q-Line纤绿半导体激光器 半导体激光器是以一定的半导体材料做工作物质而产生受激发射作用的器件.其工作原理是,通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用.半导体激光器的激励方式主要有三种,即电注入式,光泵式和高能电子束激励式.电注入式半导体激光器,一般是由GaAS(砷化镓),InAS(砷化铟),Insb(锑化铟)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射.光泵式半导体激光器,一般用N型或P型半导体单晶(如GaAS,InAs,InSb等)做工作物质,以其他激光器发出的激光作光泵激励.高能电子束激励式半导体激光器,一般也是用N型或者P型半导体单晶(如PbS,CdS,ZhO等)做工作物质,通过由外部注入高能电子束进行激励.在半导体激光器件中,目前性能较好,应用较广的是具有双异质结构的电注入式GaAs二极管激光器. 工作原理及特点 半导体激光器工作原理是激励方式,利用半导体物质(即利用电子)在能带间跃迁发光,用半导体晶体的解理面形成两个平行反射镜面作为反射镜,组成谐振腔,使光振荡、反馈、产生光的辐射放大,输出激光。半导体激光器优点是体积小,重量轻,运转可靠,耗电少,效率高等。 封装技术 技术介绍 半导体激光器封装技术大都是在分立器件封装技术基础上发展与演变而来的,但却有很大的特殊性。一般情况下,分立器件的管芯被密封在封装体内,封装的作用主要是保护管芯和完成电气互连。而半导体激光器封装则是完成输出电信号,保护管芯正常工作,输出:可见光的功能,既有电参数,又有光参数的设计及技术要求,无法简单地将分立器件的封装用于半导体激光器。 发光部分 半导体激光器的核心发光部分是由p型和n型半导体构成的pn结管芯,当注入pn结的少数载流子与多数载流子复合时,就会发出可见光,紫外光或近红外光。但pn结区发出的光子是非定向的,即向各个方向发射有相同的几率,因此,并不是管芯产生的所有光都可以释放出来,这主要取决于半导体材料质量、管芯结构及几何形状、封装内部结构与包封材料,应用要求提高半导体激光器的内、外部量子效率。常规Φ5mm型半导体激光器封装是将边长0.25mm的正方形管芯粘结或烧结在引线架上,管芯的正极通过球形接触点与金丝,键合

课程设计半导体激光器

郑州轻工业学院 课程设计任务书 题目半导体激光器原理及应用 专业、班级学号姓名 主要内容、基本要求、主要参考资料等: 完成期限: 指导教师签名: 课程负责人签名: 年月日

郑州轻工业学院半导体激光器课程设计 郑州轻工业学院 课程设计说明书题目:半导体激光器原理及应用 姓名:王森 院(系):技术物理系 专业班级:电子科学与技术09-1 学号:540911010132 指导教师:运高谦 成绩: 时间:年月日至年月日 I

郑州轻工业学院半导体激光器课程设计 摘要 本文主要讲的是半导体激光器的发展历史、工作原理及应用。半导体激光器产生激光的机理,即必须建立特定激光能态间的粒子数反转,并有合适的光学谐振腔。由于半导体材料物质结构的特异性和其中电子运动的特殊性,首先产生激光的具体过程有许多特殊之处,其次所产生的激光光束也有独特的优势,使其在社会各方面广泛应用。从同质结到异质结,从信息型到功率型,激光的优越性也愈发明显,光谱范围变宽,相干性增强,可以说是半导体激光器开启了激光应用发展的新纪元。 关键词激光技术;半导体激光器;受激辐射;光场 II

郑州轻工业学院半导体激光器课程设计 Abstract This article is mainly about the history of the development of semiconductor lasers, working principle and applications. Semiconductor lasers produce laser mechanism, which must be established between the specific laser energy state population inversion, and a suitable optical resonator. As the physical structure of the semiconductor material in which electron motion specificity and particularity, while the specific process of producing laser has many special features, the other produced by the laser beam has a unique advantage to make it widely used in all sectors of society . From homo-junction to the heterojunction, the power from the information type to type, is also becoming increasingly apparent superiority of the laser, spectral range, coherence enhanced semiconductor lasers opened a new era in the development of laser applications. Keywords: Laser technique;Semiconductor lasers;Stimulated emission;Optical field III

半导体激光器的应用与前景

关于半导体激光器 作者 摘要:目前半导体激光器发展非常快。随着技术的成熟,半导体激光器的应用也越来越广泛。本文主要分析半导体激光器的国内外发展现状,总结其原理、应用。评估半导体激光在未来的发展。 关键词:半导体激光器原理与应用未来前景Abstract:Nonadays,the semiconductor laser develop very fast.with the technology becomed more and more adultness, the semiconductor laser was application in kinds of filed.This essay analysis the semiconductor laser statu of develop in home and foreige,at the same time ,summarizing its principle and applicat- Ion.estimating the semiconductor laser develop in future.

Keywords:the semiconductor laser principle and application the prospest 国内外发展状况: 相对于固体激光器和气体激光器来说,半导体 激光器真可谓是姗姗来迟,但是它具有效率高、体 积小、寿命长、成本低、等优点,目前在激光器领 域中已占据一半以上的市场份额,而且还在不断扩 大,大有取代传统激光器的趋势[1]。 半导体激光是目前各种激光中发展最快的,它 占有激光市场的最大份额。半导体激光器又称为二 极管激光器(LD),随着生长技术的进步、器件量 产化能力的提高、性能的改善及成本的下降 , LD 陆续扩展到许多其它应用领域,包括 CDROM 驱动、激光打印、可擦除光存储驱动、条码扫描、 文娱表演、光纤通信 ,以及航空和军事应用如军训 模拟装置、测距机、照明器、CI等。由于LD的

半导体激光器工艺知识详解

半导体激光器工艺知识详解 半导体激光器是指以半导体材料为工作物质的激光器,又称半导体激光二极管(LD),是20世纪60年代发展起来的一种激光器。半导体激光器的工作物质有几十种,例如砷化镓(GaAs)、硫化镉(CdS)等,激励方式主要有电注入式、光泵式和高能电子束激励式三种。半导体激光器从最初的低温(77K)下运转发展到室温下连续工作;从同质结发展成单异质结、双异质结、量子阱(单、多量子阱)等多种形式。半导体激光器因其波长的扩展、高功率激光阵列的出现以及可兼容的光纤导光和激光能量参数微机控制的出现而迅速发展。 半导体激光器的体积小、重量轻、成本低、波长可选择,其应用遍布临床、加工制造、军事,其中尤以大功率半导体激光器方面取得的进展最为突出。 半导体激光器的工作原理激光产生原理 半导体激光器是一种相干辐射光源,要使它能产生激光,必须具备三个基本条件: (1)增益条件:建立起激射媒质(有源区)内载流子的反转分布,在半导体中代表电子能量的是由一系列接近于连续的能级所组成的能带,因此在半导体中要实现粒子数反转,必须在两个能带区域之间,处在高能态导带底的电子数比处在低能态价带顶的空穴数大很多,这靠给同质结或异质结加正向偏压,向有源层内注人必要的载流子来实现。将电子从能量较低的价带激发到能量较高的导带中去。当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用。 (2)要实际获得相干受激辐射,必须使受激辐射在光学谐振腔内得到多次反馈而形成激光振荡,激光器的谐振腔是由半导体晶体的自然解理面作为反射镜形成的,通常在不出光的那一端镀上高反多层介质膜,而出光面镀上减反膜。对F—p腔(法布里一珀罗腔)半导体激光器可以很方便地利用晶体的与P—n结平面相垂直的自然解理面一面构成F—P 腔。 (3)为了形成稳定振荡,激光媒质必须能提供足够大的增益,以弥补谐振腔引起的光损耗及从腔面的激光输出等引起的损耗,不断增加腔内的光场。这就必须要有足够强的电流

半导体激光器调研报告

半导体激光器调研报告 班级:电科 姓名:XXX 学号:20120xxx

半导体激光器又称激光二极管,是用半导体材料作为工作物质的激光器。由于物质结构上的差异,不同种类产生激光的具体过程比较特殊。常用工作物质有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等。激励方式有电注入、电子束激励和光泵浦三种形式。半导体激光器件,可分为同质结、单异质结、双异质结等几种。同质结激光器和单异质结激光器在室温时多为脉冲器件,而双异质结激光器室温时可实现连续工作。 半导体二极管激光器是最实用最重要的一类激光器。它体积小、寿命长,并可采用简单的注入电流的方式来泵浦其工作电压和电流与集成电路兼容,因而可与之单片集成。并且还可以用高达GHz的频率直接进行电流调制以获得高速调制的激光输出。由于这些优点,半导体二极管激光器在激光通信、光存储、光陀螺、激光打印、测距以及雷达等方面以及获得了广泛的应用。 仪器简介: 半导体激光器是以一定的半导体材料做工作物质而产生激光的器件。.其工作原理是通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用。半导体激光器的激励方式主要有三种,即电注入式,光泵式和高能电子束激励式。电注入式半导体激光器,一般是由砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射。光泵式半导体激光器,一般用N型或P 型半导体单晶(如GaAS,InAs,InSb等)做工作物质,以其他激光器发出的激光作光泵激励.高能电子束激励式半导体激光器,一般也是用N型或者P型半导体单晶(如PbS,CdS,ZhO等)做工作物质,通过由外部注入高能电子束进行激励。在半导体激光器件中,性能较好,应用较广的是具有双异质结构的电注入式GaAs二极管激光器。 工作原理: 根据固体的能带理论,半导体材料中电子的能级形成能带。高能量的为导带,低能量的为价带,两带被禁带分开。引入半导体的非平衡电子-空穴对复合时,把释放的能量以发光形式辐射出去,这就是载流子的复合发光。 一般所用的半导体材料有两大类,直接带隙材料和间接带隙材料,其中直接带隙半导体材料如GaAs(砷化镓)比间接带隙半导体材料如Si有高得多的辐射跃迁几率,发光效率也高得多。 半导体复合发光达到受激发射(即产生激光)的必要条件是:①粒子数反转分布分别从P型侧和n型侧注入到有源区的载流子密度十分高时,占据导带电子态的电子数超过占据价带电子态的电子数,就形成了粒子数反转分布。②光的谐振腔在半导体激光器中,谐振腔由其两端的镜面组成,称为法布里一珀罗腔。③高增益用以补偿光损耗。谐振腔的光损耗主要是从反射面向外发射的损耗和介质的光吸收。 半导体激光器是依靠注入载流子工作的,发射激光必须具备三个基本条件: (1)要产生足够的粒子数反转分布,即高能态粒子数足够的大于处于低能态的粒子数; (2)有一个合适的谐振腔能够起到反馈作用,使受激辐射光子增生,从而产生激光震荡;

相关文档
相关文档 最新文档