文档库 最新最全的文档下载
当前位置:文档库 › 自由基对生殖健康的危害及对策

自由基对生殖健康的危害及对策

自由基对生殖健康的危害及对策
自由基对生殖健康的危害及对策

自由基对生殖健康的危害及对策--中医男科专家谈生殖健康

作者:中日友好医院中医男科实验室主任技师

发布时间:2006-01-26 曹兴午

1.自由基学说

美国Harman博士于1956年公开提出衰老的氧自由基(Free Radical)学说。因为人体的老化和多种疾病的发生都与自由基和密切关系。就像日常生活中看到,铁器在空气中曝露日久要生锈,洁白的银器也会由于氧化变黑。生命科学研究到细胞分子层面分析,发现人体的衰老与机器生锈的过程一样,也是受到氧化的结果。近年国际上有关自由基的研究显示,由于自由基引起的疾病包括动脉硬化、脑中风、心脏病、白内障、肺气肿、糖尿病,以及多项癌症等和人体衰老有关。为此,认为自由基是万病的元凶。

2.自由基的产生

自由基又称活性氧,体积约为一个原子大小,活性极强。已知,正常氧原子具有4对电子,机体正常代谢可以使原子失去一个电子,这样就形成了自由基。因此,人体内任何具有不成对的电子化合物都叫自由基,许多原子亦可以成为自由基,氧分子具有两个未配对的电子结构,故称为双自由基。

由于人体需要运动,无论是机体或组织,必须由自由基产生能量,这时就会产生自由基,为此,自由基的产生,可以说是人体细胞内正常代谢的副产品。当自由基从细胞膜上夺取一个电子后,就会产生出另一个新的自由基,以此类推,我们可以知道,当电子夺取链反应侵蚀细胞膜,导致细胞完整性丢失,这就为疾病和癌症打开方便的大门。据英国生物化学家霍威尔教授研究结论,一个70公斤的人,每年自己产生的自由基可达2公斤。而且,通过污染的空气、食入不洁的食物、水、吸入毒素(吸烟),以及日晒或放射性的辐射,不良习惯(过量饮酒、过饱饮食),周围环境和家居环境的污染,以及工作和人际关系压力,甚至是生气等,都会不断地产生自由基。为此,我们人类的每个细胞每天都要受到自由基的几百次的冲击和侵害。为了证实过量饮食对长寿的影响,学者们进行了研究,用小老鼠分3组进行实验,甲组为自由摄食(不限制量);乙组为限量进食八成;丙组为限量进食六成,结果以进食六成老鼠的寿命最长,八成次之,自由进食的最短。说明不要拼命吃的过饱,对健康长寿不利。

3.微生物侵入导致人体产生自由基

大量的基础和临床研究证实,当受到病毒、细菌侵入人体时,机体的免疫细胞会产生自由基物质(主要是氧自由基和一氧化氮自由基等)来杀灭细菌、病毒等微生物,是人体免疫系统中相当重要的一环。但是,当免疫反应过度,自由基产生过量时,由于它们的非特异反应性(不能分辨敌我),对受感染机体的生命基本结构分子如蛋白质、核苷酸、脂肪等具有极强的氧化硝化反应能力,可以导致对细胞和组织的攻击。由此可以诱导细胞的凋亡,增高血管的通透性,以至出现水肿,出血等病理现象,可以引起组织损害、功能丧失,以至组织坏死,导致患者死亡。

4.自由基对男性生殖健康的危害

最近研究证实,自由基还是危害男性生殖健康的“杀手”。诸如环境污染、吸烟、酗酒、熬夜、生殖道感染、接触含有酚类和铅等化学物质,生殖系统的自由基明显增多,使男性生殖健康受到危害。

4.1损害生育能力在男性的生殖系统如睾丸的生精细胞中、精液中和精子中,都富含有丰富的抗氧化物和抗氧化酶类物质,这些物质可以有效地保护和清除多余的自由基,保持睾丸的正常的生殖功能,使精子永不停止地生长、繁殖、发育、成熟,供应人类繁衍的需要。

一旦自由基的产生,超出抗氧化物和抗氧化酶类物质的清除能力时,自由基就可以损害生精细胞,使细胞膜受到破坏,攻击精子,使精子膜也受到伤害,精子失去活动能力,以至死亡。从而出现精子数量不断下降,或死亡精子过多,进而影响男性的生育能力,出现不育症。

4.2影响男性的性功能睾丸是男性体内主要生产雄激素(睾酮)的场所,睾丸内必须保持高浓度的雄激素,才可以使精子生成和维持男性的性功能,正常人睾丸内的雄激素的含量是血内含量的100倍,所以,男性的特征主要是雄激素在起作用。而精子的生成也需要雄激素和睾丸内的蛋白结合,形成雄激素结合蛋白(ABP),如果雄激素少了,必然ABP结合的也相应地减少,就不够精子生成的需要,所以,精子也就减少了,出现全球精子不断下降的现象,实际上仍然是雄激素和环境激素的问题。

男性的雄激素,大部分是由睾丸内的一种称间质细胞分泌的,这种细胞虽然很小,但它的功能在男性来说是举足轻重的,在正常状态下,丘脑下部分泌一种称促性腺激素释放激素的物质,刺激脑垂体分泌促性腺激素,在促性腺激素的作用下,间质细胞分泌雄激素并维持精子的生成。反过来,如果体内雄激素的水平过高,则会抑制垂体分泌促性腺激素,从而使雄激素处于一种平衡状态,维持人体的正常的内分泌功能。所以说,决定雄激素的水平的是间质细胞的功能和潜在能力。可以说,保护这种细胞就等于保护男性的性能力和生殖能力。

如果睾丸内自由基水平过高,必然损伤睾丸组织,损伤睾丸,首当其充是间质细胞受到伤害,就必然造成睾酮合成和分泌减少,睾酮的分泌量下降,必然是影响人体的内分泌功能,使得机体内分泌失衡,阴茎的勃起功能也受到影响,完成性交的能力随着减弱,再加上心理上的焦虑,必然出现了勃起性功能障碍(ED)。

另有学者研究发现,在勃起性功能障碍患者中,阴茎组织平滑肌细胞超微结构主要的变化是线粒体的退变。线粒体是生命能量之源的产生中心,也是电子传递,能量转化的中心。细胞生命活动中所需要的能量越95%来自线粒体,故有能量加工厂之称。因此线粒体很可能是阴茎平滑肌细胞勃起能量之源。如果在缺血和缺氧的情况下,体内活性氧的产生和清除功能失衡时,就会造成活性氧对线粒体的损伤,从而影响其功能,所以,清除阴茎海绵体内堆积的自由基,就可以放止阴茎平滑肌细胞线粒体损伤,而改善勃起功能障碍。

4.3引发睾丸癌和前列腺癌研究表明,长期吸烟和酗酒者,可以导致生殖系统中抗氧化物和抗氧化酶的活性降低,自由基的水平明显升高。自由基还可以穿透细胞并扩展到细胞核,直接攻击遗传物质——脱氧核糖核酸,并有可能引起突变、遗传信息改变,发生睾丸癌的可能性增大。

前列腺癌是男性独有的一种疾病,困扰着一些家庭,近年研究该病与自由基有关。为了防止男性前列腺癌,美国哈佛大学的科学家通过对4.8万男性的研究发现,在西红柿内有多量抗氧化剂,如果每天吃10盘西红柿,使男性前列腺癌的发病率减少50%。

可见,清除体内过多的自由基,都保护男性生殖健康和性健康多么必要,切不可忽略。

5.自由基对女性痛经的影响

痛经是一种女性妇科疾病的常见症状,可以有不同的病因引起。我国人大约有50%的妇女有不同程度的痛经史,其中有10%为严重痛经。痛经又可以分为原发性痛经和继发性痛经两类。前者是指月经时腹痛但没有盆腔器官疾病,常常发生在月经初潮(少女第一次月经)后6~12个月内;而后者多数发生在初潮后两年,因为妇科的其他疾病引起,如子宫内膜异位症、盆腔炎等引发的痛经。

台湾学者对110位,年龄为19~22岁的原发性痛经女性,进行血液分析,发现其MDA自由基的测定值,比正常对照要高。从而发现原发性痛经与MDA自由基的密切关系。

学者指出,造成原发性痛经的主要原因是因为子宫内膜的前列腺素产生过度旺盛,造成子宫强烈收缩和缺血。原发性痛经如子宫发育不良或子宫位置不正,子宫颈口狭窄等,均可以导致排经困难而发生疼痛,通常内分泌失调或血液循环改变有关,这种疼痛会持续至20多岁逐渐好转,而且生产过后,因为子宫颈口扩大以及激素得到调整,原发性痛经有所改善。

6.如何清除体内过多的自由基

美国和日本学者推荐使用维生素清除自由基,即维生素E(100mg/天)、维生素C(200mg/天)、维生素A 和复合维生素B等,具有重要的生理作用,是清除体内自由基的有效物质,可以对抗危害人体

的自由基,使机体组织细胞处于良好的生理功能状态。尤其是维生素E除可以清除自由基的作用外,还可以加强免疫系统功能,改善血液循环,防止老化,减少罹患心脏病的风险抗癌症等作用。

维生素广泛存在于蔬菜、水果等食物中,平时多吃这些食物有力于清除体内过多的自由基。美国康奈尔大学的研究人员,为了研究西红柿的营养价值和增强总体的抗氧化能力,专门进行了西红柿加热试验:研究人员将西红柿加热到88℃,分别持续加温2、15、和30分钟,其中维生素C的含量分别下降10%、15%和29%;有益的转番茄红素则分别增加了54%、171%和164%;容易被吸收的顺番茄红素分别增加了36%、17%和35%;抗氧化能力提高了28%、34%和62%。

说明食用烹制的西红柿,番茄红素发挥作用最佳,而生食西红柿的效果反而不佳。俄罗斯《在国外》也同样报道,对身体有益的,番茄红素存在于熬制的西红柿酱与煎炒的西红柿的菜肴中,而在生西红柿中含量很少。所以,西红柿一定要熟吃才发挥更大效果。其中的维生素C是一种良好的抗氧化剂。

最近研究,经常食用西红柿可减缓前列腺癌组织的癌变。由于番茄红素可以降低前列腺癌的机率。可帮助减少因自由基导致的组织损伤。

更要提醒男性同胞,一定要改变不良生活方式(如熬夜、赌博)和不良生活习惯(如吸烟、酗酒),保持性功能比什么都重要!!!

羟基自由基的测定方法

羟基自由基(.OH)是最活跃的一种活性分子,也是进攻性最强的化学物质之一,几乎可以与所有的生物分子、有机物或无机物发生各种不同类型的化学反应,并伴有非常高的反应速率常数和负电荷的亲电性。羟基自由基是目前所知活性氧自由基中对生物体毒性最强、危害最大的一种自由基,可以通过电子转移、加成以及脱氢等方式与生物体内的多种分子作用,造成糖类、氨基酸、蛋白质、核酸和脂类等物质的氧化损伤,使细胞坏死或突变,羟基自由基还与衰老、肿瘤、辐射损伤和细胞吞噬等有关。羟基自由基由于其寿命短,反应活性高,存在浓度低,目前尚未有专一、有效的方法可以精确测定羟基自由基的含量,其测定方法也成为一项国际性的难题。本文对近几年出现的羟基自由基检测方法进行了综述。 1电子自旋共振法 电子自旋共振法或电子顺磁共振法主要研究对象为未成对的自由基或过渡金属离子及其化合物。自旋捕捉(spin trapping)技术的出现为化学反应中自由基中间体及生命活动过程中短寿命自由基的检测开辟了新的检测途径[[1]]。此方法是利用捕捉剂与自由基结合形成相对稳定的自旋加合物(spin adducts),然后进行ESR测定。 2HPLC法 HPLC法可用于间接测定自由基。测定过程中必须先选择合适的化合物捕集被测体系中的自由基,使之生成具有一定稳定性,且能被液相色谱分离与检测的产物,然后用HPLC进行测定。1)、采用二甲基亚砜捕集羟基自由基的HPLC测 2)、采用水杨酸捕集羟基自由基的HPLC测定方法 3化学发光法 化学发光法是一种灵敏、准确的检测自由基的方法,其原理是利用发光剂被活性氧自由基氧化成激发态,当其返回到基态时放出大量光子,从而对发光起放大作用。且自由基产生越多,发光值就越大。通过函数换算间接反应系统中自由基的量。与ESR和HPLC法相比,具有操作简便、设备成本较低、测定快速等优点。4氧化褪色光度法 6极谱法 7毛细管电泳-电化学检测法 8胶束电动毛细管色谱法

自由基

自由基 自由基是指能够独立存在的,含有一个或多个未成对电子的分子或分子的一部分。由于自由基中含有未成对电子,具有配对的倾向。因此大多数自由基都很活泼,具有高度的化学活性。自由基的配对反应过程,又会形成新的自由基。在正常情况下,人体内的自由基是处于不断产生与清除的动态平衡之中。自由基是机体有效的防御系统,如不能维持一定水平的自由基则会对机体的生命活动带来不利影响。但自由基产生过多或清除过慢,它通过攻击生命大分子物质及各种细胞,会造成机体在分子水平、细胞水平及组织器官水平的各种损伤,加速机体的衰老进程并诱发各种疾病。 自由基过量产生的原因 1、人体非正常代谢产物 2、有毒化学品接触 3、毒品、吸烟、酗酒 4、长时间的日晒 5、长期生活在富氧/缺氧环境 6、环境污染因素 7、过量运动 8、疾病 9、不健康的饮食习惯(营养过剩以及脂肪摄入过量)10、辐射污染11、心理因素 自由基对生命大分子的损害 ★由于自由基高度的活泼性与极强的氧化反应能力,能通过氧化作用来攻击其所遇到的任何分子,使机体内大分子物质产生过氧化变性,交联或断裂,从而引起细胞结构和功能的破坏,导致机体组织损害和器官退行性变化。 ★自由基作用于核酸类物质会引起一系列的化学变化,诸如氨基或羟基的脱除、碱基与核糖连接键的断裂、核糖的氧化和磷酸酯键的断裂等。 在体内以水分为介质环境中通过电离辐射诱导自由基的研究表明,大剂量辐射可直接使DNA断裂,小剂量辐射可使DNA主链断裂。 ★自由基对蛋白质的损害 自由基可直接作用于蛋白质,也可通过脂类过氧化产物间接与蛋白质产生破坏作用。 ★自由基对糖类的损害 自由基通过氧化性降解使多糖断裂,如影响脑脊液中的多糖,从而影响大脑的正常功能。自由基使核糖、脱氧核糖形成脱氢自由基,导致DNA主链断裂或碱基破坏,还可使细胞膜寡糖链中糖分子羟基氧化生成不饱和的羰基或聚合成双聚物,从而破坏细胞膜上的多糖结构,影响细胞免疫功能的发挥。 ★自由基对脂质的损害 脂质中的多不饱和脂肪酸由于含有多个双键而化学性质活泼,最易受自由基的破坏发生氧化反应。磷脂是构成生物膜的重要部分,因富含多不饱和的脂肪酸故极易受自由基所破坏。这将严重影响膜的各种生理功能,自由基对生物膜组织的破坏很严重,会引起细胞功能的极大紊乱。 自由基与疾病 (一)自由基与衰老 从古至今,依据对衰老机理的不同理解,人们提出各种各样的衰老学说多达300余种。自由基学说就是其中之一。反映出衰老本质的部分机理。 英国Harman于1956年率先提出自由基与机体衰老和疾病有关,接着在1957年发表了第一篇研究报告,阐述用含0.5%-1%自由基清除剂的的饲料喂养小鼠可延长寿命。由于自由基学说能比较清楚地解释机体衰老过程中出现的种种症状,如老年斑、皱纹及免疫力下降等,因此倍受关注,已为人们所普遍接受。自由基衰老理论的中心内容认为,衰老来自机体正常代谢过程中产生自由基随机而破坏性的作用结果,由自由基引起机体衰老的主要机制可以概括为以下三个方面。

重金属砷的危害分析

重金属砷 1.砷的性质及危害 1.1砷的性质 砷,俗称砒,是一种非金属元素,在化学元素周期表中位于第4周期、第VA族,原子序数33,元素符号As,单质以灰砷、黑砷和黄砷这三种同素异形体的形式存在。砷元素广泛的存在于自然界,共有数百种的砷矿物是已被发现。砷与其化合物被运用在农药、除草剂、杀虫剂,与许多种的合金中。 在古代,三氧化二砷被称为砒霜,但是少量的砷对身体有益。 1.2砷的危害 肠胃道、肝脏、肾脏毒性:肠胃道症状通常是在食入砷或经由其它途径大量吸收砷之后发生。肠胃道血管的通透率增加,造成体液的流失以及低血压。肠胃道的黏膜可能会进一步发炎、坏死造成胃穿孔、出血性肠胃炎、带血腹泻。砷的暴露会观察到肝脏酵素的上升。慢性砷食入可能会造成非肝硬化引起的门脉高血压。急性且大量砷暴露除了其它毒性可能也会发现急性肾小管坏死,肾丝球坏死而发生蛋白尿。 心血管系统毒性:因自杀而食入大量砷的人会因为全身血管的破坏,造成血管扩张,大量体液渗出,进而血压过低或休克,过一段时间后可能会发现心肌病变。至于流行病学研究显示慢性砷暴露会造成血管痉挛及周边血液供应不足,进而造成四肢的坏疽,或称为乌脚病,在台湾饮用水含量为10-1820ppb 的一些地区曾有此疾病盛行。有患乌脚的人之后患皮肤癌的机会也较高,不过研究也显示这些饮用水中也有其它造成血管病变的物质,应该也是引起疾病的一部份原因。 神经系统毒性:砷在急性中毒24-72小时或慢性中毒时常会发生周边神经轴突的伤害,主要是末端的感觉运动神经,异常部位为类似手套或袜子的分布。中等程度的砷中毒在早期主要影响感觉神经可观察到疼痛、感觉迟钝,而严重的砷中毒则会影响运动神经,可观察到无力、瘫痪, 皮肤毒性:砷暴露的人最常看到的皮肤症状是皮肤颜色变深,角质层增厚,皮肤癌。全身出现一块块色素沈积是慢性砷暴露的指标 ( 曾在长期饮用 >400ppb 砷的水的人身上发现 ) ,较常发生在眼睑、颞、腋下、颈、乳头、阴部,严重砷中毒的人可能在胸、背及腹部都会发现,这种深棕色上散布白点的病变有人描述为「落在泥泞小径的雨滴」。 呼吸系统毒性:极少见暴露于高浓度砷粉尘的精炼工厂工人会发现其呼吸道的黏膜发炎且溃疡甚至鼻中隔穿孔。研究显示这些精炼工厂工人和暴露于含砷农药杀虫剂的工人有得肺癌机率升高的情形。 血液系统毒性:不管是急性或慢性砷暴露都会影响到血液系统,可能会发现骨髓造血功能被压抑且有全血球数目下降的情形,常见白血球、红血球、血小板下降,而嗜酸性白血球数上升的情形。红血球的大小可能是正常或较大,可能会发现嗜碱性斑点。 2.砷的危害机理 1 砷对·O2-(超氧阴离子自由基)的影响:超氧阴离子自由基(·O2-)

自由基的致病和花青素在机体内抗氧化去除自由基机理

自由基的致病和花青素在机体内抗氧化去除自由基机理 天然色素应用技术推广实验室aingw@https://www.wendangku.net/doc/2811541194.html, 花青素是机体内抗氧化,还原自由基的重要成分。自由基的作用及危害:自由基是一些具有不配对电子的氧分子,它们在机体内漫游,损伤任何与其接触的细胞和组织,摧毁细胞膜,导致细胞膜发生变性,使细胞不能从外部吸收营养,也排泄不出细胞内的代谢废物,并走失了对细菌和病毒的抵御能力;自由基攻击正在复制中的基因,造成基因突变诱发癌症发生;自由基激活人体的免疫系统,使人体表现出过敏反应,或出现如红斑狼疮等的自体免疫疾病;自由基作用于人体内酶系统,导致胶原蛋白酶和硬弹性蛋白酶的释放,这些酶作用于皮肤中的胶原蛋白和硬弹性蛋白并使这两种蛋白产生过度交联并降解,结果使皮肤失去弹性,出现皱纹及囊泡;类似的作用使体内毛驯血管脆性增加,使血管容易破裂,这可导致静脉曲张、水肿等与血管通透性升高有关疾病的发生;自由基侵蚀机体组织,可激发人体释放各种炎症因子,导致出各种非菌性炎症;自由基侵蚀脑细胞,使人得早老性痴呆的疾病;自由基氧化血液中的脂蛋白造成胆固醇向血管壁的沉积,引起心脏病和中风;自由基引起关节膜及关节滑液的降解,从而导致关节炎;自由基侵蚀眼睛晶状体约织引起白内障;自由基侵蚀胰脏细胞引起糖尿病。自由基破坏胶原蛋白及其它结缔组织,干扰重要的生理过程,引起细胞的DNA突变,自由基与70多种疾病有关包括心脏病、动脉硬化、静脉炎、关节炎、过敏、早老性痴呆、冠心病及癌症。

自由基和体内细胞中的有机物质发生链式反应,使得体内过氧化合物大量堆积,让细胞失去正常的生理功能,从而导致疾病的产生。 花青素的发现及清除自由基的机理:1986年,法国波尔多大学的玛斯魁勒博士发现花青素(原花青素)具有强烈的自由基清除功效。花青素属于酚类化合物中的类黄酮(flavonoids)的一种,类黄酮则为水溶性色素,存在于细胞的液泡中,易受细胞内化学环境所影响,酸度、温度及其他在液泡中的新陈代谢,都会使其分子结构改变,造成颜色的变化,而能产生粉红色、红色、紫色及蓝色的颜色。花青素是迄今为止所发现的最强效的自由基清除剂,其抗自由基氧化能力是维生素C的20倍、维生素E的50倍,尤其是体内活性,更是其他抗氧化剂无法比拟的。 花青素的应用范围:花青素作为一种抗氧化功能食品由于不受作为药物需有明确适应症的限制,花青素基于清除体内自由基的功效,其应用范围越来越大。目前已发现花青素对近70多种疾病具有直接或间接的预防和治疗作用。花青素在国外的应用非常广泛。作为一种抗氧化功能食品,它具有非常强大的清除自由基的能力,花青素的防病保健功效的基础就是其清除自由基的能力。 另外花青素还有一些其它特点,如很好的生物利用度,易与胶原蛋白结合,稳定细胞膜以及抗酶活性(组胺脱羧酶),这些特点与抗氧化能力协作,使花青素成为一种基于清晰理论基础和严格实验结果之上的保健功能食品。

如何降低自由基对人体的危害

如何降低自由基对人体的危害 自由基是客观存在的,对人类来说,无论是体内的还是体外的,自由基还在不断地,以前所未有的速度被制造出来。与自由基有关的疾病发病率也呈加速上升的趋势。既然人类无法逃避自由基的包围和夹击,那么就只有想方设法降低自由基对我们的危害。 随着科学家们对自由基研究的日渐深入,清除自由基,以减少自由基对人体的危害的方法也逐渐被揭示出来。 研究表明,自由基从产生到衰亡的过程就是电子转移的过程。在生命体系中,电子的转移是一种最基本的运动,而氧的的电子能力很强,因此,生物体内许多化学反映都与氧有关。科学家们发现损害人体健康的自由基几乎都与那些活性较强的含氧物质有关,他们把与这些物质相结合的自由基叫作活性氧自由基。活性氧自由基对人体的损害实际上是一种氧化过程。因此,要降低自由基的损害,就要从抗氧化做起。 既然自由基不仅存在于人体内,也来自于人体外,那么,降低自由基危害的途径也有两条:一是,利用内源性自由基清除系统清除体内多余自由基;二是发掘外源性抗氧化剂--自由基清除剂,阻断自由基对人体的入侵。 大量研究已经证实,人体内本身就具有清除多余自由基的能力,这主要是靠内源性自由基清除系统,它包括超氧化物歧化酶(SOD)、过氧化氢酶、谷胱甘肽过氧化酶等一些酶和维生素C、维生素E、还原性谷胱甘肽、胡萝卜素和硒等一些抗氧化剂。酶类物质可以使体内的活性氧自由基变为活性较低的物质,从而削弱它们对肌体的攻击力。酶的防御作用仅限于细胞内,而抗氧化剂有些作用于细胞膜,有些则是在细胞外就可起到防御作用。这些物质就深藏于我们体内,只要保持它们的量和活力它们就会发挥清除多余自由基的能力,使我们体内的自由基保持平衡。 要降低自由基对人体的危害,除了依靠体内自由基清除系统外,还要寻找和发掘外源性自由基清除剂,利用这些物质作为替身,让它们在自由基进入人体之前就先与自由基结合,以阻断外界自由基的攻击,使人体免受伤害。 在自然界中,可以作用于自由基的抗氧化剂范围很广,种类极多。目前,国内外已陆续发现许多有价值的天然抗氧化剂。在这方面的研究中,中国的科学家们已经走在世界的前列。他们已经发现并证明了,我国一些特有的食用和药用植物中,含有大量的酚类物质,这些物质的特点是,有着很容易被自由基夺走的电子,而它们在失去电子后就会成为一种对人没有伤害的稳定物质。 中国科学院生物物理研究所的专家历经八年时间从这些植物中研制出了天然抗氧化剂--自由基清除剂配方。在与卷烟厂技术人员合作的对动物的急性毒性实验中证明,在高浓度香烟的毒害下,使用了自由基清除剂

自由基生物学

第一章自由基的产生及其化学性质 一、什么是自由基 如方程式(1)、(2)所示,当A与B两个分子或原子间形成共价键时,可以看作它们共享一对电子,这两个电子既可以是一个分子所提供的,也可以是每个分子各贡献出一个电子,前者称为配位作用,后者称为共价结合。 A:- + B+A:B (配位作用)(1) A.+ B. A:B (共价结合)(2) 其逆过程,即当一个共价键离解时,必须要供给能量(自由能)。反应式(1)的逆过程称为异裂,反应式(2)的逆过程称为均裂。在均裂时所产生的分子或原子含有一个不配对电子,这种分子常具有高度化学活性——氧化活性。正因为如此,它们的寿命也极短暂。这些可以单独存在的具有一个或几个不配对电子的分子或原子就称为自由基(free radical),用R·表示,即在分子式的右上角加一个黑点作为自由基的特征标记,以表示存在着不配对电子。根据这个定义,我们可知道氯原子(Cl·)、氧原子(O:)和OH.等都是自由基。 有些自由基即使在室温的溶液中也是稳定的,如氧原子(一个稳定的双基)。有些自由基带有负电荷或正电荷,所以叫做离子自由基或离子基。这种自由基往往又是氧化还原反应的中间产物。在氧化还原反应过程中,中性分子接受一个电子而变成负离子基,或失去一个电子而成为正离子基。 二、自由基的产生 一般而言,自由基是通过共价键的均裂而产生的,但也可通过电子俘获而产生。 R + e-R. 天然存在的自由基一般都是有用的自由基(如氧原子),或者是半衰期比较短的自由基(如氯原子)。但是,由于某些分子,尤其是共价结合的有机分子吸收外部能量而产生均裂时,所形成的自由基是非常有害的。共价分子发生均裂而形成自由基的机制有:热解、光解和氧化还原反应。 (1)热解 很多化合物,特别是含有弱键的有机化合物可以发生热均裂反应,生成活泼的自由基。典型的例子是热锅炒菜时,脂肪、蛋白质和糖类等有机营养物发生的热均裂反应;抽烟时,烟草的不完全燃烧也产生大量的自由基。 (2)光解 电磁辐射(可见光、紫外线、X射线)或粒子轰击(如高能电子)都可提供使共价键裂解的能量而形成自由基。如紫外线照射可使水发生均裂而生成羟自由基(OH.): H2O 紫外线H.+ OH. 羟自由基可与机体内的有机物发生一系列的氧化还原反应,导致机体损伤,突变,甚至死亡。这就是紫外线杀菌的原理。

自由基对生殖健康的危害及对策

自由基对生殖健康的危害及对策--中医男科专家谈生殖健康 作者:中日友好医院中医男科实验室主任技师 发布时间:2006-01-26 曹兴午 1.自由基学说 美国Harman博士于1956年公开提出衰老的氧自由基(Free Radical)学说。因为人体的老化和多种疾病的发生都与自由基和密切关系。就像日常生活中看到,铁器在空气中曝露日久要生锈,洁白的银器也会由于氧化变黑。生命科学研究到细胞分子层面分析,发现人体的衰老与机器生锈的过程一样,也是受到氧化的结果。近年国际上有关自由基的研究显示,由于自由基引起的疾病包括动脉硬化、脑中风、心脏病、白内障、肺气肿、糖尿病,以及多项癌症等和人体衰老有关。为此,认为自由基是万病的元凶。 2.自由基的产生 自由基又称活性氧,体积约为一个原子大小,活性极强。已知,正常氧原子具有4对电子,机体正常代谢可以使原子失去一个电子,这样就形成了自由基。因此,人体内任何具有不成对的电子化合物都叫自由基,许多原子亦可以成为自由基,氧分子具有两个未配对的电子结构,故称为双自由基。 由于人体需要运动,无论是机体或组织,必须由自由基产生能量,这时就会产生自由基,为此,自由基的产生,可以说是人体细胞内正常代谢的副产品。当自由基从细胞膜上夺取一个电子后,就会产生出另一个新的自由基,以此类推,我们可以知道,当电子夺取链反应侵蚀细胞膜,导致细胞完整性丢失,这就为疾病和癌症打开方便的大门。据英国生物化学家霍威尔教授研究结论,一个70公斤的人,每年自己产生的自由基可达2公斤。而且,通过污染的空气、食入不洁的食物、水、吸入毒素(吸烟),以及日晒或放射性的辐射,不良习惯(过量饮酒、过饱饮食),周围环境和家居环境的污染,以及工作和人际关系压力,甚至是生气等,都会不断地产生自由基。为此,我们人类的每个细胞每天都要受到自由基的几百次的冲击和侵害。为了证实过量饮食对长寿的影响,学者们进行了研究,用小老鼠分3组进行实验,甲组为自由摄食(不限制量);乙组为限量进食八成;丙组为限量进食六成,结果以进食六成老鼠的寿命最长,八成次之,自由进食的最短。说明不要拼命吃的过饱,对健康长寿不利。 3.微生物侵入导致人体产生自由基 大量的基础和临床研究证实,当受到病毒、细菌侵入人体时,机体的免疫细胞会产生自由基物质(主要是氧自由基和一氧化氮自由基等)来杀灭细菌、病毒等微生物,是人体免疫系统中相当重要的一环。但是,当免疫反应过度,自由基产生过量时,由于它们的非特异反应性(不能分辨敌我),对受感染机体的生命基本结构分子如蛋白质、核苷酸、脂肪等具有极强的氧化硝化反应能力,可以导致对细胞和组织的攻击。由此可以诱导细胞的凋亡,增高血管的通透性,以至出现水肿,出血等病理现象,可以引起组织损害、功能丧失,以至组织坏死,导致患者死亡。 4.自由基对男性生殖健康的危害 最近研究证实,自由基还是危害男性生殖健康的“杀手”。诸如环境污染、吸烟、酗酒、熬夜、生殖道感染、接触含有酚类和铅等化学物质,生殖系统的自由基明显增多,使男性生殖健康受到危害。 4.1损害生育能力在男性的生殖系统如睾丸的生精细胞中、精液中和精子中,都富含有丰富的抗氧化物和抗氧化酶类物质,这些物质可以有效地保护和清除多余的自由基,保持睾丸的正常的生殖功能,使精子永不停止地生长、繁殖、发育、成熟,供应人类繁衍的需要。 一旦自由基的产生,超出抗氧化物和抗氧化酶类物质的清除能力时,自由基就可以损害生精细胞,使细胞膜受到破坏,攻击精子,使精子膜也受到伤害,精子失去活动能力,以至死亡。从而出现精子数量不断下降,或死亡精子过多,进而影响男性的生育能力,出现不育症。

人体内的一把双刃剑——自由基

人体内的一把双刃剑——自由基 一、自由基的定义 自由基(free radical)是指能独立存在,含有未成对电子的原子,原子团、分子或离子。如含有不成对电子的氧则称为氧自由基(oxygen free radical,OFR);自由基具有不成对电子的原子或分子。含有基数电子或不配对电子的原子、原子团和分子。具有很强的反应性。 自由基,化学上也称为“游离基”,是含有一个不成对电子的原子团。由于原子形成分子时,化学键中电子必须成对出现,因此自由基就到处夺取其他物质的一个电子,使自己形成稳定的物质。在化学中,这种现象称为“氧化”。我们生物体系主要遇到的是氧自由基,例如超氧阴离子自由基、羟自由基、脂氧自由基、二氧化氮和一氧化氮自由基。加上过氧化氢、单线态氧和臭氧,通称活性氧。体内活性氧自由基具有一定的功能,如免疫和信号传导过程。但过多的活性氧自由基就会有破坏行为,导致人体正常细胞和组织的损坏,从而引起多种疾病。如心脏病、老年痴呆症、帕金森病和肿瘤。此外,外界环境中的阳光辐射、空气污染、吸烟、农药等都会使人体产生更多活性氧自由基,使核酸突变,这是人类衰老和患病的根源。 二、自由基的来源与形成 自由基的来源 自由基在生物体内来源有二:一是细胞正常生理过程产生;二是化学毒物在体内代谢过程产生。在人体和环境中持续形成的自由基来自人体正常新陈代谢过程,大量体育运动、吸烟、食用脂肪和腌熏烤肉、发生炎症、某些抗癌药物、安眠药、射线、农药、有机物腐烂、塑料用品制造过程、油漆干燥、石棉、空气污染、化学致癌物、大气中的臭氧等也都能产生自由基。已知自由基可损伤蛋白质,可使蛋白质的转换增加;损害DNA可导致细胞突变;作用于-SH可使某些酶的活性降低或丧失;攻击未饱和脂肪酸可引起脂质过氧化,其氧化产物可引起-SH氧化、酶失活、膜功能受损、干扰膜的运送功能等。另外,由燃料废气、香烟和一些粉尘造成的大气污染,使大气上空的自由基占分子污染物总量的1%~10%,因此环境污染中的自由基反应也是不可忽视的。 自由基有两个来源:一是来自体外,如环境污染、紫外线照射、室内外废气、烟尘、细菌等等,它们会直接导致自由基的产生;二是来自体内,人体内也会自然形成自由基,这是人体代谢过程的正常产物,十分活跃又极不稳定,它们会附着于健康细胞之上,再慢慢瓦解健康细胞,而被破坏的细胞又转而侵害更多健康的细胞,如此恶性循环从而导致肌体的早衰现象。 过量运动在《抗氧化革命》一书中,肯尼斯-库珀医生强调,过量的运动可以明显增加我们身体产生的自由基的数量。 《抗氧化革命》一书在结尾处忠告读者,过量运动实际上是有害健康的,尤其是在我们多年持续过量运动的情况下。库珀医生建议我们每个人都应适量运动,他还建议我们每人在进行营养补充时都应服用抗氧化剂。只有真正的运动员才应该进行艰苦的训练,而且他们也应该补充大量的抗氧化剂来抵消这种侵害。空气污染环境对我们提内形成的自由基的数量影响巨大。空气污染是导致我们肺部和体内氧化压力的主要原因之一。现在当你开车进入任何一个大城市时,你不仅能够看到空气中厚重的烟雾,甚至能够用舌头尝得出来。在石棉中添加含铁纤维能够产生更多的自由基。吸烟香烟的烟雾含有多种毒素,它们联合在一起使肺部和身体各部分的自由基数量增加。食物和水源污染我们的水

自由基生物环化学

利用SmI2-H2O体系进行的内酯还原环化串联反应摘要拥有双烯或者烯炔的内酯,在SmI2-H2O体系下进行的还原环化串联反应,可以以很高的产率和非对映选择性得到修饰的甘菊环结构单元。 如果可以改变基本的合成反应途径得到非传统的中间体,新的选择性或者反应活性,那么就可以发现新的合成反应空间。比如,我们最近利用SmI2作为酯羰基的还原试剂进行研究的过程中,发现SmI2-H2O体系在内酯或者1,3-双内酯还原到醇的过程中有着出其不意的选择性。在这里,我们报道了在上述条件下,不饱和内酯进行自由基串联一步构筑甘菊环结构单元。此环化串联反应是由经电子转移的酯羰基形成的非一般的自由基离子引发的。 最近,我们首次报道了利用H2O作为活化助溶剂,SmI2作为还原剂来还原非活化的,环状的,脂肪族性的的酯。并且,我们也是第一次证明通过电子转移的酯羰基自由基离子可以应用在与烯加成上。我们推测5位具有烯烃支链的内酯结构单元1可以通过自由基离子2环化得到七元碳环3,进一步存在于2位的烯可以再次进行经过自由基离子4环化得到双环醇5(Scheme 1)。 具有甘菊环的5环系可以形成众多具有生物活性的天然产物,同时也是一种新的方法得到重要的目标结构。例如,包括phorbol, prostratin, and 12-deoxyphorbol-13-phenylacetate (DPP)在内的tigliane 家族,此外抗癌化合物pseudo- laric acid B and englerin A近年也受到有机合成化学家的重点关注。 为了证明串联反应第一步的合理性,我们选择内酯6在SmI2-H2O体系中进行研究,幸运的是我们以很好的产率拿到了非对映消旋化合物8(Scheme 2)。5位具有烷基取代的的内酯也具有很好的环化。粗品化合物进一步氧化得到9,同时也使得C-C键的形成时非对映选择化合物的比率得以确定。 带有芳基取代的烯在环化过程中以3:1到6:1非对映选择比率得到环化产物。主要产物9j 9l的相对构型用X单晶衍射得以进行确定。6n到8n就是通过巯基自由基的消除进行环化的。

自由基生物抗氧化与疾病_崔剑

ISSN 1000-0054CN 11-2223/N 清华大学学报(自然科学版)J T singh ua Un iv (Sci &Tech ),2000年第40卷第6期 2000,V o l.40,N o.64/34 912   自由基生物抗氧化与疾病 崔 剑, 李兆陇, 洪啸吟 (清华大学化学系,北京100084) 收稿日期:1999-06-30 作者简介:崔剑(1976),女(汉),天津,博士研究生 *基金项目:教育部博士学科重点科研基金 文 摘:针对生物抗氧化剂这一近年来化学、生物学与医学交叉学科研究的热点,综述了生物体内自由基等活性氧(R OS )的产生及其引起生物细胞氧化性损伤所造成的危害,抗氧化剂的种类和作用,抗氧化剂在预防和治疗癌症、冠心病、衰老、白内障等慢性疾病中的作用,不同类型抗氧化剂间的协同作用,以及抗氧化剂研究领域的一些新动态。关键词:生物抗氧化剂;活性氧;自由基;疾病;防治中图分类号:O 621.14 文献标识码:A 文章编号:1000-0054(2000)06-0009-04 氧在生物体内通过单电子还原产生化学性质 活泼的物质称活性氧(ROS ),它们包括超氧负离子自由基(O ?-2 )、过氧化氢(H 2O 2)和羟基自由基 (? OH )等。存在于生物体内活跃的ROS 可用电子自旋共振仪(ESR)测定。尽管活性氧的半衰期很短, 它们可以与DNA 、蛋白质和多元不饱和脂肪酸(PU FA )作用,造成DNA 链断裂和氧化性损伤、蛋白—蛋白交联、蛋白—DNA 交联和脂质过氧化。脂质过氧化是造成生物体氧化损伤的主要原因[1] 。PU FA 是生物膜的基本组成,极易被ROS 引发的脂质过氧化所损伤,造成生物膜结构和功能的破坏,从而引起癌症、衰老、心血管疾病等慢性病[2~5] 。因此,抑制脂质过氧化已成为生命科学领域的一项重要课题[6],并形成了自由基治疗学。 1 生物抗氧化剂的种类 凡能干扰自由基链反应中链引发和链增长过程,清除ROS 的化合物统称为自由基捕获剂(scaveng er)或抗氧化剂(antiox idant)。从不同角度对生物抗氧化剂进行分类,可分为水溶性[如维生素 C (VC)、谷胱苷肽(GSH )、吲哚类化合物(indoles)、 尿酸(UA )和儿茶酚类(catechols )等]和脂溶性抗氧化剂[如维生素E (VE )、B -胡萝卜素(B -C )和生物黄酮类化合物(bio flavo noids)等];分为捕获型(preventive antiox idants )[如超氧化物歧化酶(SOD )、过氧化氢酶(CAT ),GSH -Px 等]和断链型生物抗氧化剂(chain -breaking antioxidants )[如VC,VE 和多元酚类化合物等];又可分为酶类[如SOD,CAT 、过氧化物酶(POD)等]和非酶类抗氧化剂[如(GSH )、抗坏血酸盐(A sA 或VC )、VE 、类胡萝卜素(CAR )等];也可分为生物体内新陈代谢过程中产生的内源性抗氧化剂[如GSH-Px ,CAT ,SOD 等]和从体外摄入的外源性抗氧化剂[如多羟基蒽醌、抗坏血酸乙酸盐等],这些抗氧化剂主要从深色水果、蔬菜和果汁中获得,也有一小部分可以从牛奶和日常食用的脂肪、蛋黄和海鱼中获得。 2 生物抗氧化剂的作用和研究方法 自1960年发现了清除超氧化物自由基的SOD 以来,已经证实,氧的某些代谢产物如O ?- 2,H 2O 2和?OH 等引起的细胞损伤过程是微粒体脂质过氧化和PU FA 氧化变性的主要原因[7,8]。当PUFA 遭受到氧化损伤时细胞失去了完整性,破坏了镶嵌于膜系统上的许多酶的空间构型,以至酶的孔隙扩大、通透性增加、出现退行性变化,从而使内质网膜、线粒体膜、溶酶体膜等生物膜系统的液体镶嵌状态发生变化,导致广泛性损伤和病变[9] 。占当前医学研究领域前三位的肿瘤、冠心病和衰老均与自由基引起的膜脂质氧化性损伤有关[10~12]。 生物体内抗氧化剂通过捕获或猝灭过氧自由基,抑制微粒体脂质过氧化和PU FA 的氧化变性,从而维持生物膜的结构和功能的完整性,预防和治疗一些疾病。其反应为: ROO ? +A rOH ROOH +ArO ? ,

自由基生物学简史.

自由基生物学简史 已有1188次阅读2014-6-2407:47|个人分类:自由基简史|系统分类:科普集锦 一、从化学到生物学 1900年,俄裔学者有机化学教授Gomberg在密歇根大学博士后工作期间,证明了三苯甲基自由基能稳定存在,奠定了自由基化学的基础。也是人类第一次知道,自由基是可以独立存在的物质形式之一。但是发现自由基和生物之间也存在关系要等待半个世纪。 20世纪最伟大的科学进展主要是在物理学领域,尤其是量子力学和相对论的提出,称为20世纪科学史的标志。在20世纪初,伦琴发现的X射线是一个传奇,给随后的物理和化学研究带来重要影响。 X射线是波长介于紫外线和γ射线间的电磁辐射。X射线是一种波长很短的电磁辐射,其波长约为0.01~10nm之间。由德国物理学家W.K.伦琴于1895年发现,故又称伦琴射线。伦琴射线具有很高的穿透本领,能透过许多对可见光不透明的物质,如墨纸、木料等。 1895年11月8日晚,伦琴陷入了深深的沉思。他以前做过一次放电实验,为了确保实验的精确性,他事先用锡纸和硬纸板把各种实验器材都包裹得严严实实,并且用一个没有安装铝窗的阴极管让阴极射线透出。可是现在,他却惊奇地发现,对着阴极射线发射的一块涂有氰亚铂酸钡的屏幕(这个屏幕用于另外一个实验)发出了光。而放电管旁边这叠原本严密封闭的底片,现在也变成了灰黑色—这说明它们已经曝光了!

这个一般人很快就会忽略的现象,却引起了伦琴的注意,使他产生了浓厚的兴趣。他想:底片的变化,恰恰说明放电管放出了一种穿透力极强的新射线,它甚至能够穿透装底片的袋子。不过目前还不知道它是什么射线,于是取名“X射线”。 随后,伦琴开始了对这种神秘的X射线的更多研究。他先把一个涂有磷光物质的屏幕放在放电管附近,结果发现屏幕马上发出了亮光。接着,他尝试着拿一些平时不透光的较轻物质—比如书本、橡皮板和木板—放到放电管和屏幕之间去挡那束看不见的神秘射线,可是谁也不能把它挡住,在屏幕上几乎看不到任何阴影,它甚至能够轻而易举地穿透15毫米厚的铝板!直到他把一块厚厚的金属板放在放电管与屏幕之间,屏幕上才出现了金属板的阴影,看来这种射线还是没有能力穿透太厚的物质。实验还发现,只有铅板和铂板才能使屏不发光,当阴极管被接通时,放在旁边的照相底片也将被感光,即使用厚厚的黑纸将底片包起来也无济于事。 接下来更为神奇的现象发生了,一天晚上伦琴很晚也没回家,他的妻子来实验室看他,于是他的妻子便成了在照相底片上留下痕迹的第一人,当时伦琴要求他的妻子用手捂住照相底片。当显影后,夫妻俩在底片上看见了手指骨头和结婚戒指的影像。伦琴发现X 射线后仅仅几个月时间内,它就被应用于医学影像。 1896年1月5日,在柏林物理学会会议上展出了很多X射线的照片,同一天,维也纳《新闻报》也报道了发现X光的消息。这一伟大的发现立即引起人们的极大关注,并很快传遍全世界。在几

(2)人体内自由基种类

(2)人体内自由基种类 (2)人体内自由基种类 人体内重要的自由基包括 1.超氧阴离子自由基(·O2) 2.羟自由基(·OH) 3.羧自由基(ROO·) 4.脂氧自由基 5.一氧化氮自由基(NO·) 6.硝基自由基(·ONOO-) 由于特殊的电子排列结构,氧分子(O2)极容易形成自由基。这些由氧分子(O2) 形成的自由基统称为氧自由基。上述的氧自由基,H2O2,单线态氧(1O2)和臭氧,统称为活性氧(ROS)。 常见活性氧自由基简介 (1) 超氧化物阴离子自由基

O2若只得到一个电子,则成为带一个负电荷的离子,但仍 有一个电子未配对,用O2-·表示,称之为超氧化物阴离子自由基(Superoxide Anion Radical),或简称为超氧化物自由基(Superoxide radical),它在生物体内不仅具有重要的生物功能,还与多种疾病有密切关系,同时它还是生物体生成的第一个氧自由基,是所有氧自由基的前身,经过一系列反应可生成其它氧自由基,因此它具有特别重要的意义。 人的体液生理pH为6.5~7.5,在生理条件下,体内生成的主要是超氧化物阴离子自由基。它在水溶液中及油溶性介质中的存活时间分别约为1秒和1小时。与其它活性氧相比,它不很活泼,因此曾经有人认为其毒性可能较小;后来研究表明,正是由于其寿命较长,可从其生成位置扩散较长的距离,到达较远处的作用靶标而具有更大的危险性。(参考文献1,P7)O2-·的毒性是机体发生氧中毒的主要原因,由它引起的 损伤主要表现在使核酸链断裂、多糖解聚和不饱和脂肪酸过氧化,进而造成膜损伤、线粒体氧化磷酸化作用的改变及其他一系列的变化。 超氧化物阴离子自由基可受超氧化物歧化酶(Superoxide Dismutase,

自由基的相关

超氧化物歧化酶(SOD) 近年来,随着中国人民物质生活水平和对生活质量的要求不断提高,人们对保健知识的需求也与日俱增,近一段时间内,在有关保健知识的传播中,一个新的名词--自由基出现的频率越来越高,保健用品中、化妆品中、烟草中、日常食品中等…..那么,究竟什么是自由基,它与我们人类的健康有什么关系呢? 简单的说,在我们这个由原子组成的世界中,有一个特别的法则,这就是,只要有两个以上的原子组合在一起,它的外围电子就一定要配对,如果不配对,它们就要去寻找另一个电子,使自己变成稳定的物质。科学家们把这种有着不成对的电子的原子或分子叫做自由基。 自由基非常活跃,非常不安分。就象我们人类社会中的不甘寂寞的单身汉一样,如果总也找不到理想的伴侣,可能就会成为社会不安定的因素。那它是如何产生的呢?又如何对人的身体产生危害的呢?早在上个世纪末90年代初期,中国大陆对自由基的认知来自于北京卷烟厂在出口产品定单中外方产品的要求,外方,尤其是日本提出,吸烟危害人体健康,不仅仅是尼古丁、焦油,还有一种更厉害的物质是自由基。 当一个稳定的原子的原有结构被外力打破,而导致这个原子缺少了一个电子时,自由基就产生了。于是它就会马上去寻找能与自己结合的另一半。它活泼,很容易与其他物质发生化学反应。当它与其他物质结合的过程中得到或失去一个电子时,就会恢复平衡,变成稳定结构。这种电子得失的活动对人类可能是有益的,也可能是有害的。 一般情况下,生命是离不开自由基活动的。我们的身体每时每刻都从里到外的运动,每一瞬间都在燃烧着能量,而负责传递能量的搬运工就是自由基。当这些帮助能量转换的自由基被封闭在细胞里不能乱跑乱窜时,它们对生命是无害的。但如果自由基的活动失去控制,超过一定的量,生命的正常秩序就会被破坏,疾病可能就会随之而来。 所以说自由基是一把双刃剑。认识自由基,了解自由基对人体的作用,对健康十分必要。 编辑本段存在空间 自由基与疾病(3张) 这种缺少了一个电子,而又非常活跃的原子或分子的自由基,存在空间相当广泛。科学家在二十世纪初从烟囱和汽车尾气中发现了这种十分活跃的物质。随后的研究表明,自由基的生成过程复杂多样,比如,加热、燃烧、光照,一种物质与另一种物质的接触或任何一种化学反应都会产生自由基。在日常生活中与您最亲密接触的渠道便是您烹制美味的菜肴时或您点燃一只烟醉心于吞云吐雾时,您精心使用化妆品打扮时,自由基就悄悄地蔓延开来了。 自由基的种类非常多,自由基的存在的空间也是无处不在。它们以不同的结构特征,在与其他元素结合时,发挥着不同的作用。 人体里也有自由基,他们既可以帮助传递维持生命活力的能量,也可以被用来杀灭细菌和寄生虫,还能参与排除毒素。受控的自由基对人体是有益的。但当人体中的自由基超过一定的量,并失去控制时,这种自由基就会给我们的生命带来伤害。

衰老与疾病的根源【内容充实】

衰老与疾病的根源 一、自由基—早已被锁定的罪魁祸首 早在20世纪40年代,科学家就发现生物体内存在自由基信号。1956年美国人哈曼提出衰老自由基机理,认为自由基是衰老与疾病的元凶,被广泛接受。1969年美国人McCord 和Fridovich发现了SOD,证实活性氧自由基存在于生物体内。1998年美国人菲希戈特、穆拉德、伊格纳罗三个人因发现氮氧自由基一起获得诺贝尔奖,更加扩大认识了各种不同自由基对机体的伤害。迄今历经数十年研究,人们已经证实,人类备受衰老和疾病折磨的真正原因是自由基对人体的侵害。它是危害人类健康的天然杀手。冠心病、心绞痛、心肌梗塞、脑血栓、脑溢血、高血压、高血脂、糖尿病、癌变、失眠便秘、关节疼痛、四肢麻木……这些常见的慢性疾病都是由于自由基造成的。 美国医学博士Harman于1956年率先提出自由基与机体衰老和疾病有关;接着在1957年发表了第一篇研究报告,阐述用含0.5%~1%自由基清除剂的饲料喂养小鼠可延长寿命。由于自由基学说能比较清楚地解释机体衰老过程中出现的种种症状,如老年斑、皱纹及免疫力下降等,因此倍受关注,20年后即1976年被西方主流医学所普遍接受。 自由基衰老理论的中心内容认为,衰老来自机体遭受自由基侵害而发生的破坏性结果。 权威的疾病理论认为:体内自由基对细胞成分,尤其是对血管血液的有害进攻是人体衰老和多种疾病的根本原因,而所有这一切都是自由基对人体细胞的一个慢性氧化的过程。所以要对抗自由基,就要找到一个强效的抗氧化剂,从源头上扼制疾病的发生。 二、过氧化给人类带来的损伤和疾病 氧在人体内必不可少,然而过多的氧却会对人体造成不可挽回的损伤,引起多种慢性疾病,甚至产生急性氧中毒导致生命危险。这就是我们平常所说的过氧化损伤。 过量的氧能导致疾病?听起来不可思议,但事实就是如此。氧的化学特性很活泼,也很危险,在正常的生物化学反应中,氧会变得很不稳定,能够“氧化”邻近的分子,使得物质发生性质的改变,比如:切开的苹果会很短时间就出现棕褐色,铁会生锈等等。在人体内,过度的氧化会引起细胞损伤,从而导致癌症、发炎、动脉损伤以及衰老。氧化对生物体的损害主要表现为自由基的链式反应受到破坏,导致生物膜结构功能发生改变;蛋白质对氧化也是很敏感的,尤其是其中的含硫氨基酸;DNA分子中的碱基和戊糖都是易氧化的位置,氧化可导致DNA断裂、碱基降解和与蛋白质交联,使得遗传物质发生变异或导致细胞死亡。 过氧化是诱发多种慢性疾病的重要原因。比如肿瘤,糖尿病及其并发症、血管硬化、心

自由基的危害

自由基与消化系肿瘤 1 自由基的产生与清除 自由基是具有不配对价电子(即具有奇数电子)的原子、原子团、分子或离子,包括氧分子经氧化还原反应产生的超氧阴离子、H2O2、羟自由基(·OH)、单线态氧(1O2),乃至对应的氧化产物、过氧化脂质等.机体内自由基主要来源于细胞生化反应,其次,紫外线照射、电离辐射和环境污染等因素也可诱发机体产生自由基.高等生物体内约有1%的氧(3O2)经呼 吸链旁路反应生成氧自由基.这不仅说明自由基在生物机体内的广泛分布,也反映了在长期的生物进化过程中依然保留这些机制的生物学意义. 在生理情况下自由基不断产生,也不断被清除,使自由基浓度保持在产生与清除的动态平衡之中.生物机体内存在着有效的自由基清除剂,包括清除活性氧的酶类和一些低分子化合物.一般地,超氧化物歧化酶(superoxide dismutase, SOD)、过氧化氢酶(catalase, cAT)、谷胱甘肽过氧化物酶(glutahione peroxidase, GSH-PX)主要清除、H2O2、LOOH;而·OH、1O -5S以下)的氧自由基主要由一些低分子化合物(如维生素A、维生素E、胡萝2等寿命短(10 卜素类、维生素C、维生素B1、维生素B2、维生素K、黄酮类和某些未知物质)加以清除[1]. 虽然,自由基为正常生命活动的许多重要反应所必须,它参与生物活性物质的合成(如花生四烯酸合成前列腺素),解毒反应,吞噬细胞杀灭细菌的活动等.但是过量的氧自由基对机体的广泛损伤效应,与炎症、肿瘤、免疫性疾病及衰老等有密切关系. 2 自由基对生物大分子的损伤作用 2.1自由基对DNA的损伤作用研究证明自由基对DNA具有损伤作用[2,3],自由基可引起细胞内DNA的氢链断裂、碱基降解和主链解旋,所有核酸成分均可受到自由基的攻击,这种损伤可被一些特殊机制修复,但也可造成永久性损伤.所以,当细胞DNA受损伤时,可造成细胞生物学活性改变,甚至导致基因突变、肿瘤与细胞死亡.自由基攻击脱氧核糖时可导致链断裂,但这类损伤可被DNA的修复系统所修复,然而,修复过的DNA突变率却远大于正常DNA的突变率.有研究表明,氧浓度达200%时所引起的DNA链断裂程度相当于4.2 mmol/ L H2O2的损伤程度;香烟烟雾中的氢醌类物质是造成DNA原链断裂的重要成分;DNA分子中所含金属离子(如Fe3+与Cu2+)和H2O2反应产生的·OH是引起DNA链断裂的主要原因,而SOD、EDTA和1,10-phenanthroline等均能减轻这种损害. bhat等发现可见光和分子氧可引起小牛胸腺DNA断裂,Fe2+、Fe3+与Cu2+可显著加快DNA的降解速度,也说明金属离子的存在,是DNA损伤的重要条件之一[3].

自由基

氧自由基 一、自由基的产生机理及来源 自由基又叫游离基,它是由单质或化合物的均裂(Homdytic Fission)而产生的带有未成对电子的原子或基团。它的单电子有强烈的配对倾向,倾向于以各种方式与其他原子基团结合,形成更稳定的结构,因而自由基非常活泼,成为许多反应的活性中间体。 人体内的自由基分为氧自由基和非氧自由基。氧自由基占主导地位,大约占自由基总量的95%。氧自由基包括超氧阴离子(O2-·)、过氧化氢分子(H2O2)、羟自由基(OH·)、氢过氧基(HO2-·)、烷过氧基(ROO·)、烷氧基(RO·)、氮氧自由基(NO·)、过氧亚硝酸盐(ONOO-)、氢过氧化物(ROOH)和单线态氧(1O2)等,它们又统称为活性氧(reactive oxygen species,ROS),都是人体内最为重要的自由基。非氧自由基主要有氢自由基(H·)和有机自由基(R·)等。 (一)自由基的产生 人体细胞在正常的代谢过程中,或者受到外界条件的刺激(如高压氧、高能辐射、抗癌剂、抗菌剂、杀虫剂、麻醉剂等药物,香烟烟雾和光化学空气污染物等作用),都会刺激机体产生活性氧自由基。 人体内酶催化反应是活性氧自由基产生的重要途径。人体细胞内的黄嘌呤氧化酶、髓过氧化物酶和NADPH氧化酶等在进行酶促催化反应时,会诱导产生大量的自由基中间产物。除酶促反应外,生物体内的非酶氧化还原反应,如核黄素、氢醌、亚铁血红素和铁硫蛋白等单电子氧化反应也会产生自由基。外界环境,如电离辐射和光分解等也能刺激机体产生自由基反应,如分子中的共价键均裂后即形成自由基。 人体内特定的自由基有不同的来源。超氧阴离子自由基(O2-·)在其中扮演着非常重要的角色,因为在反应顺序上其他许多活性中间产物的形成都始于与 O2-·起作用。它是从黄嘌呤氧化酶、NADPH氧化酶通过酶的一电子还原作用释放的氧产生的或由呼吸链裂解生成的。人体利用的氧气中约有1%~3%转化为O2-·。 二、自由基导致的脑及脑血管疾病 1、衰老 衰老过程涉及到许多内外因素,与衰老过程有关的最常见的内源性生化因子是自由基。老年动物及老年人血清脂质自由基(脂质过氧化物) 水平增高,组织内(尤其脑,肝细胞内) 脂褐素含量增多。组织内脂褐素含量多少可做为衰老的客观依据之一,其形成与脂质自由基有关。脂质自由基的分解产物为醛类,它可与蛋白质、磷质和核酸的氨基起反应,使分子发生交联,交联的结果,使蛋白质变性,使酶失活。这些变性物质被吞噬细胞吞噬,但不能完全消化,结果不断增加细胞内的年色素。 2、动脉粥样硬化及脑血栓 花生四烯酸是细胞膜磷脂的重要组成部分,机体缺血缺氧后,细胞外液中的Ca + + 进入细胞内使细胞膜中的钙依赖的磷脂酶A2 被激活,后者使AA释出,AA 通过环氧化酶途径产生PGH2 (具有自由基性质的活性物质,PGH2 称氢过氧化物) ,后者在血小板微粒体内,在血栓素合成酶作用下,生成血栓素(TXA2) 在动脉血管内皮细胞微粒体内,在前列腺素合成酶作用下,生成前列环素( PGI2 ) 。TXA2 和PGI2 是2 种作用完全相反的血管活性介质,前者主要为强烈的血管收缩剂和血小板聚集剂;后者的作用与之相反,当动脉血管内皮细胞受到损害时,PGI2生成减少,TXA2 的量及作用增多增强,导致血管痉挛和促进血栓形成。此外,AA 通过脂氧化酶途径产生的5 - 过氧化氢花生四烯酸(5 - HPETE) 和脂质自由基强抑制前列环素合成酶的作用,使PGI2 合成减少。5 - HPETE 尚可激活血小板中的血栓素合成酶,导致血栓形成的恶性循环。 3、脑的再灌流性损害

相关文档
相关文档 最新文档