文档库 最新最全的文档下载
当前位置:文档库 › 通信工程项目毕业材料外文翻译

通信工程项目毕业材料外文翻译

通信工程项目毕业材料外文翻译
通信工程项目毕业材料外文翻译

用于多跳认知无线电网络的分布式网络编码控制信道

Alfred Asterjadhi等著

1 前言

大多数电磁频谱由政府机构长期指定给公司或机构专门用于区域或国家地区。由于这种资源的静态分配,许可频谱的许多部分在许多时间和/或位置未使用或未被充分利用。另一方面,几种最近的无线技术在诸如IEEE802.11,蓝牙,Zigbee之类的非许可频段中运行,并且在一定程度上对WiMAX进行操作;这些技术已经看到这样的成功和扩散,他们正在访问的频谱- 主要是2.4 GHz ISM频段- 已经过度拥挤。为了为这些现有技术提供更多的频谱资源,并且允许替代和创新技术的潜在开发,最近已经提出允许被许可的设备(称为次要用户)访问那些许可的频谱资源,主要用户未被使用或零星地使用。这种方法通常被称为动态频谱接入(DSA),无线电设备发现和机会性利用未使用或未充分利用的频谱带的能力通常称为认知无线电(CR)技术。

DSA和CR最近都引起了无线通信和网络界的极大关注。通常设想两种主要应用。第一个是认知无线接入(CW A),根据该认知接入点,认知接入点负责识别未使用的许可频谱,并使用它来提供对次用户的接入。第二个应用是我们在这个技术中研究的应用,它是认知自组织网络(CAN),也就是使用

用于二级用户本身之间通信的无许可频谱,用于诸如点对点内容分发,环境监控,安全性等目的,灾难恢复情景通信,军事通信等等。

设计CAN系统比CW A有更多困难,主要有两个原因。第一是识别未使用的频谱。在CW A中,接入点的作用是连接到互联网,因此可以使用简单的策略来推断频谱可用性,例如查询频谱调节器在其地理位置的频谱可用性或直接与主用户协商频谱可用性或一些中间频谱经纪人另一方面,在CAN中,与频谱调节器或主要用户的缺乏直接通信需要二级用户能够使用检测技术自己识别未使用的频谱。第二个困难是辅助用户协调媒体访问目的。在CW A中存在接入点和通常所有二级用户直接与之通信(即,网络是单跳)的事实使得直接使用集中式媒体接入控制(MAC)解决方案,如时分多址(TDMA)或正交频分多址(OFDMA)。相反,预计CAN将跨越多跳,缺少集中控制器;而对于传统的单通道多跳自组织网络而言,这个问题的几个解决方案是已知的,因为假设我们处理允许设备访问的具有成

本效益的最先进技术的状态,因此将它们重用于CAN是不直接的一次只能限制频谱的一部分,中间访问将在多个信道上执行,而且可用于二次通信的实际信道可能会随着位置和时间而变化。

由于刚刚描述的两个问题,CAN中出现了几个实际的设计挑战,如实现控制信道,辅助用户对媒体接入的协调,实现用于检测未使用频谱的可靠方案等。在这篇文章中,我们将讨论这些挑战,我们显示,在以前的文献中,有几个很好的解决方案可以有效地解决一个或者一些这些问题。

在讨论之后,我们提出了我们设计的方案,以克服CAN缺乏完整的解决方案。我们的方案是基于一个虚拟控制通道,利用用户以伪随机方式访问信道,并在任何频道遇到任何情况时交换控制信息。通过网络编码实现对所有用户的控制信息的高效传播。用户交换的控制信息包括根据预定义的确定性算法确定信道切换模式以及数据通信的资源分配所需的所有信息(带宽要求,主要用户存在和位置等)。我们通过提出和讨论模拟结果来讨论所提出的方案的性能,表明它是CAN实际实现的有效解决方案。

2 多功能CAN中的技术挑战

我们在CAN中遇到的第一个问题是鸡蛋问题:二次设备需要彼此协调来执行频谱接入,但是它们还需要访问频谱以便通信和实现协调。这个问题通常被称为控制频道问题,不幸的是,在与DSA相关的工作中往往被忽视。事实上,大多数DSA相关出版物更侧重于主要用户检测和/或高效频谱分配的问题,并且在这样做时,假设某些控制信道实现对于次要用户是可用的。

为了实际实现控制通道,一些作者提出静态分配一些频谱带。这个实际提出了两个主要问题:一是需要静态频谱调节,这正是DSA旨在避免的一个问题。第二,选择的控制带可能很容易成为瓶颈。这在多跳场景中尤其如此,其中对控制信息交换的需求潜在地非常高(例如,不仅对于媒体访问,而且用于路由目的)。

已经提出了一些其他解决方案,其尝试通过动态地选择未使用的许可频带来执行次要用户控制来解决第一个问题

沟通;然而,这些建议没有解决控制瓶颈问题。

当然,CAN的理想解决方案不仅需要解决控制信息交换的问题,而且还要有效地

实现对可用频谱资源的有效利用。在这方面,应该注意的是,先前讨论的多重会合策略最初被提出作为单通道技术的扩展,最着名的是IEEE 802.11;特别地,在这些解决方案中看到的优点是仅仅通过使用多个通道,可以在单通道情况下实现网络容量的显着增加。然而,要注意的是,多通道网络的容量限制还远远没有达到多重交会方案,这更是解决问题的实际方法,而不采取系统的方法来最大限度地提高信道利用效率。

应该考虑到频谱有效使用的一个方面是在多跳网络中,通常只有一部分用户处于给定用户的干扰范围内。这通过频率重用来提高频谱利用率的可能性。不幸的是,在实践中,这需要更复杂的频谱分配策略,以及更多信息的可用性(例如每个用户的位置知识)。以分布式的方式是非常具有挑战性的。与此相关的问题是链路调度和路由问题:传统的自组织网络路由策略在多信道网络中是无效的,主要是因为给定的链路在任何时候都不能被激活,因为要求发送方和接收器在同一个通道上。理想情况下,应共同执行信道分配,链路调度和路由,以最大化频谱利用效率和网络性能。在这方面,已经提出了一些有趣的解决方案,但是它们具有要求集中式调度器的缺点。鉴于CAN的性质,需要一种分布式解决方案来实现实施。

到目前为止,我们还没有处理可能最具特色的CAN的特征:适用于二次频谱接入的频谱的这些部分的识别必须由次要用户自己使用感测技术来执行。从最近的文献中已经深入研究了从单个二次用户的角度进行感测的主题,并且已经提出了从简单的能量或匹配滤波器检测到复杂的循环平稳特征检测技术的几种解决方案。然而,如对于无线电接入频谱的情况所讨论的,对主要用户的二次干扰维持在一定阈值以下的要求转化为对单用户检测策略的灵敏度要求高到不符合成本效益,或者甚至完全不切实际,用现有技术实现这种检测器。3 多功能CAN中的DSA方案

我们考虑每个次要用户具有单个收发器的情况,因此可以在任何给定时间仅在单个信道上进行调谐。我们有一套次要用户和一组可用于无牌访问的渠道。为了设计在这种情况下有效的频谱接入方案,我们需要解决以下两个问题:如何使二级用户彼此协调,以及如何以有效的方式为这些用户分配频谱资源。

如上一节所述,这一领域的大多数以前的工作只解决了其中一个问题;相反,我们的方法旨在同时解决这两个问题。直观地,频谱分配和传输调度最好使用关于特定通信需求(例如,服务质量[QoS]要求)和频谱可用性的知识来执

行(例如,由主用户检测信息)。将这些知识称为控制信息,通过收集所有用户生成的控制包获得。在文献中,当完整的控制信息用于资源分配时,通常假定集中式方案。这意味着有一个集中控制器收集所有用户生成的控制包,确定全球资源分配,然后告诉每个用户什么资源用于数据通信。

为了得出分布式方法,我们选择不同的策略:每个用户收集完整的控制信息,并为整个网络独立地确定资源分配。关键在于,如果相同的控制信息成功传播给所有用户,并且资源分配算法是确定性的,则每个用户将能够确定相同的资源分配,而无需用户之间的任何进一步的交互。这是我们首先提出的单跳多通道网络的多通道方案的基本原理,并在此讨论在多跳CAN中的使用。在本节的其余部分,我们提供更多关于我们的计划如何工作的细节;本文的其余部分更侧重于多机场和机场频谱接入问题。

控制信息的确切性质由所选择的特定调度算法确定。作为一个例子,在我们讨论了一种相对简单的单跳网络统一资源分配算法。该算法仅需要参与参与分配的用户组的知识以及用于确定伪随机信道切换模式的随机数发生器的种子。因此,由每个用户生成的控制信息分组仅包括用户的唯一标识符(例如,其MAC 地址)和使用的随机比特串以及所有其他用户的比特串来确定公共种子为随机数发生器。

我们的方案正常工作的一个重要要求是控制信息的传播到达所有用户。每当特定用户在分配周期结束时无法检索控制信息时,该用户将潜在地确定用于后续分配周期的错误的信道切换模式和传输调度,可能开始使用资源(某些信道中的传输时隙)的传输将其分配给其他用户。在本文的其余部分中,我们将此事件称为频谱冲突,并参考无法将控制信息检索为误传用户的用户。一般来说,频谱冲突的机会,因此频谱资源浪费的平均数量随着用户数量的错误而增加。因此,我们想要一种传播方案,其中定义为普通用户从所有其他用户成功检索控制信息的概率的检索成功概率很高。

我们建议使用网络编码,以便为控制信息实施可靠而有效的传播方案。网络编码是最近推出的用于数据传播的范例,根据该模式,由多个源产生的分组在中间节点处共同编码并在最终目的地解码。该编码策略可以在增加吞吐量,减少延迟和提高鲁棒性方面非常有效。为了实现网络编码的实际,我们提到,作者提

出了一种网络编码分布式方案,消除了对编码和解码功能的集中化知识的需要,同时允许节点间的异步数据交换。根据该方法,每个节点将所有传入的分组存储在内部缓冲器中,并且在其自己的缓冲器中发送包含所有分组的随机线性组合的编码分组。在传输时间,该分组被转发到位于传输范围内的所有节点。现在,如果编码矢量是随机生成的,并且符号位于足够大小的有限伽罗瓦域,则信息将以高概率传播给所有用户。基于这种方法,每当节点接收到编码的分组时,它必须知道用于执行编码的系数,以便恢复原始信息分组。一个简单的解决方案包括在每个编码包中附加对应的编码矢量,该编码矢量描述了其包含的信息包的哪个线性组合。这样,解码存储在编码包中的信息所需的编码系数可以在编码包本身内找到。任何节点都可以恢复信息包

由所有节点简单地通过反转存储在数据传播期间接收的分组的所有系数的矩阵来产生。将编码向量追加到

数据包引起额外的开销,这将需要在确定我们的DSA解决方案的总体控制开销时予以考虑;有关这个问题的详细讨论,请参阅读者。最后,为了实现网络编码的实际,我们采用缓冲模型。

如我们以前的工作中所讨论的,网络编码大大优于其他策略,以便在单跳多通道网络中传播控制信息。换句话说,使用网络编码与伪随机信道切换模式相结合,为我们提供了一个虚拟控制信道,允许用户有效地共享控制信息。该网络编码的虚拟控制信道对于分组丢失和链路故障是鲁棒的,并且最重要的是不需要存在专用于交换控制信息的静态频谱资源。对于适用于二次接入的未使用频谱资源的检测,我们注意到,网络编码控制信道自然适合实施协同主用户检测解决方案。

4。结论

在本文中,我们讨论了CAN中出现的主要挑战,并提出了基于虚拟网络编码控制通道的这些挑战的实际解决方案。我们提出模拟结果,证明在几种情况下如何实现控制信息的有效分散和有效的频谱利用。我们的解决方案显示出对主用户活动的鲁棒性,并且可以针对次级用户的数量进行扩展。未来的研究方向包括在提出的解决方案中整合更精细的频谱分配,传输调度和路由策略。

A Distributed Network Coded Control Channel for

Multihop Cognitive Radio Networks Alfred Asterjadhi waiting Zhang bowen translation

1 Preface

most of the electromagnetic spectrum is assigned by government agencies to companies or insti-tutions for exclusive use over regional or national areas on a long-term basis. As a result of this static allocation of resources, several portions of the licensed spectrum are unused or underused at many times and/or locations . On the other hand, several recent wire-less technologies operate in unlicensed bands, such as IEEE 802.11, Bluetooth, Zigbee, and to some extent WiMAX; these technologies have seen such success and proliferation that the spectrum they are accessing —mostly the 2.4 GHz ISM band—has become overcrowded. In an effort to provide further spectrum resources for these existing technologies, as well as to allow the potential development of alternative and innova-tive ones, recently it has been proposed to allow unlicensed devices, called secondary users, to access those licensed spectrum resources that are unused or sporadically used by their owners, called primary users. This approach is normally referred to as dynamic spectrum access (DSA), and the ability of radio devices to find and opportunistically exploit unused or underused spectrum bands is normally called cognitive radio (CR) technology .

Both DSA and CR have recently attracted significant atten-tion from the wireless communications and networking community. Two main applications are commonly envisioned. The first is cognitive wireless access (CWA), according to which a cognitive access point takes care of identifying unused licensed spectrum and uses it to provide access to secondary users. The second application, which is the one we investigate in this arti-cle, is cognitive ad hoc networks (CANs), that is, the use of unlicensed spectrum for communications among the secondary users themselves, for purposes such as peer-to-peer content distribution, environmental monitoring, safety communications in disaster recovery scenarios, military communi-cations, and many others.

Designing a system for CANs presents more difficulties than for CWA, for two main reasons. The first is the identification of unused spectrum. In CWA the access point is by its role connected to the Internet, and therefore can infer spectrum availability using simple strategies, such as querying the spectrum regulator for spectrum availability at its geographic location or directly negotiating spectrum availability with the primary user or some intermediary spectrum broker . On the other hand, in CANs the lack of direct communication with the spectrum regulator or primary users requires secondary users to be able to identify unused spectrum by them-selves using detection techniques. The second difficulty is the coordination of secondary users for medium access purposes.In CWA the presence of an access point and the fact that commonly all secondary users communicate directly with it (i.e., the network is single-hop) makes it straightforward to use centralized medium access control (MAC) solutions, such as time-division multiple access (TDMA) or orthogonal frequency-division multiple access (OFDMA). On the contrary,CANs are expected to span over multiple hops and to lack a centralized controller; while several solutions to this problem are known for traditional single-channel multihop ad hoc networks, it is not straightforward to reuse them for CANs due to the fact that, assuming we deal with cost-effective state of the art technology that allows devices to access only a limited portion of the spectrum at a time, medium access is to be

performed across several channels, and moreover the actual channels that can be used for secondary communications might vary with respect to location as well as time.

Due to the two issues just described, several practical design challenges arise in CANs, such as the realization of the control channel, the coordination of secondary users for medium access, the implementation of a reliable scheme for the detection of unused spectrum, and so on. In this article we discuss these challenges, and we show that, while in the prior literature there are several good solutions that can effectively solve one or some of these issues.

After this discussion we present the scheme we have designed in an effort to overcome this lack of a complete solution for CANs. Our scheme is based on a virtual control channel which exploits the fact that users visit channels in a pseudo-random fashion and exchange control information whenever they happen to meet in any channel. Efficient dissemination of the control information to all users is achieved by means of network coding . The control information exchanged by users consists of all the information (bandwidth requirements, primary user presence and location, etc.) that is needed to determine channel switch patterns as well as resource allocation for data communication according to a predefined deterministic algorithm. We discuss the performance of the proposed scheme by presenting and discussing simulation results which show that it is an effective solution for the practical realization of CANs.

2 Technical Challenges in Multihop CANs

The first issue we encounter in CANs is a chicken-egg problem: secondary devices need to coordinate among themselves to perform spectrum access, but they also need to access the spectrum in order to communicate and achieve coordination.This issue is often referred to as the control channel problem,and unfortunately it is often neglected in work related to DSA. The fact is that most DSA related publications focus more on the problem of primary user detection and/or efficient spectrum allocation, and in doing so assume that some control channel implementation is available to secondary users.

For the practical realization of the control channel, some authors propose to statically allocate some spectrum band.This practice presents two major issues: first, it requires static spectrum regulation, which is exactly what DSA aims at avoiding; second, the chosen control band could easily become the bottleneck. This is especially true in multihop scenarios,where the need for control information exchange is potentially very high (e.g., not only for medium access, but also for routing purposes). Some other solutions have been proposed that attempt to solve the first issue by dynamically choosing an unused licensed band to perform secondary user control communications; however, the control bottleneck issue is not addressed by these proposals.

Of course, the ideal solution for CANs needs not only to address the issue of the exchange of control information, but also to effectively enable efficient usage of the available spectrum resources. In this respect, it is to be noted that the multiple-rendezvous strategies discussed earlier were originally proposed as an extension to single-channel technologies, most notably IEEE 802.11; in particular, the advantage seen in these solutions was that just by enabling the use of multiple channels, a significant increase in network capacity could be achieved over the single-channel case. However, it is to be noted that the capacity limit of multichannel networks is still far from being reached by multiple-rendezvous schemes,which are more of a practical solution to the problem and do not take a systematic approach to maximizing the channel utilization efficiency.

One of the aspects that should be taken into account for an efficient usage of the spectrum is that in a multihop network typically only a subset of the users are in the interference range of a given user. This opens up the possibility of higher spectrum utilization efficiency by means of frequency reuse.Unfortunately, in practice this requires more complex spectrum allocation strategies, as well as the availability of more information (e.g., knowledge of the location of each user).Doing this in a distributed fashion is very challenging. Coupled with this problem is the issue of link scheduling and routing: traditional ad hoc network routing strategies are not effective

in multichannel networks, due primarily to the fact that a given link cannot be activated at all times because of the requirement that both the sender and the receiver are on the same channel. Ideally, channel allocation, link scheduling,and routing should be jointly performed in order to maximize spectrum utilization efficiency as well as network performance. In this respect some interesting solutions have been proposed , but these have the drawback of requiring a centralized scheduler. Given the nature of CANs, a distributed solution would be needed in order to allow practical implementation.

So far, we still have not dealt with what is possibly the most peculiar trait of CANs: the identification of those parts of the spectrum that are suitable for secondary spectrum access must be performed by the secondary users themselves using sensing techniques. The topic of sensing from the point of view of a single secondary user has been intensively investigated in the recent literature, and several solutions have been proposed,from simple energy or matched filter detection to complex cyclostationary feature detection techniques. However, as discussed in for the case of unlicensed access of TV spectrum, the requirement of maintaining secondary interference to primary users below a certain threshold translates into a sensitivity requirement for single-user detection strategies so high that it is not cost-effective, or even completely impractical, to implement such detectors with current technology.

3 A Scheme for DSA in Multihop CANs

We consider the case in which each secondary user has a single transceiver, and thus can be tuned only on a single channel at any given time. We have a set of secondary users and a set of channels available for unlicensed access. In order to design a spectrum access scheme that is effective in this scenario, we need to solve the following two problems: how to make secondary users coordinate among themselves, and how to assign spectrum resources to these users in an efficient way.

As discussed in the previous section, most prior work in this area addressed only one of these problems; in contrast,our approach aims at solving both problems

simultaneously.Intuitively, spectrum allocation and transmission scheduling are best performed using knowledge about the particular communication needs (e.g., quality of service [QoS] requirements)and spectrum availability (e.g., expressed by primary user detection information) of all users. We refer to this knowledge as the control information, obtained by collecting the control packets generated by all users. In the literature, when complete control information is used for resource allocation purposes, a centralized scheme is usually assumed. This means that there is a centralized controller that gathers the control packets generated by all users, determines the global resource allocation, and then tells each user what resources to use for data communications.

In order to derive a distributed approach, we choose a different strategy: each user gathers the complete control information and independently determines for the whole network the resource allocation. The key point is that if the same control information is successfully disseminated to all users, and the resource allocation algorithm is deterministic, each user will be able to determine the same resource allocation without any further interaction among users. This is the underlying principle of the multichannel scheme we first presented in for single-hop multichannel networks and discuss here for use in multihop CANs. In the rest of this section we provide more details on how our scheme works in general; the rest of this article focuses more in particular on multihop and oppor-tunistic spectrum access issues.

The exact nature of the control information is determined by the particular scheduling algorithms chosen. As an example, in we discussed a relatively straightforward algorithm for uniform resource allocation in single-hop networks. This algorithm only needs knowledge of the set of users participating in the allocation and the seed for the random number generator used to determine the pseudo-random channel switch pattern. As a consequence, the control information packets generated by each user consisted of only a unique identifier for the user (e.g., its MAC address) and a random bit string used, together with the bit strings of all other users,to determine a common seed for the random number generator.

An important requirement for our scheme to work properly is that the dissemination of control information reaches all users. Whenever a particular user fails to retrieve the control information at the end of an allocation period, that user will potentially determine a wrong channel switch pattern and transmission schedule for the subsequent allocation period,possibly starting transmissions using resources (transmission slots in certain channels) meant to be allocated to other users.In the rest of this article we refer to this event as spectrum collision, and refer to the users that failed to retrieve the control information as misinformed users. In general, the chances of having a spectrum collision, and hence the average amount of wasted spectrum resources, increase with the number of misinformed users. For this reason, we want a dissemination scheme in which the retrieval probability Pretr, defined as the probability that a generic user successfully retrieves the control information from all other users, is high.

We propose the use of network coding in order to implement a reliable and efficient dissemination scheme for the control information. Network coding is a recently introduced paradigm for data dissemination, according to which the packets generated by multiple sources are jointly coded at intermediate nodes and decoded at the final destination. This coding strategy can be very effective in increasing throughput, reducing delay, and enhancing robustness. In order to have a practical implementation of network coding we refer to , where the authors proposed a distributed scheme for network coding that obviates the need for a centralized knowledge about the encoding and decoding functions, and at the same time allows asynchronous data exchange between nodes. According to this approach each node stores all incoming packets in an internal buffer and transmits an encoded packet that contains a random linear combination of all packets in its own buffer.At transmission time this packet is forwarded to all nodes situated within transmission range. Now, if the encoding vectors are generated randomly and the symbols lie in a finite Galois field of sufficient size, the information will be disseminated to all users with high probability . Based on this approach, every time a node receives an encoded packet, it

has to know the coefficients used to perform the encoding in order to recover the original information packets. A simple solution consists of appending within each encoded packet the corresponding encoding vector that describes which linear combination of information packets it contains.This way, the encoding coefficients needed to decode the information stored in encoded packets can be found within the encoded packets themselves. Any node can thus recover the information packets generated by all nodes simply by inverting the matrix that stores all the coefficients of the packets received during data dissemination. Appending the encoding vectors to the packets incurs additional overhead, which will need to be accounted for in the determination of the total control overhead of our DSA solution; for a detailed discussion of this issue, the reader is referred to. Finally, in order to have a practical implementation of network coding, we adopt the buffering model .

As discussed in our prior work, network coding vastly outperforms other strategies for the purpose of disseminating the control information in single-hop multichannel networks. In other words, the use of network coding in conjunction with a pseudo-random channel switch pattern provides us with a virtual control channel, which allows users to efficiently share control information. This network coded virtual control channel is robust against packet losses and link failures, and, most important, does not require the presence of static spectrum resources dedicated to the exchange of control information. As for the detection of unused spectrum resources suitable for secondary access, we note that the network coded control channel is naturally fit for the implementation of a cooperative primary user detection solution.

4 Conclusions

In this article we discuss the main challenges that arise in CANs and present a practical solution to these challenges based on a virtual network coded control channel. We present simulation results that prove how it can achieve effective dis-semination of control information and efficient spectrum utilization in several scenarios. Our solution is shown to be robust against primary user activity and

scalable with respect to the number of secondary users. Future research directions include the integration of more elaborate spectrum allocation,transmission scheduling, and routing strategies in the proposed solution.

红外数据通信技术外文翻译文献

红外数据通信技术外文翻译文献(文档含中英文对照即英文原文和中文翻译) Infrared Remote Control System Abstract Red outside data correspondence the technique be currently within the scope of world drive extensive usage of a kind of wireless conjunction technique, drive numerous hardware and software platform support. Red outside the transceiver product have cost low, small scaled turn, the baud rate be quick, point to point SSL, be free from electromagnetism thousand Raos

etc. characteristics, can realization information at dissimilarity of the product fast, convenience, safely exchange and transmission, at short distance wireless deliver aspect to own very obvious of advantage. Along with red outside the data deliver a technique more and more mature, the cost descend, red outside the transceiver necessarily will get at the short distance communication realm more extensive of application. The purpose that design this system is transmit customer’s operation information with infrared rays for transmit media, then demodulate original signal with receive circuit. It use coding chip to modulate signal and use decoding chip to demodulate signal. The coding chip is PT2262 and decoding chip is PT2272. Both chips are made in Taiwan. Main work principle is that we provide to input the information for the PT2262 with coding keyboard. The input information was coded by PT2262 and loading to high frequent load wave whose frequent is 38 kHz, then modulate infrared transmit dioxide and radiate space outside when it attian enough power. The receive circuit receive the signal and demodulate original information. The original signal was decoded by PT2272, so as to drive some circuit to accomplish customer’s operation demand. Keywords: Infrared dray;Code;Decoding;LM386;Red outside transceiver 1 Introduction 1.1 research the background and significance Infrared Data Communication Technology is the world wide use of a wireless connection technology, by the many hardware and software platforms supported. Is a data through electrical pulses and infrared optical pulse switch between the wireless data transceiver technology.

通信工程专业英语翻译

通信工程专业英语翻译 JXTA is a crystallization by Sun company's chief scientist Bill Joy's more than twenty years of brewing."JXTA technology is a platform for Network programming and calculation.To solve the modern distribution calculation especially peer-to-peer (Peer to Peer, P2P) in the calculation of the problem".[1] JXTA research project,which will provide a new framework that make the user more convenient to access to connect on the Internet's personal computer resources, thus further expand Internet 's space. At the same time JXTA is also the Sun's "ONE Internet" strategic continuance, and will take a more positive attitude to compete with the .net strategy of Microsoft and Hailstorm plan . JXTA agreement defines a set of six agreement based on XML, the organization of node into node group, release and found some resources, communication and mutual monitoring provides standardized method.(Endpoint Routing Protocol,ERP) is used for node found routing.To send a message to other nodes, and through the potential firewall and connection.(Rendezvous Protocol,RVP) s used for the nodes in the group to spread information.(Peer Resolver Protocol,PRP) is Used to one or more points to send general inquiries, and receive the response of inquiries.

机械专业毕业论文外文翻译

附录一英文科技文献翻译 英文原文: Experimental investigation of laser surface textured parallel thrust bearings Performance enhancements by laser surface texturing (LST) of parallel-thrust bearings is experimentally investigated. Test results are compared with a theoretical model and good correlation is found over the relevant operating conditions. A compari- son of the performance of unidirectional and bi-directional partial-LST bearings with that of a baseline, untextured bearing is presented showing the bene?ts of LST in terms of increased clearance and reduced friction. KEY WORDS: ?uid ?lm bearings, slider bearings, surface texturing 1. Introduction The classical theory of hydrodynamic lubrication yields linear (Couette) velocity distribution with zero pressure gradients between smooth parallel surfaces under steady-state sliding. This results in an unstable hydrodynamic ?lm that would collapse under any external force acting normal to the surfaces. However, experience shows that stable lubricating ?lms can develop between parallel sliding surfaces, generally because of some mechanism that relaxes one or more of the assumptions of the classical theory. A stable ?uid ?lm with su?cient load-carrying capacity in parallel sliding surfaces can be obtained, for example, with macro or micro surface structure of di?erent types. These include waviness [1] and protruding microasperities [2–4]. A good literature review on the subject can be found in Ref. [5]. More recently, laser surface texturing (LST) [6–8], as well as inlet roughening by longitudinal or transverse grooves [9] were suggested to provide load capacity in parallel sliding. The inlet roughness concept of Tonder [9] is based on ??e?ective clearance‘‘ reduction in the sliding direction and in this respect it is identical to the par- tial-LST concept described in ref. [10] for generating hydrostatic e?ect in high-pressure mechanical seals. Very recently Wang et al. [11] demonstrated experimentally a doubling of the load-carrying capacity for the surface- texture design by reactive ion etching of SiC

本科毕业设计方案外文翻译范本

I / 11 本科毕业设计外文翻译 <2018届) 论文题目基于WEB 的J2EE 的信息系统的方法研究 作者姓名[单击此处输入姓名] 指导教师[单击此处输入姓名] 学科(专业 > 所在学院计算机科学与技术学院 提交日期[时间 ]

基于WEB的J2EE的信息系统的方法研究 摘要:本文介绍基于工程的Java开发框架背后的概念,并介绍它如何用于IT 工程开发。因为有许多相同设计和开发工作在不同的方式下重复,而且并不总是符合最佳实践,所以许多开发框架建立了。我们已经定义了共同关注的问题和应用模式,代表有效解决办法的工具。开发框架提供:<1)从用户界面到数据集成的应用程序开发堆栈;<2)一个架构,基本环境及他们的相关技术,这些技术用来使用其他一些框架。架构定义了一个开发方法,其目的是协助客户开发工程。 关键词:J2EE 框架WEB开发 一、引言 软件工具包用来进行复杂的空间动态系统的非线性分析越来越多地使用基于Web的网络平台,以实现他们的用户界面,科学分析,分布仿真结果和科学家之间的信息交流。对于许多应用系统基于Web访问的非线性分析模拟软件成为一个重要组成部分。网络硬件和软件方面的密集技术变革[1]提供了比过去更多的自由选择机会[2]。因此,WEB平台的合理选择和发展对整个地区的非线性分析及其众多的应用程序具有越来越重要的意义。现阶段的WEB发展的特点是出现了大量的开源框架。框架将Web开发提到一个更高的水平,使基本功能的重复使用成为可能和从而提高了开发的生产力。 在某些情况下,开源框架没有提供常见问题的一个解决方案。出于这个原因,开发在开源框架的基础上建立自己的工程发展框架。本文旨在描述是一个基于Java的框架,该框架利用了开源框架并有助于开发基于Web的应用。通过分析现有的开源框架,本文提出了新的架构,基本环境及他们用来提高和利用其他一些框架的相关技术。架构定义了自己开发方法,其目的是协助客户开发和事例工程。 应用程序设计应该关注在工程中的重复利用。即使有独特的功能要求,也

汽车专业毕业设计外文翻译

On the vehicle sideslip angle estimation through neural networks: Numerical and experimental results. S. Melzi,E. Sabbioni Mechanical Systems and Signal Processing 25 (2011):14~28 电脑估计车辆侧滑角的数值和实验结果 S.梅尔兹,E.赛博毕宁 机械系统和信号处理2011年第25期:14~28

摘要 将稳定控制系统应用于差动制动内/外轮胎是现在对客车车辆的标准(电子稳定系统ESP、直接偏航力矩控制DYC)。这些系统假设将两个偏航率(通常是衡量板)和侧滑角作为控制变量。不幸的是后者的具体数值只有通过非常昂贵却不适合用于普通车辆的设备才可以实现直接被测量,因此只能估计其数值。几个州的观察家最终将适应参数的参考车辆模型作为开发的目的。然而侧滑角的估计还是一个悬而未决的问题。为了避免有关参考模型参数识别/适应的问题,本文提出了分层神经网络方法估算侧滑角。横向加速度、偏航角速率、速度和引导角,都可以作为普通传感器的输入值。人脑中的神经网络的设计和定义的策略构成训练集通过数值模拟与七分布式光纤传感器的车辆模型都已经获得了。在各种路面上神经网络性能和稳定已经通过处理实验数据获得和相应的车辆和提到几个处理演习(一步引导、电源、双车道变化等)得以证实。结果通常显示估计和测量的侧滑角之间有良好的一致性。 1 介绍 稳定控制系统可以防止车辆的旋转和漂移。实际上,在轮胎和道路之间的物理极限的附着力下驾驶汽车是一个极其困难的任务。通常大部分司机不能处理这种情况和失去控制的车辆。最近,为了提高车辆安全,稳定控制系统(ESP[1,2]; DYC[3,4])介绍了通过将差动制动/驱动扭矩应用到内/外轮胎来试图控制偏航力矩的方法。 横摆力矩控制系统(DYC)是基于偏航角速率反馈进行控制的。在这种情况下,控制系统使车辆处于由司机转向输入和车辆速度控制的期望的偏航率[3,4]。然而为了确保稳定,防止特别是在低摩擦路面上的车辆侧滑角变得太大是必要的[1,2]。事实上由于非线性回旋力和轮胎滑移角之间的关系,转向角的变化几乎不改变偏航力矩。因此两个偏航率和侧滑角的实现需要一个有效的稳定控制系统[1,2]。不幸的是,能直接测量的侧滑角只能用特殊设备(光学传感器或GPS惯性传感器的组合),现在这种设备非常昂贵,不适合在普通汽车上实现。因此, 必须在实时测量的基础上进行侧滑角估计,具体是测量横向/纵向加速度、角速度、引导角度和车轮角速度来估计车辆速度。 在主要是基于状态观测器/卡尔曼滤波器(5、6)的文学资料里, 提出了几个侧滑角估计策略。因为国家观察员都基于一个参考车辆模型,他们只有准确已知模型参数的情况下,才可以提供一个令人满意的估计。根据这种观点,轮胎特性尤其关键取决于附着条件、温度、磨损等特点。 轮胎转弯刚度的提出就是为了克服这些困难,适应观察员能够提供一个同步估计的侧滑角和附着条件[7,8]。这种方法的弊端是一个更复杂的布局的估计量导致需要很高的计算工作量。 另一种方法可由代表神经网络由于其承受能力模型非线性系统,这样不需要一个参

通信工程项目毕业材料外文翻译

用于多跳认知无线电网络的分布式网络编码控制信道 Alfred Asterjadhi等著 1 前言 大多数电磁频谱由政府机构长期指定给公司或机构专门用于区域或国家地区。由于这种资源的静态分配,许可频谱的许多部分在许多时间和/或位置未使用或未被充分利用。另一方面,几种最近的无线技术在诸如IEEE802.11,蓝牙,Zigbee之类的非许可频段中运行,并且在一定程度上对WiMAX进行操作;这些技术已经看到这样的成功和扩散,他们正在访问的频谱- 主要是2.4 GHz ISM频段- 已经过度拥挤。为了为这些现有技术提供更多的频谱资源,并且允许替代和创新技术的潜在开发,最近已经提出允许被许可的设备(称为次要用户)访问那些许可的频谱资源,主要用户未被使用或零星地使用。这种方法通常被称为动态频谱接入(DSA),无线电设备发现和机会性利用未使用或未充分利用的频谱带的能力通常称为认知无线电(CR)技术。 DSA和CR最近都引起了无线通信和网络界的极大关注。通常设想两种主要应用。第一个是认知无线接入(CW A),根据该认知接入点,认知接入点负责识别未使用的许可频谱,并使用它来提供对次用户的接入。第二个应用是我们在这个技术中研究的应用,它是认知自组织网络(CAN),也就是使用 用于二级用户本身之间通信的无许可频谱,用于诸如点对点内容分发,环境监控,安全性等目的,灾难恢复情景通信,军事通信等等。 设计CAN系统比CW A有更多困难,主要有两个原因。第一是识别未使用的频谱。在CW A中,接入点的作用是连接到互联网,因此可以使用简单的策略来推断频谱可用性,例如查询频谱调节器在其地理位置的频谱可用性或直接与主用户协商频谱可用性或一些中间频谱经纪人另一方面,在CAN中,与频谱调节器或主要用户的缺乏直接通信需要二级用户能够使用检测技术自己识别未使用的频谱。第二个困难是辅助用户协调媒体访问目的。在CW A中存在接入点和通常所有二级用户直接与之通信(即,网络是单跳)的事实使得直接使用集中式媒体接入控制(MAC)解决方案,如时分多址(TDMA)或正交频分多址(OFDMA)。相反,预计CAN将跨越多跳,缺少集中控制器;而对于传统的单通道多跳自组织网络而言,这个问题的几个解决方案是已知的,因为假设我们处理允许设备访问的具有成

机械类毕业设计外文翻译

本科毕业论文(设计) 外文翻译 学院:机电工程学院 专业:机械工程及自动化 姓名:高峰 指导教师:李延胜 2011年05 月10日 教育部办公厅 Failure Analysis,Dimensional Determination And

Analysis,Applications Of Cams INTRODUCTION It is absolutely essential that a design engineer know how and why parts fail so that reliable machines that require minimum maintenance can be designed.Sometimes a failure can be serious,such as when a tire blows out on an automobile traveling at high speed.On the other hand,a failure may be no more than a nuisance.An example is the loosening of the radiator hose in an automobile cooling system.The consequence of this latter failure is usually the loss of some radiator coolant,a condition that is readily detected and corrected.The type of load a part absorbs is just as significant as the magnitude.Generally speaking,dynamic loads with direction reversals cause greater difficulty than static loads,and therefore,fatigue strength must be considered.Another concern is whether the material is ductile or brittle.For example,brittle materials are considered to be unacceptable where fatigue is involved. Many people mistakingly interpret the word failure to mean the actual breakage of a part.However,a design engineer must consider a broader understanding of what appreciable deformation occurs.A ductile material,however will deform a large amount prior to rupture.Excessive deformation,without fracture,may cause a machine to fail because the deformed part interferes with a moving second part.Therefore,a part fails(even if it has not physically broken)whenever it no longer fulfills its required function.Sometimes failure may be due to abnormal friction or vibration between two mating parts.Failure also may be due to a phenomenon called creep,which is the plastic flow of a material under load at elevated temperatures.In addition,the actual shape of a part may be responsible for failure.For example,stress concentrations due to sudden changes in contour must be taken into account.Evaluation of stress considerations is especially important when there are dynamic loads with direction reversals and the material is not very ductile. In general,the design engineer must consider all possible modes of failure,which include the following. ——Stress ——Deformation ——Wear ——Corrosion ——Vibration ——Environmental damage ——Loosening of fastening devices

本科毕业设计外文翻译

Section 3 Design philosophy, design method and earth pressures 3.1 Design philosophy 3.1.1 General The design of earth retaining structures requires consideration of the interaction between the ground and the structure. It requires the performance of two sets of calculations: 1)a set of equilibrium calculations to determine the overall proportions and the geometry of the structure necessary to achieve equilibrium under the relevant earth pressures and forces; 2)structural design calculations to determine the size and properties of thestructural sections necessary to resist the bending moments and shear forces determined from the equilibrium calculations. Both sets of calculations are carried out for specific design situations (see 3.2.2) in accordance with the principles of limit state design. The selected design situations should be sufficiently Severe and varied so as to encompass all reasonable conditions which can be foreseen during the period of construction and the life of the retaining wall. 3.1.2 Limit state design This code of practice adopts the philosophy of limit state design. This philosophy does not impose upon the designer any special requirements as to the manner in which the safety and stability of the retaining wall may be achieved, whether by overall factors of safety, or partial factors of safety, or by other measures. Limit states (see 1.3.13) are classified into: a) ultimate limit states (see 3.1.3); b) serviceability limit states (see 3.1.4). Typical ultimate limit states are depicted in figure 3. Rupture states which are reached before collapse occurs are, for simplicity, also classified and

外文翻译(带图)

外文翻译 通常,应变计应用在两个方面:在机械和结构的实验力分析中和应用力,扭矩,压力,流量以及加速度传感器结构中。非粘贴丝式应变计通常是当作专门的转换器来使用,其结构是使用一些有预载荷的电阻丝连接成惠斯登电桥,如图4.11: 在最初的预载荷中,四根金属丝的应变和电阻在理论上是相等的,它们组成一个平衡电桥,并且e0 = 0 (参考第10章电桥电路特性)。输入端一个小的位移(满量程≈0.04 mm)将会使两根金属丝的拉力增大而使另外两根的拉力减小(假设金属丝不会变松弛),引起电阻阻值的变化,电桥失衡,输出电压与输入位移成比例。金属丝可以由砷镍、镍铬和铁镍等多种合金制造,直径约为0.03 mm,可以承受的最大应力仅为0.002 N,灵敏系数为2到4,每个桥臂的电阻为120Ω到1000Ω, 最大激励电压5到10V,满量程输出典型值为20到50mV。 粘结丝式应变计(现在主要被粘贴箔式结构的应变计取代)应用于应力分析和作为转换器。具有很细丝式敏感栅粘贴在待测试件表面,来感受应变。金属丝被埋入矩形的粘合剂中,不能弯曲从而如实地反映待测试件的压缩和拉伸应力。因为金属丝的材料和尺寸与那些非粘贴应变计相似,所以灵敏度和电阻具有了可比性。 粘贴箔式应变计采用与丝式应变计相同或类似的材料,现在主要用于多用途力分析任务及多种传感器中。 其感应元件是利用光腐蚀工艺加工成厚度小于0.0002的薄片,当其形状改变时,它具有很大的灵活性。如图4.12: 例如,这三个线形敏感栅应变计被设计成端部宽大的形状。这种局部的增大将会减小横向灵敏度,以及在测量应变沿敏感栅单元的长度方向的分量时产生的干扰输入信号。在丝式应变计中,这种端部形状也应用在纵向单元的连接处,以便增加横向抗干扰能力。并且在制造过程中也非常方便在图4.12上的全部四个应变计上焊接焊盘。

5G无线通信网络中英文对照外文翻译文献

5G无线通信网络中英文对照外文翻译文献(文档含英文原文和中文翻译)

翻译: 5G无线通信网络的蜂窝结构和关键技术 摘要 第四代无线通信系统已经或者即将在许多国家部署。然而,随着无线移动设备和服务的激增,仍然有一些挑战尤其是4G所不能容纳的,例如像频谱危机和高能量消耗。无线系统设计师们面临着满足新型无线应用对高数据速率和机动性要求的持续性增长的需求,因此他们已经开始研究被期望于2020年后就能部署的第五代无线系统。在这篇文章里面,我们提出一个有内门和外门情景之分的潜在的蜂窝结构,并且讨论了多种可行性关于5G无线通信系统的技术,比如大量的MIMO技术,节能通信,认知的广播网络和可见光通信。面临潜在技术的未知挑战也被讨论了。 介绍 信息通信技术(ICT)创新合理的使用对世界经济的提高变得越来越重要。无线通信网络在全球ICT战略中也许是最挑剔的元素,并且支撑着很多其他的行业,它是世界上成长最快最有活力的行业之一。欧洲移动天文台(EMO)报道2010年移动通信业总计税收1740亿欧元,从而超过了航空航天业和制药业。无线技术的发展大大提高了人们在商业运作和社交功能方面通信和生活的能力无线移动通信的显著成就表现在技术创新的快速步伐。从1991年二代移动通信系统(2G)的初次登场到2001年三代系统(3G)的首次起飞,无线移动网络已经实现了从一个纯粹的技术系统到一个能承载大量多媒体内容网络的转变。4G无线系统被设计出来用来满足IMT-A技术使用IP面向所有服务的需求。在4G系统中,先进的无线接口被用于正交频分复用技术(OFDM),多输入多输出系统(MIMO)和链路自适应技术。4G无线网络可支持数据速率可达1Gb/s的低流度,比如流动局域无线访问,还有速率高达100M/s的高流速,例如像移动访问。LTE系统和它的延伸系统LTE-A,作为实用的4G系统已经在全球于最近期或不久的将来部署。 然而,每年仍然有戏剧性增长数量的用户支持移动宽频带系统。越来越多的

机械类毕业设计外文文献翻译

沈阳工业大学工程学院 毕业设计(论文)外文翻译 毕业设计(论文)题目:工具盒盖注塑模具设计 外文题目:Friction , Lubrication of Bearing 译文题目:轴承的摩擦与润滑 系(部):机械系 专业班级:机械设计制造及其自动化0801 学生姓名:王宝帅 指导教师:魏晓波 2010年10 月15 日

外文文献原文: Friction , Lubrication of Bearing In many of the problem thus far , the student has been asked to disregard or neglect friction . Actually , friction is present to some degree whenever two parts are in contact and move on each other. The term friction refers to the resistance of two or more parts to movement. Friction is harmful or valuable depending upon where it occurs. friction is necessary for fastening devices such as screws and rivets which depend upon friction to hold the fastener and the parts together. Belt drivers, brakes, and tires are additional applications where friction is necessary. The friction of moving parts in a machine is harmful because it reduces the mechanical advantage of the device. The heat produced by friction is lost energy because no work takes place. Also , greater power is required to overcome the increased friction. Heat is destructive in that it causes expansion. Expansion may cause a bearing or sliding surface to fit tighter. If a great enough pressure builds up because made from low temperature materials may melt. There are three types of friction which must be overcome in moving parts: (1)starting, (2)sliding, and(3)rolling. Starting friction is the friction between two solids that tend to resist movement. When two parts are at a state of rest, the surface irregularities of both parts tend to interlock and form a wedging action. To produce motion in these parts, the wedge-shaped peaks and valleys of the stationary surfaces must be made to slide out and over each other. The rougher the two surfaces, the greater is starting friction resulting from their movement . Since there is usually no fixed pattern between the peaks and valleys of two mating parts, the irregularities do not interlock once the parts are in motion but slide over each other. The friction of the two surfaces is known as sliding friction. As shown in figure ,starting friction is always greater than sliding friction . Rolling friction occurs when roller devces are subjected to tremendous stress which cause the parts to change shape or deform. Under these conditions, the material in front of a roller tends to pile up and forces the object to roll slightly uphill. This changing of shape , known as deformation, causes a movement of molecules. As a result ,heat is produced from the added energy required to keep the parts turning and overcome friction. The friction caused by the wedging action of surface irregularities can be overcome

毕业设计外文翻译-中文版

本科生毕业设计(论文)外文科技文献译文 译文题目(外文题目)学院(系)Socket网络编程的设计与实现A Design and Implementation of Active Network Socket Programming 机械与能源工程学院 专学业 号 机械设计制造及其自动化 071895 学生姓名李杰林 日期2012年5月27日指导教师签名日期

摘要:编程节点和活跃网络的概念将可编程性引入到通信网络中,并且代码和数据可以在发送过程中进行修改。最近,多个研究小组已经设计和实现了自己的设计平台。每个设计都有其自己的优点和缺点,但是在不同平台之间都存在着互操作性问题。因此,我们引入一个类似网络socket编程的概念。我们建立一组针对应用程序进行编程的简单接口,这组被称为活跃网络Socket编程(ANSP)的接口,将在所有执行环境下工作。因此,ANSP 提供一个类似于“一次性编写,无限制运行”的开放编程模型,它可以工作在所有的可执行环境下。它解决了活跃网络中的异构性,当应用程序需要访问异构网络内的所有地区,在临界点部署特殊服务或监视整个网络的性能时显得相当重要。我们的方案是在现有的环境中,所有应用程序可以很容易地安装上一个薄薄的透明层而不是引入一个新的平台。 关键词:活跃网络;应用程序编程接口;活跃网络socket编程

1 导言 1990年,为了在互联网上引入新的网络协议,克拉克和藤农豪斯[1]提出了一种新的设 计框架。自公布这一标志性文件,活跃网络设计框架[2,3,10]已经慢慢在20世纪90 年代末成形。活跃网络允许程序代码和数据可以同时在互联网上提供积极的网络范式,此外,他们可以在传送到目的地的过程中得到执行和修改。ABone作为一个全球性的骨干网络,开 始进行活跃网络实验。除执行平台的不成熟,商业上活跃网络在互联网上的部署也成为主要障碍。例如,一个供应商可能不乐意让网络路由器运行一些可能影响其预期路由性能的未知程序,。因此,作为替代提出了允许活跃网络在互联网上运作的概念,如欧洲研究课题组提出的应用层活跃网络(ALAN)项目[4]。 在ALAN项目中,活跃服务器系统位于网络的不同地址,并且这些应用程序都可以运行在活跃系统的网络应用层上。另一个潜在的方法是网络服务提供商提供更优质的活跃网络服务类。这个服务类应该提供最优质的服务质量(QOS),并允许路由器对计算机的访问。通过这种方法,网络服务提供商可以创建一个新的收入来源。 对活跃网络的研究已取得稳步进展。由于活跃网络在互联网上推出了可编程性,相应 地应建立供应用程序工作的可执行平台。这些操作系统平台执行环境(EES),其中一些已 被创建,例如,活跃信号协议(ASP)[12]和活跃网络传输系统(ANTS)[11]。因此,不 同的应用程序可以实现对活跃网络概念的测试。 在这些EES 环境下,已经开展了一系列验证活跃网络概念的实验,例如,移动网络[5],网页代理[6],多播路由器[7]。活跃网络引进了很多在网络上兼有灵活性和可扩展性的方案。几个研究小组已经提出了各种可通过路由器进行网络计算的可执行环境。他们的成果和现有基础设施的潜在好处正在被评估[8,9]。不幸的是,他们很少关心互操作性问题,活跃网络由多个执行环境组成,例如,在ABone 中存在三个EES,专为一个EES编写的应用程序不能在其他平台上运行。这就出现了一种资源划分为不同运行环境的问题。此外,总是有一些关键的网络应用需要跨环境运行,如信息收集和关键点部署监测网络的服务。 在本文中,被称为活跃网络Socket编程(ANSP)的框架模型,可以在所有EES下运行。它提供了以下主要目标: ??通过单一编程接口编写应用程序。 由于ANSP提供的编程接口,使得EES的设计与ANSP 独立。这使得未来执行环境的发展和提高更加透明。

相关文档
相关文档 最新文档