文档库 最新最全的文档下载
当前位置:文档库 › 高三数学一轮复习专练:7.1不等关系与不等式

高三数学一轮复习专练:7.1不等关系与不等式

高三数学一轮复习专练:7.1不等关系与不等式
高三数学一轮复习专练:7.1不等关系与不等式

双基限时练

巩固双基,提升能力

一、选择题

1.已知a ,b 为非零实数,且a <b ,则( )

A .a 2<b 2

B .a 2b <ab 2

C .2a -2b <0 D.1a >1b

解析:取a =-4,b =2即可判断选项A 、B 、D 错,故选C. 答案:C

2.若1a <1b <0,则下列不等式:①a +b <ab ;②|a |>|b |;③a <b ;④b a +a b >2.其中正确的不等式是( )

A .①②

B .②③

C .①④

D .③④ 解析:取a =-1,b =-2,验证即可.

答案:C

3.(2013·泉州调研)若a >0,b >0,且a +b =4,则下列不等式中恒成立的是( )

A.1ab >12

B.1a +1b ≤1

C.ab ≥2

D.1a 2+b 2≤18 解析:取a =1,b =3,可验证A 、B 、C 均不正确,故选D. 答案:D

4.(2013·广东潮州质检)已知0<x <y <a <1,m =log a x +log a y ,则有( )

A .m <0

B .0<m <1

C .1<m <2

D .m >2

解析:由0<x <y <a ,得0<xy <a 2.又0<a <1,

故m =log a x +log a y =log a xy >log a a 2=2.故选D.

答案:D

5.(2013·阳江联考)已知a ,b 满足0<a <b <1,下列不等式中成立的是( )

A .a a <b b

B .a a <b a

C .b b <a b

D .b b >b a

解析:取特殊值法.

令a =14,b =12,则a a =? ????14 14 =? ????12 12

b b =? ????12

12

,故A 错.

a b =? ????14 12

<? ????12 12

=b b ,故C 错.

b b =? ????12 12 <? ????12 14

=b a ,故D 错.

答案:B

6.(2013·怀化调研)若0<b <a <1,则下列不等式成立的是(

) A .ab <b 2<1 B .log 12 b <log 12

a <0

C .2b <2a <2

D .a 2<ab <1

解析:∵y =2x 是单调递增函数,且0<b <a <1,

∴2b <2a <21,即2b <2a <2.

答案:C

二、填空题

7.下列四个不等式:

①a <0<b ;②b <a <0;③b <0<a ;④0<b <a .

其中使1a <1b 成立的充分条件有__________.

解析:1a <1b ?b -a ab <0?b -a 与ab 异号,依题设,知①②④能使b -a 与ab 异号.

答案:①②④

8.已知数列{a n }是各项均为正数的等比数列,且公比q <1,则4a 5-3a 3与a 1的大小关系是__________.

解析:4a 5-3a 3-a 1=4a 1q 4-3a 1q 2-a 1

=a 1(4q 4-3q 2-1)

=a 1(q 2-1)(4q 2+1).

∵0<q <1,∴q 2<1,即q 2-1<0.

又a 1>0,4q 2+1>0,∴4a 5-3a 3-a 1<0,即4a 5-3a 3<a 1. 答案:4a 5-3a 3<a 1

9.(2013·广州调研)设a >b >c >0,x =a 2+(b +c )2,y =b 2+(c +a )2,z =c 2+(a +b )2,则x ,y ,z 的大小顺序是__________. 解析:方法一:y 2-x 2=2c (a -b )>0,∴y >x .

同理,z >y .∴z >y >x .

方法二:令a =3,b =2,c =1,则x =18,y =20,z =26,故z >y >x .

答案:z >y >x

三、解答题

10.已知-12<a <0,A =1+a 2,B =1-a 2,C =11+a ,D =11-a

,试比较A ,B ,C ,D 的大小.

不等关系与基本不等式同步练习题

不等关系与基本不等式同步练习题(一) (时间:120分钟 满分:150分) A.基础卷 一、选择题(5×8=40分) 1.函数)2(2 1 >-+ =x x x y 的最小值为( ) A. 2 B . 3 C . 4 D .23 2.不等式0)31(>-x x 的解集是( ) A .)31,(-∞ B . )31,0()0,( -∞ C . ),31(+∞ D .)3 1,0( 3.已知,R b a ∈、且0>ab ,则下列不等式不正确的是( ) A .b a b a ->+ B .b a b a +<+ C .b a ab +≤2 D . 2≥+b a a b 4.已知无穷数列{}n a 是各项均为正数的等差数列,则有( ) A. 8 6 64a a a a ≤ B. 8664a a a a < C.8664a a a a > D.8664a a a a ≥ 5.已知01,0<<-> B.a ab ab >>2 C.2 ab a ab >> D.a ab ab >>2 6.已知,1117,32-≤<-<≤-y x 则1 2 -y x 的取值范围是( ) A.??? ??-- 92,43 B.??? ??-0,43 C.??? ??-0,21 D.??? ??-0,43 7.若 ,11 <++b a a b 则b a 与中必( ) A.一个大于1,一个小于1 B.两个都大于1 C.两个都小于1 D.两个的积小于1 8.已知,,d c b a >>则( ) A. d b c a ->- B. c b d a > C.a d b c ->- D.bd ac >

必修五 3.1不等式与不等关系(第一课时)教案

§3.1不等式与不等关系 【教学目标】 1.知识与技能:通过具体情景,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)的实际背景,掌握不等式的基本性质; 2.过程与方法:通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法; 3.情态与价值:通过解决具体问题,体会数学在生活中的重要作用,培养严谨的思维习惯。 【教学重点】 用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题。理解不等式(组)对于刻画不等关系的意义和价值。 【教学难点】 用不等式(组)正确表示出不等关系。 【教学过程】 1.课题导入 在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系。如两点之间线段最短,三角形两边之和大于第三边,等等。人们还经常用长与短、高与矮、轻与重、胖与瘦、大与小、不超过或不少于等来描述某种客观事物在数量上存在的不等关系。在数学中,我们用不等式来表示不等关系。 下面我们首先来看如何利用不等式来表示不等关系。 2.讲授新课 1)用不等式表示不等关系 引例1:限速40km/h 的路标,指示司机在前方路段行驶时,应使汽车的速度v 不超过40km/h ,写成不等式就是: 40v ≤ 引例2:某品牌酸奶的质量检查规定,酸奶中脂肪的含量应不少于2.5%,蛋白质的含量p 应不少于2.3%,写成不等式组就是——用不等式组来表示 2.5%2.3% f p ≤??≥? 问题1:设点A 与平面α的距离为d,B 为平面α上的任意一点,则||d AB ≤。 问题2:某种杂志原以每本2.5元的价格销售,可以售出8万本。据市场调查,若单价每提高0.1元,销售

不等关系与不等式经典教案

不等关系与不等式 【学习目标】 1.了解不等式(组)的实际背景. 2.掌握比较两个实数大小的方法. 3.掌握不等式的八条性质. 【学法指导】 1.不等关系广泛存在于现实生活中,应用不等式(组)表示不等关系实质是将“自然语言”或“图形语言” 转化成“数学语言”,是用不等式知识解决实际问题的第一步.只需根据题意建立相应模型,把模型中的量具体化即可. 2.作差法是比较两个数(或式)大小的重要方法之一,可简单概括为“三步一结论”,其中关键步骤“变形”要彻底,当不能“定号”时注意分类讨论. 3.不等式的基本性质是解决不等式的有关问题的依据,应用时每步都要做到等价变形. 一、知识温故 a-b>0?; a-b=0?; a-b<0?. 3.常用的不等式的基本性质 (1)a>b?b a(对称性); (2)a>b,b>c?a c(传递性); (3)a>b?a+c b+c(可加性); (4)a>b,c>0?ac bc;a>b,c<0?ac bc; (5)a>b,c>d?a+c b+d; (6)a>b>0,c>d>0?ac bd; (7)a>b>0,n∈N,n≥2?a n b n; (8)a>b>0,n∈N,n≥2?n b. 二、经典范例 问题探究一实数比较大小 问题1(实数比较大小的依据) 在数轴上不同的点A与点B分别表示两个不同的实数a与b,右边的点表示的数比左 边的点表示的数大,从实数减法在数轴上的表示可以看出a,b之间具有以下性质:

如果a-b是正数,那么; 如果a-b是负数,那么; 如果a-b等于零,那么. 以上结论反过来也成立,即a-b>0?a>b;a-b<0?a<b;a-b=0?a=b. 问题2(作差法比较实数的大小) 向一杯a克糖水中加入m克糖,糖水变得更甜了.你能把这一现象用一个不等式表示出来吗?并证明你的结论. 问题探究二不等式的基本性质 问题3在实数大小比较的基础上,可以给出不等式八条基本性质的严格证明.证明时,可以利用前面的性质推证后续的性质. 请同学们借助前面的性质证明性质6: 如果a>b>0,c>d>0,那么ac>bd.

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2 +12x 2 (2)y =x +1x 解:(1)y =3x 2 +12x 2 ≥2 3x 2 ·12x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。

2020高考理科数学不等式问题的题型与方法

专题三:高考数学不等式问题的题型与方法(理科) 一、考点回顾 1.高考中对不等式的要求是:理解不等式的性质及其证明;掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用;掌握分析法、综合法、比较法证明简单的不等式;掌握简单不等式的解法;理解不等式│a│-│b│≤│a+b│≤│a│+│b│。 2.不等式这部分内容在高考中通过两面考查,一是单方面考查不等式的性质,解法及证明;二是将不等式知识与集合、逻辑、函数、三角函数、数列、解析几何、立体几何、平面向量、导数等知识交汇起来进行考查,深化数学知识间的融汇贯通,从而提高学生数学素质及创新意识. 3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰. 4.证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.比较法的一般步骤是:作差(商)→变形→判断符号(值).5.在近几年全国各省市的高考试卷中,不等式在各种题型中都有出现。在解答题中,不等式与函数、数列与导数相结合,难度比较大,使用导数解决逐渐成为一般方法6.知识网络

其中:指数不等式、对数不等式、无理不等式只要求了解基本形式,不做过高要求. 二、 经典例题剖析 1.有关不等式的性质 此类题经常出现在选择题中,一般与函数的值域,最值与比较大小等常结合在一起 例1.(xx 年江西卷)若a >0,b >0,则不等式-b <1 x 1b D.x <1b -或x >1a 解析:-b <1x 1 a 答案:D 点评:注意不等式b a b a 1 1>? <和适用条件是0>ab 例2.(xx 年北京卷)如果正数a b c d ,,,满足4a b cd +==,那么( ) A.ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B.ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C.ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D.ab c d +≥,且等号成立时a b c d ,,,的取值不唯一 解析:正数a b c d ,,,满足4a b cd +==,∴ 4=a b +≥,即4ab ≤,当且仅当a =b =2时,“=”成立;又4=2 ( )2 c d cd +≤,∴ c+d ≥4,当且仅当c =d =2时,“=”成立;综上得ab c d +≤,且等号成立时a b c d ,,,的取值都为2 答案:A 点评:本题主要考查基本不等式,命题人从定值这一信息给考生提供了思维,重要不等式可以完成和与积的转化,使得基本不等式运用成为现实。 例3.(xx 年安徽)若对任意∈x R ,不等式x ≥ax 恒成立,则实数a 的取值范围是 (A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1 解析:若对任意∈x R ,不等式x ≥ax 恒成立,当x ≥0时,x ≥ax ,a ≤1,当x <0时,

高二数学必修5不等式与不等关系主要知识点

高一数学必修5不等式与不等关系主要知识点 1.不等关系 两实数之间有且只有以下三个大小关系之一:a>b;a-?>b a b a ;0<-?, a b b a >?< (2)传递性:,a b b c >>?,a c > (3)可加性:a b >?. a c b c +>+ 移项法则:a b c a c b +>?>- 推论:同向不等式可加. ,a b c d >>? a c b d +>+ (4)可乘性:bc ac c b a >?>>0,,,0a b c >>>>?ac bd > 推论2:可乘方(正):0a b >>? n n a b >` (,2)n N n *∈≥ (5) 可开方(正):0a b >>? >(,2)n N n *∈≥ 2. 一元二次不等式20(0)ax bx c a ++>>与相应的函数2(0)y ax bx c a =++>、相应的方程2 之间的关系:

3.一元二次不等式恒成立情况小结: 2 0ax bx c ++>(0a ≠)恒成立?00a >???+表示直线上方的平面区域;y kx b <+表示直线下方的平面区域. 说明:(1)y kx b ≥+表示直线及直线上方的平面区域; y kx b ≤+表示直线及直线下方的平面区域. (2)对于不含边界的区域,要将边界画成虚线. 5.基本不等式: (1).如果R b a ∈,,那么ab b a 22 2≥+. (2). ≤2 a b +(0,0)a b >>. (当且仅当b a =时取“=”)

高三数学不等式基本不等式经典例题高考真题剖析解析版

必修五:基本不等式 应用一:求最值 例:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧 技巧一:凑项 例 已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -=-,即1x =时,上式等号成立,故当1x =时,max 1y =。 技巧二:凑系数 例: 当 时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。 变式:设2 3 0< -x ∴2922322)23(22)23(42 =?? ? ??-+≤-?=-=x x x x x x y 当且仅当,232x x -=即?? ? ??∈= 23,043x 时等号成立。 技巧三: 分离、换元 例:求2710 (1)1 x x y x x ++= >-+的值域。

不等关系与不等式-教学设计

不等关系与不等式(第一课时) 一、教学任务分析 1、感受不等关系的普遍存在 通过一系列的具体情境,使学生感受到在现实世界和日常生活中存在着大量的不等关系。 2、利用不等式(组)表示实际问题中的不等关系 通过具体问题情境,让学生学习如何利用不等式(组)研究及表示不等关系,进一步理解不等式(组)刻画不等关系的意义和价值。 3、初步掌握运用作差比较法比较实数和代数式的大小。 二、教学重点和难点 重点:用不等式(组)表示实际问题中的不等关系,并用不等式(组)研究含有不等关系的问题,理解不等式(组)刻画不等关系的意义和价值。 难点:用不等式(组)正确表示出不等关系。 三、教学基本流程

四、教学情景设计

1、引入:章头图及古诗《题西林壁》引入,介绍不等量关系也是自然界中存在的基本数量关系,它们在现实世界和日常生活中大量存在,在数学研究和数学应用中也起着重要的作用,也正是实际问题的需要我们要研究不等量关系。介绍本章将要研究表示不等量关系的不等式的基本知识。 设计意图:使学生体会不等关系的普遍存在,了解学习不等式的意义。 2、创设情境,让学生感受生活中的不等关系。 师:多媒体出示情景:(1)交通标志(限速、限高、限宽);(2)商家打折海报(一折起、低至几折);(3)产品含量指标。问:表示什么含义?怎么表示其中的不等关系? 生:分析各种不等关系,口答并尝试用不等式(组)表示。 师:引导学生准确表述,给出不等式定义,板书学生口答的各问题中不等式(组)。 设计意图:进一步让学生感受生活中的不等关系,知道用不等式(组)表示这种不等关系。 3、知识探究一:具体情境中如何用不等式研究及表示不等关系。 师:多媒体出示问题1(销售收入问题)、2(实际安排生产问题)。 学生:独立思考后,与本组同学交流讨论结果。完成后交流展示,小组代表板书结果,并说明式子的含义。 师:点评学生结果,找有不同结果的小组讲解不同方法或补充,引导学生分析比较。 设计意图:问题方式给出,强化学生的问题意识,使学生在具体问题情境中经历如何利用不等式研究及表示不等关系。小组合作探究,使学生交流对于问题的认识。展示不同结果,使学生认识思考问题严谨性和不同角度。师最后介绍两问题中反映的生产要求如何解决,是本章后续章节会解决的问题。激发学生学习欲望,体会数学知识与生活的密切相关。 4、知识探究二:比较实数和代数式大小的方法——作差法。 生:结合学案上知识探究二中所填结果,与同组学生交流结论。 师:提问引导学生表述:要比较两数或代数式大小,可以让两数或两式相减,比较结果和0的大小。若结果大于0,则前者大于后者;若……。 设计意图:让学生分析作差法具体做法,明确这种比较大小的方法如何运用。 5、课堂练习:作差法比较代数式的大小。 生:可独立完成,也可与同组同学交流,在规定时间完成。 师:巡视,指导学生疑难处,找完成好的两生板演结果,并让板演学生讲解。点评学生思路,进一步总结作差法中变形结果的形式:

高中数学基本不等式题型总结

专题 基本不等式 【一】基础知识 基本不等式:)0,0a b a b +≥>> (1)基本不等式成立的条件: ; (2)等号成立的条件:当且仅当 时取等号. 2.几个重要的不等式 (1)()24a b ab +≤(),a b R ∈;(2))+0,0a b a b ≥>>; 【二】例题分析 【模块1】“1”的巧妙替换 【例1】已知0,0x y >>,且34x y +=,则41x y +的最小值为 . 【变式1】已知0,0x y >>,且34x y +=,则4x x y +的最小值为 . 【变式2】(2013年天津)设2,0a b b +=>, 则 1||2||a a b +的最小值为 . 【例2】(2012河西)已知正实数,a b 满足 211a b +=,则2a b +的最小值为 . 【变式】已知正实数,a b 满足 211a b +=,则2a b ab ++的最小值为 .

【例3】已知0,0x y >>,且280x y xy +-=,则x y +的最小值为 . 【例4】已知正数,x y 满足21x y +=,则 8x y xy +的最小值为 . 【例5】已知0,0a b >>,若不等式 212m a b a b +≥+总能成立,则实数m 的最大值为 . 【例6】(2013年天津市第二次六校联考)()1,0by a b +=≠与圆221x y +=相交于,A B 两点,O 为坐标原点,且△AOB 为直角三角形,则 2212a b +的最小值为 .

【例7】(2012年南开二模)若直线()2200,0ax by a b -+=>>始终平分圆222410x y x y ++-+=的周长,则 11a b +的最小值为 . 【例8】设12,e e 分别为具有公共焦点12,F F 的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足 120PF PF ?=,则2 2214e e +的最小值为 【例9】已知0,0,lg 2lg 4lg 2x y x y >>+=,则11x y +的最小值是( ) A .6 B .5 C .3+ D . 【例10】已知函数()4141 x x f x -=+,若120,0x x >>,且()()121f x f x +=,则()12f x x +的最小值为 .

导学案不等式与不等关系

不等式与不等关系 考纲要求 1.了解现实世界和日常生活中的不等关系. 2.了解不等式(组)的实际背景. 考情分析 1.从高考内容上来看,不等关系、不等式的性质及应用 是命题的热点. 2.着重突出考查对不等式性质的灵活运用,有时与充要性的判断交汇命题,体现了化归转化思想,难度中、 低档. 3.考查题型多为选择、填空题. 教学过程 基础梳理 一、实数大小顺序与运算性质之间的关系 a - b >0? ;a -b =0? ; a -b <0? . 二、不等式的基本性质 1.对称性a >b ? 2.传递性a >b ,b >c ? 3.可加性a >b ? 4.可乘性 a >b c >0? , ? ?? a > b c <0? 5.同向可加性 ? ?? a > b c > d ? 6.同向同正可乘性 ? ?? a > b >0 c > d >0? 7.可乘方性a >b >0? (n ∈N ,n ≥2) 8.可开方性a >b >0? (n ∈N ,n ≥2) 两条常用性质

① a >b ,ab >0?1a <1 b ② 若a >b >0,m >0,则b a <b +m a +m ; 双基自测 1.若x +y >0,a <0,ay >0,x -y 的值为 ( ) A .大于0 B .等于0 C .小于0 D .不确定 2.(教材习题改编)已知a ,b ,c 满足c ac B .c (b -a )<0 C .cb 20 3.已知a ,b ,c ,d 均为实数,且c >d ,则“a >b ”是“a -c >b -d ”的 ( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 4.(教材习题改编)3+7与25的大小关系是________. 5.已知a ,b ,c ∈R ,有以下命题: ①若a >b ,则ac 2>bc 2;②若ac 2>bc 2,则a >b ; ③若a >b ,则a ·2c >b ·2c 以上命题中正确的是____________(请把正确命题的序号都填上).

2015届高三数学—不等式1:基本不等式经典例题+高考真题剖析(解析版)

基本不等式 应用一:求最值 例:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧 技巧一:凑项 例 已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -=-,即1x =时,上式等号成立,故当1x =时,max 1y =。 技巧二:凑系数 例: 当 时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。 变式:设2 3 0< -x ∴2922322)23(22)23(42 =?? ? ??-+≤-?=-=x x x x x x y 当且仅当,232x x -=即?? ? ??∈= 23,043x 时等号成立。 技巧三: 分离、换元

不等关系与基本不等式同步练习题

a 6 B. C. D. 6.已知 - 2 ≤ x < 3,-17 < y ≤ -11, 则 的取值范围是( ) A. -? 3 2 ? ? 3 ? ? 1 ? ?3,- ? B. - ,0 C. - ,0 D. - ,0 ? ??A. a - c > b - d B. a 不等关系与基本不等式同步练习题(一) (时间:120 分钟 满分:150 分) A.基础卷 一、选择题(5×8=40 分) 1.函数 y = x + 1 ( x > 2) 的最小值为( x - 2 ) A. 2 B . 3 C . 4 D . 3 2 2.不等式 x (1 - 3x) > 0 的解集是( ) 1 1 1 1 A . (-∞, ) B . (-∞,0) (0, ) C . ( ,+∞) D . (0, ) 3 3 3 3 3.已知 a 、b ∈ R, 且 ab > 0 ,则下列不等式不正确的是( ) A . a + b > a - b B . a + b < a + b C . 2 ab ≤ a + b D . b a + ≥ 2 a b 4.已知无穷数列 { n }是各项均为正数的等差数列,则有( ) A. a 4 ≤ a 6 a a 5.已知 a < 0,-1 < b < 0 ,则 a, ab, ab 2 的大小关系是( ) A. a > ab > ab 2 B. ab 2 > ab > a C. ab > a > ab 2 D. ab > ab 2 > a x 2 y - 1 ? ? 4 9 ? ? 4 ? ? 2 ? ? 4 ? 7.若 ab + 1 a + b < 1, 则 a 与 b 中必( ) A.一个大于1,一个小于1 B.两个都大于1 C.两个都小于1 D.两个的积小于1 8.已知 a > b , c > d , 则( ) b > C. c - b > d - a D. ac > bd d c

高三数学不等式选讲 知识点和练习

不等式选讲 一、绝对值不等式 1.绝对值三角不等式 定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立。 注:(1)绝对值三角不等式的向量形式及几何意义:当a,b不共线时,|a+b|≤|a|+|b|,它的几何意义就是三角形的两边之和大于第三边。 (2)不等式|a|-|b|≤|a±b|≤|a|+|b|中“=”成立的条件分别是:不等式|a|-|b|≤|a+b|≤|a|+|b|,在侧“=”成立的条件是ab≥0,左侧“=”成立的条件是ab≤0且|a|≥|b|;不等式|a|-|b|≤|a-b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0且|a|≥|b|。 定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立。 2.绝对值不等式的解法 (1)含绝对值的不等式|x|<a与|x|>a的解集 注:|x|以及|x-a|±|x-b|表示的几何意义(|x|表示数轴上的点x到原点O的距离;| x-a |±|x-b|)表示数轴上的点x到点a,b的距离之和(差) (2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法 ①|ax+b|≤c?-c≤ax+b≤c; ②| ax+b|≥c? ax+b≥c或ax+b≤-c. (3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法 方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想; 方法二:利用“零点分段法”求解,体现了分类讨论的思想; 方法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想。

基本不等式培优专题(推荐)

高中数学——基本不等式培优专题 目录 培优(1)常规配凑法 培优(2)“1”的代换 培优(3)换元法 培优(4)和、积、平方和三量减元 培优(5)轮换对称与万能k法 培优(6)消元法(必要构造函数求异) 培优(7)不等式算两次 培优(8)齐次化 培优(9)待定与技巧性强的配凑 培优(10)多元变量的不等式最值问题 培优(11)不等式综合应用

培优(1) 常规配凑法 1.(2018届温州9月模拟)已知242=+b a (a,b ∈R ),则a+2b 的最小值为_____________ 2. 已知实数x,y 满足116 2 2 =+y x ,则22y x +的最大值为_____________ 3.(2018春湖州模拟)已知不等式9)1 1)((≥++y x my x 对任意正实数x,y 恒成立,则正实数m 的最小值 是( ) A.2 B.4 C.6 D.8 4.(2017浙江模拟)已知a,b ∈R,且a ≠1,则b a b a -+++1 1 的最小值是_____________ 5.(2018江苏一模)已知a ﹥0,b ﹥0,且 ab b a =+3 2,则ab 的最小值是_____________

6.(诸暨市2016届高三5月教学质量检测)已知a ﹥b ﹥0,a+b=1,则b b a 21 4+ -的最小值是_____________ 7.(2018届浙江省部分市学校高三上学期联考)已知a ﹥0,b ﹥0,11 1 11=+++b a ,则a+2b 的最小值 是( ) A.23 B.22 C.3 D.2 培优(2) “1”的代换 8.(2019届温州5月模拟13)已知正数a,b 满足a+b=1,则b a b 1 +的最小值为_____________此时a=______ 9.(2018浙江期中)已知正数a,b 满足112=+ b a 则b a +2 的最小值为( ) A.24 B.28 C.8 D.9

5第五讲 不等关系与基本不等式(教师版) - 副本 - 副本

第一课时:不等式关系与不等式 知识点一 不等关系 思考 限速40km /h 的路标,指示司机在前方路段行驶时,应使汽车的速度v 不超过40 km /h ,用不等式如何表示? 答案 v ≤40. 梳理 试用不等式表示下列关系: (1)a 大于b a >b (2)a 小于ba b ?a -b >0;a =b ?a -b =0; a b ?b b ,b >c ?a >c (传递性); 第三节.不等关系与基本不等式 基本不等式

(3)a >b ?a +c >b +c (可加性); (4)a >b ,c >0?ac >bc ;a >b ,c <0?ac b ,c >d ?a +c >b +d ; (6)a >b >0,c >d >0?ac >bd ; (7)a >b >0?a n >b n (n ∈N +); (8)a >b >0n ∈N +). 类型一 用不等式(组)表示不等关系 例1 某种杂志原以每本2.5元的价格销售,可以售出8万本.据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本.若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢? 考点 用不等式(组)表示不等关系 题点 用不等式(组)表示不等关系 解 提价后销售的总收入为? ?? ?? 8-x -2.50.1×0.2x 万元, 那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式? ?? ?? 8-x -2.50.1×0.2x ≥20. 反思与感悟 数学中的能力之一就是抽象概括能力,即能用数学语言表示出实际问题中的数量关系.用不等式(组)表示实际问题中的不等关系时: (1)要先读懂题,设出未知量; (2)抓关键词,找到不等关系; (3)用不等式表示不等关系.思维要严密、规范. 跟踪训练1 某钢铁厂要把长度为4000mm 的钢管截成500mm 和600mm 两种.按照生产的要求,600mm

【经典】高三数学基本不等式题型精讲精练

基本不等式 基本不等式知识 1.(1)若R b a ∈,,则ab b a 22 2≥+ (2)若R b a ∈,,则2 22b a ab +≤(当且仅当b a =时取“=”) 2.(1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则2 2??? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x +≤- (当且仅当1x =-时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 5.若,,,+∈R c b a a b c c b a 3333≥++, 33abc c b a ≥++(当且仅当c b a ==时取等) 应用一 直接求最值 例1 求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x (3)(理科)已知+∈R y x ,,且满足232x y =,则x y +的最小值为( ) A .1 B .2 C .6 D .4 (4)已知+∈R c b a ,,且满足132=++c b a ,则c b a 31211++的最小值为 (5)若b a ,是不相等的正数,b a y b a x +=+=,2 ,则y x ,的大小关系是 (6)若,0,0>>b a 且,72=++b a ab 则b a +的最小值是 技巧一 凑项 例1 已知54x <,求函数14245 y x x =-+-的最大值 1.函数y =log 2(x +1x -1 +5)(x >1)的最小值为( ) A .-3 B .3 C .4 D .-4 技巧二 凑系数 例2 当40<

知识讲解_不等关系与不等式

不等关系与不等式 编稿:张希勇 审稿:李霞 【学习目标】 1.了解实数运算的性质与大小顺序之间的关系; 2.会用差值法比较两实数的大小; 3.掌握不等式的基本性质,并能运用这些性质解决有关问题. 【要点梳理】 要点一、符号法则与比较大小 实数的符号: 任意x R ∈,则0x >(x 为正数)、0x =或0x <(x 为负数)三种情况有且只有一种成立. 两实数的加、乘运算结果的符号具有以下符号性质: ①两个同号实数相加,和的符号不变 符号语言:0,00a b a b >>?+>; 0,00a b a b <>?>; 0,00a b ab < ③两个异号实数相乘,积是负数 符号语言:0,00a b ab >?>; ②0b a b a -,a b =,a b <三种关系有且只有一种成立. 要点诠释:这三个式子实质是运用实数运算来比较两个实数的大小关系.它是本章的基础,也是证明不等式与解不等式的主要依据.要点二、不等式的性质 不等式的性质可分为基本性质和运算性质两部分 基本性质有: (1) 对称性:a>b b

(2)传递性:a>b, b>c a>c ? (3) 可加性:a b a c b c >?+>+ (c ∈R) (4) 可乘性:a>b ,?? ????>bc ac c bc ac c bc ac c 000运算性质有: (1)可加法则:,.a b c d a c b d >>?+>+ (2) 可乘法则:,a b>0c d>0a c b d>0>>??>? (3)可乘方性:*0,0n n a b n N a b >>∈?>> (4) 可开方性:a b 0,n N ,n 1+>>∈>?>要点诠释:不等式的性质是不等式同解变形的依据. 要点三、比较两代数式大小的方法 作差法: 任意两个代数式a 、b ,可以作差a b -后比较a b -与0的关系,进一步比较a 与b 的大小. ①0b a b a ->?>; ②0b a b a -?>; ②1b a a b b 且b>c ,则a>c (实质是不等式的传递性).一般选择0或1为中间量. 利用函数的单调性比较大小 若两个式子具有相同的函数结构,可以利用相应的基本函数的单调性比较大小. 作差比较法的步骤: 第一步:作差; 第二步:变形,常采用配方、因式分解等恒等变形手段,将“差”化为“积”; 第三步:定号,就是确定差是大于、等于还是小于0; 最后下结论. 要点诠释:概括为:“三步一结论”.这里“定号”是目的,“变形”是关键过程.

高三数学不等式题型总结全

不等式的解题归纳第一部分含参数不等式的解法 例1解关于x的不等式2x2? kx _ k岂0 例2 .解关于x的不等式:(x-x2+12)(x+a)<0. 2x2+2k x +k 例3、若不等式2x 2 2kx 1 :::1对于x取任何实数均成立,求k的取值范围. 4x +6x +3 例4若不等式ax2+bx+1>0的解集为{x | -3 (x- 1)2对一切实数x都成立,a的取值范围是____________________ 2 .如果对于任何实数x,不等式kx2—kx+ 1>0 (k>0)都成立,那么k的取值范围是 3.对于任意实数x,代数式(5 —4a—a2)x2—2(a —1)x—3的值恒为负值,求a的取值范围+ 2 2 口 2 4 .设a、B是关于方程x —2(k —1)x + k+仁0的两个实根,求y=> + ■关于k的解析式,并求y 的取值范围. 第二部分绝对值不等式

1. (2010年高考福建卷)已知函数f(x) = |x —a|. (1)若不等式f(x)w 3的解集为{x|—K x< 5},求实数a的值; ⑵在(1)的条件下,若f(x) + f(x+ 5)> m对一切实数x恒成立,求实数m的取值范围. 2. 设函数f (x) =|x-1| |x-a|, (1 )若a = -1,解不等式f(x)_3 ;(2)如果- x R , f(x) —2,求a的取值范围 3. 设有关于x的不等式lg(j x + 3+|x-7?a

不等关系与不等式

1 不等关系与不等式 知识回顾 一、不等式性质: 1.a >b ? b <a .(反身性) 2.a >b ,b >c =>a >c .(传递性) 3.a >b ? a+c >b+c.(平移性) 4.a >b ,c >0 => ac >bc ; a > b , c <0 => ac <bc .(伸缩性) 5.a >b ≥0 => ,n ∈N ,且n ≥2.(乘方性) 6.a >b ≥0 => a >nb ,n ∈N ,且n ≥2.(开方性) 7.a >b ,c >d => a+c >b+d.(叠加性) 8.a >b ≥0,c >d ≥0 => ac >bd .(叠乘性) 二、如果a -b 是正数,则a >b ;如果a >b ,则a -b 为正数; 如果a -b 是负数,则a ?->=?-=,求证: b m b a m a +> + 2.若0x y <<,试比较()()22x y x y +-与()()22x y x y -+的大小;

2 3.已知1260a <<,1536b <<,求12a b -及 a b 的取值范围; 1.若0a b <<,则下列结论不正确的是 .A 22a b < .B 2ab b < .C 2b a a b +> .D a b a b -=- 2.设,(,0)a b ∈-∞,则“a b >”是“11a b a b - >- ”成立的 .A 充分非必要条件 .B 必要非充分条件 .C 充要条件 .D 既不充分也不 必要条件 3.下列不等式:()1 232()x x x R +≥∈, () 2553223 (,)a b a b a b a b R +≥+∈, () 322 2(1)a b a b +≥--.其中正确的个数为 .A 0 .B 1 .C 2 .D 3 4.已知,,a b c 满足c b a <<,且ac <0,那么下列选项中不一定成立的是 .A ab ac > .B c b a ()-<0 .C cb ab 22< .D 0)(<-c a ac 5.若, a b c R a b ∈>、、,则下列不等式成立的是 . A b a 11< .B 22b a > . C 1 1 2 2 +> +c b c a .D ||||c b c a > 6.若0a >,0b >,则不等式1b a x -< <等价于 .A 10x b - <<或10x a << .B 11x a b -<< .C 1x a <-或1x b > .D 1x b <-或1x a > 7.若集合{|23}A x x =-≤≤,{|14}B x x x =<->或,则集合A B 等于 A .{}|34x x x ≤>或 B .{}|13x x -<≤ C .{}|34x x ≤< D .{}|21x x -≤-< 8.若0a b a >>>-,0c d <<,则下列命题:()1ad bc >;() 20a b d c +<; ()3a c b d ->-;()4()()a d c b d c ->-中能成立的个数是 .A 1 .B 2 .C 3 .D 4

相关文档 最新文档