文档库 最新最全的文档下载
当前位置:文档库 › 电动汽车用磷酸铁锂动力电池的制作及性能测试_英文_概要

电动汽车用磷酸铁锂动力电池的制作及性能测试_英文_概要

电动汽车用磷酸铁锂动力电池的制作及性能测试_英文_概要
电动汽车用磷酸铁锂动力电池的制作及性能测试_英文_概要

ISSN 1674-8484CN 11-5904/U 汽车安全与节能学报, 2011年, 第2卷第1期J Automotive Safety and Energy, 2011, Vol. 2 No. 1Manufacture and Performance Tests of Lithium Iron Phosphate

Batteries Used as Electric Vehicle Power

ZHANG Guoqing, ZHANG Lei, RAO Zhonghao, LI Yong

(Faculty of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China

Abstract: Owing to the outstanding electrochemical performance, the LiFePO 4 power batteries could be used on electric vehicles and hybrid electric vehicles. A kind of LiFePO 4 power batteries, Cylindrical 26650, was manufactured from

commercialized LiFePO 4, graphite and electrolyte. To get batteries with good high-current performance, the optimal content of conductive agent was studied and determined at 8% of mass fraction. The electrochemical properties of the batteries were investigated. The batteries had high discharging voltage platform and capacity even at high discharge current. When discharged at 30 C current, they could give out 91.1% of rated capacity. Moreover, they could be fast charged to 80% of rated capacity in ten minutes. The capacity retention rate after 2 000 cycles at 1 C current was 79.9%. Discharge tests at -

20 ℃ and 45 ℃ also showed impressive performance. The battery voltage, resistance and capaci ty varied little after vibration test. Through the safety tests of nail, no in ? ammation or explosion occurred.

Key words: hybrid and electric vehicles; power batteries; lithium iron phosphate; lithium ion batteries;

电动汽车用磷酸铁锂动力电池的制作及性能测试

张国庆、张磊、饶忠浩、李雍

( 广东工业大学材料与能源学院,广州 510006, 中国

摘要: 磷酸铁锂电池的优异性能使其可以应用在电动汽车和混合动力汽车上。用市售磷酸铁锂、石墨和电解液制作了圆柱型26650磷酸铁锂动力电池。为改善电池的大电流性能,研究了正极导电剂的最佳质量分数为8%。研究了所制备的动力电池的充放电性能。电池在高倍率下放电仍有较高的电压平台和放电容量。30 C (96 A放电时,可放出额定容量的91.1%。电池大电流充电性能较好,5C (16 A充电 10 min 左右,可充入额定容量的80%。1 C 充放电循环 2 000次,仍能保持额定容量的79.9%。高低温下电池放电性能良好。电池经过振动测试,内阻、电压和容量变化很小。针刺实验中没有发生起火和爆炸,电池温度峰值为 94.7 ℃。关键词: 混合动力汽车/电动汽车;动力电池;磷酸铁锂; 锂离子电池中图分类号: TQ 152

收稿日期/ Received : 2010-12-13基金项目/ Supported by : The Research Cooperation Project of Guangdong Province and the Ministry of Education / 广东省教育部产学研结合项目 (2008B090500013第一作者/ First author : 张国庆(1963-,男(汉,河北,教授。E-mail: pdzgq008@https://www.wendangku.net/doc/284435611.html, 第二作者/ Second author : 张磊,E-

mail :rockyzhang2010@https://www.wendangku.net/doc/284435611.html,

Introduction

With the demand for more power to satisfy the rapidly growing

automotive markets, focus is being directed at the lithium ion batteries, which have energy densities exceeding 130 Wh ·kg -1

and cycle life of more than 1 000 cycles. However, compared with traditional markets like laptops and cellular phones, new applications have much higher energy and power requirements. In these applications, where safety is of paramount importance,

10/1368 — 71

69 ZHANG Guoqing, et al:Manufacture and performance tests of lithium iron phosphate batteries used as electric vehicle power

the use of LiCoO2 and its derivatives raises serious concerns for developers because of inherent thermal instability. These inherent safety limitations have until now prevented lithium ion batteries from entering the large applications such as electric and hybrid electric vehicles.

Comparatively, iron-based olivine phosphate has been the focus of research[1]. LiFePO4 has high theoretical capacity of 170 mAh·g-1 and an average voltage of about 3.5 V vs. Li+/Li. Due to the low cost, environmental benignity, excellent structural stability, long cycling life and high reversible capacity, lithium iron phosphate has been recognized as a promising candidate material for cathode of lithium ion batteries[2]. However,

the poor conductivity, resulting from the low electronic conductivity of the LiFePO4, has posed a bottleneck for commercial applications[3]. Therefore, researches of LiFePO4 materials and batteries mainly focus on enhancing their high-current performance[4-5]. In this paper, effect of conductive agent content was studied to get batteries with good high-current performance as well as acceptable capacity sacrifice, and their charge-discharge performance was investigated.

1 Experiments

Cylindrical 26650 LiFePO4 power batteries were manufactured. Lithium iron phosphate, or graphite, was mixed together

with super P, Polyvinylidene Fluoride (PVDF and N-Methyl Pyrrolidone (NMP in proportion, and then stirred to obtain homogeneous slurry. The slurry was then coated on aluminum or copper foil. After fully dried, the electrode sheet was rolled to appropriate thickness, and then sliced to adequate small size. Positive, negative electrode sheet and

separator were stacked and coiled into battery core. The battery core was put into the battery shell and the positive, negative electrodes were weld with the battery cap and the shell respectively. Electrolyte (1 mol/L LiPF6, EC+DEC+DMC, 1:1:1 was then infused into the battery shell. The battery was then mounted by the battery cap and sealed. At last, the batteries were activated with particular charging-discharging method.

To optimize their properties, batteries with different weight ratio of the conductive agent (super P in cathode were manufactured. After the optimization, battery properties such as high-current charging-discharging performance, high and low temperature performance, cycle life, vibration endurability and security, were tested.

2 Results

2.1 Effect of Conductive Agent Content

To get batteries with good high-current performance, the optimal content of conductive agent in cathode was studied[6]. Batteries were fabricated in which Super P contents (mass fraction, w were 4%, 6%, 8% and 10% in cathode respectively. (Binder contents were the same as the conductive agent Resistances and capacities of these batteries were shown

in Figure 1. It indicated that both the resistances and the capacities of the batteries decreased as the increase of the Super P content. Low resistance could result in good high-current performance, but the capacity is also important. When the mass fraction of Super P is above 8%, the resistance decline is not obvious any more, but the capacity decrease didn’t slow down. To get batteries with good high-current performance as well as acceptable capacity, the mass fraction of the conductive agent was determined at 8%.

2.2 High-Current Discharge Performance

One cell was charged at a current of 1 C (3.2 A, then discharged at different rates of 0.5, 1, 2, 4, 10, 30 C (1.6, 3.2, 6.4, 12.8, 32, 96 A. The discharge capacities were 3.243,

3.168, 3.157., 3.130, 3.115, 2.955 Ah, respectively. Capacities at 1, 2, 4, 10, and 30 C reached 97.6%, 97.2%, 96.4%, 95.9%, and 91.1% of the capacity at 0.5 C. Voltage-capacity curves were shown in Figure 2. Every curve had quite flat platform, and only when approaching the end-voltage of discharge, these curves began to decline. Voltage platform varied from 3.23 V to 2.65 V when discharge rate changed from 0.5 C to 30 C. Both capacity and

voltage performed excellently.

Fig. 1 Resistances and Capacities of the Batteries Fig. 2 Voltage-Capacity Curves of Discharge at Different

Currents

70J Automotive Safety and Energy 2011, Vol. 2 No. 1

2.3 High-Current Charge Performance

When using fuel vehicles, people are used to the convenience of fast refueling. When electric vehicles took the place, they need to be charged quickly sometimes. This requires electric vehicle batteries could be fast charged at high currents. One fully-discharged cell was charged to 3.65 V with a constant current of 5 C. The voltage-capacity curve was shown in Figure 3. The charge capacity was 2.676 Ah, that ’s 82.0% of the battery ’s 1 C discharge capacity. The process only took 10 min. That means the cells had high-current and fast charge capability.

2.4 Discharge Performance at High & Low

Temperature

Electric vehicles are used outdoors; the ambient temperature varies from summer to winter. That demands the batteries can work both at high and low temperature. One battery was charged at room temperature, and then discharged at 25, 45 and -20 ℃respectively. When discharged at 45 ℃ and -20 ℃, the battery was placed at that temperature for not less than 6 h. The voltage-capacity curves were shown in Figure 4. Discharge capacities at 25, 45 and -20 ℃ were 3.223, 3.231 and 2.773 Ah, respectively. The discharge capacity at 45 ℃ was a little higher than that at room temperature. The batteries could work at -20 ℃, and discharge capacities only declined by 14.0%.

2.5 Cycle Life

Long operational life of electric vehicle batteries is important, because it means less maintenance costs and more competitiveness against fuel vehicles. The cycle life of batteries we made was tested. The charging and discharging currents were both 1 C. As shown in Figure 5, after 2 000 cycles, the battery capacity dropped from 3.257 Ah to

2.601 Ah, and capacity fading rate was 20.1%. Average fading rate per cycle was only 0.01%. Hence the batteries had excellent cycle performance and long operational life.

2.6 Vibration Endurability

When travelling on road, electric vehicles were in the status of irregular vibration. As the power source for electric vehicles, the batteries must have sufficient vibration endurance. 50

batteries were investigated in a simulation vibration test. In the vibration parameters, the constant acceleration is 30 m/s 2; the scan frequency range is 30-35 Hz; the vibration time is 2 h. The resistances, voltages and capacities of the batteries were tested both before and after the vibration. Changes of these properties were shown in Figure 6.

As figured in the graphs, the resistance-risings did not exceed 0.4 m Ω; the voltage-droppings were no more than 20 mV; and the capacity retention rates were above 96.8%. After one cycle of discharge and charge, capacities of all batteries recovered to above 98%. Changes of these properties were all in acceptable

ranges.

Fig. 3 Voltage-Capacity Curve of Charge at 5 C Current

Fig. 5 Cycling Curve at 1 C Current

Fig. 4 Voltage-Capacity Curves of Discharge at Different

Temperature

2.7 Security

Considering the application on electric vehicles, security of the batteries was of paramount importance [7-8]. Extreme damage to the batteries was simulated by piercing a nail through the battery horizontally. The voltage and temperature were inspected through the process and shown in Figure 7. The voltage of the battery dropped to zero immediately when

the battery was nailed. Meanwhile, the surface temperature

71

ZHANG Guoqing, et al: Manufacture and performance tests of lithium iron phosphate batteries used as electric vehicle power Figure 6 Properties Change Through Vibration Test

Fig. 7

Voltage and Temperature Change Curve of Nail Test

(a Resistance

Change

of the battery rose to the peak of 94.7 ℃ in a few seconds. Then the flame retardant in electrodes worked to enlarge the resistance of the battery, so the temperature started to decrease. No inflammation or explosion occurred through the whole process, so the security of the batteries is satisfying.

3 Conclusion

LiFePO4 power batteries are considered to be the most competitive candidate for electric vehicles ’ power source. Increasing content of conductive agent can improve the high-current performance of the batteries but lower the capacity. In our manufacture procedure, mass fraction of 8% of super P brought good high-current performance with acceptable capacity sacrifice. The cylindrical 26650 LiFePO 4 power

batteries we manufactured could output 91.1% of rated capacity at highest 30 C discharge current, simultaneously had a high voltage platform of 2.65 V, and therefore

could supplied strong power for electric vehicles. They could be fast charged to 80% of rated capacity in ten minutes at 5 C charging current, which saved charging time by far. After 2 000 cycles at discharging current of 1 C, the capacity retention rate was 79.9%; the working life was gratifying. High and low temperature, vibration conditions were common to vehicles, and the simulating tests performed impressively. Even damaged extremely, the batteries did not explode or burn. Due to their extraordinary electrochemical and safety performance, the LiFePO4 power batteries could be used on electric vehicles and hybrid electric vehicles.

References

[1] Padhi A K, Nanivndaswamy K S, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium

batteries [J]. J Electrochemical Society, 1997, 144 (4: 1188-1194. [2] Padhi A K, Nanivndaswamy K S, Masquelier C, et al. Effect of

structure on the Fe 3+/Fe 2+ redox couple in iron phosphates [J]. J Electrochemical Society, 1997, 144 (5: 1609-1613.[3] Franger S, Bourbon C, Le Cras F. Optimized lithium iron

phosphate for high-rate electrochemical applications [J]. J Electrochemical Society, 2004, 151 (7: A1024-A1027.

[4] Amine K, Liu J, Belharouak I. High-temperature storage and

cycling of C-LiFePO 4/graphite Li-ion cells [J]. Electrochemistry Communications, 2005, 7 (7: 669-673.[5] Liao X Z, Ma Z F, He, Y S, et al. Electrochemical behavior of

LiFePO 4/C cathode material for rechargeable lithium batteries [J]. J Electrochemical Society, 2005, 152 (10: A1969-A1973.[6] Toprakci O, Toprakci H A K, Ji L W, et al. Fabrication and

electrochemical characteristics of LiFePO 4 powders for lithium-ion batteries [J]. Kona Powder and Particle J, 2010, 28: 50-73.[7] HUA Ning, SUO Liuming, WANG Chenyun, et al. Effects

of different carbon sources on properties of LiFePO 4/C by a

carbothermal reduction method [J]. Functional Materials Letters,2010, 3 (3: 155-160.[8] YANG Kai, AN Jinjing, CHEN Shi. Temperature characterization

analysis of LiFePO 4/C power battery during charging and

discharging. [J]. J Thermal Analysis and Calorimetry, 2010, 99

(2: 515-521.

(b Voltage Change

(b Capacity Retention & Recovery Rate

电动汽车动力电池剩余电量在线测量

182 电动汽车动力电池剩余电量在线测量 程艳青 高明煜 徐 杰 徐洪峰 (杭州电子科技大学电子信息学院,浙江 杭州 310018) 摘要:为了精确可靠估算以蓄电池为动力的电动汽车所用电池的剩余电量,在讨论目前一些蓄电池剩余电量估算方法的基础上,以聚合物锂离子电池组为研究对象,将电池荷电状态作为系统的状态,建立了单变量的锂电池组的状态空间模型,采用了开路电压法和卡尔曼滤波递推算法相结合的方法。经试验这种方法能够获得蓄电池组精确和可靠的荷电状态预测值。 关键字:聚合物锂离子电池组;卡尔曼滤波;电动汽车;荷电状态 中图分类号:TM91 文献标识码:A The Estimation of the State of Charge of Storage Battery Based on the Kalman Filtering Theory for Electric Vehicle Cheng Yanqing Gao Mingyu Xu Jie Xu Hongfeng (School of Electronics Information, Hang Zhou Dianzi University, Hangzhou Zhejiang 310018, China) Abstract: To estimate residual capacity of traction battery in electric vehicle accurately and reliably, the paper chooses a lithium-ion polymer battery pack as a research object, takes the SOC (State of charge) as the state of the system, and builds the battery's state space model with single state, and then develops a method combining open circuit voltage method and Kalman filtering recursive algorithm method, based on some methods of residual capacity estimation of battery often used at present. The experiments proved that accurate and reliable battery SOC estimation of battery could be obtained by adopting the new method. Keywords: Lithium-Ion Polymer Battery ; Kalman Filter; Electric Vehicle; State-of-charge 蓄电池是各类电动汽车中最常用的储能元件, 其剩余电量的精确测量在电动汽车的发展中一直是一个非常关键的问题[1],因为只有对电池剩余电量进行精确测量才能使驾驶员及时掌握正确的信息,预测自己的后续行驶里程,并及时进行充电。蓄电池荷电状态SOC(State of charge)描述蓄电池的剩余电量,其大小直接反映了电池所处的状态,是电池使用过程中最重要的参数之一。 1 SOC 定义 蓄电池的荷电状态SOC 被用来反映电池的剩余容量情况,这是目前国内外比较统一的认识,其数值上定义为为蓄电池所剩电量占电池总容量的比值: m n m Q ]/ )I ( Q - Q [ = SOC (1) 国家自然科学基金项目,60871088 dt I t = ) I ( Q n n ∫ (2) 式中: Q m 为蓄电池最大放电容量,指的是在室温条件下,电池从完全充电后开始工作一直到电池完全放电为止,其所能放出的最大安时数值,表示为标准放电电流和放电时间的乘积;Q ( I n ) 为标准放电电流 I n 下 t 时间蓄电池释放的电量。 公式1还可以表示为: m n Q )/I ( Q - 1 = SOC (3) 式中:SOC=1表示电池为充满电状态,SOC=0则表示电池已处于全放电状态。 由于电池所放出的电量受自放电率、充放电倍率、电池温度、电池充放电循环次数等影响,表示电池容量状态的SOC也必然与这些因素有关。在放电电流变化的情况下,上述定义就会出现不适应性,得到矛盾的结果,因此实际使用中要对SOC 的定义进行调整,不同电动汽车对SOC 定义的使用形式不一致,最常用的定义为:

电动汽车用磷酸铁锂动力电池的制作及性能测试_英文_概要

ISSN 1674-8484CN 11-5904/U 汽车安全与节能学报, 2011年, 第2卷第1期J Automotive Safety and Energy, 2011, Vol. 2 No. 1Manufacture and Performance Tests of Lithium Iron Phosphate Batteries Used as Electric Vehicle Power ZHANG Guoqing, ZHANG Lei, RAO Zhonghao, LI Yong (Faculty of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China Abstract: Owing to the outstanding electrochemical performance, the LiFePO 4 power batteries could be used on electric vehicles and hybrid electric vehicles. A kind of LiFePO 4 power batteries, Cylindrical 26650, was manufactured from commercialized LiFePO 4, graphite and electrolyte. To get batteries with good high-current performance, the optimal content of conductive agent was studied and determined at 8% of mass fraction. The electrochemical properties of the batteries were investigated. The batteries had high discharging voltage platform and capacity even at high discharge current. When discharged at 30 C current, they could give out 91.1% of rated capacity. Moreover, they could be fast charged to 80% of rated capacity in ten minutes. The capacity retention rate after 2 000 cycles at 1 C current was 79.9%. Discharge tests at - 20 ℃ and 45 ℃ also showed impressive performance. The battery voltage, resistance and capaci ty varied little after vibration test. Through the safety tests of nail, no in ? ammation or explosion occurred. Key words: hybrid and electric vehicles; power batteries; lithium iron phosphate; lithium ion batteries; 电动汽车用磷酸铁锂动力电池的制作及性能测试 张国庆、张磊、饶忠浩、李雍

电动车辆动力电池组电压采集电路设计

电动车辆动力电池组电压采集电路设计 作者:张彩萍, 张承宁, 李军求 作者单位:北京理工大学机械与车辆工程学院,100081 刊名: 电气应用 英文刊名:ELECTROTECHNICAL APPLICATION 年,卷(期):2007,26(12) 被引用次数:3次 参考文献(4条) 1.朱正动力电池组分布式管理系统设计及实车试验 2006 2.卢居霄;黄文华;陈全世电动汽车电池管理系统的多路电压采集电路设计[期刊论文]-电源技术 2006(05) 3.何朝阳;戴君蓄电池在线监测系统的设计与实现[期刊论文]-今日电子 2006(10) 4.童诗白;华成英模拟电子技术基础 2000 本文读者也读过(3条) 1.张彩萍.张承宁.李军求.张玉璞.ZHANG Cai Ping.ZHANG Cheng Ning.LI Jun Qiu.ZHANG Yu Pu电动车用动力电池状态检测与显示系统设计[期刊论文]-电子技术应用2008,34(9) 2.赵慧勇.罗永革.王保华.刘珂路.Zhao Huiyong.Luo Yongge.Wang Baohua.Liu Kelu多路电压采集单元模块仿真设计[期刊论文]-湖北汽车工业学院学报2010,24(2) 3.卢居霄.黄文华.陈全世电动汽车电池管理系统的多路电压采集电路设计[期刊论文]-电子设计应用2006(5) 引证文献(3条) 1.张彩萍.张承宁.李军求.张玉璞电动车用动力电池状态检测与显示系统设计[期刊论文]-电子技术应用 2008(9) 2.雷晶晶.李秋红.龙泽.王太宏.张金顶锂电池组单体电压精确检测方法[期刊论文]-电源技术 2012(3) 3.雷晶晶.李秋红.陈立宝.张金顶.王太宏动力锂离子电池管理系统的研究进展[期刊论文]-电源技术 2010(11)引用本文格式:张彩萍.张承宁.李军求电动车辆动力电池组电压采集电路设计[期刊论文]-电气应用 2007(12)

纯电动汽车及动力电池技术发展现状

纯电动汽车及动力电池发展现状调研 一、纯电动汽车发展现状 所谓纯电动汽车,是指完全由可充电电池作为动力源、以驱动电机及其控制系统驱动行驶的汽车。纯电动汽车(BatteryElectric Vehicle,BEV)与混合动力汽车(HybridElectric Vehicle,HEV)和燃料电池汽车(Fuel CellElectric Vehicle,FEV)是目前主要的新能源汽车类型。 1.1 发展纯电动汽车的必要性 (1)促进节能减排。与传统汽车相比,纯电动汽车具有更高的能源利用效率,同时也具有二氧化碳减排的潜力。机动车污染排放是城市空气污染的主要来源之一,2013年春季北京出现多次大面积雾霾天气,机动车尾气是主要原因之一。在上海,中心城区的主要大气污染物可吸入颗粒物、氮氧化物、挥发性有机物分别有66%、90%和26%来自机动车尾气。大力推广纯电动汽车是交通领域实现低碳的最佳方案,纯电动汽车行驶过程中不产生二氧化碳,即使考虑到中国目前电力生产过程中的二氧化碳排放,纯电动汽车仍然具有13%~68%的减排能力。随着我国能源结构和电力生产方式的转变,纯电动汽车必将在未来发挥更大的减排作用。 图1.1传统汽车与纯电动汽车综合能量效率比较(单位:%) (2)降低石油对外依存度。汽车保有量的迅速增加为我国能源安全带来严峻挑战。我国汽车保有量与原油对外依存度变化趋势见图1.2。最新数据显示,截止到2012年底,中国汽车保有量已达2.4亿辆,与此相对应的是2012年中国原油对外依存度达到56.4%,创下历史新高。如果不采取措施,“十二五”中将原油依存度控制在61%的计划将很难实现。在此背景下,如何满足未来汽车的能源需求,是关系到我国能源安全的关键问题。电动汽车由于其电力来源多样化,不仅更加适合中国以煤炭为主的资源禀赋,而且能够与中国大力发展可再生能源

电动汽车用动力电池

电动汽车用动力电池 摘要 能源危机和环境恶化已成为传统汽车发展的最大障碍,而发展电动汽车能够很好的解决这些问题.电动汽车不仅能够减少燃油消耗,提高经济性,而且还能降低尾气的排放,提高环境质量.电动汽车的关键技术之一是动力电池,动力电池的好坏一方面决定着电动汽车的成本,另一方面决定着电动汽车的动力性和续驶里程,这2个方面也是电动汽车与传统的燃油汽车竞争的关键所在.能否开发出性价比高的动力电池对电动汽车的未来发展具有至关重要的作用. 关键词:铅酸蓄电池,正负极板,电极,电解液,电子等等。 前言 电池是电动汽车的动力源,是能量的储存装置,也是目前制约电动汽车发展的关键因素。要使电动汽车能与燃油汽车相竞争,关键是开发比能高,比功率大,使用寿命长,成本低的电池...... 电动汽车使用的动力电池可以分为化学电池,物理电池和生物电池三大类。在三大电池当中化学电池又分为:原电池,蓄电池,燃料电池和储备电池,从化石燃料向可再生能源转换的能源革命中蓄电池所起的作用非常大,政府民间都在大力进行研发。物理电池是利用大自然的能量来吸附储存,有太阳能电池,超级电容器,飞轮电池等等。生物电池是利用生物化学反应发电的电池,如微生物电池,酶电池,生物太阳能电池等。 电动汽车用动力电池的性能指标主要是:电压,容量,内阻,能量,功率,输出功率,自放电率,使用寿命等,根据电池种类不同,其性能指标也有所不同。 电动汽车对动力电池的要求是:(1)比能量高:主要是为了提高电动汽车的继驶里程;(2)比功率大:为了能使电动汽车的加速行驶以及负载能力;(3)充放电效率高;(4)相对稳定性好;(5)使用成本低;(6)安全性好等等。 正文 在电池的发展史之中,铅酸蓄电池是最成熟的电动汽车蓄电池。我们常用的铅酸蓄电池主要分为三类,分别为普通蓄电池、干呵蓄电池和免维护蓄电池三种。铅酸蓄电池是蓄电池的一种,主要是采用稀硫酸做电解液,用二氧化铅和绒状铅分别作为电池的正极和负极的一种酸性蓄电池。 基本构造:铅酸蓄电池主要由以下部分构成:1.硬橡胶管 2.负极板 3.正极板4。隔板5.鞍子6.汇流排7.封口胶8.电池槽盖9.连接10.极柱11.排气栓

电动汽车动力电池的维护与检修

电动汽车动力电池的维护与检修 王楠 摘要:主要针对电动汽车动力电池运行检修管理, 研究了电池接收检验、运行管理、日常维护、运行检测与安全管理等关键环节, 结合电池运行的技术特点, 对电池的日常检测、维护与检修等进行了分析, 分析了电池受到电压,温度以及外界因数等典型故障的原因分析及维护方法, 同时提出了提高动力电池运行与检修水平以及电动电池保养的措施。 关键词:电动汽车动力电池检测与维护 目录: 摘要 1、动力电池的检修内容 (1)电压异常(2)温度异常(3)外观异常(4)检测振动对电池的影响 2、动力电池的检测系统总成 3、动力电池的维护 (1)充电不足与过充电 (2)大电流放电与过放电 (3)要及时充电 (4)短时充电 4、如何解决电池硫化与修复仪的使用 引言:在环境污染日益加剧,能源形势日益严峻的现代生活中,电动汽车无疑以其对排碳量减少无可非议的贡献受到全球的关注。当前与电动汽车有关的研究热点很多,但电池技术无疑就是其中重之又重的一块领域。现在应用于电动汽车的电池大多为电化学电池,在电池的发展史之中,铅酸蓄电池就是最成熟的电动汽车蓄电池,动力电池在能量、安全性、使用寿命等各个方面进行一代又一代的优化,才有了今天相对较为完备的电池体系。在今年4月21日至29日的北京国际车展当中备受人瞩目的典型车型都就是新出的纯电动汽车,不管就是国内还就是国外,许多汽车厂商都推出了自己的纯电动车型。由此可见在未来的汽车发展当中电动汽车将成为未来汽车发展的主要方向,然而由于受到电池技术的影响,纯电动汽车一直难以推广到市场。本文主要就是结合电池产业的厂商,引出当下比较主流的电池技术,从中了解电动汽车动力电池的结构,并结合各电池厂商分析可以怎样改正,以及探究了电动电池的检测与维护方法。 动力电池的结构 1、电池盖 2、正极--活性物质为氧化钴锂 3、隔膜--一种特殊的复合膜 4、负极--活性物质为碳 5、有机电解液 6、电池壳 动力电池的特点 1、高能量(EV)与高功率(HEV); 2、高能量密度;

现有电动汽车用动力电池及其发展趋势

电动汽车用动力电池分类及其发展趋势 / 、八 1 前言 上个世纪80 年代以来, 随着全球经济的稳步发展, 汽车的产量和保有量急剧增加。这些燃油汽车所排放的废气造成空气质量日趋恶化。环境问题, 特别是大气环境污染问题, 已引起世界各国, 尤其是发达国家的普遍关注。同时, 目前世界石油资源日趋紧张, 石油价格始终居高不下。因此, 各国政府和各大汽车企业都正在加紧开发无排放或低排放、低油耗的清洁汽车。 进入90 年代, 以美欧为主的一些西方国家开始制订并逐步执行严厉的汽车尾气排放标准, 低能耗、无污染的绿色汽车开始成为人们关注的热点。而电动汽车又是能达到这一目标的为数很少的环保型汽车。迫于形势的要求, 各种新材料和新技术在电动汽车上不断被开发应用, 电动汽车的发展异常迅猛。 2 电动汽车用动力电池分类 2.1 铅酸电池 铅酸电池是采用金属铅作为负极,二氧化铅作为正极,用硫酸作为电解液,放电时,铅和二氧化铅都与电解液反应生成硫酸铅。充电时反应过程正好相反。现在比较广泛的采用免维护的阀控式铅酸电池(VRLA)。总体上说,铅酸电池具有可靠性好、原材料易得、价格便宜等优点,比功率也基本上能满足电动汽车的动力性要求。但它有两大缺点;一是比能量低,所占的质量和体积太大,且一次充电行驶里程较短;另一个是使用寿命短,使用成本过高。由于铅酸电池的技术比较成熟,经过进一步改进后的铅酸电池仍将是近期电动汽车的主要电源。 2.2 镍金属电池 镍氢蓄电池正极活性物质采用氢氧化镍,负极活性物质为贮氢合金,电解液为氢氧化钾溶液,电池充电时,正极的氢进入负极贮氢合金中,放电时过程正好相反。在此过程中,正、负极的活性物质都伴随着结构、成分、体积的变化,电解液也发生变化。相对于其他电池,N 12MH 电池的优异特性表现在:高比 能量(衡量电动车一次充电行驶里程)已与锂离子电池水平相当;高比功率(赋予电

电动汽车的三种常见锂电池

1电动汽车的三种常见锂电池 目前电动汽车的锂电池最主要有三种,依次为:磷酸铁锂电池、钴酸锂电池和三元材料电池1.1.1磷酸铁锂电池: 磷酸铁锂电池属于锂离子二次电池,主要用作动力电池,而且它的放电效率较高,倍率放电情况下充放电效率可达到90%以上,而铅酸电池大约为80%。在电池中,磷酸铁锂电池的安全性也高于其他的电池,理论寿命可以达到7~8年,实际使用寿命大约为3~5年,性能价格比理论上为铅酸电池的4倍以上。 下面再来说说它的缺点,磷酸铁锂电池的价格高于其他类型的电池,而且,电池容量较小,续行里程短,而且报废后基本上不能回收再利用,没有可回收价值。综上所述,磷酸锂铁电池在电动汽车上的应用,会使整体的成本提升,而且电池不可回收利用,这样会造成资源的浪费和消耗。 1.2钴酸锂电池:TESLA的专属电池 TESLA电动车的电池采用了松下提供的NCA系列(镍钴铝体系)18650钴酸锂电池,单颗电池容量为3100毫安时。TESLA采用了电池组的战略,85kWh的MODELS的电池单元一共运用了8142个18650锂电池,工程师首先将这些电池以砖、片逐一平均分配最终组成一整个电池包,电池包位于车身底板。 钴酸锂电池具有结构稳定、容量比高、综合性能突出、但是其安全性差而且成本非常高,主要用于中小型号电芯,标称电压3.7V。TESLA把这样的电池组合到一起,安全性就成了一个很需要关注的问题,TESLA的工程师在电池包内的保险装置分布到每一节18650钴酸锂电池,每一节18650钴酸锂电池两端均设有保险丝,当电池出现过热或电流过大时,保险丝会切断,以此避免因某个电池出现异常情况(过热或电流过大)时影响到整个电池包。那么,就此来看,钴酸锂电池虽然本身存在着缺陷,但是在TESLA的工程师的包装上安全性基本上可以忽略。显然,这样的解决方案还是很适合在纯电动汽车上发展。 1.3三元材料电池: 以电池的正极材料作为命名方式,三元锂电池的全称为“三元聚合物锂电池”,指的是正极材料使用镍钴锰酸锂三元聚合物的锂电池。三元锂电池多用于笔记本电脑等电子产品,后被用于电动汽车领域。使用三元锂电池的纯电动汽车中,公众最为熟悉的或许就是特斯拉的ModelS 车型。 比亚迪董事长王传福表示,比亚迪最新研究的磷酸铁锰锂电池突破了传统的磷酸铁锂电池的能量密度限制,达到了三元材料水平,而在成本控制上比普通的磷酸铁锂更加优秀,续航能力得到了大幅度的提升。 2.1 锂空气电池是一种用锂作阳极,以空气中的氧气作为阴极反应物的电池。放电过程:阳极的锂释放电子后成为锂阳离子(Li+),Li+穿过电解质材料,在阴极与氧气、以及从外电路流过来的电子结合生成氧化锂(Li2O)或者过氧化锂(Li2O2),并留在阴极。锂空气电池的开路电压为2.91V。 锂空气电池比锂离子电池具有更高的能量密度,因为其阴极(以多孔碳为主)很轻,且氧气从环境中获取而不用保存在电池里。理论上,由于氧气作为阴极反应物不受限,该电池的容量仅取决于锂电极,其比能为5.21kWh/kg(包括氧气质量),或11.14kWh/kg(不包括氧气)。相对与其他的金属-空气电池,锂空气电池具有更高的比能(见下表)[1]?,因此,它非常有吸引力。 科学家们非常希望锂空气电池有一天能取代我们目前使用的锂离子电池。“锂离子充电电池已经被使用了近25年,”剑桥大学化学系的ClareP.Grey教授在电话中说,“25年前,结构更

电动汽车动力电池公告检测中存在的问题及建议

No.22011 BUS TECHNOLOGY AND RESEARCH 客车技术与研究 电动汽车动力电池公告检测中存在的问题及建议 杨杰,夏晴,史瑞祥,凌泽 (重庆车辆检测研究院国家客车质量监督检验中心,重庆401122) 摘要:以动力锂电池为例,重点介绍其在一致性、安全性和电性能这三方面的公告检测中存在的主要问题并提出建议,为国内电动汽车的研发提供参考,以促进电动汽车动力电池质量的提高和技术的发展。关键词:动力电池;公告检测;电动汽车;问题及建议 中图分类号:U469.72;U467文献标志码:B文章编号:1006-3331(2011)02-0023-03 Problem and Suggestion for Electric Vehicle Power Battery Annoucement Test YANG Jie,XIA Qing,SHI Rui-Xiang,LING Ze (Chongqing Vehicle Test&Research Inst.,National Coach Quality Supervision and Test Center, Chongqing401122,China) Abstract:Taking a lithium-ion battery as an example,the authors introduce problems and put forward suggestions about the consistency,safety and electrical properties in the battery annoucement test,which provide reference for the electric vehicle research to promote the quality improvement and technology development of the power battery. Key words:power battery;annoucement test;electric vehicle;problem and suggestion 第2期 截至国家工业和信息化部(以下简称工信部)发布的第222批《车辆生产企业及产品公告》,已列入19批《节能与新能源汽车示范推广应用工程推荐车型目录》,涉及60余家企业的200多种节能与新能源汽车产品。随着当前电动汽车研发的迅猛开展,电动汽车产品中的有关问题也越发凸显。动力电池作为电动汽车的核心零部件之一,其试验检测受到高度重视。重庆车辆检测研究院国家客车质量监督检验中心率先在国内健全了工信部要求的22项电动汽车专项检测能力,在电动汽车动力电池方面开展了大量的试验检测及研究工作,积累了丰富经验。本文以动力锂电池为例,指出其在公告检测中存在的主要问题并提出建议,为国内电动汽车的研发提供参考,以促进电动汽车动力电池质量的提高和技术的发展。 1试验检测中存在的主要问题 2009年7月1日,工信部发布的《电动汽车生产企业及产品准入管理规则》(工产业[2009]第44号)已正式施行。根据该《规则》,电动汽车除了应当符合常规汽车产品的有关检测标准外,还应当符合电动汽车产品的专项检测标准(共22项)。其中涉及动力电池的专项检测标准5项[1-5],这也是我国目前《车辆生产企业及产品公告》对于电动汽车动力电池的强制性检测依据。本文针对标准QC/T743-2006《电动汽车用锂离子蓄电池》(该标准具体分为19项单体电池试验和13项模块电池试验两部分内容),重点介绍电动汽车动力电池在一致性、安全性和电性能这三方面试验检测中存在的主要问题。 1.1一致性方面 一致性问题是制约电动汽车动力电池质量的关键因素。“标准”以单体电池放电容量的标准差系数和模块电池放电电压的标准差系数来衡量电池的一致性;对于单体电池,一致性分析的内容包括常温、低温、高温等不同工况的放电容量。对于模块电池,一致性分析的内容包括恒流放电、恒流充电、搁置等不同阶段的各单体电池放电终止电压。由于目前这一指标还处于数据积累阶段,“标准”仅给出了分析方法,无具体的限值要求,因而在实际检测中,缺少对于电池一致性进行评价和考核的依据[6-7]。 图1是某模块电池恒流放电曲线。根据“标准” 作者简介:杨杰(1982-),男,硕士;主要从事新能源汽车电池、电机、电控的试验检测与研究工作。 23

电动汽车动力电池研究综述

目录 1引言 (2) 2电动汽车对动力电池的发展及要求3? 2.1动力电池的发展 (3) 2.2?电动汽车对动力电池的要求 ............................................................. 43?铅蓄电池?4 3.1铅蓄电池工作原理 (4) 3.2铅蓄电池性能特点 (5) 3.3铅蓄电池应用范围5? 4?镍氢电池........................................................................................................... 6 4.1?镍氢电池工作原理 (6) 4.2镍氢电池性能特点.......................................................................... 6 4.3?镍氢电池应用范围 (7) 5?锂离子电池7? 5.1?锂离子电池工作原理?错误!未定义书签。 5.2?锂离子电池性能特点7? 5.3锂离子电池应用范围8? 6?电动汽车动力电池发展趋势?8 6.1铅蓄电池发展趋势.......................................................................... 8 6.2?镍氢电池发展趋势 (9) 6.3?锂离子电池发展趋势 ......................................................................... 9 7?结论................................................................................................................. 10参考文献11? ? 电动汽车动力电池研究综述

纯电动汽车动力电池电压及能量的测定方法

纯电动汽车动力电池电压及能量的测定方法 1 范围 本标准规定了纯电动汽车动力电池电压及能量的定义与测试方法。 本标准仅适用于纯电动汽车用动力电池,包括镍氢电池、铅酸电池、锂离子电池等二次电池,燃料电池、物理电池等不适用于本标准。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 2900.41-2008 电工术语原电池和动力电池 GB/T 19596-2004 电动汽车术语 3 术语、定义和符号 GB/T 2900.41、GB/T 19596中界定的以及下列术语和定义适用于本标准。 3.1 术语和定义 3.1.1 纯电动汽车 由电动机驱动的汽车。电动机的驱动电能来源于车载可充电动力电池或其他能量储存装置。 3.1.2 动力电池系统 为电动汽车动力系提供能量的电池系统,简称动力电池。 3.1.3 动力电池额定电压 动力电池系统设计时预定的工作电压。 3.1.4 动力电池标称电压 在动力电池上标示的电池电压。 3.1.5 动力电池特征电压 用于表征动力电池工作电压特性的近似值。 3.1.6 动力电池开路电压 动力电池在开路条件下的端电压。 3.1.7 动力电池充电电压 动力电池处于充电状态下的正负两极端间的电压。 3.1.8 动力电池放电电压 动力电池处于放电状态下的正负两极端间的电压。 3.1.9 动力电池充电终止电压

动力电池充电终止时的电压。 3.1.10 动力电池放电终止电压 动力电池放电终止时的电压。 3.1.11 动力电池充电上限电压 规定的在充电期间动力电池不应高于的电压值。3.1.12 动力电池放电下限电压 规定的在放电期间动力电池不应低于的电压值。 3.1.13 动力电池充电初始电压 动力电池开始充电时的电压。 3.1.14 动力电池放电初始电压 动力电池开始放电时的电压。 3.1.15 动力电池额定能量 动力电池设计时预定的能量值。 3.1.16 动力电池标称能量 在动力电池上标识的能量值。 3.1.17 动力电池实测能量 实际测得的动力电池能量值。 3.1.18 动力电池充电能量 充电时进入动力电池内部的能量。 3.1.19 动力电池放电能量 动力电池放电时输出的电能。 3.1.20 动力电池可用能量 在规定放电条件下,动力电池能输出的最大电能。 3.2 符号 I1——动力电池1h率放电电流值。 I2——动力电池2h率放电电流值。 I3——动力电池3h率放电电流值。 I5——动力电池5h率放电电流值。 I10——动力电池10h率放电电流值。 I n——动力电池nh率放电电流值。 4 测试条件 4.1 准确度要求 4.1.1 测量仪器仪表的要求如下:

特斯拉电动汽车动力电池管理系统解析

特斯拉电动汽车动力电池管理系统解析 1. Tesla目前推出了两款电动汽车,Roadster和Model S,目前我收集到的Roadster的资料较多,因此本回答重点分析的是Roadster的电池管理系统。 2. 电池管理系统(Battery Management System, BMS)的主要任务是保证电池组工作在安全区间内,提供车辆控制所需的必需信息,在出现异常时及时响应处理,并根据环境温度、电池状态及车辆需求等决定电池的充放电功率等。BMS的主要功能有电池参数监测、电池状态估计、在线故障诊断、充电控制、自动均衡、热管理等。我的主要研究方向是电池的热管理系统,因此本回答分析的是电池热管理系统(Battery Thermal Management System, BTMS). 1. 热管理系统的重要性 电池的热相关问题是决定其使用性能、安全性、寿命及使用成本的关键因素。首先,锂离子电池的温度水平直接影响其使用中的能量与功率性能。温度较低时,电池的可用容量将迅速发生衰减,在过低温度下(如低于0°C)对电池进行充电,则可能引发瞬间的电压过充现象,造成内部析锂并进而引发短路。其次,锂离子电池的热相关问题直接影响电池的安全性。生产制造环节的缺陷或使用过程中的不当操作等可能造成电池局部过热,并进而引起连锁放热反应,最终造成冒烟、起火甚至爆炸等严重的热失控事件,威胁到车辆驾乘人员的生命安全。另外,锂离子电池的工作或存放温度影响其使用寿命。电池的适宜温度约在10~30°C之间,过高或过低的温度都将引起电池寿命的较快衰减。动力电池的大型化使得其表面积与体积之比相对减小,电池内部热量不易散出,更可能出现内部温度不均、局部温升过高等问题,从而进一步加速电池衰减,缩短电池寿命,增加用户的总拥有成本。 电池热管理系统是应对电池的热相关问题,保证动力电池使用性能、安全性和寿命的关键技术之一。热管理系统的主要功能包括:1)在电池温度较高时进行有效散热,防止产生热失控事故;2)在电池温度较低时进行预热,提升电池温度,确保低温下的充电、放电性能和安全性;3)减小电池组内的温度差异,抑制局部热区的形成,防止高温位置处电池过快衰减,降低电池组整体寿命。 2. Tesla Roadster的电池热管理系统 Tesla Motors公司的Roadster纯电动汽车采用了液冷式电池热管理系统。车载电池组由6831节18650型锂离子电池组成,其中每69节并联为一组(brick),再将9组串联为一层(sheet),最后串联堆叠11层构成。电池热管理系统的冷却液为50%水与50%乙二醇混合物。

电动汽车用动力蓄电池技术要求及试验方法

《电动客车安全要求》 征求意见稿编制说明 一、工作简况 1、任务来源 为引导和规范我国电动客车产业健康可持续发展,提高电动客车安全技术水平,落实工业和信息化部建设符合电动客车特点的整车、电池、电机、高压线束等系统的安全条件及测试评价标准体系的要求,全国汽车标准化技术委员会于2016年8月启动了本强标的立项和编制工作。 2、主要工作过程 根据有关部门对电动客车安全标准制定工作的要求,全国汽车标准化技术委员会电动车辆分技术委员会组织成立“电动客车安全要求工作组”(以下简称工作组),系统开展电动客车安全要求标准的制定工作。 (1)GB《电动客车安全要求》于2016年底完成立项(计划号20160968-Q-339),2016年12月29日在南充电动汽车整车标准工作组会议上组建了标准制定的核心工作组,启动了强标制定工作,并由起草组代表介绍了标准的背景、编制思路、以及与相关标准的协调性关系。 (2) 2017年2月-3月,基于已开始执行的《电动客车安全技术条件》(工信部装[2016]377号,以下简称《条件》)的工作基础,工作组向电动客车行业主要企业、检测机构等16家单位征求《条件》的实施情况反馈与强制性国标制定建议。 (3) 2017年4月18日,工作组在重庆组织召开标准制定讨论会,会议对《条件》制定情况进行了回顾,对收集到的《条件》执行情况进行了分析讨论。根据讨论结果,针对共性问题形成了专项征求意见表。 (4) 2017年5月-6月,工作组根据重庆会议讨论结果向行业进行强标制定专项意见征求意见。 (5) 2017年6月6日,在株洲召开工作组会议,会议对专项征求意见期间收集的反馈意见进行研究讨论。 (6)2017年6月-10月,工作组依据意见反馈情况和会议讨论结果进行标

磷酸铁锂电池SOC估算研究

1 引言 为了应对能源危机,减缓全球气候变暖,许多国家都开始重视节能减排和发展低碳经济。电动汽车因为采用电力进行驱动,可以降低二氧化碳的排放量甚至实现零排放,所以得到各国的重视而迅速发展。但是电池成本仍然较高,动力电池的性能和价格是电驱动汽车发展的主要“瓶颈”。磷酸铁锂电池因其寿命长、安全性能好、成本低等优点成为电动汽车的理想动力源。 随着电动汽车的发展,电池管理系统(BMS)也得到了广泛应用。为了充分发挥电池系统的动力性能、提高其使用的安全性、防止电池过充和过放,延长电池的使用寿命、优化驾驶和提高电动汽车的使用性能,BMS系统就要对电池的荷电状态即SOC (STate-Of-Charge)进行准确估算。SOC是用来描述电池使用过程中可充入和放出容量的重要参数。 2 问题的提出 电池的SOC和很多因素相关(如温度、前一时刻充放电状态、极化效应、电池寿命等),而且具有很强的非线性,给SOC实时在线估算带来很大的困难。 目前电池SOC估算策略主要有:开路电压法、安时计量法、人工神经网络法、卡尔曼滤波法等。 开路电压法的基本原理是将电池充分静置,使电池端电压恢复至开路电压,静置时间一般在1小时以上,不适合电动汽车的实时在线检测。图1比较了锰酸锂电池和磷酸铁锂电池的开路电压(OCV)与SOC的关系曲线,LiFePO4电池的OCV曲线比较平坦,因此单纯用开路电压法对其SOC进行估算比较困难。 图1 锰酸锂和磷酸铁锂的OCV-SOC曲线 目前实际应用的实时在线估算SOC的方法大多采用安时计量法,由于安时计量存在误差,随着使用时间的增加,累计误差会越来越大,所以单独采用该方法对电池的SOC进行估算并不能取得很好的效果。实际使用时,大多会和开路电压法结合使用,但LiFePO4平坦的OCV-SOC曲线对安时计量的修正意义不大,所以有学者利用充放电后期电池极化电压较大的特点来修正SOC,对于LiFePO4电池来讲极化电压明显增加时的电池SOC大约在90%以上。电池的荷电状态与充电电流的关系可分为3个阶段进行:第一段,SOC低端(如SOC<10%),电池的内阻较大,电池不适合大电流充放电;第二段,电池的SOC中间段(如10%

电动汽车动力电池的维护与检修

电动汽车动力电池的维护与检修 摘要:主要针对电动汽车动力电池运行检修管理,研究了电池接收检验、运行管理、日常维护、运行检测和安全管理等关键环节,结合电池运行的技术特点,对电池的日常检测、维护和检修等进行了分析,分析了电池受到电压,温度以及外界因数等典型故障的原因分析及维护方法,同时提出了提高动力电池运行与检修水平以及电动电池保养的措施。 关键词:电动汽车动力电池检测与维护 ABSTRACT:Mainly for electric vehicle power battery operation and maintenancemanagement, the key of the battery receiving inspection, operation management,daily maintenance, monitoring and security management, combined with the technical characteristics of battery operation,daily inspection, maintenance and repair of the battery were analyzed, analysis the reason of the typical fault of power battery voltage, insulation, the temperature and the appearance and maintenance method, and proposed to improve the power battery operation and maintenance level and measure electric battery maintenance. Key words:Electric car battery power detection and maintenance 目录: 摘要 1.动力电池的检修内容 (1)电压异常 (2)温度异常 (3)外观异常 (4)检测振动对电池的影响

纯电动汽车用磷酸铁锂电池的模型参数分析

汽车工程 2013年館35卷)第2期人11101001^6汜咱此汉2013况。 135川。.2 2013025纯电动汽车用磷酸铁锂电池的模型参数分析4 牛利勇,时辟,姜久春,张言甚,姜君,曹雪铭 (北京交通大学电气工程学院, 北京100044》 00要]鉴于纯电动汽车用磷酸铁锂电池在不同荷电状态下的电池特性差异较大,传统参数辨识方法得到的电池模型参数拟合精度较低。本文采用电化学阻抗谱来分析等效电路模型参数,以研究电池的电压特性和动态功 率特性,通过综合分析实际充放电条件的主要特征来提取电池典型的参数辨识工况,并利用粒子群优化算法分析模 型参数。在不同温度和使用区间的验证表明该方法的精度较高,为磷酸铁锂电池的进一步研究提供依据。 关键词:磷酸铁锂电池;等效电路模型;参数辨识;粒子群优化 1^0(161 ?31311161;618 ^113.17818 0^ 1111111101 1x011 1*11081)1131:6 8311617 21601110 \^6111016 ^111 1^700容,8111^61^1(311 苕 11110111111;21130^ 丫3111111,^130^ 1(10 &030 \1161111|1^ 5(^10010^, 晰如客,861/111^ 細01071呂111111)61&11^!861/111^100044 [八乜对四。!] 1(10文11131 11166(1111^ 300111807 0^~1)811617 1110^61 ^31311161618 01)131116(1^ 1X3(111101131卩31311161汉 1(1611(1(16311011 1116(110(1 13 1613.11^61^ ^001~ 1^60&1136 出6 0113130161181108 0^ 11(11111111 11011 ^1108^(11316 1^?6?04〉1)3.11617玄01 5)1116 61601110 ^6111016 8180150311117 &I &1 狂616111 8(3(63 0^ 01131名6,出6 ^31311161618 0^ 6(^111^816111 01101111 010(161 316 &1131726(1 ^ 118111名61601^001161111031 11111)6(1&1106 81)6011:08005)7 10 8111(17出6 ^01(8^ 01131'&0161181108 0^ 1)30617 111 111138^000^)1^11611817617 3113172111^ 1116 1113111 ^6&111168 0^ ^1*30(1031 01131'名6 30(1 111801131名6 0011(111101131出6 1)^)1031 5)813016161 1(160(15(^11011 卿出11名 1110(163 0【1)311617 财 6X113016(1 3X1(1 1116 010(161 ^3131116161^ 316 31131726(1 化出 1)3111016 8\^811110^(1111123(101131^011111111^1^16 ^311(1311011 31 111^1601 311(1 1183^6 111161^318 8110\^出31 1116 300111307 0^ 1116 801161116 18 1811161-卜!^!. 11118 ^10^1(168 3 1)331361111161 111^63(1^(1011 1111011(11111111 11011^1108^)11316匕过一 ^65^0^8: 11(1111111111*011 ^11081)11316 5311617; 6(1111^31601 1:11X1111 1110(161; ; 13丨 3111616丨; 113111016 5评31*111 0;111111!2311011 前言 国内外关于锂离子电池性能的研究已较为深入卜由于电动汽车仿真技术的需要,研究人员设计了大量等效电路模型011-01111 1110(^1,阢财)8~13,等效电路利用电路网络来描述电池的电压特性,常常用于电动汽车整车动力系统仿真和电池系统功率与能量的预测。但是由于动力电池具有复杂的电化学特性,当电池工作在不同荷电状态和温度条件下,电学模型的参数会发生变化。当电池容量衰退和性能老化后,电学模型的参数也会发生较大改变,因此很多学者通过建立不同状态下的参数列表来实现电池管理系统的控制。 为掌握电池的衰退机制并进行电池寿命预测,一方面需要分析动力电池内部正负极和电解质等化学材料的性能和结构改变带来的影响,另一方面需要研究准确表怔电池电压特性和动态功率特性的参数估计方法。通常认为电池寿命的影响因素主要有环境温度、充放电制度和循环老化条件^10,综合各影响因素得到的电动汽车模拟工况测试序列常用于动力电池的性能测试和寿命评价,因此在实际使用 4国家863计划“电动汽车运营系统关键技术研究与应用” 2012&050211; ! 和校基本科研费2009』 82017-〗)资助。原稿收到日期为2012年7月9日,修改稿收到日期为2012年8月27日。

相关文档