文档库 最新最全的文档下载
当前位置:文档库 › 一次函数的最值问题.

一次函数的最值问题.

一次函数的最值问题

一次函数的“最值”问题 一次函数y=kx+b中,x、y均可取一切实数.如果缩小x的取值范围,则其函数值就会出现最大值或最小值.一次函数的“最值”由一次函数的性质决定,与其k值、自变量的取值范围密切相关: ⑴k>0时,y随x增大而增大.因此,x取最小值时,y有最小值;x取最大值时,y有最大值. ⑵k<0时,y随x增大而减小.因此,x取最小值时,y有最大值;x取最大值时,y有最小值. k值、自变量的取值范围与函数最大值、最小值的对应情况如下表: 求一次函数的最大、最小值,一般都是采用“极端值法”.即用

自变量的端点值,根据函数增减性,对应求出函数的端点值(最值).请看以下实例. 例1.已知一次函数y=kx+b中自变量x的取值范围是-2≤x≤6,相应的函数取值范围是-11≤y≤9.求此函数的解析式.解析:x的取值范围与函数y的取值范围的对应情况,由k值的符号确定.故应分类讨论. ⑴k>0时,y随x增大而增大.x=-2时,y=-11;x=6时,y=9. ∴解得∴y=x-1 ⑵k<0时, y随x增大而减小.x=-2时,y=9;x=6时,y=-11. ∴解得∴y=-x+14 例2.康乐公司在A、B两地分别有同型号的机器17台和15台,现在运往甲地18台、乙地14台.从A、B两地运往甲、乙两地的费用如下表; 甲地(元/台)(18)乙地(元/台)(14) A地(17)600(x)500(17-x) B地(15)400(18-x)800(x-3) ⑴如果从A地运往甲地x台,求完成以上调运所需总费用y(元)关于x(台)的函数解析式; ⑵若康乐公司请你设计一种最佳调运方案,使总的费用最少,则

初中数学一次函数的最值问题

初中数学一次函数的最值问题 一次函数在自变量x允许取值范围(即全体实数)内,它是没有最大或最小值的。但是,如果给定了自变量的某一个取值范围(全体实数的一部分),那么y=kx+b 的最大值或最小值就有可能存在。一般地,有下面的结论:1、如果,那么有最大值或最小值(如图1):当时,,;当时,,。 图1 2、如果,那么有最小值或最大值(如图2):当 时,;当时,。 图2

3、如果,那么有最大值或最小值(如图3)当 时,;当,。 图3 4、如果,那么既没有最大值也没有最小值。凡是用一次函数式来表达实际问题,求其最值时,都需要用到边界特性,像物质的运输与供应、生产任务的分配和订货、邮件的投递及空袋的调运等。 下面是一道利用一次函数的最小值的决策问题,供参考: 某送奶公司计划在三栋楼之间建一个奶站,三栋楼在同一条直线上,顺次为A楼,B楼,C楼,其中A楼与B楼之间的距离为40m,B楼与C楼之间的距离为60m,已知A楼每天有20人取奶,B楼每天有70人取奶,C楼每天有60人取奶,送奶公司提出两种建站方案: 方案一:让每天所有取奶的人到奶站的距离总和最小; 方案二:让每天A楼与C楼所有取奶的人到奶站的距离之和等于B楼所有取奶的人到奶站距离之和。 (1)若按照方案一建站,取奶站应建在什么位置?

(2)若按照方案二建站,取奶站应建在什么位置? (3)在方案二的情况下,若A楼每天取奶的人数增加(增加的人数不超过22人),那么取奶站将离B楼越来越远,还是越来越近?请说明理由。 解:(1)设取奶站建在距A楼xm处,所有取奶的人到奶站的距离总和为ym.。 ①当时, ∴当x=40时,y的最小值为4400。 ②当时, , 此时y的值大于4400。 因此按方案一建奶站,取奶站应建在B楼处。 (2)设取奶站建在距A楼xm处。 ①当时, , 解得(舍去)。 ②当时, 解得x=80, 因此按方案二建奶站,取奶站应建在距A楼80m处。

一次函数中的最值问题

一次函数中的最值问题 问题1 如图,要在燃气管道l 上修建一个泵站,分别向A ,B 两城镇供气.泵站修在什么地方,可使所用的输气管线最短? 问题2 如图,已知点A (4,3),点B (0,1)。 (1)求一次函数解析式; (2)若点C 是x 轴上一动点,当AC +BC 的值最小时,求C 点坐标。 问题3 如图,已知点 A (4,3),点 B (0,-1)。若点 C 是x 轴上一动点,当BC AC 的值最大时,求C 点坐标. 问题4 如图,已知点A (4,3)。若点C 是直线y=-x+4上一点,B 是直线x=5上一点,当△ABC 的周长最小时,求C 、B 两点的坐标. 问题5 如图,已知点A (4,3),B (1,2)。若点C 是y 轴上点,D 是x 轴上一点,当四边形ABCD 的周长最小时,求C 、D 两点的坐标. 问题6 如图,平面直角坐标系中A (1,4),B (3,2),C. D 为x 轴上两动点,且CD =1,试求四边形ACDB 周长最小时,C. D 两点的坐标。 问题7 已知直角坐标系内的点A (4,1)、B (3,2),试分别在直线y =x 和x 轴上找点C. D 使得四边形ABCD 的周长最短。 (1)作图(并写出作法) (2)写出C. D 两点坐标。 问题8如图,已知点A (2,0)、B (?1,1),点P 是直线y =?x +4上任意一点。 (1)当点P 在什么位置时,△P AB 的周长最小?求出点P 的坐标及周长的最小值; (2)在(1)的条件下,求出△P AB 的面积。 B

问题2(1)把点A、B的坐标代入一次函数解析式y=kx+b(k≠0)列出关于k、b的方程组,通过解该方程组即可求得它们的值; (2)利用轴对称--最短距离来求点C的坐标.作点A (4,3)关于x轴的对称点A′(4,-3),连接BA′交x轴于点C,则此时AC+BC取得最小值.然后利用待定系数法求得直线BA′的解析式,然后将y=0代入求得的直线的解析式即可求得点C的坐标. 解答: (1)设直线AB的解析式为y=kx+b(k≠0).依题意,得 {4k+b=3b=1, 解得,???k=12b=1, 所以,该一次函数的解析式为:y=1/2x+1; (2)如图,作点A(4,3)关于x轴的对称点A′(4,?3),连接BA′交x轴于点C,则此时AC+BC取得最小值。 设直线BA′的解析式为y=kx+1,依题意 ?3=4k+1. k=?1. ∴直线BA′的解析式为y=?x+1. 令y=0,则x=1. ∴C(1,0). 问题3解答: 先把B关于X轴对称得到B'点。BC=B'C当c不在AB'线上时,根据三角形定理,|AC-BC|小于AB',当C在AB'上时,|AC-BC|等于AB',所以当C在AB'上时,|AC-BC|最大,这个时候先求出AB'的方程是y=1/2x+1,求出C点坐标为(-2,0) 问题4案

初中数学一次函数的最值问题

初中数学一次函数的最值问题 一次函数)0k (b kx y ≠+=在自变量x 允许取值范围(即全体实数)内,它是没有最大或最小值的。但是,如果给定了自变量的某一个取值范围(全体实数的一部分),那么y=kx+b 的最大值或最小值就有可能存在。一般地,有下面的结论: (1)如果m x n ≤≤,那么b kx y +=有最大值或最小值(如图1):当0k >时,b km y +=最大,b kn y +=最小;当0k <时,b kn y +=最大,b km y +=最小。 图1 (2)如果n x ≥,那么b kx y +=有最小值或最大值(如图2):当0k >时,b kn y +=最小;当0k <时,b kn y +=最大。 图2 (3)如果m x ≤,那么b kx y +=有最大值或最小值(如图3)当0k >时,b km y +=最大;当0k <,b km y +=最小。 图3 (4)如果m x n <<,那么b kx y +=既没有最大值也没有最小值。 凡是用一次函数式来表达实际问题,求其最值时,都需要用到边界特性,像物质的运输与供应、生产任务的分配和订货、邮件的投递及空袋的调运等。 下面是一道利用一次函数的最小值的决策问题,供同学们参考: 某送奶公司计划在三栋楼之间建一个奶站,三栋楼在同一条直线上,顺次为A 楼,B 楼,C 楼,其中A 楼与B 楼之间的距离为40m ,B 楼与C 楼之间的距离为60m ,已知A 楼每天有20人取奶,B 楼每天有70人取奶,C 楼每天有60人取奶,送奶公司提出两种建站

方案: 方案一:让每天所有取奶的人到奶站的距离总和最小; 方案二:让每天A 楼与C 楼所有取奶的人到奶站的距离之和等于B 楼所有取奶的人到奶站距离之和。 (1)若按照方案一建站,取奶站应建在什么位置? (2)若按照方案二建站,取奶站应建在什么位置? (3)在方案二的情况下,若A 楼每天取奶的人数增加(增加的人数不超过22人),那么取奶站将离B 楼越来越远,还是越来越近?请说明理由。 解:(1)设取奶站建在距A 楼xm 处,所有取奶的人到奶站的距离总和为ym.。 ①当40x 0≤≤时, 8800 x 110)x 100(60)x 40(70x 20y +?-=-+-+= ∴当x=40时,y 的最小值为4400。 ②当100x 40≤<时, )x 100(60)40x (70x 20y -+-+= 3200x 30+=, 此时y 的值大于4400。 因此按方案一建奶站,取奶站应建在B 楼处。 (2)设取奶站建在距A 楼xm 处。 ①当40x 0≤≤时, )x 40(70)x 100(60x 20-=-+, 解得03 320x <- =(舍去)。 ②当100x 40≤<时, )40x (70)x 100(60x 20-=-+ 解得x=80, 因此按方案二建奶站,取奶站应建在距A 楼80m 处。 (3)设A 楼取奶人数增加a (22a 0≤≤)人, ①当40x 0≤≤时, )x 40(70)x 100(60x )a 20(-=-++, 解得30 a 3200x +-=(舍去)。 ②当100x 40≤<时, )40x (70)x 100(60x )a 20(-=-++, 解得a 1108800x -=,当a 增大时,x 增大。 ∴当A 楼取奶的人数增加时,按照方案二建奶站,取奶站仍建在B 、C 两楼之间,且随着人数的增加,离B 楼越来越远。

八年级数学-一次函数最值的应用例说

八年级数学-一次函数最值的应用例说 在经济问题中,常会遇到求函数的最大值和最小值问题,如求最大利润、最小成本、确定最优的生产方案等问题,以图达到最经济、最节约和最高的经济效率. 谈到最值问题,人们关心的是二次函数的最值问题.而对一次函数最值的应用问题却很少了解,但在实际问题中,一次函数的最值的应用极为广泛. 一次函数y=kx+b(k≠0)的自变量x的取值范围是一切实数,所以一次函数没有最大(小)值,但是,当自变量在某个闭区间a≤x≤b内取值时(a,b为实数),一次函数y =kx+b却存在着最大(小)值. 例1 20个农场职工种50亩地,这些地可以种蔬菜、棉花或水稻,如果种这些农作物每亩地所需的职工和预计的产值如下: 问怎样安排,才能使每亩地都种上作物,所有职工都有工作,而且农作物的预计总产值达到最高? 解设种蔬菜、棉花、水稻的土地分别为x亩、y亩、z亩,预计总产值为w元.根据已知条件,得: x+y+z=50, (1) W=1100x+750y+600z. (3) 由(1)、(2)可得: y=90-3x (4) z =2x-40 (5) 把(4)、(5)代入(3)得: W=50x+43500. 由x≥0,y =90-3x≥0,z=2x-40≥0得: 20≤x≤30. 所以当x=30时,W取最大值45000元 此时y =0,z =20.

即种30亩蔬菜,20亩水稻才能使预计总产值最高,可达45000元. 例2 48人划船,每只小船坐3人,租金2元;每只大船坐5人,租金3元,最少要付租金多少元? 解设用x只大船,y只小船;要付租金W元. 由题意可知: 5x+3y =48, (1) W =3x+2y. (2) 把(3)代入(2)得: W=3x+2y 由于人数是48人,每只大船坐5人,由此可知:0<5x<48,得0<x<10,要使W最小,x应取最大整数值.即当x =9时,W的值最小. 答:最少要付租金29元. 例3 在边防沙漠地带,巡逻车每天行驶200公里,每辆巡逻车可装载供行驶14天的汽油.现有5辆巡逻车同时从驻地A出发,完成任务后再沿原路返回驻地,为了让其中三辆尽可能向更远的距离巡逻(然后再一起返回),甲、乙两车行至途中B处后,仅留足自己返回驻地所必须的汽油,将多余的汽油留给另外三辆使用,问其它三辆车可行进的最远距离是多少公里?(1995年河北省初中数学联合竞赛试题) 解设巡逻车行驶到途中B处时用了x天,其中的三辆车从B到最远处用y天,则有2[3(x+y)+2x]=14×5, 即 5x+3y=35。 (1) 由题意可知x>0,y>0且 14×5-(5+2)x≤14×3 即x≥4.

一次函数的专题复习~最经典最全

函数的概念及表示方法 知识点 1.概念:在某一个变化过程中,设有两个变量x 和y ,如果对于x 的每一个确定的值,在y 中都有唯一确定的值与其对应,那么我们就说y 是x 的函数,也就是说x 是自变量,y 是因变量。 2.确定函数自变量取值范围的方法(1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 例题精讲 考点1.函数的概念 例1.下列图象中,表示y 是x 的函数的个数有( ) A .1个 B .2个 C .3个 D .4个 考点2.函数的表示法 例2.如图是广州市某一天内的气温变化图, 根据图象,下列说法中错误的是( ) A .这一天中最高气温是24℃ B .这一天中最高气温与最低气温的差为16℃ C .这一天中2时至14时之间的气温在逐渐升高 D .这一天中只有14时至24时之间的气温在逐渐降低 考点3.求自变量的取值范围 例3.(2014?上海)函数y= 的自变量的取值x 范围是 . 例4.(2014四川省内江市)在函数2 x y += 中,自变量x 的取值范围是 . 例5.等腰△ABC 周长为10cm ,底边BC 长为y cm ,腰AB 长为x cm . (1)写出y 与x 的函数关系式; (2)求x 的取值范围; (3)求y 的取值范围. 4.下列函数中,自变量x 的取值范围是x ≥ 2的是( ) A .y=2x - B .y= 2 x - C .y=24x - D .y=2x +·2x -

2020-2021学年北师大版初二数学上册难点突破14一次函数在实际应用中的最值问题

专题14 一次函数在实际应用中的最值问题 【专题说明】 1、通过图象获取信息 通过观察一次函数的图象获取有用的信息是我们在日常生活中经常遇到的问题,要掌握这个重点在于对函数图象的观察和分析,观察函数图象时,首先要看横轴、纵轴分别代表的是什么,也就是观察图象反映的是哪两个变量之间的关系. 【注】函数图象中的特殊点 观察图象获取信息时,一定要注意图象上的特殊点,这些特殊点对我们解决问题有很大的帮助. 2、一次函数图象的应用 一次函数和正比例函数是我们接触到的最简单的函数,它们的图象和性质在现实生活中有着广泛的应用.利用一次函数和正比例函数的图象解决问题是本节的一个重点,这部分内容在中考中占有重要的地位.【注】函数y=kx+b图象的变化形式 在实际问题中,当自变量的取值范围受到一定的限制时,函数y=kx+b(k≠0)的图象就不再是一条直线.要根据实际情况进行分析,其图象可能是射线、线段或折线等等. 1、甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题: (1)乙队开挖到30 m时,用了________ h.开挖6 h时甲队比乙队多挖了_______ m. (2)请你求出: ①甲队在0≤x≤6的时段内,y与x之间的函数关系式; ②乙队在2≤x≤6的时段内,y与x之间的函数关系式. (3)当x为何值时,甲、乙两队在施工过程中所挖河渠的长度相等? 分析:(1)由图象可以直接看出乙队开挖到30 m时,用了2 h.开挖6 h时甲队比乙队多挖了10 m;(2)设甲队在0≤x≤6的时段内y与x之间的函数关系式为y=k1x(k1≠0),由图可知,函数图象过点(6,60),∴6k1=60,解得k1=10,∴y=10x.设乙队在2≤x≤6的时段内y与x之间的函数关系式为y=k2x+b(k2≠0),由图可知,函数图象过点(2,30),(6,50),代入y=k2x+b,求出k2=5,b=20,∴y=5x+20.(3)由题意,得10x=5x+20,解得x=4(h). 解:(1)210 (2)①y=10x.②y=5x+20. (3)由题意,得10x=5x+20,解得x=4(h). 故当x为4 h时,甲、乙两队所挖的河渠长度相等. 2、某单位急需用车,但又不准备买车,他们准备和一个体车主或一国有出租车公司签订月租车合同.设汽车每月行驶x km,应付给个体车主的月费用为y1元,应付给国有出租车公司的月费用是y2元,y1,y2分别与x之间的函数关系图象(两条射线)如图,观察图象回答下列问题: (1)每月行驶的路程在什么范围内时,租国有出租车公司的车合算? (2)每月行驶的路程等于多少时,租两家车的费用相同? (3)如果这个单位估计每月行驶的路程为2 600 km,那么这个单位租哪家车合算? 分析:本题从给出的两个函数图象中可获取以下信息:都是一次函数,一个是正比例函数;两条直线交点的横坐标为1 500;表明当x=1 500时,两个函数值相等;根据图象可知:x>1 500时,y2>y1;0<x<1 500

2020中考常见最值问题总结归纳微专题八函数最值一次函数增减性法(原卷版)

2020 中考常见最值问题总结归纳微专题八:一次函数增减性法 W O R K I N G P L A N

微专题八:利用一次函数增减性法 考法指导 一次函数y kx b k =+≠()0的自变量x 的取值范围是全体实数,图象是一条直线,因而没有最大(小)值;但当m x n ≤≤时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。 【典例精析】 例题1.(2019·河南中考真题)学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A 奖品和2个B 奖品共需120元;购买5个A 奖品和4个B 奖品共需210元. (1)求A ,B 两种奖品的单价; (2)学校准备购买A ,B 两种奖品共30个,且A 奖品的数量不少于B 奖品数量的13 .请设计出最省钱的购买方案,并说明理由. 【答案】(1)A 的单价30元,B 的单价15元(2)购买A 奖品8个,购买B 奖品22个,花费最少 【详解】 解:(1)设A 的单价为x 元,B 的单价为y 元, 根据题意,得 3212054210 x y x y +=??+=?, 3015x y =?∴?=? , ∴A 的单价30元,B 的单价15元; (2)设购买A 奖品z 个,则购买B 奖品为(30)z -个,购买奖品的花费为W 元, 由题意可知,1(30)3 z z ≥-, 152 z ∴≥, 3015(30)45015W z z z =+-=+,

当=8 z时,W有最小值为570元, 即购买A奖品8个,购买B奖品22个,花费最少; 【针对训练】 1.(2019·广东中考真题)有A B、两个发电厂,每焚烧一吨垃圾,A发电厂比B发电厂多发40度电,A焚烧20吨垃圾比B焚烧30吨垃圾少1800度电. (1)求焚烧1吨垃圾,A和B各发多少度电? (2)A B 、两个发电厂共焚烧90吨垃圾,A焚烧的垃圾不多于B焚烧的垃圾的两倍,求A厂和B厂总发电量的最大值. 2.(2017·山东中考真题)某网店销售甲、乙两种防雾霾口罩,已知甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元. (1)改网店甲、乙两种口罩每袋的售价各多少元? (2)根据消费者需求,网店决定用不超过10000元购进价、乙两种口罩共500袋,且甲种 口罩的数量大于乙种口罩的4 5 ,已知甲种口罩每袋的进价为22.4元,乙种口罩每袋的进价 为18元,请你帮助网店计算有几种进货方案?若使网店获利最大,应该购进甲、乙两种口罩各多少袋,最大获利多少元?

一次函数中的最值问题

第十二讲 一次函数中的最值问题 1.已知直线l1:y=﹣x+b与x轴交于点A,直线l2:y=x﹣与x轴交于点B,直线l1、l2交于点C, 且C点的横坐标为1. (1)如图1,过点A作x轴的垂线,若点P(x,2)为垂线上的一个点,Q是y轴上一动点,若S△CPQ=5,求此时点Q的坐标; (2)若P在过A作x轴的垂线上,点Q为y轴上的一个动点,当CP+PQ+QA的值最小时,求此时P的坐标; (3)如图2,点E的坐标为(﹣2,0),将直线l1绕点C旋转,使旋转后的直线l3刚好过点E,过点C 作平行于x轴的直线l4,点M、N分别为直线l3、l4上的两个动点,是否存在点M、N,使得△BMN是以M 点为直角顶点的等腰直角三角形?若存在,求出N点的坐标;若不存在,请说明理由. 2.如图,一次函数y=﹣x+6的图象分别与y轴、x轴交于点A、B,点P从点B出发,沿射线BA以每秒 1个单位的速度出发,设点P的运动时间为t秒. (1)点P在运动过程中,若某一时刻,△OPA的面积为6,求此时P的坐标; (2)在整个运动过程中,当t为何值时,△AOP为等腰三角形?(只需写出t的值,无需解答过程) (3)若第二象限有一点C(﹣1,4),试问在y轴上是否存在一点M,使BM﹣CM的值最大?如果存在,求出点M的坐标;如果不存在,请说明理由.

3.如图,在平面真角坐标系中,点A的坐标是(﹣,0),点B的坐标是(0,1).点B和点C关于原点对称.点P是直线AB位于y轴右侧部分图象上一点,连接CP,已知S△BPC=S△ABC, (1)求直线AC的解析式; (2)如图2,△AOC沿着直线AC平移得△A′O′C′,平移后的点A′与点C重合点F为直线AC上的一动点, 当PF+FC′的值最小时,请求出PF+FC′的最小值及此时点F的坐标; (3)如图3,将△PBC沿直线PA翻折得△PBG,点N为平面内任意一动点,在直线PA上是否存在点M,使得以点M、N、P、G为顶点的四边形是矩形?若存在,请直接写出点M的坐标;若不存在,说明理由. 4.如图,在平面直角坐标系xOy中,直线AB:y=kx﹣6(k≠0)交x轴正半轴于点A,交y轴负半轴于点B,点C在线段OA上,将△ABC沿直线BC翻折,点A与y轴上的点D(0,4)恰好重合. (1)求直线AB的表达式; (2)已知点E(0,3),点P是直线BC上的一个动点(点P不与点B重合),连接PD,PE,当△PDE的周长取得最小值时,求点P的坐标; (3)在坐标轴上是否存在一点H,使得△HAB和△ABC的面积相等?若存在,求出满足条件的点H的坐标;若不存在,请说明理由.

一次函数练习题及答案(较难 实用)

初二一次函数与几何题(附答案) 1、 平面直角坐标系中,点A 的坐标为(4,0),点P 在直线y=-x-m 上,且AP=OP=4,则m 的值是多少? 2、如图,已知点A 的坐标为(1,0),点B 在直线y=-x 上运动,当线段AB 最短时,试求点B 的坐标。 3、如图,在直角坐标系中,矩形OABC 的顶点B 的坐标为(15,6),直线y=1/3x+b 恰好将矩形OABC 分为面积相等的两部分,试求b 的值。 4、如图,在平面直角坐标系中,直线y= 2x —6与x 轴、y 轴分别相交于点A 、B ,点C 在x 轴上,若△ABC 是等腰三角形,试求点C 的坐标。 5、在平面直角坐标系中,已知A (1,4)、B (3,1),P 是坐标轴上一点,(1)当P 的坐标为多少时,AP+BP 取最小值,最小值为多少? 当P 的坐标为多少时,AP-BP 取最大值,最大值为多少?

6、如图,已知一次函数图像交正比例函数图像于第二象限的A点,交x轴于点B(-6,0),△AOB的面积为15,且AB=AO,求正比例函数和一次函数的解析式。 7、已知一次函数的图象经过点(2,20),它与两坐标轴所围成的三角形的面积等于1,求这个一次函数的表达式。 8、已经正比例函数Y=k1x的图像与一次函数y=k2x-9的图像相交于点P(3,-6) 求k1,k2的值 如果一次函数y=k2x-9的图象与x轴交于点A 求点A坐标 9、正方形ABCD的边长是4,将此正方形置于平面直角坐标系中,使AB在x轴负半轴上,A 点的坐标是(-1,0), (1)经过点C的直线y=-4x-16与x轴交于点E,求四边形AECD的面积; (2)若直线L经过点E且将正方形ABCD分成面积相等的两部分,求直线L的解析式。

一次函数最值问题导学案

实际应用 ———一次函数最值问题 学习目标: 1、会用一次函数知识解决实际问题 2、能对解决问题的过程进行反思,并总结解决问题的方法 教学过程: 一、例题 例、(2016天津23题)公司有330台机器需要一次性运送到某地,计划租用甲、乙两种货车共8辆.已知每辆甲种货车一次最多运送机器45台,租车费用为400元;每辆乙种货车一次最多运送机器30台,租车费用为280元. (1)设租用甲种货车x辆(x为非负整数),试填写下表: 表一: 租用的乙种货车最多运送机器的数量/台150 表二: (2)给出能完成此项运送任务的最节省费用的租车方案,并说明理由.二、巩固提升 1、某超市计划购进甲、乙两种品牌的新型节能台灯共20盏,这两种台灯的进价和售价图表所示:(1)根据题意填写下表: (3)若购进两种台灯的总费用不超过1100元,那么超市如何进货才能获得最大利润?最大利润是多少?

2、某公司在A、B两地分别有库存机器16台和12台,现要运往甲、乙两地,其中甲地15台,乙地13台。从A地运一台到甲地的运费为500元,到乙地为400元;从B地运一台到甲地的运费为300元,到乙地为600元。公司应设计怎样的调运方案才能使这些机器的运费最省? (1)解:设A地向甲地运x台,总运费为y元。 根据题意,填写下表:(要求填上适当的代数式,完成表格) 3、(2015天津23题)1号探测气球从海拔5 m处出发,以1m/min的速度上升. 与此同时,2号探测气球从海拔15m处出发,以0.5m/min的速度上升. 两个气球都匀速上升了50min. 设气球上升时间为x min(0≤x≤50). (Ⅰ)根据题意,填写下表 如果不能,请说明理由; (Ⅲ)当30≤x≤50时,两个气球所在位置的海拔最多相差多少米?

人教版八年级上册数学14.2一次函数的几个最值问题练习题

1、某蒜薹(tai)生产基地喜获丰收收蒜薹200吨。经市场调查,可采用批发、零售、冷库储藏后销售,并按这三种方式 若经过一段时间,蒜薹按计划全部售出后获得利润为y(元),蒜薹零售x(吨)且零售量是批发量的1/3 (1)求y与x之间的函数关系; (2)由于受条件限制经冷库储藏的蒜薹最多80吨,求该生产基地计划全部售完蒜薹获得最大利润。2、某电视台为某个广告公司特约播放甲、乙两部连续剧.经调查,播放甲连续剧平均每集有收视观众20万人次,播放乙连续剧平均每集有收视观众15万人次,公司要求电视台每周共播放8集. (1)设一周内甲连续剧播x集,甲、乙两部连续剧的收视观众的人次的总和为y万人次,求y关于x的函数关系式.(2)已知电视台每周只能为该公司提供不超过360分钟的播放时间,并且播放甲连续剧每集需50分钟,播放乙连续剧每集需40分钟,请你用所学知识求电视台每周应播放甲、乙两部连续剧各多少集,才能使得每周收看甲、乙连续剧的观众的人次总和最大,并求出这个最大值.

3、A市、B市和C市分别有某种机器10台、10台和8台.现在决定把这些机器支援给D市18台,E市10台.已知:从A市调运一台机器到D市、E市的运费分别为200元和800元;从B市调运一台机器到D市、E市的运费分别为300元和700元;从C市调运一台机器到D市、E市的运费分别为400元和500元. (1)设从A市、B市各调x台到D市,当28台机器全部调运完 毕后,求总运费W(元)关于x(台)的函数式,并求W的最小 值和最大值; (2)设从A市调x台到D市,B市调y台到D市,当28台机器 全部调运完毕后,用x,y表示总运费W(元),并求W的最 小值和最大值4、某化工厂现有甲种原料7吨,乙种原料5吨,现计划用这两种原料生产两种不同的化工产品A和B共8吨,已知生产每吨A,B 销售A,B两种产品获得的利润分别为0.45万元/吨、0.5万元/吨.若设化工厂生产A产品x吨,且销售这两种产品所获得的总利润为y万元. (1)求y与x的函数关系式,并求出x的取值范围; (2)问化工厂生产A产品多少吨时,所获得的利润最大?最大利润是多少?

初中数学最值问题典型例题(含答案分析)精编版

中考数学最值问题总结 考查知识点:1、“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。 (2、代数计算最值问题3、二次函数中最值问题) 问题原型:饮马问题造桥选址问题(完全平方公式配方求多项式取值二次函数顶点)出题背景变式:角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。 解题总思路:找点关于线的对称点实现“折”转“直” 几何基本模型: 条件:如下左图,A、B是直线l同旁的两个定点. 问题:在直线l上确定一点P,使PA PB +的值最小. 方法:作点A关于直线l的对称点A',连结A B'交l于 点P,则PA PB A B' +=的值最小 例1、如图,四边形ABCD是正方形,△ABE是等边三 角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM. (1)求证:△AMB≌△ENB; (2)①当M点在何处时,AM+CM的值最小; ②当M点在何处时,AM+BM+CM的值最小,并说明理由; (3)当AM+BM+CM的最小值为 时,求正方形的边长。 A B A' ′ P l

例2、如图13,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0) (1)求抛物线的解析式 (2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由. (3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线M N∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.

一次函数最值问题

利润最值问题 1. (2013?十堰)某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、 售价如表所示: (1)若商场预计进货款为3500元,则这两种台灯各购进多少盏? (2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元? 2.今年春季,我国云南、贵州等西南地区遇到多少不遇旱灾,“一方有难,八方支援”,为及时灌溉农田,丰收农机公司决定支援上坪村甲、乙、丙三种不同功率柴油发电机共10台(每种至少一台)及配套相同型号抽水机分别为4台、3台、2台,每台抽水机每小时可抽水灌溉农田1亩.现要求所有柴油发电机及配套抽水机同时工作一小时,灌溉农田32亩.(1)设甲种柴油发电机数量为x台,乙种柴油发电机数量为y台. ①用含x、y的式子表示丙种柴油发电机的数量;②求出y与x的函数关系式; (2)已知甲、乙、丙柴油发电机每台每小时费用分别为130元、120元、100元,应如何安排三种柴油发电机的数量,既能按要求抽水灌溉,同时柴油发电机总费用W最少? 3. 某校校园超市老板到批发中心选购甲、乙两种品牌的文具盒,乙品牌的进货单价是甲品牌进货单价的2倍,考虑各种因素,预计购进乙品牌文具盒的数量y(个)与甲品牌文具盒的数量x(个)之间的函数关系如图所示.当购进的甲、乙品牌的文具盒中,甲有120个时,购进甲、乙品牌文具盒共需7200元. (1)根据图象,求y与x之间的函数关系式; (2)求甲、乙两种品牌的文具盒进货单价; (3)若该超市每销售1个甲种品牌的文具盒可获利4元,每销售1个乙种品牌的文具盒可获利9元,根据学生需求,超市老板决定,准备用不超过6300元购进甲、乙两种品牌的文具盒,且这两种品牌的文具盒全部售出后获利不低于1795元,问该超市有几种进货方案?哪种方案能使获利最大?最大获利为多少元? 4.(2007河北省)一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部,B型手机y部.三款手机的进价和预售价如下表: (1)用含x,y的式子表示购进C型手机的部数;

湘教版-数学-八年级上册-一次函数的最值问题

一次函数的最值问题 一般地说,一次函数的图象为一条直线,似乎与最值“无缘”,然而,在实际问题中,由于自变量取值范围的限制,其函数图象局限于某一线段或射线,从而存在最值.下面举例说明. 例 1 电视台为某个广告公司特约播放甲、乙两部连续剧.经调查,播放甲连续剧平均每集有收视观众20万人次,播放乙连续剧平均每集有收视观众15万人次,公司要求电视台每周共播放7集. (1)设一周内甲连续剧播x 集,甲、乙两部连续剧的收视观众的人次的总和为y 万人次,求y 关于x 的函数关系式. (2)已知电视台每周只能为该公司提供不超过300分钟的播放时间,并且播放甲连续剧每集需50分钟,播放乙连续剧每集需35分钟,请你用所学知识求电视台每周应播放甲、乙两部连续剧各多少集,才能使得每周收看甲、乙连续剧的观众的人次总和最大,并求出这个最大值. 解:(1)设甲连续剧一周内播x 集,则乙连续剧播(7-x )集 根据题意得:y =20x +15(7-x ) ∴y =5x +105 (2)50x +35(7-x )≤300 解得x ≤323 又y =5x +105的函数值随着x 的增大而增大. 又∵x 为自然数 当x =3时,y 有最大值3×5+105=120(万人次) 7-x =4 答:电视台每周应播出甲连续剧3集,播放乙连续剧4集,才能使每周收视观众的人次总和最大,这个最大值是120万人次. 例2 某家庭装饰厨房需用480块某品牌的同一种规格的瓷砖,装饰材料商场出售的这种瓷砖有大、小两种包装,大包装每包50片,价格为30元;小包装每包30片,价格为20元,若大、小包装均不拆开零售,那么怎样制定购买方案才能使所付费用最少? 解:根据题意,可有三种购买方案; 方案一:只买大包装,则需买包数为:48048505 =; 由于不拆包零卖.所以需买10包.所付费用为30×10=300(元) 方案二:只买小包装.则需买包数为: 4801630= 所以需买1 6包,所付费用为1 6×20=320(元) 方案三:既买大包装.又买小包装,并设买大包装x 包.小包装y 包.所需费用为W 元. 则50304803020x y W x +=??=+? 103203 W x =- + ∵050480x <<,且x 为正整数, ∴x =9时,最小W =290(元).

初中数学最值问题典型例题(含答案分析)

中考数学最值问题总结 考查知识点:1、“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。 (2、代数计算最值问题3、二次函数中最值问题) 问题原型:饮马问题造桥选址问题(完全平方公式配方求多项式取值二次函数顶点)出题背景变式:角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。 解题总思路:找点关于线的对称点实现“折”转“直” 几何基本模型: 条件:如下左图,A、B是直线l同旁的两个定点. 问题:在直线l上确定一点P,使PA PB +的值最小. 方法:作点A关于直线l的对称点A',连结A B'交l于 点P,则PA PB A B' +=的值最小 例1、如图,四边形ABCD是正方形,△ABE是等边三角 形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM. (1)求证:△AMB≌△ENB; (2)①当M点在何处时,AM+CM的值最小; ②当M点在何处时,AM+BM+CM的值最小,并说明理由; (3)当AM+BM+CM的最小值为时,求正方形的边长。 A B A'′P l

例2、如图13,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0) (1)求抛物线的解析式 (2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由. (3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线M N ∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.

一次函数最值问题

利润最值问题 1. 某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示: (1)若商场预计进货款为3500元,则这两种台灯各购进多少盏? (2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元? 2.今年春季,我国云南、贵州等西南地区遇到多少不遇旱灾,“一方有难,八方支援”,为及时灌溉农田,丰收农机公司决定支援上坪村甲、乙、丙三种不同功率柴油发电机共10台(每种至少一台)及配套相同型号抽水机分别为4台、3台、2台,每台抽水机每小时可抽水灌溉农田1亩.现要求所有柴油发电机及配套抽水机同时工作一小时,灌溉农田32亩. (1)设甲种柴油发电机数量为x台,乙种柴油发电机数量为y台. ①用含x、y的式子表示丙种柴油发电机的数量;②求出y与x的函数关系式; (2)已知甲、乙、丙柴油发电机每台每小时费用分别为130元、120元、100元,应如何安排三种柴油发电机的数量,既能按要求抽水灌溉,同时柴油发电机总费用W最少?

3. 某校校园超市老板到批发中心选购甲、乙两种品牌的文具盒,乙品牌的进货单价是甲品牌进货单价的2倍,考虑各种因素,预计购进乙品牌文具盒的数量y (个)与甲品牌文具盒的数量x(个)之间的函数关系如图所示.当购进的甲、乙品牌的文具盒中,甲有120个时,购进甲、乙品牌文具盒共需7200元. (1)根据图象,求y与x之间的函数关系式; (2)求甲、乙两种品牌的文具盒进货单价; (3)若该超市每销售1个甲种品牌的文具盒可获利4元,每销售1个乙种品牌的文具盒可获利9元,根据学生需求,超市老板决定,准备用不超过6300元购进甲、乙两种品牌的文具盒,且这两种品牌的文具盒全部售出后获利不低于1795元,问该超市有几种进货方案?哪种方案能使获利最大?最大获利为多少元? 4.一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部,B型手机y部.三款手机的进价和预售价如下表: (1)用含x,y的式子表示购进C型手机的部数; (2)求出y与x之间的函数关系式; (3)假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销这批手机过程中需另外支出各种费用共1500元. ①求出预估利润P(元)与x(部)的函数关系式; (注:预估利润P=预售总额-购机款-各种费用) ②求出预估利润的最大值,并写出此时购进三款手机各多少部.

一次函数大题难题提高题

1.已知点A(3,4),点B为直线x=-1上的动点,设B(-1,y). (1)如图1,若点C(x,0)且-1<x<3,BC⊥AC,求y与x之间的函数关系式;(2)在(1)的条件下,y是否有最大值?若有,请求出最大值;若没有,请说明理由;(3)如图2,当点B的坐标为(-1,1)时,在x轴上另取两点E,F,且EF=1.线段EF在x轴上平移,线段EF平移至何处时,四边形ABEF的周长最小?求出此时点E的坐标. 2.如图,在平面直角坐标系中,点O为坐标原点,A点的坐标为(3,0),以OA为边作等边三角形OAB,点B在第一象限,过点B作AB的垂线交x轴于点C.动点P从O点出发沿OC向C点运动,动点Q从B点出发沿BA向A点运动,P,Q两点同时出发,速度均为1个单位/秒。设运动时间为t秒. (1)求线段BC的长; (2)连接PQ交线段OB于点E,过点E作x轴的平行线交线段BC于点F。设线段EF 的长为m,求m与t之间的函数关系式,并直接写出自变量t的取值范围: (3)在(2)的条件下,将△BEF绕点B逆时针旋转得到△BE′F′,使点E的对应点E′落在线段AB上,点F的对应点是F′,E′F′交x轴于点G,连接PF、QG,当t为何 3.一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为x h,两车之间的距离为y km,图中的折线表示y与x之间的函数关系.根据图象解决以下问题:

(1)慢车的速度为 km/h,快车的速度为 km/h;(2)解释图中点D的实际意义并求出点D的坐标;(3)求快车出发多少时间时,两车之间的距离为300km? 4.一次函数y=k 1x+b的图像经过点(0,-4)且与正比例函数y=k 2 x的图象交于点(2, -1). (1)分别求出这两个函数的表达式; (2)求这两个函数的图象与x轴围成的三角形的面积; (3)直接写出不等式k 1x-4≥k 2 x的解集。 5.已知:如图1,△OAB是边长为2的等边三角形,OA在x轴上,点B在第一象限内;△OCA是一个等腰三角形,OC=AC,顶点C在第四象限,∠C=120°.现有两动点P、Q 分别从A、O两点同时出发,点Q以每秒1个单位的速度沿OC向点C运动,点P以每秒3个单位的速度沿A→O→B运动,当其中一个点到达终点时,另一个点也随即停止. (1)求在运动过程中形成的△OPQ面积S与运动时间t之间的函数关系,并写出自变量t的取值范围; (2)在OA上(点O、A除外)存在点D,使得△OCD为等腰三角形,请直接写出 ....所有符合条件的点D的坐标; (3)如图2,现有∠MCN=60°,其两边分别与OB、AB交于点M、N,连接MN.将∠MCN 绕着C点旋转(0°<旋转角<60°),使得M、N始终在边OB和边AB上.试判断在这一过程中,△BMN的周长是否发生变化?若没有变化,请求出其周长;若发生变化,请说明理由.

一次函数大题难题提高题

一次函数 1.已知点A(3,4),点B为直线x=-1上的动点,设B(-1,y). (1)如图1,若点C(x,0)且-1<x<3,BC⊥AC,求y与x之间的函数关系式;(2)在(1)的条件下,y是否有最大值?若有,请求出最大值;若没有,请说明理由;(3)如图2,当点B的坐标为(-1,1)时,在x轴上另取两点E,F,且EF=1.线段EF在x轴上平移,线段EF平移至何处时,四边形ABEF的周长最小?求出此时点E的坐标. 2.如图,在平面直角坐标系中,点O为坐标原点,A点的坐标为(3,0),以OA为边作等边三角形OAB,点B在第一象限,过点B作AB的垂线交x轴于点C.动点P从O点出发沿OC向C点运动,动点Q从B点出发沿BA向A点运动,P,Q两点同时出发,速度均为1个单位/秒。设运动时间为t秒. (1)求线段BC的长; (2)连接PQ交线段OB于点E,过点E作x轴的平行线交线段BC于点F。设线段EF 的长为m,求m与t之间的函数关系式,并直接写出自变量t的取值范围: (3)在(2)的条件下,将△BEF绕点B逆时针旋转得到△BE′F′,使点E的对应点E′落在线段AB上,点F的对应点是F′,E′F′交x轴于点G,连接PF、QG,当t为何值时, 3.一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为x h,两车之间的距离为y km,图中的折线表示y与x之间的函数关系.根据图象解决以下问题:

(1)慢车的速度为 km/h,快车的速度为 km/h;(2)解释图中点D的实际意义并求出点D的坐标;(3)求快车出发多少时间时,两车之间的距离为300km? 4.一次函数y=k 1x+b的图像经过点(0,-4)且与正比例函数y=k 2 x的图象交于点(2, -1). (1)分别求出这两个函数的表达式; (2)求这两个函数的图象与x轴围成的三角形的面积; (3)直接写出不等式k 1x-4≥k 2 x的解集。 5.已知:如图1,△OAB是边长为2的等边三角形,OA在x轴上,点B在第一象限内;△OCA是一个等腰三角形,OC=AC,顶点C在第四象限,∠C=120°.现有两动点P、Q 分别从A、O两点同时出发,点Q以每秒1个单位的速度沿OC向点C运动,点P以每秒3个单位的速度沿A→O→B运动,当其中一个点到达终点时,另一个点也随即停止. (1)求在运动过程中形成的△OPQ面积S与运动时间t之间的函数关系,并写出自变量t的取值范围; (2)在OA上(点O、A除外)存在点D,使得△OCD为等腰三角形,请直接写出 ....所有符合条件的点D的坐标; (3)如图2,现有∠MCN=60°,其两边分别与OB、AB交于点M、N,连接MN.将∠MCN 绕着C点旋转(0°<旋转角<60°),使得M、N始终在边OB和边AB上.试判断在这一过程中,△BMN的周长是否发生变化?若没有变化,请求出其周长;若发生变化,请说明理由.

相关文档
相关文档 最新文档