文档库 最新最全的文档下载
当前位置:文档库 › 逆变器选型知识手册

逆变器选型知识手册

逆变器选型知识手册
逆变器选型知识手册

逆变器选型知识手册

一、逆变器基础知识

目前逆变器主要采用 PWM 技术:控制器在单脉冲周期内快速投切直流,保证直流的积分值等于同时刻下交流正弦波的采样值,这样经滤波器输出后,即可得到超过 96%的正弦波输出。

输出电压被脉冲调制的自励逆变器为脉冲逆变器。这种逆变器通过增加周期内脉冲的切换次数,来降低电压,电流的脉冲次数;只能通过增加逆变器的整流支数来实现。

交流侧的等效电感决定了电流谐波的含量。因此,为了满足并网接入要求,应保证光伏发电系统的等效电感值小。

逆变器后接低通滤波器和隔离变压器,将滤除 N-1 阶以下的谐波,其中 N 为交流电流周期的触发脉冲数。增加切换频率,则电力电子设备的功率损耗将增加;但低切换频率下,低通滤波器的损耗将增加。如果希望并入单相交流电网的电流倍频,则调制光伏发电机直流输出的交流控制信号频率也要加倍。

二、逆变器的概念

通常,把将交流电能变换成直流电能的过程称为整流,把完成整流功能的电路称为整流电路,把实现整流过程的装置称为整流设备或整流器。与之相对应,把将直流电能变换成交流电能的过程称为逆变,把完成逆变功能的电路称为逆变电路,把实现逆变过程的装置称为逆变设备或逆变器。

现代逆变技术是研究逆变电路理论和应用的一门科学技术。它是建立在工业电子技术、半导体器件技术、现代控制技术、现代电力电子技术、半导体变流技术、脉宽调制(PWM)技术等学科基础之上的一门实用技术。它主要包括半导体功率集成器件及其应用、逆变电路和逆变控制技术3大部分。

三、逆变器的分类

逆变器的种类很多,可按照不同的方法进行分类。

1.按逆变器输出交流电能的频率分,可分为工频逆变器、中频逆器和高频逆变器。。

工频逆变器

工频逆变器的频率为50~60Hz的逆变器,图1 示出采用工频变压器升压的逆变电路。它首先把直流电逆变成工频低压交流电;再通过工频变压器升压成220V,50Hz 的交流电供负载使用。它的优点是结构简单,各种保护功能均可在较低电压下实现。因其逆变电源与负载之间存有工频变压器,故逆变器运行稳定、可靠、过负荷能力和抗冲击能力强,且能够抑制波形中的高次谐波成分。然而,工频变压器也存在笨重和价格高的问题,而且其效率也比较低。按目前水平制作的小型工频逆变器,其额定负荷效率一般不超过90%,同时因工频变压器在满负荷和轻负荷下运行时铁损基本不变,因而使其在轻负荷下运行的空载损耗较大,效率也较低。

Low frequency transformer STUDER)工频变压器

(+ Bat

-Bat

工频变压器拓扑图 在低功率输出时的逆变效率比峰值效率更加重要。工频逆变器更适合孤岛系统(用户负荷大部分时间是低于峰值功耗的)

工频逆变器能承受更高的负载功率冲击

中频逆变器

中频逆变器的频率一般 为400Hz到十几kHz

高频逆变器

高频逆变器的频率一般为十几kHz到MHz。图2 示出采用高频变压器升压的逆变电路。它首先通过高频DC/DC 变换技术,将低压直流电逆变为高频低压交流电;然后经过高频变压器升压后,再经过高频整流滤波电路整流成通常均在300V 以上的高压直流电;最后通过工频逆变电路得220V 工频交流电供负载使用。由于高频逆变器采用的是体积小,重量轻的高频磁芯材料,因而大大提高了电路的功率密度,从而使逆变电源的空载损耗很小,逆变效率得到提高。通常,用于中小型PVS 中的高频逆变器,其峰值转换效率能达90%以上。

+ Bat

-Bat High frequency

transformer 高频变压器

高频变压器拓扑图

E f f . [%]20

40

60

80

100

[%] Pnom.0

020*********

工频变压器与高频变压器效率曲线,红色为工频变压器,蓝色为高频变压器

2.按逆变器输出的相数分,可分为单相逆变器、三相逆变器和多相逆变器。

3.按照逆变器输出电能的去向分,可分为有源逆变器和无源逆变器。凡将 逆变器输出的电能向工业电网输送的逆变器,称为有源逆变器;凡将逆变器输出 的电能输向某种用电负载的逆变器称为无源逆变器。

4.按逆变器主电路的形式分,可分为单端式逆变器,推挽式逆变器、半桥 式逆变器和全桥式逆变器。

5.按逆变器主开关器件的类型分,可分为晶闸管逆变器、晶体管逆变器、 场效应逆变器和绝缘栅双极晶体管(IGBT)逆变器等。又可将其归纳为“半 控型”逆变器和“全控制”逆变器两大类。前者,不具备自关断能力,元器件在导 通后即失去控制作用,故称之为“半控型”普通晶闸管即属于这一类;后者,则具 有自关断能力,即无器件的导通和关断均可由控制极加以控制,故称之为“全控 型”,电力场效应晶体管和绝缘栅双权晶体管(IGBT)等均属于这一类。

6.按直流电源分,可分为电压源型逆变器(VSI)和电流源型逆变器(C SI)。前者,直流电压近于恒定,输出电压为交变方波;后者,直流电流近于 恒定,输也电流为交变方波。

7.按逆变器输出电压或电流的波形分,可分为正弦波输出逆变器和非正弦 波输出逆变器。

8.按逆变器控制方式分,可分为调频式(PFM)逆变器和调脉宽式(P WM)逆变器。 9.按逆变器开关电路工作方式分,可分为谐振式逆变器,定频硬开关式逆 变器和定频软开关式逆变器。

10.按逆变器换流方式分,可分为负载换流式逆变器和自换流式逆变器。

四、特殊功能逆变器

除了常见的并网逆变器和离网逆变器之外,根据市场的需求,现在市场上的逆变器除了具有离网或并网功能之外还附加了许多其他的功能。

1.离网备份逆变器

(1)静态旁路逆变器

在蓄电池或太阳能板供电不足导致突然掉电的情况下,可以快速的切入到市电供电,切换时间一般要求小于20ms(保证服务器或个人电脑不会掉电,但是灯泡等阻性负载会有闪断的现象出现),工作时可以设置优先级切换。

(2)离网双向逆变器

除了具有静态旁路逆变器的功能之外,还可以将市电供给电池充电,可以保证电池电压不会低于某一值后导致过放,有些功能更强大一点的逆变器还可以进行市电与逆变的功能互补,比如一个额定容量7 KW的逆变器,需要共给一个10KW的负载,光靠逆变器来的7KW的电是不行的,并且一般的逆变器150%过载时间不会超过几分钟,在这种情况下,双向逆变器的优点体现出来了,它可以逆变7KW,再加上市电3Kw来供给10KW的负载。这一点在系统升级时是非常重要的,如果一个系统正常工作在额定功率下,在负载稍微加大的情况下就要么系统无法工作,要么就需要投入大量的成本来进行系统扩容,这都不合算

2.并网备份逆变器

并网发电有一个很大的缺点就是输出功率随着光照强度变化而变化,这对于光伏电站来说会影响输出的功率波动,对于并网附近的离网用户是非常危险的事情,在某些地方这种情况下是不允许并网的,这时必须得使用某些储能设备来进行功率平滑,并网逆变器的直流输入电压一般都在几百伏左右,并且并网逆变器的输入端一般都会带有MPPT,大家都知道MPPT是不允许恒压源来供电的,在并网逆变器的输入端直接加电池是无法实现的,有一种解决方案就是,使用一个低压并网逆变器来与纯并网逆变器输出并接,中间搭接一个功率转换装置,来保证总的输出恒定,这样也就可以供给离网用户了

3.电子回馈式节能负载

电子回馈式节能负载实际上是一种电能老化装置,同时也是并网逆变器,但与并网逆变器不同的是它的输入电压是恒定的,且允许很低的输入电压,与并网备份逆变器相比较,它的输出一般都是根据设置恒定输出。

五、逆变器的主要技术性能及评价选用

技术性能

表征逆变器性能的基本参数与技术条件内容很多,下面仅就评价时常用的参数做一简要说明。

1.额定输出电压

在规定的输入直流电压允许的波动范围内,它表示逆变器应能输出的额定电压值。对输出额定电压值的稳定准确度一般有如下规定:

(1)在稳态运行时,电压波动范围应有一个限定,例如其偏差不超过额定值的±3%或±5%。

(2)在负载突变(额定负载0%→50%→100%)或有其他干扰因素影响的动态情况下,其输出电压偏差不应超过额定值的±8%或±10%。

2.输出电压的不平衡度

在正常工作条件下,逆变器输出的三相电压不平衡度(逆序分量对正序分量之比)应不超过一个规定值,一般以%表示,如5%或8%。

3.输出电压的波形失真度当逆变器输出电压为正弦度时,应规定允许的 大波形失真度(或谐波含量)。

通常以输出电压的总波形失真度表示,其值不应超过5%(单相输出允许10

%)。

4.额定输出频率

逆变器输出交流电压的频率应是一个相对稳定的值,通常为工频50Hz。正常工作条件下其偏差应在±1%以内。

5.负载功率因数

表征逆变器带感性负载或容性负载的能力。在正弦波条件下,负载功率因数为0.7~0.9(滞后),额定值为0.9。

6.额定输出电流(或额定输出容量)

表示在规定的负载功率因数范围内逆变器的额定输出电流。有些逆变器产品

给出的是额定输出容量,其单位以VA或kVA表示。逆变器的额定容量是当输

出功率因数为1(即纯阻性负载)时,额定输出电压为额定输出电流的乘积。

7.额定输出效率

逆变器的效率是在规定的工作条件下,其输出功率对输入功率之比,以%表示。逆变器在额定输出容量下的效率为满负荷效率,在10%额定输出容量的效率为低负荷效率。

8.保护

(1)过电压保护:对于没电压稳定措施的逆变器,应有输出过电压防护措施,以使负截免受输出过电压的损害。

(2)过电流保护:逆变器的过电流保护,应能保证在负载发生短路或电流超过允许值时及时动作,使其免受浪涌电流的损伤。

9.起动特性

表征逆变器带负载起动的能力和动态工作时的性能。逆变器应保证在额定负载下可靠起动。

10.噪声

电力电子设备中的变压器、滤波电感、电磁开关及风扇等部件均会产生噪声。逆变器正常运行时,其噪声应不超过80dB,小型逆变器的噪声应不超过65dB。

逆变器的基础知识

逆变器的基础知识 一、逆变器种类的划分 主要分两类,一类是正弦波逆变器,另一类是方波逆变器。正弦波逆变器输出的是同我们日常使用的电网一样甚至更好的正弦波交流电,因为它不存在电网中的电磁污染。方波逆变器输出的则是质量较差的方波交流电,其正向最大值到负向最大值几乎在同时产生,这样,对负载和逆变器本身造成剧烈的不稳定影响。 同时,其负载能力差,仅为额定负载的40-60%,不能带感性负载(详细解释见下条)。如所带的负载过大,方波电流中包含的三次谐波成分将使流入负载中的容性电流增大,严重时会损坏负载的电源滤波电容。 针对上述缺点,近年来出现了准正弦波(或称改良正弦波、修正正弦波、模拟正弦波等等)逆变器,其输出波形从正向最大值到负向最大值之间有一个时间间隔,使用效果有所改善,但准正弦波的波形仍然是由折线组成,属于方波范畴,连续性不好。 总括来说,正弦波逆变器提供高质量的交流电,能够带动任何种类的负载,但技术要求和成本均高。准正弦波逆变器可以满足我们大部分的用电需求,效率高,噪音小,售价适中,因而成为市场中的主流产品。方波逆变器的制作采用简易的多谐振荡器,其技术属于50年代的水平,将逐渐退出市场。 二、何为感性负载 通俗地说,即应用电磁感应原理制作的大功率电器产品,如电动机、压缩机、继电器、日光灯等等。这类产品在启动时需要一个比维持正常运转所需电流大得多(大约在3-7倍)的启动电流。 例如,一台在正常运转时耗电150瓦左右的电冰箱,其启动功率可高达1000瓦以上。此外,由于感性负载在接通电源或者断开电源的一瞬间,会产生反电动势电压,这种电压的峰值远远大于逆变器所能承受的电压值,很容易引起逆变器的瞬时超载,影响逆变器的使用寿命。因此,这类电器对供电波形的要求较高。 三、准正弦波逆变器可以用于哪些电器 准正弦波也分为若干种,从与方波相差无几的方形波到比较接近正弦波的圆角梯形波。 我们这里仅讨论方形波,这也是目前大部分市售高频逆变器能够提供的波形。这类准正弦波逆变器可应用于笔记本电脑、电视机、组合式音响、摄像机、数码相机、打印机、各种充电器、掌电上脑、游戏机、影碟机、移动DVD、家用治疗仪等等,输出功率较大的逆变器还可以应用于小型电热器具如电吹风机、电热杯、厨房电器等等。 但对感性负载类电器如电冰箱、电钻等则不宜长时间使用准正弦波逆变器供电。否则,将可能对逆变器和相关电器产品造成损坏或缩短预期使用寿命。如果一定要使用感性负载,建议选用储备功率较大的准正弦波逆变器。

光伏并网逆变器选型细则

并网逆变器选型细则 并网逆变器就是将太阳能直流电转换为可接入交流市电得设备,就是太阳能光伏发电站不可缺少得重要组成部分。以下对光伏电站设计过程中并网逆变器及其选型做比较详细得介绍与分析。 1. 并网逆变器在光伏电站中得作用 光伏发电系统根据其应用模式一般可分为独立发电系统、并网发电系统以及混合系统,而并网发电系统得基本特点就就是太阳电池组件产生得直流电经过并网逆变器转换成符合市电电网要求得交流电之后直接接入公共电网。 1、1 并网光伏电站得基本结构 1、2 并网逆变器功作用与功能 并网逆变器就是电力、电子、自动控制、计算机及半导体等多种技术相互渗透与有机结合得综合体现,它就是光伏并网发电系统中不可缺少得关键部分。并网逆变器得主要功能就是: ◆最大功率跟踪 ◆DCAC转换 ◆频率、相位追踪 ◆相关保护 2. 并网逆变器分类 并网逆变器按其电路拓扑结构可以分为变压器型与无变压器型逆变器,其中变压器型又分为高频变压器型与低频变压器型。变压器型与无变压器型逆变器得主要区别在于安全性与效率两个方面。以下对三种类型逆变器做简单介绍: ◆高频变压器型 采用DCACDCAC得电路结构,设计较为复杂,采用较多得功率开关器件,因此损耗较大。 ◆低频变压器型 采用DCACAC得电路结构,电路简单,采用普通工频变压器,具有较好得电气安全性,但效率较低。 ◆无变压器型 采用DCAC得电路结构,无电气隔离,电压范围较窄,但就是损耗小、效率高。

3. 并网逆变器主要技术指标 a、使用环境条件 逆变器正常使用条件:包括工作温度、工作湿度以及逆变器得冷却方式等相关指标。 b、直流输入最大电流 c、直流输入最大电压 d、直流输入MPP电压范围 逆变器对太阳能电池部分进行最大功率追踪(MPPT)得电压范围,一般小于逆变器允许得最大直流输入电压,设计电池组件得输出电压应当在MPP电压范围之内。 e、直流输入最大功率 大于逆变器得额定输出功率,即通常所说得“逆变器功率”。为了充分利用逆变器得容量,设计接入并网逆变器得电池组件得标称功率可以等于直流侧输入最大功率。 f、最大输入路数 指逆变器直流侧可接入得直流回路数目。 g、额定输出电压 在规定得输入条件下,逆变器应输出得电压值。电压波动范围一般应:单相220V±5%,三相380±5%。 h、额定输出功率 在规定得输出频率与负载功率因数下,逆变器应输出得额定电流值。 i、额定输出频率 在并网系统中,额定输出频率要对应所并入得电网频率,而且当电网得频率与相位有微小波动时,逆变器输出得交流电应自动追踪电网得频率与相位。当检测到电网频率波动过大,逆变器将自动切离电网。我国得市电频率为50Hz,并网逆变器频率波动范围一般在±3%以内。 j、最大谐波含量 正弦波逆变器,在阻性负载下,输出电压得最大谐波含量应≤10%。 k、过载能力 在规定得条件下,在较短时间内,逆变器输出超过额定电流值得能力。逆变器

PVsyst 逆变器选型

Inverter / Array sizing The inverter power sizing is a delicate and debated problem. Many inverter providers recommend (or require) a PNom array limit or a fixed Pnom (inverter/array) ratio, usually of the order of 1.0 to 1.1. PVsyst provides a much more refined and reliable procedure. Preliminary observations about Pnom sizing 1. -The Pnom of the inverter is defined as the output AC power. The corresponding input power is Pnom DC = Pnom AC / Efficiency, i.e. about 3 to 6% over. For example a 10 kW inverter will need PNomDC=10.5 kW input for operating at 10 kWac. 2. -The Pnom of the array is defined for the STC. But in real conditions, this value is very rarely or never attained. The power under 1000 W/m2 and 25°C is equivalent to that produced under 1120 W/m2 and 55°C with μPmpp = -0.4%/°C. Such an irradiance is only reached episodically in most sites. 3. -The power distribution is dependent on the plane orientation: a fa?ade will never receive more than 700 -800 W/m2, depending on the latitude. 4. -The maximum powers are not very dependent on the latitude: by clear day and perpendicular to the sun rays, the irradiance is quite comparable, only dependent on the air mass. But it significantly depends on the altitude. 5. -Many inverters accept a part of overload specified by a Pmax parameter, during short times (dependent on the temperature of the device). This is not taken into account in the simulation, and may still reduce the calculated overload loss, 6. -When over-sized, the inverter will operate more often in its low power range, where the efficiency is decreasing. Sizing principle In PVsyst, the inverter sizing is based on an acceptable overload loss during operation, and therefore involves estimations or simulations in the real conditions of the system (meteo, orientation, losses). Taking the following into account: A. -Overload behaviour: With all modern inverters, when the Pmpp of the array overcomes its Pnom DC limit, the inverter will stay at its safe nominal power by displacing the operating point in the I/V curve of the PV array (towards higher voltages). Therefore it will not undertake any overpower; simply the potential power of the array is not produced. There is no power to dissipate, no overheating and therefore no supplementary ageing. B. -Loss evaluation: In this mode the only energy loss is the difference between the Pmpp "potential" power and the Pnom DC limit effectively drawn. We can see on the power distribution diagrams, that even when the inverter's power is a little bit under the maximum powers attained by the array in real operation, this results in very little power losses (violet steps by respect to the green ones, quasi- invisibles). The simulation - and the analysis of the overload loss - is therefore a very good mean for assessing the size of an inverter. This is shown on the power histogram in the "System" definitions, button "Show sizing".

逆变器的选型

逆变器主要技术指标有:额定容量;输出功率因数;额定输入电压、电流 电压调整率;负载调整率;谐波因数;总谐波畸变率;畸变因数;峰值子数等 通过对逆变器产品的考察,现对250kW、500kW逆变器产品及1000kW逆变器做技术参数比较: 本工程装机容量,10MWp,若选用单台容量大的逆变器,逆变器发生故障时,发电系统损失发电量较大;选用单台容量小的逆变设备,则设备数量较多,会增加投资后期的维护工作量;在投资相同的条件下,应尽量选用容量大的逆变设备,可在一定程度上降低投资,并提高系统可靠性,因此,从工程运行及维护考虑,本工程拟采用高效率、大功率逆变器,选用容量为 500kW,逆变器参数暂按如下参数进行设计

集中型逆变器 主要特点是单机功率大、最大功率跟踪(MPPT)数量少、每瓦成本低。目前国内的主流机型以 500kW、630kW 为主,欧洲及北美等地区主流机型单机功率 800kW 甚至更高,功率等级和集成度还在不断提高,德国 SMA 公司今年推出了单机功率 2.5MW 的逆变器。按照逆变器主电路结构,集中型逆变器又可以分为以下 2 种类型 集中型逆变器是目前大部分中大型光伏电站的首选,在全球 5MW 以上的光伏电站中,其选用比例超过 98% 通过对比集中型和组串型主流机型方案在 100MW 电站的运维数据(见表 5),发电量损失二者相当;由于组串型设备是整机维护,而集中型设备是器件维护,设备维护成本上,集中型优势非常明显。同时,在占地几千亩的百 MW 级大规模电站中,对完全分散布置的组串逆变器进行更换,维护人员花在路途上的时间将远高于进行设备更换的时间,这也是组串型的大型电站应用不利因素之一

逆变器的基本知识

浅谈光伏发电系统用逆变器的基本知识 逆变器的概念 通常,把将交流电能变换成直流电能的过程称为整流,把完成整流功能的电路称为整流电路,把实现整流过程的装置称为整流设备或整流器。与之相对应,把将直流电能变换成交流电能的过程称为逆变,把完成逆变功能的电路称为逆变电路,把实现逆变过程的装置称为逆变设备或逆变器。 现代逆变技术是研究逆变电路理论和应用的一门科学技术。它是建立在工业电子技术、半导体器件技术、现代控制技术、现代电力电子技术、半导体变流技术、脉宽调制(PWM)技术等学科基础之上的一门实用技术。它主要包括半导体功率集成器件及其应用、逆变电路和逆变控制技术3大部分。 逆变器的分类 逆变器的种类很多,可按照不同的方法进行分类。 1.按逆变器输出交流电能的频率分,可分为工频逆变器、中频逆器和高频逆变器。工频逆变器的频率为50~60Hz的逆变器;中频逆变器的频率一般为400Hz到十几kHz;高频逆变器的频率一般为十几kHz到MHz。 2.按逆变器输出的相数分,可分为单相逆变器、三相逆变器和多相逆变器。3.按照逆变器输出电能的去向分,可分为有源逆变器和无源逆变器。凡将逆变器输出的电能向工业电网输送的逆变器,称为有源逆变器;凡将逆变器输出的电能输向某种用电负载的逆变器称为无源逆变器。 4.按逆变器主电路的形式分,可分为单端式逆变器,推挽式逆变器、半桥式逆变器和全桥式逆变器。 5.按逆变器主开关器件的类型分,可分为晶闸管逆变器、晶体管逆变器、场效应逆变器和绝缘栅双极晶体管(IGBT)逆变器等。又可将其归纳为“半控型”逆

变器和“全控制”逆变器两大类。前者,不具备自关断能力,元器件在导通后即失去控制作用,故称之为“半控型”普通晶闸管即属于这一类;后者,则具有自关断能力,即无器件的导通和关断均可由控制极加以控制,故称之为“全控型”,电力场效应晶体管和绝缘栅双权晶体管(IGBT)等均属于这一类。 6.按直流电源分,可分为电压源型逆变器(VSI)和电流源型逆变器(CSI)。前者,直流电压近于恒定,输出电压为交变方波;后者,直流电流近于恒定,输也电流为交变方波。 7.按逆变器输出电压或电流的波形分,可分为正弦波输出逆变器和非正弦波输出逆变器。 8.按逆变器控制方式分,可分为调频式(PFM)逆变器和调脉宽式(PWM)逆变器。 9.按逆变器开关电路工作方式分,可分为谐振式逆变器,定频硬开关式逆变器和定频软开关式逆变器。 10.按逆变器换流方式分,可分为负载换流式逆变器和自换流式逆变器。 逆变器的基本结构 逆变器的直接功能是将直流电能变换成为交流电能 逆变装置的核心,是逆变开关电路,简称为逆变电路。 该电路通过电力电子开关的导通与关断,来完成逆变的功能。电力电子开关器件的通断,需要一定的驱动脉冲,这些脉冲可能通过改变一个电压信号来调节。产生和调节脉冲的电路。通常称为控制电路或控制回路。逆变装置的基本结构,除上述的逆变电路和控制电路外,还有保护电路、输出电路、输入电路、输出电路等,如图2所示。 逆变器的工作原理。

逆变器选型知识手册

逆变器选型知识手册 一、逆变器基础知识 目前逆变器主要采用 PWM 技术:控制器在单脉冲周期内快速投切直流,保证直流的积分值等于同时刻下交流正弦波的采样值,这样经滤波器输出后,即可得到超过 96%的正弦波输出。 输出电压被脉冲调制的自励逆变器为脉冲逆变器。这种逆变器通过增加周期内脉冲的切换次数,来降低电压,电流的脉冲次数;只能通过增加逆变器的整流支数来实现。 交流侧的等效电感决定了电流谐波的含量。因此,为了满足并网接入要求,应保证光伏发电系统的等效电感值小。 逆变器后接低通滤波器和隔离变压器,将滤除 N-1 阶以下的谐波,其中 N 为交流电流周期的触发脉冲数。增加切换频率,则电力电子设备的功率损耗将增加;但低切换频率下,低通滤波器的损耗将增加。如果希望并入单相交流电网的电流倍频,则调制光伏发电机直流输出的交流控制信号频率也要加倍。 二、逆变器的概念 通常,把将交流电能变换成直流电能的过程称为整流,把完成整流功能的电路称为整流电路,把实现整流过程的装置称为整流设备或整流器。与之相对应,把将直流电能变换成交流电能的过程称为逆变,把完成逆变功能的电路称为逆变电路,把实现逆变过程的装置称为逆变设备或逆变器。 现代逆变技术是研究逆变电路理论和应用的一门科学技术。它是建立在工业电子技术、半导体器件技术、现代控制技术、现代电力电子技术、半导体变流技术、脉宽调制(PWM)技术等学科基础之上的一门实用技术。它主要包括半导体功率集成器件及其应用、逆变电路和逆变控制技术3大部分。 三、逆变器的分类 逆变器的种类很多,可按照不同的方法进行分类。 1.按逆变器输出交流电能的频率分,可分为工频逆变器、中频逆器和高频逆变器。。 工频逆变器 工频逆变器的频率为50~60Hz的逆变器,图1 示出采用工频变压器升压的逆变电路。它首先把直流电逆变成工频低压交流电;再通过工频变压器升压成220V,50Hz 的交流电供负载使用。它的优点是结构简单,各种保护功能均可在较低电压下实现。因其逆变电源与负载之间存有工频变压器,故逆变器运行稳定、可靠、过负荷能力和抗冲击能力强,且能够抑制波形中的高次谐波成分。然而,工频变压器也存在笨重和价格高的问题,而且其效率也比较低。按目前水平制作的小型工频逆变器,其额定负荷效率一般不超过90%,同时因工频变压器在满负荷和轻负荷下运行时铁损基本不变,因而使其在轻负荷下运行的空载损耗较大,效率也较低。

逆变器的选型

。 集中式逆变器和组串式逆变器选型的比较 国家电网对分布式光伏电站要求如下:单个并网点小于6MW,年自发自用电量大于50%;8KW 以下可接入220V;8KW-400KW可接入380V;400KW-6MW可接入10KV。根据逆变器的特点,光伏 电站逆变器选型方法:220V项目选用单相组串式逆变器,8KW-30KW选用三相组串式逆变器,50KW 以上的项目,可以根据实际情况选用组串式逆变器和集中式逆变器。对于MW级别的电站亦可选择380V或10KV方式并网。 逆变器方案对比: 集中式逆变器:设备功率在50KW到630KW之间,功率器件采用大电流IGBT,系统拓扑结 构采用DC-AC一级电力电子器件变换全桥逆变,工频隔离变压器的方式,防护等级一般为IP20。体积较大,室内立式安装。 组串式逆变器:功率小于30KW,功率开关管采用小电流的MOSFET,拓扑结构采用 DC-DC-BOOST升压和DC-AC全桥逆变两级电力电子器件变换,防护等级一般为IP65。体积较小,可室外臂挂式安装。 系统主要器件对比: 集中式逆变器:光伏组件,直流电缆,汇流箱,直流电缆,直流汇流配电,直流电缆,逆变器,隔离变压器,交流配电,电网。 组串式逆变器:组件,直流电缆,逆变器,交流配电,电网。 主要优缺点和适应场合: 1、集中式逆变器一般用于日照均匀的大型厂房,荒漠电站,地面电站等大型发电系统中,系统总功率大,一般是兆瓦级以上。 主要优势有: (1)逆变器数量少,便于管理; (2)逆变器元器件数量少,可靠性高; (3)谐波含量少,直流分量少电能质量高; (4)逆变器集成度高,功率密度大,成本低; (5)逆变器各种保护功能齐全,电站安全性高; (6)有功率因素调节功能和低电压穿越功能,电网调节性好。 主要缺点有: (1)直流汇流箱故障率较高,影响整个系统。 (2)集中式逆变器MPPT电压范围窄,一般为450-820V,组件配置不灵活。在阴雨天,雾气多 的部区,发电时间短。 (3)逆变器机房安装部署困难、需要专用的机房和设备。 (4)逆变器自身耗电以及机房通风散热耗电,系统维护相对复杂。 (5)集中式并网逆变系统中,组件方阵经过两次汇流到达逆变器,逆变器最大功率跟踪功能(MPPT)不能监控到每一路组件的运行情况,因此不可能使每一路组件都处于最佳工作点,当有一块组件发生故障或者被阴影遮挡,会影响整个系统的发电效率。 (6)集中式并网逆变系统中无冗余能力,如有发生故障停机,整个系统将停止发电。

逆变电源选型资料以及图片

逆变电源 AND48系列通信逆变电源 【产品简介】 西安杰瑞达仪器有限公司是拥有国际权威机构认可的ISO9001国际质量标准管理体系的制造商。专业生产电源设备。逆变电源设备是一种将直流的电能转化为不间断的、净化的交流电能的变换装置,给计算机和其他电气设备提供可使用的连续交流电源,防备市电的不稳定及断电。亦能防止公用通信的各种畸变,如供电电压下降、浪涌电压、尖峰电压及广播频率干扰。 【产品特点】 ★完全隔离型逆变技术,输出无噪音纯净正弦交流电压; ★逆变单元采用微处理器控制,SPWM正弦脉宽调制技术,波形纯净; ★独有的动态电流环控制技术确保逆变器可靠运行; ★过负载能力强,能承受计算机负载开机浪涌冲击; ★大功率静态旁路开关,过载时可由旁路供电,切换时间短; ★具有输入过、欠压,输出过、欠压,过温、短路等保护功能; ★逆变器前面板有LED显示方式,状态一目了然; ★多种防雷保护方案可选择; 【工作原理】 通信专用型逆变系统工作方框图:如图1所示 图1通信专用逆变系统架构方块图

A.逆变系统工作于旁路状态时各部份电路工作原理:市电进入经EMI滤波器滤除市电端送来的杂讯干扰后,由静态开关送出后经输出EMI滤波器滤除干扰后送到用户负载端,为用户负载提供电能。机器此时的输出只是经过滤波后而无稳压、稳频处理过程的普通市电。 图2逆变系统工作于旁路状态时各部份电路之运作方法 B.逆变系统工作于直流正常供电状态时各部份电路工作原理,当市电故障时,直流电压被送到逆变器输入端,在主控制电路驱动下,逆变器将直流电变成电压、频率稳定、无干扰的纯正正弦波输出到静态开关,由静态开关将此优质电源送到输出EMI滤波器后,由EMI 滤波器滤除干扰后送到用户负载端,为用户提供高品质的电源。 图3逆变系统工作于电池正常供电状态时各部份电路之运作方法 【主要技术指标】 型号(AND48-)1005101010201030105010801100额定容量500V 1KVA2KVA3KVA5KVA8KVA10KVA A 运行方式纯逆变

光伏逆变器的简单选型

`光伏逆变器的简单选型 一、光伏逆变器工作原理 逆变装置的核心,是逆变开关电路,简称为逆变电路。该电路通过电力电子开关的导通与关断,来完成逆变的功能。 逆变器简单原理图 二、光伏逆变器的主要技术指标 1、输出电压的稳定度 在光伏系统中,太阳电池发出的电能先由蓄电池储存起来,然后经过逆变器逆变成220V 或380V的交流电。但是蓄电池受自身充放电的影响,其输出电压的变化范围较大,如标称12V的蓄电池,其电压值可在10.8~14.4V之间变动(超出这个范围可能对蓄电池造成损坏)。对于一个合格的逆变器,输入端电压在这个范围内变化时,其稳态输出电压的变化量应不超过额定值的±5%,同时当负载发生突变时,其输出电压偏差不应超过额定值的±10%。 2、输出电压的波形失真度 对正弦波逆变器,应规定允许的最大波形失真度(或谐波含量)。通常以输出电压的总波形失真度表示,其值应不超过5%(单相输出允许l0%)。由于逆变器输出的高次谐波电流会在感性负载上产生涡流等附加损耗,如果逆变器波形失真度过大,会导致负载部件严重发热,不利于电气设备的安全,并且严重影响系统的运行效率。 3、额定输出频率 对于包含电机之类的负载,如洗衣机、电冰箱等,由于其电机最佳频率工作点为50Hz,频率过高或者过低都会造成设备发热,降低系统运行效率和使用寿命,所以逆变器的输出频率应是一个相对稳定的值,通常为工频50Hz,正常工作条件下其偏差应在±l%以内。 4、负载功率因数 表征逆变器带感性负载或容性负载的能力。正弦波逆变器的负载功率因数为0.7~0.9,额定值为0.9。在负载功率一定的情况下,如果逆变器的功率因数较低,则所需逆变器的

接触器的选型与使用

接触器的选型与使用 接触器是一种通用性很强的自动电磁式开关电器,可用于频繁操作和远距离的控制。文章简要介绍了接触器的选用原则、安装及使用。 [关键词]电磁系统触点系统线圈选型与使用 0、引言 接触器是一种通用性很强的自动电磁式开关电器,是电力拖动与自动控制系统中重要的低压电器。它可以频繁地接触和分段交直流主电路及大容量控制电路。其主要控制对象是电动机,也可以控制其他设备,如电焊机、电阻炉和照明器具等电力负荷。它利用电磁力的吸合和反向弹力作用使接触点闭合和分断,从而使电路接通和断开。它具有欠电压释放保护和零压保护,控制容量大,可用于频繁操作和远距离的控制。且工作可靠,寿命长,性能稳定,维护方便。接触器不能切断短路电流,因此通常与熔断器配合使用。 1、接触器的工作原理与结构组成 接触器主要由电磁系统、触点系统、灭弧系统及其它部分组成。 (1)电磁系统:电磁系统包括电磁线圈和铁心,是接触器的重要组成部分,依靠它带动触点的闭合与断开。 (2)触点系统:触点是接触器的执行部分,包括主触点和辅助触点。主触点的作用是接通。 (3)分断主回路,控制较大的电流,而辅助触点是在控制回路中,以满足各种控制方式的要求。 (4)灭弧系统:灭弧装置用来保证触点断开电路时,产生的电弧能可靠的熄灭,减少电弧对触点的损伤。为了迅速熄灭断开时的电弧,通常接触器都装有灭弧装置,一般采用半封式纵缝陶土灭弧罩,并配有强磁吹弧回路。 (5)其它部分:绝缘外壳、弹簧、短路环、传动机构等。 工作原理:当线圈通电时,静铁心产生电磁吸力,将动铁心吸合,由于触头系统是与动

铁心联动的,因此动铁心带动三条动触片同时运行,触点闭合,从而接通电源。当线圈断电时,吸力消失,动铁心联动部分依靠弹簧的反作用力而分离,使主触头断开,切断电源。 2、交流接触器的选用原则 接触器作为通断负载电源的设备,接触器的选用应按满足被控制设备的要求进行,除额定工作电压与被控设备的额定工作电压相同外,被控设备的负载功率、使用类别、控制方式、操作频率、工作寿命、安装方式、安装尺寸以及经济性是选择的依据。选用原则如下: (1)交流接触器的电压等级要和负载相同,选用的接触器类型要和负载相适应。 (2)负载的计算电流要符合接触器的容量等级,即计算电流小于等于接触器的额定工作电流。接触器的接通电流大于负载的启动电流,分断电流大于负载运行时分断需要的电流,负载的计算电流要考虑实际工作环境和工况,对于启动时间长的负载,半小时峰值电流不能超过约定发热电流。 (3)按短时的动、热稳定校验。线路的三相短路电流不应超过接触器允许的动、热稳定电流,当使用接触器断开短路电流时,还应校验接触器的分断能力。 (4)接触器吸引线圈的额定电压、电流及辅助触头的数量、电流容量,应满足控制回路接线要求。要考虑接在接触器控制回路的线路长度,一般推荐的操作电压值,接触器要能够在85%~110%的额定电压下工作。如果线路过长,由于电压降太大,接触器线圈对合闸指令有可能不起反映;由于线路电容太大,可能对跳闸指令不起作用。 (5)根据操作次数校验接触器所允许的操作频率。如果操作频率超过规定值,额定电流应该加大一倍。 (6)短路保护元件参数应该和接触器参数配合选用。 (7)接触器和其它元器件的安装距离要符合相关国标,要考虑维修和走线距离。 (8)有特殊要求情况下交流接触器的选用 ①防晃电型交流接触器 电力系统由于雷击、短路后重合闸以及单相人为短时故障接地后自动恢复等原因使供电系统晃电,晃电时间一般在几秒以下。

关于逆变器转换交流电的蓄电池选型说明

关于逆变器转换交流电的蓄电池选型说明 蓄电池容量选择: 工作时间=电压伏数×电池容量×0.8×0.9÷电器功率 0.8是电池的放电系数 0.9是逆变器的转换系数 注:具体使用时间与你的电池新旧有关,汽车点火器最大供电只能带动200W以下负载。 根据以上公式: 48V蓄电池容量1000VA 48×1000×0.8×0.9÷1000=3.456H 24V蓄电池容量1000VA 24×1000×0.8×0.9÷1000=1.728H 12V蓄电池容量1000VA 12×1000×0.8×0.9÷1000=0.864H 手机的极限使用温度在~20-45度之间 逆变器的选择: 逆变器的分类和主要技术性能的评价 逆变器的分类 逆变器的种类很多,可按照不同的方法进行分类。 1、按逆变器输出交流电能的频率分,可分为工频逆变器、中频逆器和高频逆变器。工频逆变器 的频率为50~60HZ的逆变器;中频逆变器的频率一般为400HZ到十几KHZ;高频逆变器的频率一般为十几KHZ到MHZ。

2、按逆变器输出的相数分,可分为单相逆变器、三相逆变器和多相逆变器。 3、按照逆变器输出电能的去向分,可分为有源逆变器和无源逆变器。凡将逆变器输出的电能向 工业电网输送的逆变器,称为有源逆变器;凡将逆变器输出的电能输向某种用电负载的逆变器称为无源逆变器。 4、按逆变器主电路的形式分,可分为单端式逆变器,推挽式逆变器、半桥式逆变器和全桥式逆 变器。 5、按逆变器主开关器件的类型分,可分为晶闸管逆变器、晶体管逆变器、场效应逆变器和绝缘 栅双极晶体管(IGBT)逆变器等。又可将其归纳为"半控型"逆变器和"全控制"逆变器两大类。 前者,不具备自关断能力,元器件在导通后即失去控制作用,故称之为"半控型"普通晶闸管即属于这一类;后者,则具有自关断能力,即无器件的导通和关断均可由控制极加以控制,故称之为"全控型",电力场效应晶体管和绝缘栅双权晶体管(IGBT)等均属于这一类。 6、按直流电源分,可分为电压源型逆变器(VSI)和电流源型逆变器(CSI)。前者,直流电 压近于恒定,输出电压为交变方波;后者,直流电流近于恒定,输也电流为交变方波。 7、按逆变器输出电压或电流的波形分,可分为正弦波输出逆变器和非正弦波输出逆变器。 8、按逆变器控制方式分,可分为调频式(PFM)逆变器和调脉宽式(PWM)逆变器。 9、按逆变器开关电路工作方式分,可分为谐振式逆变器,定频硬开关式逆变器和定频软开关式 逆变器。 10、按逆变器换流方式分,可分为负载换流式逆变器和自换流式逆变器。 逆变器的主要技术性能及评价选用 一、技术性能

关于光伏逆变器选型,分析得太透彻了!

关于光伏逆变器选型,分析得太透彻了! 前言: 光伏逆变器是光伏发电系统两大主要部件之一,光伏逆变器的核心任务是跟踪光伏阵列的最大输出功率,并将其能量以最小的变换损耗、最佳的电能质量馈入电网。 由于逆变器是串联在光伏方阵和电网之间,逆变器的选择将成为光伏电站能否长期可靠运行并实现预期回报的关键,本文提出了“因地制宜,科学设计”——即根据光伏电站装机规模、所处环境和电网接入要求,合理选择逆变器类型。 1. 光伏电站分类及电站特点 按照光伏电站安装环境的不同,光伏电站一般分为荒漠电站、屋顶电站和山丘电站三种。 荒漠电站:利用广阔平坦的荒漠地面资源开发的光伏电站。该类型电站规模大,一般大于5MW;电站逆变输出经过升压后直接馈入110kV、330kV或者更高电压等级的高压输电网;所处环境地势平坦,光伏组件朝向一致,无遮挡。该类电站是我国光伏电站的主力,主要集中在西部地区。 山丘电站:利用山地、丘陵等资源开发的光伏电站。该类电站规模大小不一,从几MW到上百MW不等;发电以并入高压输电网为主;受地形影响,多有组件朝向不一致或早晚遮挡问题。这类电站主要应用于山区,矿山以及大量不能种植的荒地。 屋顶电站:利用厂房、公共建筑、住宅等屋顶资源开发的光伏电站。该类型电站规模受有效屋顶面积限制,装机规模一般在几千瓦到几十兆瓦;电站发电鼓励就地消纳,直接馈入低压配电网或35kV及以下中高压电网;组件朝向、倾角及阴影遮挡情况多样化。该类电站是当前分布式光伏应用的主要形式,主要集中在我国中东部和南方地区。 2. 逆变器分类及特点 光伏逆变器根据其功率等级、内部电路结构及应用场合不同,一般可分为集中型逆变器、组串型逆变器和微型逆变器三种类型。 集中型逆变器:主要特点是单机功率大、最大功率跟踪(MPPT)数量少、每瓦成本低。按照逆变器主电路结构,集中型逆变器又可以分为以下两种类型:

接触器选型及其知识

接触器的结构以及其工作原理 接触器是一种自动化的控制电器。接触器主要用于频繁接通或分断交、直流电路,具有控制容量大,可远距离操作,配合继电器可以实现定时操作,联锁控制,各种定量控制和失压及欠压保护,广泛应用于自动控制电路,其主要控制对象是电动机,也可用于控制其它电力负载,如电热器、照明、电焊机、电容器组等。 接触器按被控电流的种类可分为交流接触器和直流接触器。 (一)交流接触器 交流接触器是广泛用作电力的开断和控制电路。它利用主接点来开闭电路,用辅助接点来执行控制指令。主接点一般只有常开接点,而辅助接点常有两对具有常开和常闭功能的接点,小型的接触器也经常作为中间继电器配合主电路使用。 交流接触器的接点,由银钨合金制成,具有良好的导电性和耐高温烧蚀性。 交流接触器主要由四部分组成: (1) 电磁系统,包括吸引线圈、动铁芯和静铁芯;(2)触头系统,包括三副主触头和两个常开、两个常闭辅助触头,它和动铁芯是连在一起互相联动的;(3)灭弧装置,一般容量较大的交流接触器都设有灭弧装置,以便迅速切断电弧,免于烧坏主触头;(4)绝缘外壳及附件,各种弹簧、传动机构、短路环、接线柱等。 交流接触器的工作原理: 当线圈通电时,静铁芯产生电磁吸力,将动铁芯吸合,由于触头系统是与动铁芯联动的,因此动铁芯带动三条动触片同时运行,触点闭合,从而接通电源。当线圈断电时,吸力消失, 动铁芯联动部分依靠弹簧的反作用力而分离,使主触头断开,切断电源。 交流接触器的分类 交流接触器的种类很多,其分类方法也不尽相同。按照一般的分类方法,大致有以下几种。 ①按主触点极数分可分为单极、双极、三极、四极和五极接触器。单极接触器主要用于单相负荷,如照明负荷、焊机等,在电动机能耗制动中也可采用;双极接触器用于绕线式异步电机的转子回路中,起动时用于短接起动绕组;三极接触器用于三相负荷,例如在电动机的控制及其它场合,使用最为广泛;四极接触

光伏并网逆变器选型细则之欧阳家百创编

并网逆变器选型细则 欧阳家百(2021.03.07) 并网逆变器是将太阳能直流电转换为可接入交流市电的设备,是太阳能光伏发电站不可缺少的重要组成部分。以下对光伏电站设计过程中并网逆变器及其选型做比较详细的介绍和分析。 1.并网逆变器在光伏电站中的作用 光伏发电系统根据其应用模式一般可分为独立发电系统、并网发电系统以及混合系统,而并网发电系统的基本特点就是太阳电池组件产生的直流电经过并网逆变器转换成符合市电电网要求的交流电之后直接接入公共电网。 1.1并网光伏电站的基本结构 1.2并网逆变器功作用和功能 并网逆变器是电力、电子、自动控制、计算机及半导体等多种技术相互渗透与有机结合的综合体现,它是光伏并网发电系统中不可缺少的关键部分。并网逆变器的主要功能是: ◆最大功率跟踪 ◆DC-AC转换 ◆频率、相位追踪 ◆相关保护 2.并网逆变器分类 并网逆变器按其电路拓扑结构可以分为变压器型和无变压器

型逆变器,其中变压器型又分为高频变压器型和低频变压器型。变压器型和无变压器型逆变器的主要区别在于安全性和效率两个方面。以下对三种类型逆变器做简单介绍: ◆高频变压器型 采用DC-AC-DC-AC的电路结构,设计较为复杂,采用较多的功率开关器件,因此损耗较大。 ◆低频变压器型 采用DC-AC-AC的电路结构,电路简单,采用普通工频变压器,具有较好的电气安全性,但效率较低。 ◆无变压器型 采用DC-AC的电路结构,无电气隔离,电压范围较窄,但是损耗小、效率高。 3.并网逆变器主要技术指标 a. 使用环境条件 逆变器正常使用条件:包括工作温度、工作湿度以及逆变器的冷却方式等相关指标。 b. 直流输入最大电流 c.直流输入最大电压 d. 直流输入MPP电压范围 逆变器对太阳能电池部分进行最大功率追踪(MPPT)的电压范围,一般小于逆变器允许的最大直流输入电压,设计电池组件的输出电压应当在MPP电压范围之内。 e. 直流输入最大功率

接触器选型..

接触器选型 交流接触器常用于远距离接通和分断电压至660V、电流至600A的交流电路,以及频繁起动和控制交流电动机的场合。由于交流电路的使用场合比直流广泛,交流电动机在工厂中使用特别多,所以交流接触器的品种和规格更为繁多,常用的有CJ20、B、3TB、LCl—D与CJ40等系列交流接触器。其中CJ20为我国70年代后期到20世纪80年代完成的更新换代产品;B、3TB、LCl—D系列为同期引进国外技术制造的产品。CJ40系列为20世纪90年代跟踪国外新技术、新产品自行开发、设计、试制的产品,达到国外20世纪80年代末90年代初水平,现已完成63、80、100、125、160、200、250、315、400、500A十个电流等级,最大容量可达800A。 1.CJ20系列交流接触器 CJ20系列交流接触器适用于交流50Hz、电压至660V、电流至630A的电力系统,供远距离接通和分断线路,以及频繁地起动及控制电动机用。其机械寿命高达1000万次,电寿命为120万次,主回路电压可由380V 至660V,部分可达1140V,规格齐全,直流控制可考虑特殊订货。 CJ20系列交流接触器为直动式,主触头为双断点,磁系统为U形,采用优质吸震材料作缓冲,动作可靠。接触器采用铝基座,陶土灭弧罩,性能可靠,辅助触头采用通用辅助触头,根据需要可制成各种不同组合以适应不同需要。该系列接触器的结构优点是体积小,重量轻,易于维修保养,安装面积小,噪声低等。 型号含义:

技术数据见表1-2~1-4。

2.B系列交流接触器这是一种新型的接触器,它是引进德国BBC公司生产线和生产技术而生产的交流接触器。该系列接触器的工作原理与我国现有的交流接触器相同,但因采用了合理的结构设计、合理的尺寸参数的配合和选择,各零件按其功能选用最合适的材料和采用先进的加工工艺,故产品具有较高的技术经济指标。B系列接触器具有正装式结构与倒装式结构两种布置形式。 正装式结构,即触头系统在前面,磁系统在后面靠近安装面,属于这种结构形式的有B9、B12、B16、B25、B30、B460及K型七种。

光伏并网逆变器选型细则

并网逆变器选型细则 并网逆变器是将太阳能直流电转换为可接入交流市电的设备,是太阳能光伏发电站不可缺少的重要组成部分。以下对光伏电站设计过程中并网逆变器及其选型做比较详细的介绍和分析。 1.并网逆变器在光伏电站中的作用 光伏发电系统根据其应用模式一般可分为独立发电系统、并网发电系统以及混合系统,而并网发电系统的基本特点就是太阳电池组件产生的直流电经过并网逆变器转换成符合市电电网要求的交流电之后直接接入公共电网。 1.1 并网光伏电站的基本结构 1.2 并网逆变器功作用和功能 并网逆变器是电力、电子、自动控制、计算机及半导体等多种技术相互渗透与有机结合的综合体现,它是光伏并网发电系统中不可缺少的关键部分。并网逆变器的主要功能是: ◆最大功率跟踪 ◆DC-AC转换 ◆频率、相位追踪 ◆相关保护 2.并网逆变器分类 并网逆变器按其电路拓扑结构可以分为变压器型和无变压器型逆变器,其中变压器型又分为高频变压器型和低频变压器型。变压器型和无变压器型逆变器的

主要区别在于安全性和效率两个方面。以下对三种类型逆变器做简单介绍: ◆高频变压器型 采用DC-AC-DC-AC的电路结构,设计较为复杂,采用较多的功率开关器件,因此损耗较大。 ◆低频变压器型 采用DC-AC-AC的电路结构,电路简单,采用普通工频变压器,具有较好的电气安全性,但效率较低。 ◆无变压器型 采用DC-AC的电路结构,无电气隔离,电压范围较窄,但是损耗小、效率高。 3.并网逆变器主要技术指标 a. 使用环境条件 逆变器正常使用条件:包括工作温度、工作湿度以及逆变器的冷却方式等相关指标。 b. 直流输入最大电流 c. 直流输入最大电压 d. 直流输入MPP电压范围 逆变器对太阳能电池部分进行最大功率追踪(MPPT)的电压范围,一般小于逆变器允许的最大直流输入电压,设计电池组件的输出电压应当在MPP电压范围之内。 e. 直流输入最大功率

光伏发电系统用逆变器基本知识

光伏发电系统用逆变器基本知识 逆变器的概念 通常,把将交流电能变换成直流电能的过程称为整流,把完成整流功能的电路称为整流电路,把实现整流过程的装置称为整流设备或整流器。与之相对应,把将直流电能变换成交流电能的过程称为逆变,把完成逆变功能的电路称为逆变电路,把实现逆变过程的装置称为逆变设备或逆变器。 现代逆变技术是研究逆变电路理论和应用的一门科学技术。它是建立在工业电子技术、半导体器件技术、现代控制技术、现代电力电子技术、半导体变流技术、脉宽调制PWM技术等学科基础之上的一门实用技术。它主要包括半导体功率集成器件及其应用、逆变电路和逆变控制技术3大部分。 逆变器的分类 逆变器的种类很多,可按照不同的方法进行分类。 1.按逆变器输出交流电能的频率分,可分为工频逆变器、中频逆器和高频逆变器。工频逆变器的频率为50~60HZ的逆变器;中频逆变器的频率一般为400HZ到十几KHZ;高频逆变器的频率一般为十几KHZ到MHZ。 2.按逆变器输出的相数分,可分为单相逆变器、三相逆变器和多相逆变器。 3.按照逆变器输出电能的去向分,可分为有源逆变器和无源逆变器。凡将逆变器输出的电能向工业电网输送的逆变器,称为有源逆变器;凡将逆变器输出的电能输向某种用电负载的逆变器称为无源逆变器。

4.按逆变器主电路的形式分,可分为单端式逆变器,推挽式逆变器、半桥式逆变器和全桥式逆变器。 5.按逆变器主开关器件的类型分,可分为晶闸管逆变器、晶体管逆变器、场效应逆变器和绝缘栅双极晶体管(IGBT)逆变器等。又可将其归纳为“半控型”逆变器和“全控制”逆变器两大类。前者,不具备自关断能力,元器件在导通后即失去控制作用,故称之为“半控型”普通晶闸管即属于这一类;后者,则具有自关断能力,即无器件的导通和关断均可由控制极加以控制,故称之为“全控型”,电力场效应晶体管和绝缘栅双权晶体管(IGBT)等均属于这一类。 6.按直流电源分,可分为电压源型逆变器(VSI)和电流源型逆变器(CSI)。前者,直流电压近于恒定,输出电压为交变方波;后者,直流电流近于恒定,输也电流为交变方波。 7.按逆变器输出电压或电流的波形分,可分为正弦波输出逆变器和非正弦波输出逆变器。 8.按逆变器控制方式分,可分为调频式(PFM)逆变器和调脉宽式(PWM)逆变器。 9.按逆变器开关电路工作方式分,可分为谐振式逆变器,定频硬开关式逆变器和定频软开关式逆变器。 10.按逆变器换流方式分,可分为负载换流式逆变器和自换流式逆变器。 逆变器的基本结构 逆变器的直接功能是将直流电能变换成为交流电能

相关文档