文档库 最新最全的文档下载
当前位置:文档库 › 一次函数中的最值问题

一次函数中的最值问题

一次函数中的最值问题
一次函数中的最值问题

一次函数中的最值问题

问题1 如图,要在燃气管道l 上修建一个泵站,分别向A ,B 两城镇供气.泵站修在什么地方,可使所用的输气管线最短?

问题2 如图,已知点A (4,3),点B (0,1)。若点C 是x 轴上一动点,当BC AC +的值最小时,求C 点坐标.

问题3 如图,已知点A (4,3),点B (0,-1)。

若点C 是x 轴上一动点,当BC AC -的值最大时,

求C 点坐标.

问题4 如图,已知点A (4,3)。若点C 是直线y=-x+4上一点,B 是直线x=5上一点,当△ABC 的周长最小时,求C 、B 两点的坐标.

C B'

问题5 如图,已知点A(4,3),B(1,2)。若点C是y轴上点,D是x轴上一点,当四边形ABCD的周长最小时,求C、D两点的坐标.

B

问题6如图,已知点A(4,3),B(1,2)。若点C、D是x轴上两点,且CD=1当使四边形ABCD的周长最小时,求C、D两点的坐标.

B

问题7 如图,已知点A(4,3),B(-1,-2)。若点C是直线y=2上一点,D是x轴上一点,C D⊥x轴,当四边形AC+CD+BD最小时,求C、D两点的坐标.

B

初中数学一次函数的最值问题

初中数学一次函数的最值问题 一次函数在自变量x允许取值范围(即全体实数)内,它是没有最大或最小值的。但是,如果给定了自变量的某一个取值范围(全体实数的一部分),那么y=kx+b 的最大值或最小值就有可能存在。一般地,有下面的结论:1、如果,那么有最大值或最小值(如图1):当时,,;当时,,。 图1 2、如果,那么有最小值或最大值(如图2):当 时,;当时,。 图2

3、如果,那么有最大值或最小值(如图3)当 时,;当,。 图3 4、如果,那么既没有最大值也没有最小值。凡是用一次函数式来表达实际问题,求其最值时,都需要用到边界特性,像物质的运输与供应、生产任务的分配和订货、邮件的投递及空袋的调运等。 下面是一道利用一次函数的最小值的决策问题,供参考: 某送奶公司计划在三栋楼之间建一个奶站,三栋楼在同一条直线上,顺次为A楼,B楼,C楼,其中A楼与B楼之间的距离为40m,B楼与C楼之间的距离为60m,已知A楼每天有20人取奶,B楼每天有70人取奶,C楼每天有60人取奶,送奶公司提出两种建站方案: 方案一:让每天所有取奶的人到奶站的距离总和最小; 方案二:让每天A楼与C楼所有取奶的人到奶站的距离之和等于B楼所有取奶的人到奶站距离之和。 (1)若按照方案一建站,取奶站应建在什么位置?

(2)若按照方案二建站,取奶站应建在什么位置? (3)在方案二的情况下,若A楼每天取奶的人数增加(增加的人数不超过22人),那么取奶站将离B楼越来越远,还是越来越近?请说明理由。 解:(1)设取奶站建在距A楼xm处,所有取奶的人到奶站的距离总和为ym.。 ①当时, ∴当x=40时,y的最小值为4400。 ②当时, , 此时y的值大于4400。 因此按方案一建奶站,取奶站应建在B楼处。 (2)设取奶站建在距A楼xm处。 ①当时, , 解得(舍去)。 ②当时, 解得x=80, 因此按方案二建奶站,取奶站应建在距A楼80m处。

初中数学一次函数的最值问题

初中数学一次函数的最值问题 一次函数)0k (b kx y ≠+=在自变量x 允许取值范围(即全体实数)内,它是没有最大或最小值的。但是,如果给定了自变量的某一个取值范围(全体实数的一部分),那么y=kx+b 的最大值或最小值就有可能存在。一般地,有下面的结论: (1)如果m x n ≤≤,那么b kx y +=有最大值或最小值(如图1):当0k >时,b km y +=最大,b kn y +=最小;当0k <时,b kn y +=最大,b km y +=最小。 图1 (2)如果n x ≥,那么b kx y +=有最小值或最大值(如图2):当0k >时,b kn y +=最小;当0k <时,b kn y +=最大。 图2 (3)如果m x ≤,那么b kx y +=有最大值或最小值(如图3)当0k >时,b km y +=最大;当0k <,b km y +=最小。 图3 (4)如果m x n <<,那么b kx y +=既没有最大值也没有最小值。 凡是用一次函数式来表达实际问题,求其最值时,都需要用到边界特性,像物质的运输与供应、生产任务的分配和订货、邮件的投递及空袋的调运等。 下面是一道利用一次函数的最小值的决策问题,供同学们参考: 某送奶公司计划在三栋楼之间建一个奶站,三栋楼在同一条直线上,顺次为A 楼,B 楼,C 楼,其中A 楼与B 楼之间的距离为40m ,B 楼与C 楼之间的距离为60m ,已知A 楼每天有20人取奶,B 楼每天有70人取奶,C 楼每天有60人取奶,送奶公司提出两种建站

方案: 方案一:让每天所有取奶的人到奶站的距离总和最小; 方案二:让每天A 楼与C 楼所有取奶的人到奶站的距离之和等于B 楼所有取奶的人到奶站距离之和。 (1)若按照方案一建站,取奶站应建在什么位置? (2)若按照方案二建站,取奶站应建在什么位置? (3)在方案二的情况下,若A 楼每天取奶的人数增加(增加的人数不超过22人),那么取奶站将离B 楼越来越远,还是越来越近?请说明理由。 解:(1)设取奶站建在距A 楼xm 处,所有取奶的人到奶站的距离总和为ym.。 ①当40x 0≤≤时, 8800 x 110)x 100(60)x 40(70x 20y +?-=-+-+= ∴当x=40时,y 的最小值为4400。 ②当100x 40≤<时, )x 100(60)40x (70x 20y -+-+= 3200x 30+=, 此时y 的值大于4400。 因此按方案一建奶站,取奶站应建在B 楼处。 (2)设取奶站建在距A 楼xm 处。 ①当40x 0≤≤时, )x 40(70)x 100(60x 20-=-+, 解得03 320x <- =(舍去)。 ②当100x 40≤<时, )40x (70)x 100(60x 20-=-+ 解得x=80, 因此按方案二建奶站,取奶站应建在距A 楼80m 处。 (3)设A 楼取奶人数增加a (22a 0≤≤)人, ①当40x 0≤≤时, )x 40(70)x 100(60x )a 20(-=-++, 解得30 a 3200x +-=(舍去)。 ②当100x 40≤<时, )40x (70)x 100(60x )a 20(-=-++, 解得a 1108800x -=,当a 增大时,x 增大。 ∴当A 楼取奶的人数增加时,按照方案二建奶站,取奶站仍建在B 、C 两楼之间,且随着人数的增加,离B 楼越来越远。

10一次函数优选和极值练习

一次函数优选和极值问题 1.某工厂生产某种产品,每件产品的出厂价为1万元,原材料成本价(含设备损耗等)为0.55万元,同 时在生产过程中平均每生产一件产品有1吨的废渣产生,为达到国家环保要求,需要对废渣进脱硫、脱氮等处理,现两种方案可供选择: 方案一:由工厂对废渣直接进行处理,每处理1吨废渣所用的原料费为0.05万元,并且每月设备维护及损耗费为20万元。 方案二:工厂将废渣集中到废渣处理厂统一处理,每处理1吨废渣需付0.1万元的处理费。 问:⑴设工厂每月生产x件产品,每月利润为y万元,分别求出方案一和方案二处理废渣时,y与x 之间的函数关系式(利润=总收入-总支出) ⑵若你作为工厂负责人,如何根据月生产量选择处理方案,既可达到环保要求又最合算。 2.某商场计划投入一笔资金采购一批紧俏商品,经过市场调查发现,如果月初出售,可获利15%,并 可用本和利再投资其他商品,到月末又可获利10%;如果月末出售可获利30%,但要付出仓储费用700元,请问根据商场的资金状况,如何购销获利较多? 3.某单位计划10月份组织员工到H地旅游,人数估计在10—25人之间,甲、乙两旅行社的服务质量 相同,且组织到H地旅游的价格都是每人200元。该单位联系时,甲旅行社表示可给予每位游客七五折优惠,乙旅行社表示可先免去一位游客的旅游费用,其余游客八折优惠,问该单位怎样选择,支付的旅游费用较少? 4.某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品,共 50件。已知生产一件A种产品需甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B 种产品需甲种原料4千克、乙种原料10千克,可获利润1200元。 (1)生产A、B两种产品获总利润是y(元),其中一种的生产件数是x,试写出y与x之间的函数关系

一次函数的最值问题

一次函数的“最值”问题 一次函数y=kx+b中,x、y均可取一切实数.如果缩小x的取值范围,则其函数值就会出现最大值或最小值.一次函数的“最值”由一次函数的性质决定,与其k值、自变量的取值范围密切相关: ⑴k>0时,y随x增大而增大.因此,x取最小值时,y有最小值;x取最大值时,y有最大值. ⑵k<0时,y随x增大而减小.因此,x取最小值时,y有最大值;x取最大值时,y有最小值. k值、自变量的取值范围与函数最大值、最小值的对应情况如下表: 求一次函数的最大、最小值,一般都是采用“极端值法”.即用

自变量的端点值,根据函数增减性,对应求出函数的端点值(最值).请看以下实例. 例1.已知一次函数y=kx+b中自变量x的取值范围是-2≤x≤6,相应的函数取值范围是-11≤y≤9.求此函数的解析式.解析:x的取值范围与函数y的取值范围的对应情况,由k值的符号确定.故应分类讨论. ⑴k>0时,y随x增大而增大.x=-2时,y=-11;x=6时,y=9. ∴解得∴y=x-1 ⑵k<0时, y随x增大而减小.x=-2时,y=9;x=6时,y=-11. ∴解得∴y=-x+14 例2.康乐公司在A、B两地分别有同型号的机器17台和15台,现在运往甲地18台、乙地14台.从A、B两地运往甲、乙两地的费用如下表; 甲地(元/台)(18)乙地(元/台)(14) A地(17)600(x)500(17-x) B地(15)400(18-x)800(x-3) ⑴如果从A地运往甲地x台,求完成以上调运所需总费用y(元)关于x(台)的函数解析式; ⑵若康乐公司请你设计一种最佳调运方案,使总的费用最少,则

一次分式函数最值问题

一次分式函数最值问题 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

拆分函数解析式结构,巧解问题 --------------函数()ax b f x cx d +=+值域(最值)问题的解法 在高中,初学函数之时,我们接触的具体函数并不多。前面我们已经给出了一元二次函数值域(最值)的求法步骤。除此,还有一类()(0)ax b f x c cx d +=≠+函数也很常见,它也是今后解决其他复杂函数值域(最值)问题的基础。此类函数看似生疏,而实际这类函数的图像,就是我们初中学过的反比例函数图像。 此类问题有三种类型,一种是函数式子决定定义域,不额外附加函数定义域;另一种是附加定义域。还有一种是可转化为()(0)ax b f x c cx d += ≠+型的函数,此类随着学习的深入,再行和大家见面。 下面我们以具体实例,说明如何依据函数解析式的结构特征,选择适当的方法步骤解决问题。 【例题1】:求函数21()3 x f x x +=-的值域; 【思路切入】:从函数结构可以得出,函数定义域由分式决定,为 {|3}x x R x ∈≠且,此时,将函数解析式的结构进行拆分变换,不难得出反比例函数结构,如此,得到解法程序: 1、将函数分解为反比例的结构; 2、根据反比例结构特性,或者利用图像,或者利用数式属性得到函数值域。 【解析】:原函数可化为212677()2333 x x f x x x x +-+===+---, 7303 x x ≠≠-且 ,2y ∴≠,函数()f x 值域为{|2}y y R y ∈≠且; 【例题2】:求函数21(),(2,4]1x f x x x -=∈-的值域;

一次函数中的最值问题

一次函数中的最值问题 问题1 如图,要在燃气管道l 上修建一个泵站,分别向A ,B 两城镇供气.泵站修在什么地方,可使所用的输气管线最短? 问题2 如图,已知点A (4,3),点B (0,1)。 (1)求一次函数解析式; (2)若点C 是x 轴上一动点,当AC +BC 的值最小时,求C 点坐标。 问题3 如图,已知点 A (4,3),点 B (0,-1)。若点 C 是x 轴上一动点,当BC AC 的值最大时,求C 点坐标. 问题4 如图,已知点A (4,3)。若点C 是直线y=-x+4上一点,B 是直线x=5上一点,当△ABC 的周长最小时,求C 、B 两点的坐标. 问题5 如图,已知点A (4,3),B (1,2)。若点C 是y 轴上点,D 是x 轴上一点,当四边形ABCD 的周长最小时,求C 、D 两点的坐标. 问题6 如图,平面直角坐标系中A (1,4),B (3,2),C. D 为x 轴上两动点,且CD =1,试求四边形ACDB 周长最小时,C. D 两点的坐标。 问题7 已知直角坐标系内的点A (4,1)、B (3,2),试分别在直线y =x 和x 轴上找点C. D 使得四边形ABCD 的周长最短。 (1)作图(并写出作法) (2)写出C. D 两点坐标。 问题8如图,已知点A (2,0)、B (?1,1),点P 是直线y =?x +4上任意一点。 (1)当点P 在什么位置时,△P AB 的周长最小?求出点P 的坐标及周长的最小值; (2)在(1)的条件下,求出△P AB 的面积。 B

问题2(1)把点A、B的坐标代入一次函数解析式y=kx+b(k≠0)列出关于k、b的方程组,通过解该方程组即可求得它们的值; (2)利用轴对称--最短距离来求点C的坐标.作点A (4,3)关于x轴的对称点A′(4,-3),连接BA′交x轴于点C,则此时AC+BC取得最小值.然后利用待定系数法求得直线BA′的解析式,然后将y=0代入求得的直线的解析式即可求得点C的坐标. 解答: (1)设直线AB的解析式为y=kx+b(k≠0).依题意,得 {4k+b=3b=1, 解得,???k=12b=1, 所以,该一次函数的解析式为:y=1/2x+1; (2)如图,作点A(4,3)关于x轴的对称点A′(4,?3),连接BA′交x轴于点C,则此时AC+BC取得最小值。 设直线BA′的解析式为y=kx+1,依题意 ?3=4k+1. k=?1. ∴直线BA′的解析式为y=?x+1. 令y=0,则x=1. ∴C(1,0). 问题3解答: 先把B关于X轴对称得到B'点。BC=B'C当c不在AB'线上时,根据三角形定理,|AC-BC|小于AB',当C在AB'上时,|AC-BC|等于AB',所以当C在AB'上时,|AC-BC|最大,这个时候先求出AB'的方程是y=1/2x+1,求出C点坐标为(-2,0) 问题4案

一次函数 最全面 知识点题型总结

初中数学一次函数知识点总结 基本概念: 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 函数性质: 1.y的变化值与对应的x的变化值成正比例,比值为k. 即:y=kx+b(k,b为常数,k ≠0)。 2.当x=0时,b为函数在y轴上的点,坐标为(0,b)。 3当b=0时(即 y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。 4.在两个一次函数表达式中: 当两一次函数表达式中的k相同,b也相同时,两一次函数图像重合; 当两一次函数表达式中的k相同,b不相同时,两一次函数图像平行; 当两一次函数表达式中的k不相同,b不相同时,两一次函数图像相交; 当两一次函数表达式中的k不相同,b相同时,两一次函数图像交于y轴上的同一点(0,b)。 图像性质 1.作法与图形:

(1)列表. (2)描点;一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。一般的y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点画直线即可。 正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点。 2.性质: (1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。 (2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。 3.函数不是数,它是指某一变化过程中两个变量之间的关系。 一次函数的图象特征和性质: y =kx+b b>0 b<0 b=0 y=kx k >0 经过第一、二、 三象限 经过第一、三、 四象限 经过第一、 三象限图象从左到右上升,y随x的增大而增大 k <0 经过第一、二、 四象限 经过第二、三、 四象限 经过第二、 四象限图象从左到右下降,y随x的增大而减小

分式函数求最值 班 班

分式函数的图象及性质和值域(4,13班) 耿 在近几年的高考和模拟考试题目中,经常会出现求解模型函数为分式函数值域的题目,而分式函数的值域求法有共同的规律,本节课给大家介绍解法并总结出通法! 【知识要点】 1.函数(0,)ax b y c ad bc cx d +=≠≠+ (1)定义域:{|}d x x c ≠-(2)值域:{|y y ≠单调区间为(,),(,+)d d c c -∞--∞(4)直线,d a x y c c =-=,对称中心为点(,)d a c c - (5)奇偶性:当0a d ==时为奇函数。(62.函数(0,0)b y ax a b x =+ >>的图象和性质: (1)定义域:{|0}x x ≠(2)值域:{|y y y ≥或(3)奇偶性:奇函数(4 )单调性:在区间+),(∞上是增函数;在区间上是减函数(5以y 轴和直线y ax =为渐近线(6)图象:如图所示。 3.函数(0,0)b y ax a b x = + ><的图象和性质: (1)定义域:{|0}x x ≠(2)值域:R (3调性:在区间(0,+)∞和(,0)-∞上是增函数。(5直线y ax =为渐近线(6)图象:如图所示。 (0)b y ax a x =+ <的图象(如图所示)和性质(略):

类型一:( ,, ,) ax b y a b c d R cx d + =∈ + (“一次比一次”型) 备注:本质上一定是反比例函数上下或左右平移而来,所以一定是中学对称函数,可以从图像观察出其值域范围。 例1。函数 1 1 + - = x y的图象是() A B C D 例2、画出函数 21 1 x y x - = - 的图像,依据函数图像,指出函数的单调区间、值域、对称中心。【分析】 212(1)11 2 111 x x y x x x --+ ===+ --- ,即函数 21 1 x y x - = - 的图像可以经由函数 1 y x = 的图像向右平移1个单位,再向上平移2个单位得到。如下表所示: 12 111 2 11 y y y x x x =??→=??→=+ -- 右上 由此可以画出函数 21 1 x y x - = - 的图像,如下: 单调减区间:(,1),(1,) -∞+∞; 值域:(,2)(2,) -∞+∞ U; 对称中心:(1,2)。 x O y x O y 1 2 x O y 1

八年级数学-一次函数最值的应用例说

八年级数学-一次函数最值的应用例说 在经济问题中,常会遇到求函数的最大值和最小值问题,如求最大利润、最小成本、确定最优的生产方案等问题,以图达到最经济、最节约和最高的经济效率. 谈到最值问题,人们关心的是二次函数的最值问题.而对一次函数最值的应用问题却很少了解,但在实际问题中,一次函数的最值的应用极为广泛. 一次函数y=kx+b(k≠0)的自变量x的取值范围是一切实数,所以一次函数没有最大(小)值,但是,当自变量在某个闭区间a≤x≤b内取值时(a,b为实数),一次函数y =kx+b却存在着最大(小)值. 例1 20个农场职工种50亩地,这些地可以种蔬菜、棉花或水稻,如果种这些农作物每亩地所需的职工和预计的产值如下: 问怎样安排,才能使每亩地都种上作物,所有职工都有工作,而且农作物的预计总产值达到最高? 解设种蔬菜、棉花、水稻的土地分别为x亩、y亩、z亩,预计总产值为w元.根据已知条件,得: x+y+z=50, (1) W=1100x+750y+600z. (3) 由(1)、(2)可得: y=90-3x (4) z =2x-40 (5) 把(4)、(5)代入(3)得: W=50x+43500. 由x≥0,y =90-3x≥0,z=2x-40≥0得: 20≤x≤30. 所以当x=30时,W取最大值45000元 此时y =0,z =20.

即种30亩蔬菜,20亩水稻才能使预计总产值最高,可达45000元. 例2 48人划船,每只小船坐3人,租金2元;每只大船坐5人,租金3元,最少要付租金多少元? 解设用x只大船,y只小船;要付租金W元. 由题意可知: 5x+3y =48, (1) W =3x+2y. (2) 把(3)代入(2)得: W=3x+2y 由于人数是48人,每只大船坐5人,由此可知:0<5x<48,得0<x<10,要使W最小,x应取最大整数值.即当x =9时,W的值最小. 答:最少要付租金29元. 例3 在边防沙漠地带,巡逻车每天行驶200公里,每辆巡逻车可装载供行驶14天的汽油.现有5辆巡逻车同时从驻地A出发,完成任务后再沿原路返回驻地,为了让其中三辆尽可能向更远的距离巡逻(然后再一起返回),甲、乙两车行至途中B处后,仅留足自己返回驻地所必须的汽油,将多余的汽油留给另外三辆使用,问其它三辆车可行进的最远距离是多少公里?(1995年河北省初中数学联合竞赛试题) 解设巡逻车行驶到途中B处时用了x天,其中的三辆车从B到最远处用y天,则有2[3(x+y)+2x]=14×5, 即 5x+3y=35。 (1) 由题意可知x>0,y>0且 14×5-(5+2)x≤14×3 即x≥4.

求函数最值的方法归纳

求函数最值的常用以下方法: 1.函数单调性法 先确定函数在给定区间上的单调性,然后依据单调性求函数的最值.这种利用函数单调性求最值的方法就是函数单调性法.这种求解方法在高考中是必考的,且多在解答题中的某一问中出现. 例1 设a >1,函数f (x )=log a x 在区间[a,2a ]上的最大值与最小值之差为1 2,则a =________. 【思路】 先判断函数在指定区间上的单调性,再求出函数的最值,然后利用条件求得参数a 的值. 【解析】 ∵a >1,∴函数f (x )=log a x 在区间[a,2a ]上是增函数,∴函数在区间[a,2a ]上的最大值与最小值分别为log a 2a ,log a a =1.∴log a 2=1 2 ,a =4.故填4. 【讲评】 解决这类问题的重要的一步就是判断函数在给定区间上的单调性.这一点处理好了,以下的问题就容易了.一般而言,对一次函数、幂函数、指数函数、对数函数在闭区间[m ,n ]上的最值:若函数f (x )在[m ,n ]

上单调递增,则f(x)min=f(m),f(x)max=f(n);若函数f(x)在[m,n]上单调递减,则f(x)min=f(n),f(x)max=f(m);若函数f(x)在[m,n]上不单调,但在其分成的几个子区间上是单调的,则可以采用分段函数求最值的方法处理.2.换元法 换元法是指通过引入一个或几个新的变量,来替换原来的某些变量(或代数式),以便使问题得以解决的一种数学方法.在学习中,常常使用的换元法有两类,即代数换元和三角换元,我们可以根据具体问题及题目形式去灵活选择换元的方法,以便将复杂的函数最值问题转化为简单函数的最值问题,从而求出原函数的最值.如可用三角代换解决形如a2+b2=1及部分根式函数形式的最值问题. 例2 (1)函数f(x)=x+21-x的最大值为________. 【解析】方法一:设1-x=t(t≥0), ∴x=1-t2, ∴y=x+21-x=1-t2+2t

一次函数的专题复习~最经典最全

函数的概念及表示方法 知识点 1.概念:在某一个变化过程中,设有两个变量x 和y ,如果对于x 的每一个确定的值,在y 中都有唯一确定的值与其对应,那么我们就说y 是x 的函数,也就是说x 是自变量,y 是因变量。 2.确定函数自变量取值范围的方法(1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 例题精讲 考点1.函数的概念 例1.下列图象中,表示y 是x 的函数的个数有( ) A .1个 B .2个 C .3个 D .4个 考点2.函数的表示法 例2.如图是广州市某一天内的气温变化图, 根据图象,下列说法中错误的是( ) A .这一天中最高气温是24℃ B .这一天中最高气温与最低气温的差为16℃ C .这一天中2时至14时之间的气温在逐渐升高 D .这一天中只有14时至24时之间的气温在逐渐降低 考点3.求自变量的取值范围 例3.(2014?上海)函数y= 的自变量的取值x 范围是 . 例4.(2014四川省内江市)在函数2 x y += 中,自变量x 的取值范围是 . 例5.等腰△ABC 周长为10cm ,底边BC 长为y cm ,腰AB 长为x cm . (1)写出y 与x 的函数关系式; (2)求x 的取值范围; (3)求y 的取值范围. 4.下列函数中,自变量x 的取值范围是x ≥ 2的是( ) A .y=2x - B .y= 2 x - C .y=24x - D .y=2x +·2x -

一次分式函数最值问题

一次分式函数最值问题Last revision on 21 December 2020

拆分函数解析式结构,巧解问题 --------------函数()ax b f x cx d +=+值域(最值)问题的解法 在高中,初学函数之时,我们接触的具体函数并不多。前面我们已经给出了一元二次函数值域(最值)的求法步骤。除此,还有一类()(0)ax b f x c cx d +=≠+函数也很常见,它也是今后解决其他复杂函数值域(最值)问题的基础。此类函数看似生疏,而实际这类函数的图像,就是我们初中学过的反比例函数图像。 此类问题有三种类型,一种是函数式子决定定义域,不额外附加函数定义域;另一种是附加定义域。还有一种是可转化为()(0)ax b f x c cx d += ≠+型的函数,此类随着学习的深入,再行和大家见面。 下面我们以具体实例,说明如何依据函数解析式的结构特征,选择适当的方法步骤解决问题。 【例题1】:求函数21()3 x f x x +=-的值域; 【思路切入】:从函数结构可以得出,函数定义域由分式决定,为 {|3}x x R x ∈≠且,此时,将函数解析式的结构进行拆分变换,不难得出反比例函数结构,如此,得到解法程序: 1、将函数分解为反比例的结构; 2、根据反比例结构特性,或者利用图像,或者利用数式属性得到函数值域。 【解析】:原函数可化为212677()2333 x x f x x x x +-+===+---, 7303 x x ≠≠-且 ,2y ∴≠,函数()f x 值域为{|2}y y R y ∈≠且; 【例题2】:求函数21(),(2,4]1x f x x x -=∈-的值域;

(完整版)一次函数的实际应用(经典)

一次函数的应用 用一次函数解决实际生活问题: 常见类型: (1)求一次函数的解析式; (2)利用一次函数的图象与性质解决某些问题,如最大(小)值问题等. 一次函数解决实际问题的步骤: (1)认真分析实际问题中变量之间的关系; (2)若具有一次函数关系,则建立一次函数的关系式; (3)利用一次函数的有关知识解题 探究类型之一利用一个一次函数的方案选择 例1:某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,购进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6 710元且不超过6 810元购进这两种商品共100件. (1)求这两种商品的进价; (2)该商店有几种进货方案?哪种进货方案可获得最大利润,最大利润是多少? 类似性问题 1.某中学计划购买A型和B型课桌凳共200套.经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元. (1)求购买一套A型课桌凳和一套B型课桌凳各需多少元? (2)学校根据实际情况,要求购买这两种课桌凳的总费用不能超过40880元,

并且购买A型课桌凳的数量不能超过B型课桌凳的23,求该校本次购买A型和B 型课桌凳共有几种方案?哪种方案的总费用最低? 2.建设环境优美、文明和谐的新农村,某村村委会决定在村道两旁种植A,B两种树木,需要购买这两种树苗1000棵.A,B两种树苗的相关信息如下表: 设购买A种树苗x棵,绿化村道的总费用为y元.解答下列问题: (1)写出y(元)与x(棵)之间的函数关系式; (2)若这批树苗种植后成活了925棵,则绿化村道的总费用需要多少元?(3)若绿化村道的总费用不超过31000元,则最多可购买B种树苗多少棵? 探究类型之二利用两个一次函数的方案选择 例3 川省第十二届运动会将于2014年8月18日在我市隆重开幕,根据大会

2020-2021学年北师大版初二数学上册难点突破14一次函数在实际应用中的最值问题

专题14 一次函数在实际应用中的最值问题 【专题说明】 1、通过图象获取信息 通过观察一次函数的图象获取有用的信息是我们在日常生活中经常遇到的问题,要掌握这个重点在于对函数图象的观察和分析,观察函数图象时,首先要看横轴、纵轴分别代表的是什么,也就是观察图象反映的是哪两个变量之间的关系. 【注】函数图象中的特殊点 观察图象获取信息时,一定要注意图象上的特殊点,这些特殊点对我们解决问题有很大的帮助. 2、一次函数图象的应用 一次函数和正比例函数是我们接触到的最简单的函数,它们的图象和性质在现实生活中有着广泛的应用.利用一次函数和正比例函数的图象解决问题是本节的一个重点,这部分内容在中考中占有重要的地位.【注】函数y=kx+b图象的变化形式 在实际问题中,当自变量的取值范围受到一定的限制时,函数y=kx+b(k≠0)的图象就不再是一条直线.要根据实际情况进行分析,其图象可能是射线、线段或折线等等. 1、甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题: (1)乙队开挖到30 m时,用了________ h.开挖6 h时甲队比乙队多挖了_______ m. (2)请你求出: ①甲队在0≤x≤6的时段内,y与x之间的函数关系式; ②乙队在2≤x≤6的时段内,y与x之间的函数关系式. (3)当x为何值时,甲、乙两队在施工过程中所挖河渠的长度相等? 分析:(1)由图象可以直接看出乙队开挖到30 m时,用了2 h.开挖6 h时甲队比乙队多挖了10 m;(2)设甲队在0≤x≤6的时段内y与x之间的函数关系式为y=k1x(k1≠0),由图可知,函数图象过点(6,60),∴6k1=60,解得k1=10,∴y=10x.设乙队在2≤x≤6的时段内y与x之间的函数关系式为y=k2x+b(k2≠0),由图可知,函数图象过点(2,30),(6,50),代入y=k2x+b,求出k2=5,b=20,∴y=5x+20.(3)由题意,得10x=5x+20,解得x=4(h). 解:(1)210 (2)①y=10x.②y=5x+20. (3)由题意,得10x=5x+20,解得x=4(h). 故当x为4 h时,甲、乙两队所挖的河渠长度相等. 2、某单位急需用车,但又不准备买车,他们准备和一个体车主或一国有出租车公司签订月租车合同.设汽车每月行驶x km,应付给个体车主的月费用为y1元,应付给国有出租车公司的月费用是y2元,y1,y2分别与x之间的函数关系图象(两条射线)如图,观察图象回答下列问题: (1)每月行驶的路程在什么范围内时,租国有出租车公司的车合算? (2)每月行驶的路程等于多少时,租两家车的费用相同? (3)如果这个单位估计每月行驶的路程为2 600 km,那么这个单位租哪家车合算? 分析:本题从给出的两个函数图象中可获取以下信息:都是一次函数,一个是正比例函数;两条直线交点的横坐标为1 500;表明当x=1 500时,两个函数值相等;根据图象可知:x>1 500时,y2>y1;0<x<1 500

一次函数中的最值问题

第十二讲 一次函数中的最值问题 1.已知直线l1:y=﹣x+b与x轴交于点A,直线l2:y=x﹣与x轴交于点B,直线l1、l2交于点C, 且C点的横坐标为1. (1)如图1,过点A作x轴的垂线,若点P(x,2)为垂线上的一个点,Q是y轴上一动点,若S△CPQ=5,求此时点Q的坐标; (2)若P在过A作x轴的垂线上,点Q为y轴上的一个动点,当CP+PQ+QA的值最小时,求此时P的坐标; (3)如图2,点E的坐标为(﹣2,0),将直线l1绕点C旋转,使旋转后的直线l3刚好过点E,过点C 作平行于x轴的直线l4,点M、N分别为直线l3、l4上的两个动点,是否存在点M、N,使得△BMN是以M 点为直角顶点的等腰直角三角形?若存在,求出N点的坐标;若不存在,请说明理由. 2.如图,一次函数y=﹣x+6的图象分别与y轴、x轴交于点A、B,点P从点B出发,沿射线BA以每秒 1个单位的速度出发,设点P的运动时间为t秒. (1)点P在运动过程中,若某一时刻,△OPA的面积为6,求此时P的坐标; (2)在整个运动过程中,当t为何值时,△AOP为等腰三角形?(只需写出t的值,无需解答过程) (3)若第二象限有一点C(﹣1,4),试问在y轴上是否存在一点M,使BM﹣CM的值最大?如果存在,求出点M的坐标;如果不存在,请说明理由.

3.如图,在平面真角坐标系中,点A的坐标是(﹣,0),点B的坐标是(0,1).点B和点C关于原点对称.点P是直线AB位于y轴右侧部分图象上一点,连接CP,已知S△BPC=S△ABC, (1)求直线AC的解析式; (2)如图2,△AOC沿着直线AC平移得△A′O′C′,平移后的点A′与点C重合点F为直线AC上的一动点, 当PF+FC′的值最小时,请求出PF+FC′的最小值及此时点F的坐标; (3)如图3,将△PBC沿直线PA翻折得△PBG,点N为平面内任意一动点,在直线PA上是否存在点M,使得以点M、N、P、G为顶点的四边形是矩形?若存在,请直接写出点M的坐标;若不存在,说明理由. 4.如图,在平面直角坐标系xOy中,直线AB:y=kx﹣6(k≠0)交x轴正半轴于点A,交y轴负半轴于点B,点C在线段OA上,将△ABC沿直线BC翻折,点A与y轴上的点D(0,4)恰好重合. (1)求直线AB的表达式; (2)已知点E(0,3),点P是直线BC上的一个动点(点P不与点B重合),连接PD,PE,当△PDE的周长取得最小值时,求点P的坐标; (3)在坐标轴上是否存在一点H,使得△HAB和△ABC的面积相等?若存在,求出满足条件的点H的坐标;若不存在,请说明理由.

2020中考常见最值问题总结归纳微专题八函数最值一次函数增减性法(原卷版)

2020 中考常见最值问题总结归纳微专题八:一次函数增减性法 W O R K I N G P L A N

微专题八:利用一次函数增减性法 考法指导 一次函数y kx b k =+≠()0的自变量x 的取值范围是全体实数,图象是一条直线,因而没有最大(小)值;但当m x n ≤≤时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。 【典例精析】 例题1.(2019·河南中考真题)学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A 奖品和2个B 奖品共需120元;购买5个A 奖品和4个B 奖品共需210元. (1)求A ,B 两种奖品的单价; (2)学校准备购买A ,B 两种奖品共30个,且A 奖品的数量不少于B 奖品数量的13 .请设计出最省钱的购买方案,并说明理由. 【答案】(1)A 的单价30元,B 的单价15元(2)购买A 奖品8个,购买B 奖品22个,花费最少 【详解】 解:(1)设A 的单价为x 元,B 的单价为y 元, 根据题意,得 3212054210 x y x y +=??+=?, 3015x y =?∴?=? , ∴A 的单价30元,B 的单价15元; (2)设购买A 奖品z 个,则购买B 奖品为(30)z -个,购买奖品的花费为W 元, 由题意可知,1(30)3 z z ≥-, 152 z ∴≥, 3015(30)45015W z z z =+-=+,

当=8 z时,W有最小值为570元, 即购买A奖品8个,购买B奖品22个,花费最少; 【针对训练】 1.(2019·广东中考真题)有A B、两个发电厂,每焚烧一吨垃圾,A发电厂比B发电厂多发40度电,A焚烧20吨垃圾比B焚烧30吨垃圾少1800度电. (1)求焚烧1吨垃圾,A和B各发多少度电? (2)A B 、两个发电厂共焚烧90吨垃圾,A焚烧的垃圾不多于B焚烧的垃圾的两倍,求A厂和B厂总发电量的最大值. 2.(2017·山东中考真题)某网店销售甲、乙两种防雾霾口罩,已知甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元. (1)改网店甲、乙两种口罩每袋的售价各多少元? (2)根据消费者需求,网店决定用不超过10000元购进价、乙两种口罩共500袋,且甲种 口罩的数量大于乙种口罩的4 5 ,已知甲种口罩每袋的进价为22.4元,乙种口罩每袋的进价 为18元,请你帮助网店计算有几种进货方案?若使网店获利最大,应该购进甲、乙两种口罩各多少袋,最大获利多少元?

一次函数的“最值”

一次函数的“最值” 一次函数y=kx+b中,x、y均可取一切实数.如果缩小x的取值范围,则其函数值就会出现最大值或最小值. 一次函数的“最值”由一次函数的性质决定,与其k值、自变量的取值范围密切相关: ⑴k>0时,y随x增大而增大.因此,x取最小值时,y有最小值;x取最大值时,y有最大值. ⑵k<0时,y随x增大而减小.因此,x取最小值时,y有最大值;x取最大值时,y有最小值. k值、自变量的取值范围与函数最大值、最小值的对应情况如下表:

求一次函数的最大、最小值,一般都是采用“极端值法”.即用自变量的端点值,根据函数增减性,对应求出函数的端点值(最值).请看以下实例. 例1.已知一次函数y=kx+b中自变量x的取值范围是-2≤x≤6,相应的函数取值范围是-11≤y≤9.求此函数的解析式.解析:x的取值范围与函数y的取值范围的对应情况,由k值的符号确定.故应分类讨论. ⑴k>0时,y随x增大而增大.x=-2时,y=-11;x=6时,y=9. ∴解得∴ y=x-1 ⑵k<0时,y随x增大而减小.x=-2时,y=9;x=6时,y=-11. ∴解得∴y=-x+14 例2.康乐公司在A、B两地分别有同型号的机器17台和15台,现在运往甲地18台、乙地14台.从A、B两地运往甲、乙两地的费用如下表;

⑴如果从A地运往甲地x台,求完成以上调运所需总费用y(元)关于x(台)的函数解析式; ⑵若康乐公司请你设计一种最佳调运方案,使总的费用最少,则该公司完成以上调运方案至少需要多少费用?为什么? 解析:⑴y=600x+500(17-x)+400(18-x)+800(x-3)=500x+13300 ⑵由①x≥0;②17-x≥0;③18-x≥0;④x-3≥0 ∴3≤x≤17 ∵k=500>0,∴y随x增大而增大,x取最小值时,y有最小值.∴x=3时,y最小值=500×3+13300=14800(元) 故该公司完成以上调运方案至少需14800元运费.调运方案为:由A地运往甲地3台,运往乙地14台;由B地运往甲地15台. 作者简介:宋毓彬,男,44岁,中学数学高级教师.在《中学数学教学参考》、《中学数学》、《中学生数学》、《数理天地》、《数理化学习》、《数理化解题研究》、《中学课程辅导》、《数学周报》、《数学辅导报》、《数理报》、《少年智力开发报》、《学习报》、《小博士报》等报刊发表教学辅导类文章70多篇.主要致力于初中数学中考及解题方法、技巧等教学方面的研究.

一次函数练习题及答案(较难 实用)

初二一次函数与几何题(附答案) 1、 平面直角坐标系中,点A 的坐标为(4,0),点P 在直线y=-x-m 上,且AP=OP=4,则m 的值是多少? 2、如图,已知点A 的坐标为(1,0),点B 在直线y=-x 上运动,当线段AB 最短时,试求点B 的坐标。 3、如图,在直角坐标系中,矩形OABC 的顶点B 的坐标为(15,6),直线y=1/3x+b 恰好将矩形OABC 分为面积相等的两部分,试求b 的值。 4、如图,在平面直角坐标系中,直线y= 2x —6与x 轴、y 轴分别相交于点A 、B ,点C 在x 轴上,若△ABC 是等腰三角形,试求点C 的坐标。 5、在平面直角坐标系中,已知A (1,4)、B (3,1),P 是坐标轴上一点,(1)当P 的坐标为多少时,AP+BP 取最小值,最小值为多少? 当P 的坐标为多少时,AP-BP 取最大值,最大值为多少?

6、如图,已知一次函数图像交正比例函数图像于第二象限的A点,交x轴于点B(-6,0),△AOB的面积为15,且AB=AO,求正比例函数和一次函数的解析式。 7、已知一次函数的图象经过点(2,20),它与两坐标轴所围成的三角形的面积等于1,求这个一次函数的表达式。 8、已经正比例函数Y=k1x的图像与一次函数y=k2x-9的图像相交于点P(3,-6) 求k1,k2的值 如果一次函数y=k2x-9的图象与x轴交于点A 求点A坐标 9、正方形ABCD的边长是4,将此正方形置于平面直角坐标系中,使AB在x轴负半轴上,A 点的坐标是(-1,0), (1)经过点C的直线y=-4x-16与x轴交于点E,求四边形AECD的面积; (2)若直线L经过点E且将正方形ABCD分成面积相等的两部分,求直线L的解析式。

一次函数提高篇(含详细答案)

一次函数巩固练习 一、选择题: 1.已知y与x+3成正比例,并且x=1时,y=8,那么y与x之间的函数关系式为() (A)y=8x (B)y=2x+6 (C)y=8x+6 (D)y=5x+3 2.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过() (A)一象限(B)二象限(C)三象限(D)四象限 3.直线y=-2x+4与两坐标轴围成的三角形的面积是() (A)4 (B)6 (C)8 (D)16 4.若甲、乙两弹簧的长度y(cm)与所挂物体 质量x(kg)之间的函数解析式分别为y=k1x+a1 和y=k2x+a2,如图,所挂物体质量均为2kg时, 甲弹簧长为y1,乙弹簧长为y2,则y1与y2的 大小关系为() (A)y1>y2(B)y1=y2 (C)y1a,将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系内,?则有一组a,b的取值,使得下列4个图中的一个为正确的是() 6.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过第()象限.(A)一(B)二(C)三(D)四 7.一次函数y=kx+2经过点(1,1),那么这个一次函数() (A)y随x的增大而增大(B)y随x的增大而减小 (C)图像经过原点(D)图像不经过第二象限 8.无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在()

(A)第一象限(B)第二象限(C)第三象限(D)第四象限 9.要得到y=-3 2 x-4的图像,可把直线y=- 3 2 x(). (A)向左平移4个单位(B)向右平移4个单位 (C)向上平移4个单位(D)向下平移4个单位 10.若函数y=(m-5)x+(4m+1)x2(m为常数)中的y与x成正比例,则m 的值为() (A)m>-1 4 (B)m>5 (C)m=- 1 4 (D)m=5 11.若直线y=3x-1与y=x-k的交点在第四象限,则k的取值范围是(). (A)k<1 3 (B) 1 3 1 (D)k>1或k< 1 3 12.过点P(-1,3)直线,使它与两坐标轴围成的三角形面积为5,?这样的直线可以作() (A)4条(B)3条(C)2条(D)1条 13.已知abc≠0,而且a b b c c a c a b +++ ===p,那么直线y=px+p一定通过() (A)第一、二象限(B)第二、三象限 (C)第三、四象限(D)第一、四象限 14.当-1≤x≤2时,函数y=ax+6满足y<10,则常数a的取值范围是()(A)-4

相关文档
相关文档 最新文档