文档库 最新最全的文档下载
当前位置:文档库 › 垂径定理 优秀教学设计(教案)

垂径定理 优秀教学设计(教案)

垂径定理 优秀教学设计(教案)
垂径定理 优秀教学设计(教案)

27.3垂径定理教案

27.3(1) 垂径定理 崇明县三乐学校秦健 一、教学内容分析 学情分析:学生已经知道,在同圆或等圆中,圆心角、圆心角所对的弧和弦及其弦心距这四组量之间有密切的联系。(即“四等定理”)本节利用圆的轴对称性,进一步得到圆的直径与弦及弦所对的弧之间也存在着密切的关联.因为圆是轴对称图形,且任意一条直径所在直线都是它的对称轴,所以课本对于这些量之间关系的讨论,从垂直于弦的直径的性质开始展开,并加以推理证明; 教材分析:垂径定理及其推论揭示了垂直于弦的直径和这条弦及这条弦所对的弧之间的内在关系,是圆的轴对称性的具体化;也是今后证明线段相等、角相等、弧相等、垂直关系的重要依据;同时也为进行圆的有关计算和作图提供了方法和依据;在垂径定理得出的过程中,体验了从感性到理性、从具体到抽象思维过程,有助于培养思维的严谨性. 二、教学目标 1、经历垂径定理的探索和证明过程,掌握垂径定理; 2、在研究过程中,进一步体验“实验——归纳——猜测——证明”的方法; 3、能初步运用垂径定理及推论解决有关数学问题. 三、教学重点及难点 重点:掌握垂径定理的内容并初步学会运用. 难点:垂径定理的探索和证明. 四、教学过程 (一)情景引入 1300 多年前,我国隋代建造的赵州石拱桥的桥拱是圆弧形,它的跨度(弧所对的弦长)为37.4米,拱高(弧的中点到弦的距离,也叫拱形高)为7.2米,求桥拱的半径(精确到0.1米)说明:通过实际问题引入新课激发学生学习兴趣

52D C B A O 1、观察与思考: 圆是怎样的对称图形?对称轴与对称中心分别是什么? (二)学习新课 1、思考 如图,CD 是⊙O 的直径,AB 是⊙O 的弦,且AB ⊥CD ,垂足为 M ,则图中有哪些相等的线段和弧?(半圆除外)为什么? (学生观察,猜想,并得出以下结论) ①CO=DO (同圆的半径相等) ②AM=BM,弧AD=弧BD ,弧AC=弧BC (如何证明?) (学生讨论,并得出推导过程,教师板书) 联结OA 、OB ,则OA=OB. ∵ AB ⊥CD, ∴ AM=BM (等腰三角形三线合一), ∠AOD=∠BOD, ∴ 弧AD=弧BD (同圆中,相等的圆心角所对的弧相等). ∵ ∠AOC=∠BOC, ∴ 弧AC=弧BC. 2、定理:如果圆的一条直径垂直于一条弦,那么这条直径平分这条弦,且平分这条弦所对的弧. 结合图形写成符号语言: ∵直径CD ⊥弦AB ,垂足为M ∴ AM=BM ∴ 弧AD=弧BD (同圆中,相等的 圆心角所对的弧相等). 弧AC=弧BC. 3、抢答题:如图:已知⊙O 的半径OC 垂直于弦AB,垂足为点D , AD 长2厘米,弧AB 长5厘米,则AB= 弧 AC= . 4、例题分析 例1、 已知:如图,以点O 为圆心的两个圆中, 大圆的弦AB 交小圆于点C 、D 两点,

九年级数学下册 3.3 垂径定理教案 (新版)北师大版

垂径定理 一、教学目标 1.利用圆的轴对称性研究垂径定理及其逆定理; 2.运用垂径定理及其逆定理解决问题. 二、教学重点和难点 重点:利用圆的轴对称性研究垂径定理及其逆定理. 难点:垂径定理及其逆定理的证明,以及应用时如何添加辅助线 三、教学过程 (一)情境引入: 1.如图,AB 是⊙O 的一条弦,作直径CD ,使CD ⊥AB ,垂足为M . (1)该图是轴对称图形吗?如果是,其对称轴是什么? (2)你能图中有哪些等量关系? (3)你能给出几何证明吗?(写出已知、求证并证明) (二)知识探究: 【探究一】通过上面的证明过程,我们可以得到: 1.垂径定理_____________________________________________________ 2.注意: ①条件中的“弦”可以是直径;②结论中的“平分弧”指平分弦所对的劣弧、优弧。 ③定理中的两个条件缺一不可——______________,______________. 3.给出几何语言 如图,已知在⊙O 中,AB 是弦,CD 是直径,如果CD ⊥AB,垂足为E, 那么AE=_______,? AC =______,? BD =________ 4.辨析:判断下列图形,能否使用垂径定理? 1.,作一条平分AB 于点M . (1)下图是轴对称图形吗?如果是,其对称轴是什么? (2)图中有哪些等量关系?说一说你的理由.

2.垂径定理的推论:______________________________________________________________ 3.辨析:“平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.”如果该定理 少了“不是直径”,是否也能成立? 反例: 4.如图,在⊙O 中,AB 是弦(不是直径),CD 是直径, (1)如果AE=BE 那么CD____AB,? AC =____? BD =____ (2)如果? AC =? BC 那么CD____AB ,AE______BE ,? BD =____ (3)如果? AD =? BD 那么CD____AB ,AE_____BE ,? AC =______ (三)典例讲解: 1.例:如图,一条公路的转弯处是一段圆弧(即图中⌒CD ,点0是⌒CD 所在圆的圆心),其中CD =600m ,E 为⌒CD 上的一点,且OE ⊥CD ,垂足为F ,EF =90m. 求 这段弯路的半径. 2.如果圆的两条弦互相平行,那么这两条弦所夹的弧相等吗?为什么? (四)巩固训练: 题组一 1.如图,在⊙O 中,AB 为弦,OC ⊥AB 于C ,若AO=5,OC=3,求弦AB 的长。 2.⊙O 的弦AB 为5cm ,所对的圆心角为120°,求圆心O 到这条弦AB 的距离。 D

1正弦定理和余弦定理-教学设计-教案

教学准备 教学目标 1. 知识目标:理解并掌握正弦定理,能初步运用正弦定理解斜三角形;技能目标:理解用向量方法推导正弦定理的过程,进一步巩固向量知识,体现向量的工具性情感态度价值观:培养学生 在方程思想指导下处理解三角形问题的运算能力; /难点教学重点2. 重点:正弦定理的探索和证明及其基本应用。难点:已知两边和其中一边的对角解三角形时判 断解的个数。教学用具 3. 多媒体标签 4. 正弦定理 教学过程 讲授新课在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角 根据锐BC=a,AC=b,AB=c, ABC.与边的等式关系。如图11-2,在Rt中,设角三角函数中正弦函数的定义,有 . ,又,则,中,ABC从而在直角三角 形.

思考:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况: ,根上的高是CDABC1(证法一)如图.1-3,当是锐角三角形时,设边AB CD=据任意角三角函数的定义,有,则. . 同理可得,从而

是钝角三角形时,以上关系式仍然成立。(由学生课后ABC类似可推出,当自己推导)从上面的研探过程,可得以下定理正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即 ] 理解定理[)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系 数为同1 ( ;使一正数,即存在正数k,,

等价于2(),,。从而知正弦定理的基本作用为: ;①已知三角形的任意两角及其一边可以求其他边,如②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如 . 一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。. 评述:应注意已知两边和其中一边的对角解三角形时,可能有两解的情形。 2(1)题。)、(页练习第第随堂练习[]511

公开课教学设计(正余弦定理及其应用)

解三角形教学设计 四川泸县二中吴超 教学目标 1.知识与技能 掌握正、余弦定理,能运用正、余弦定理解三角形,并能够解决与实际问题有关的问题。 2.过程与方法 通过小组讨论,学生展示,熟悉正、余弦定理的应用。 3.情感态度价值观 培养转化与化归的数学思想。 教学重、难点 重点:正、余弦定理的应用 难点: 正、余弦定理的实际问题应用 拟解决的主要问题 这部分的核心内容就是正余弦定理的应用。重点突出三类问题: (1)是围绕利用正、余弦定理解三角形展开的简单应用 (2)是三角函数、三角恒等变换等和解三角形的综合应用 (3)是围绕解三角形在实际问题中的应用展开 教学流程

教学过程 一、知识方法整合 1、正弦定理:在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ?AB 的外接圆的半径,则有 = = = 2、三角形面积公式:C S ?AB = = = 3、余弦定理:C ?AB 中2a = 2b = 2c = 4、航海和测量中常涉及如仰角、俯角、方位角等术语 5、思想与能力:代数运算能力,分类整合,方程思想、化归与转化思想等 二、典例探究 例1 [2012·四川卷](小组讨论,熟悉定理公式的应用) 如图,正方形ABCD 的边长为1,延长BA 至E ,使AE=1,连接EC 、ED 则sin∠CED=_______(尝试多法) 解3:等面积法 解4:观察角的关系,两角和正切公式 解5:向量数量积定义 练1:在△ABC 中,sin 2A ≤sin 2B +sin 2C -sin B sin C ,则A 的取值范围是( ) A.? ????0,π6 B.??????π6,π C.? ????0,π3 D.???? ??π3,π 解1:由正弦定理a 2≤b 2+c 2-bc ,由余弦定理可知bc ≤b 2+c 2-a 2=2bc cos A ,即1C D E C D E C D =?==1解:中,, 222210EC ED CD EC ED +-∠?∴=cos CED 10∴∠sin CED 021135CD E C E D C ==∠=解:, sin sin CD EC CED EDC =∠∴∠ sin 10CD EDC EC ?∠∴∠=sin CED

湘教版九年级数学下册 垂径定理教案

《垂径定理》教案 教学目标 知识与技能 1.理解圆是轴对称图形,由圆的折叠猜想垂径定理,并进行推理验证. 2.理解垂径定理,灵活运用定理进行证明及计算. 过程与方法 在探索圆的对称性以及直径垂直于弦的性质的过程中,培养我们观察,比较,归纳,概括的能力. 情感态度 通过对圆的进一步认识,加深我们对圆的完美性的体会,陶冶美育情操,激发学习热情. 教学重点 垂径定理及运用. 教学难点 用垂径定理解决实际问题. 教学过程 一、情境导入,初步认识 教师出示一张图形纸片,同学们猜想一下: ①圆是轴对称图形吗?如果是,对称轴是什么? ②如图,AB是⊙O的一条弦,直径CD⊥AB于点M,能发现图中有哪些等量关系? (在纸片上对折操作) 【教学说明】 (1)是轴对称图形,对称轴是直线CD. (2)AM=BM,AC BC AD BD ,. == 二、思考探究,获取新知 探究1垂径定理及其推论的证明. 1.由上面学生折纸操作的结论,教师再引导学生用逻辑思维证明这些结论,学生们说出已知、求证,再由小组讨论推理过程. 已知:直径CD,弦AB,且CD⊥AB,垂足为点M. 求证:AM=BM,AC BC AD BD , == 【教学说明】连接OA=OB,又CD⊥AB于点M,由等腰三角形三线合一可知AM=BM,再由⊙O关于直线CD对称,可得AC BC AD BD ,. == 2.得出垂径定理:

垂直于弦的直径平分弦,并且平分弦所对的两条弧.还可以得出结论(垂径定理推论):平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. 3.学生讨论写出已知、求证,并说明. 学生回答: 【教学说明】已知:AB为⊙O的弦(AB不过圆心O),CD为⊙O的直径,AB交CD 于点M,MA=MB. 示证:CD⊥AB,AC BC AD BD ,. == 证明:在△OAB中,∵OA=OB,MA=MB,∴CD⊥AB.又CD为⊙O的直径,∴ == ,. AC BC AD BD 4.同学讨论回答,如果条件中,AB为任意一条弦,上面的结论还成立吗? 学生回答: 【教学说明】当AB为⊙O的直径时,直径CD与直径AB一定互相平分,位置关系是相交,不一定垂直. 探究2垂径定理在计算方面的应用. 例1如课本图,弦AB=8cm,CD是圆O的直径,CD⊥AB,垂足为E,DE=2cm,求圆O的直径CD的长. 例2已知⊙O的半径为13cm,弦AB∥CD,AB=10cm,CD=24cm,求AB与CD间的距离. 解:(1)当AB、CD在O点同侧时,如图①所示,过O作OM⊥AB于M,交CD于N,连OA、 OC.∵AB∥CD,∴ON⊥CD于N.在Rt△AOM中,AM=5cm,OM12cm.在 Rt△OCN中,CN=12cm,ON5cm.∵MN=OM-ON,∴MN=7cm. (2)当AB、CD在O点异侧时,如图②所示,由(1)可知OM= 12cm,ON=5cm,MN=OM+ ON,∴MN=17cm.∴AB与CD间的距离是7cm或17cm. 【教学说明】1.求直径往往只要能求出半径,即把它放在由半径所构成的直角三角形中去. 2.AB、CD与点O的位置关系没有说明,应分两种情况:AB、CD在O点的同侧和AB、CD 在O点的两侧. 探究3与垂径定理有关的证明. 例3证明:圆的两条平行线所夹的弧相等.已知:如课本图,在圆O中,弦AB与弦CD平行.证明:弧AC等于弧BD.

余弦定理教学设计经典教学内容

1.1.2余弦定理教学设计 一、教学目标 认知目标:在创设的问题情境中,引导学生发现余弦定理的内容,推证余弦定理,并简单运用余弦定理解三角形; 能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出余弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题 转化为代数问题; 情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,培养学生学习数学兴趣 和热爱科学、勇于创新的精神。 二、教学重难点 重点:探究和证明余弦定理的过程;理解掌握余弦定理的内容;初步对余弦定理进行应用。难点:利用向量法证明余弦定理的思路;对余弦定理的熟练应用。 探究和证明余弦定理过程既是本节课的重点,也是本节课的难点。学生已经具备了勾股定理的知识,即当∠C=900时,有c2=a2+b2。作为一般的情况,当∠C≠900时,三角形的三边满足什么关系呢?学生一时很难找到思路。最容易想到的思路就是构造直角三角形,尝试应用勾股定理去探究这个三角形的边角关系;用向量的数量积证明余弦定理更是学生想不到的,原因是学生很难将向量的知识与解三角形的知识相结合。因而教师在授课时可以适当的点拨、启发,鼓励学生大胆的探索。在教学中引导学生从不同的途径去探索余弦定理的证明,这样既能开拓学生的视野,加强学生对余弦定理的理解,又能培养学生形成良好的思维习惯,激发学生学习兴趣,这是本节课教学的重点,也是难点。 三、学情分析和教学内容分析 本节内容是人教B版普通高中课程标准实验教科书必修5第一章第一节余弦定理的第一课时。余弦定理是关于任意三角形边角之间的另一定理,是解决有关三角形问题与实际应用问题(如测量等)的重要定理,它将三角形的边和角有机的结合起来,实现了“边”和“角”的互化,从而使“三角”与“几何”有机的结合起来,为求与三角形有关的问题提供了理论依据,同时也为判断三角形的形状和证明三角形中的等式提供了重要的依据。教科书首先通过设问的方式,指出了“已知三角形的两边和夹角,无法用正弦定理去解三角形”,进而通过直角三角形中的勾股定理引导学生去探究一般三角形中的边角关系,然后通过构造直角三角形去完成对余弦定理的推证过程,教科书上还进一步的启发学生用向量的方法去证明余弦定理,最后通过3个例题巩固学生对余弦定理的应用。 在学习本节课之前,学生已经学习了正弦定理的内容,初步掌握了正弦定理的证明及应用,并明确了用正弦定理可以来解哪些类型的三角形。在此基础上,教师可以创设一个“已知三角形两边及夹角”来解三角形的实际例子,学生发现不能用上一节所学的知识来解决这一问题,从而引发学生的学习兴趣,引出这一节的内容。在对余弦定理教学中时,考虑到它比正弦定理形式上更加复杂,教师可以有目的的提供一些供研究的素材,并作必要的启发和引导,让学生进行思考,通过类比、联想、质疑、探究等步骤,辅以小组合作学习,建立猜想,获得命题,再想方设法去证明。在用两种不同的方法证明余弦定理时,学生可能会遇到证明思路上的困难,教师可以适当的点拨。 四、教学过程

垂径定理的教案

§24.1.2 《 垂直于弦的直径》教案 教学目标: 1、经历利用圆的轴对称性对垂径定理的探索和证明过程,掌握垂径定理及其推论;并能初步运用垂径定理解决有关的计算和证明问题; 2、在研究过程中,进一步体验“实验——归纳——猜测——证明”的方法; 3、让学生积极投入到圆的轴对称性的研究中,体验到垂径定理是圆的轴对称性质的重要体现。 教学重点:使学生掌握垂径定理及其推论、记住垂径定理的题设和结论。 教学难点:对垂径定理的探索和证明,并能应用垂径定理进行简单计算或证明。 教学过程: 一、复习引入 1、我们已经学习了圆怎样的对称性质?(中心对称和轴对称) 2、圆还有什么对称性质?作为轴对称图形,其对称轴是什么特殊位置?(直径所在的直线) 3、观察并回答: (1)在含有一条直径AB 的圆上再增加一条直径CD ,两条直径的位置关系? (相交,而且两条直径始终是互相平分的) (2)把直径AB 向下平移,变成非直径的弦,弦AB 是否一定被直径CD 平分? 二、新课 (一)猜想,证明,形成垂径定理 1、猜想:弦AB 在怎样情况下会被直径CD 平分?(当C D ⊥AB 时)(用课件观察翻折验证) 2、得出猜想:在圆⊙O 中,CD 是直径,AB 是弦,当C D ⊥AB 时,弦AB 会被直径CD 平分。

3、提问:如何证明该命题是真命题?根据命题,写出已知、求证: 如图,已知CD是⊙O的直径,AB是⊙O的弦,且AB⊥CD,垂足为M。 求证:AE=BE。 4、思考:直径CD两侧相邻的两条弧是否也相等?如何证明?(参照数本P81) 5、我们给这条特殊的直径命名——垂直于弦的直径。并给出垂径定理:如果圆的一条直径垂直于一条弦,那么这条直径平分这条弦,且平分这条弦所对的弧。 (二)分析垂径定理的条件和结论以及探讨垂径定理的推论 1、引导学生说出定理的几何语言表达形式 ① CD是直径、AB是弦 ① AE=BE ②C D⊥② 2、利用反例、变式图形对定理进一步引申,揭示定理的本质属性,以加深学生对定理的本质了解。 例1 看下列图形,是否能直接使用垂径定理? 3、引申定理:定理中的垂径可以是直径、半径、弦心距等过圆心的直线或线段。从而得到垂径定理的变式: ①经过圆心得到(结论)①平分弦 一条直线具有(条件): AC=BC AD=BD

余弦定理教案完美版

《余弦定理》教案 (一)教学目标 1.知识与技能:掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题。 2.过程与方法:利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题, 3.情态与价值:培养学生在方程思想指导下处理解三角形问题的运算能力;通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一。 (二)教学重、难点 重点:余弦定理的发现和证明过程及其基本应用; 难点:勾股定理在余弦定理的发现和证明过程中的作用。 (三)学法与教学用具 学法:首先研究把已知两边及其夹角判定三角形全等的方法进行量化,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题,利用向量的数量积比较容易地证明了余弦定理。从而利用余弦定理的第二种形式由已知三角形的三边确定三角形的角 教学用具:直尺、投影仪、计算器 (四)教学设想 [创设情景] C 如图1.1-4,在?ABC 中,设BC=a,AC=b,AB=c, 已知a,b 和∠C ,求边c b a (图1.1-4) [探索研究] 联系已经学过的知识和方法,可用什么途径来解决这个问题 用正弦定理试求,发现因A 、B 均未知,所以较难求边c 。 由于涉及边长问题,从而可以考虑用向量来研究这个问题。 A 如图1.1-5,设CB a =u u r r ,CA b =u u r r ,AB c =u u r r ,那么c a b =-r r r ,则 b r c r ()()222 2 2c c c a b a b a a b b a b a b a b =?=--=?+?-?=+-?r r r r r r r r r r r r r r r r r C a r B 从而 2222cos c a b ab C =+- (图1.1-5) 同理可证 2222cos a b c bc A =+- 2222cos b a c ac B =+- 于是得到以下定理 余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。即 2222cos a b c bc A =+-

垂径定理学案、教学设计

24.1.2垂直于弦的直径导学案 广水市实验中学张运才 【学习目标】 1.理解圆的轴对称性. 2.理解垂径定理及其推论,并能应用它们解决有关弦的计算和证明问题. 【学习重点】垂直于弦的直径的性质、推论以及证明. 【学习难点】利用垂直于弦的直径的性质解决实际问题. 【学习过程】 【我能行】学生自学课本P80---P81,按照提示思考下面问题: (一)情景导入:观看赵州桥视频。聪明的同学们,你能求出赵州桥桥拱所在圆的半径吗? (二)自主探究:先自主探究,后小组交流。 探究一:把一个圆沿着它的任意一条直径所在的直线对折,重复几次,你发现了什么?由此你能得出什么结论? 我发现: (1)把圆纸片沿着它的任意一条直径所在的直线对折叠时,两个半圆. (2)上面的实验说明:圆是____ __,对称轴是经过圆心的每一条____ ___.圆有条对称轴. 探究二:请同学们按下面的步骤做一做: 第一步,把一个⊙O对折,使圆的两半部分重合,得到一条折痕CD; 第二步,在⊙O上任取一点A,过点A作CD折痕的垂线,再沿垂线折叠,得到新的折痕,其中点E 是两条折痕的交点,即垂足; 第三步,将纸打开,新的折痕与圆交于另一点B,画出折痕AB、CD.观察你所折纸片:(1)在上述的操作过程中,由圆的轴对称性你能得到哪些相等的线段和相等的弧? (2)你能用一句话概括上述结论吗? (3)请作出图形并用符号语言表述这个结论. 练习:如下图,哪些能使用垂径定理?为什么? 【交流学】先独立完成,后小组交流。 1.垂径定理结构:条件:①直径CD过圆心O②CD⊥AB结论:③AE=BE ④弧AC= 弧BC ⑤弧AD=弧BD.如果交换定理的题设和结论的部分语句,如①③作为题设,②④⑤作为结论,命题成立吗?例如在⊙O中,CD是直径,AB是的弦,CD与AB交于点E.如果AE=BE,那么CD与AB垂直吗?注意分情况讨论: (1)若AB是⊙O的直径,CD与AB垂直吗?为什么? (2)若AB不是⊙O的直径,CD与AB垂直吗?为什么? 思考:你能用一句话概括上述结论吗? 推论: 如果交换定理的题设和结论的部分语句,会有一些什么样的新结论呢?它们成立吗? 发现:

余弦定理教学案

余弦定理 【教学目标】1. 掌握余弦定理的两种表示形式; 2. 证明余弦定理的向量方法; 3. 运用余弦定理解决解三角形问题. 【重点难点】理解和掌握余弦定理的证明方法;余弦定理的应用. 【教学过程】 一、复习回顾: 正弦定理及其所解决的问题: 二.课题导入 思考:已知两边及夹角,如何解此三角形呢? 三.讲授新课 余弦定理:三角形中任何一边的 等于其他两边的 的和减去这两边与它们的 夹角的 的积的两倍. 公式表达: 2a = ;2b = ;2c = . 推论: cos A = ;cos B = ;cos C = . 定理理解:(1)与勾股定理的关系: (2)余弦定理及其推论的基本作用为: 【典型例题】 例1、在ABC ?中,角A ,B ,C 所对的边分别是a ,b ,c ,已知3a =,1b =,60C =?. (1)求c ; (2)求sin A . 变式训练1:在ABC ? 中,若a =5b =,30C =?,则(c = ) A B .C D 例2、已知△ABC 的三边长为3a =,4b = ,c =ABC 的最大内角. 变式训练2:有一个内角为120?的三角形的三边长分别是m ,1m +,2m +,则实数m 的 值为( ) A .1 B . 3 2 C .2 D . 52 例3、在△ABC 中,已知3b = ,c =,0 30B =,求边a . 变式训练3:△ABC 中,0 120A =,5c =,7a =,则sin sin B C =____________. A B C b c a

例4、在△ABC 中,a 、b 、c 分别表示三个内角A 、B 、C 的对边,如果(a 2+b 2)sin(A -B )= (a 2-b 2)sin(A +B ),试判断该三角形的形状. 变式训练4-1:在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,试判断三角形的形状. 变式训练4-2:在△ABC 中,已知()()3a b c a b c ab +++-=,且2cos sin sin A B C ?=, 确定△ABC 的形状. 例5、在△ABC 中,a ,b ,c 分别是A ,B ,C 的对边,且cos cos 2B b C a c =- +. (1)求B 的大小; (2 )若b =,4a c +=,求a 的值. 变式训练5-1:在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,tan C =. (1)求cos C ; (2)若5 2 CB CA ?=u u u r u u u r ,且9a b +=,求c . 变式训练5-2:在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π 3 . (1)若△ABC 的面积等于3,求a ,b ; (2)若sin B =2sin A ,求△ABC 的面积.

全国高中数学优质课 余弦定理教学设计

《余弦定理》教学设计 一、教学内容解析 本节内容选自普通高中课程标准实验教科书人教A版《数学》必修5第一章《解三角形》第一节正弦定理和余弦定理。第一节约4课时,2课时通过探究证明正弦定理,应用正弦定理解三角形;2课时通过探究证明余弦定理,应用余弦定理解三角形。本节课是余弦定理的第一课时,属于定理教学课。 正余弦定理是定量研究三角形边角关系的基础,它们为解三角形提供了基本方法,为后续解决测量等实际问题提供了理论基础和操作工具。余弦定理是继正弦定理之后的解三角形又一有力工具,完善了解三角形体系,为解决三角形的边角关系提供了新的方法;是对任意三角形“边、角、边”和“边、边、边”问题进行量化分析的结果,将两种判定三角形全等的定性定理转化为可计算的公式。 纵观余弦定理的发展史,它的雏形出现公元前3世纪。在欧几里得《几何原本》卷二对钝角三角形和锐角三角形三边关系的阐述中,利用勾股定理将余弦定理的几何形式进行了证明。1593年,法国数学家韦达首次将欧几里得的几何命题写成了我们今天熟悉的余弦定理的三角形式,直到20世纪,三角形式的余弦定理才一统天下。“余弦定理是作为勾股定理的推广而诞生的,以几何定理的身份出现,直到1951年,美国数学家荷尔莫斯在其《三角学》中才真正采用解析几何的方法证明了余弦定理,至于向量方法的出现,更是晚近的事了。” 从新旧教材的内容设计对比来看,无论是问题的提出,定理的证明,简单应用都呈现出变化。旧教材数学第二册(下)中,余弦定理被安排在第五章《平面向量》的第二节解斜三角形中。基于特殊到一般的数学思想,从直角三角形

切入,提出问题后,直接用向量的方法推导定理。新教材将余弦定理安排在独立章节《解三角形》中,首先给出探究:如果已知一个三角形的两边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形,从量化的角度研究这个问题,也为余弦定理解三角形的类型做了铺垫。在定理的推导过程中,同样用了向量方法,但在推导前提出思考:联系已经学过的知识,我们从什么途径来解决这个问题?新教材还结合余弦定理和余弦函数的性质,分别对三种形状的三角形进行了量化分析,旧教材没有涉及此内容。 从余弦定理的发展史和教材的设置变化来看,欧式几何依据基本的逻辑原理,建立几何关系,论证严谨,但思维量大,需要分类讨论。而作为沟通代数、几何与三角函数的工具——向量引入后,欧式几何中的平行、相似、垂直都可以转化成向量的加减、数乘、数量积的运量,从而把图形的基本性质转化成向量的运算体系,由此开创了研究几何问题的新方法。而且在证明之后还提出问题:用坐标方法怎样怎样证明余弦定理?还有其他的方法吗? 教材的编排,就是希望学生了解可以从向量、解析方法和三角方法等多种途径证明余弦定理,另外对向量工具性作用有所体会和认识。 基于以上分析,本节课的教学重点是: 通过对三角形边角关系的探索,发现并证明余弦定理。 二、教学目标设置 结合《课程标准》和教材编排,本节课的教学目标确定为: 1.发现并掌握余弦定理及其推论,利用余弦定理能够解决一些与三角形边角有关的计算问题。 2.通过对三角形边角关系的探索,能证明余弦定理,了解可以从向量、解析方法和三角方法等多种途径证明余弦定理。

九年级数学下册第3章圆3.3垂径定理教案

3.3垂径定理;; 一、教学目标;; 1.通过手脑结合,充分掌握圆的轴对称性. 2.运用探索、推理,充分把握圆中的垂径定理及其逆定理. 3.拓展思维,与实践相结合,运用垂径定理及其逆定理进行有关的计算和证明. 二、课时安排 1课时 三、教学重点 运用探索、推理,充分把握圆中的垂径定理及其逆定理. 四、教学难点 运用垂径定理及其逆定理进行有关的计算和证明. 五、教学过程 (一)导入新课 引导学生说出点与圆的位置关系: (二)讲授新课 活动内容1: 探究1:圆的相关概念——弧、弦、直径 1.圆上任意两点间的部分叫做圆弧,简称弧. 2.连接圆上任意两点的线段叫做弦. 3.经过圆心的弦叫做直径 探究2: AB是⊙O的一条弦.作直径CD,使CD⊥AB,垂足为M. 你能发现图中有哪些等量关系?与同伴说说你的想法和理由.

小明发现图中有: 理由: 连接OA,OB,则OA=OB. 在Rt△OAM和Rt△OBM中, ∵OA=OB,OM=OM, ∴Rt△OAM≌Rt△OBM. ∴AM=BM. ∴点A和点B关于CD对称. ∵⊙O关于直径CD对称, ∴当圆沿着直径CD对折时,点A与点B重合, 和重合和重合 AC BC,AD BD. ∴== AC BC,AD BD. 活动2:探究归纳 定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。 推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.

(三)重难点精讲 例1.如图,在⊙O 中,CD 是直径,AB 是弦,且CD⊥AB,已知CD = 20,CM = 4,求 AB. 证明:连接OA , ∵ CD = 20,∴ AO = CO = 10. ∴ OM = OC – CM = 10 – 4 = 6. 在⊙O 中,直径CD ⊥AB , ∴ AB =2AM , △OMA 是直角三角形. 在Rt △OMA 中,AO = 10,OM = 6, 根据勾股定理,得:2 22AO OM AM =+, AM 8===, ∴ AB = 2AM = 2 × 8 = 16. 例2.如图,两个圆都以点O 为圆心,小圆的弦CD 与大圆的弦AB 在同一条直线上.你认为AC 与BD 的大小有什么关系?为什么?

余弦定理教案

1.设计意图:本节主要内容是对余弦定理的学习,学生之前已经学习 了正弦定理和向量,已经知道了什么是解三角形,学生前面学习的知识是学习本节的基础。本教案引入分两个部分,首先,让学生回顾了正弦定理的内容及正弦定理的主要作用,主要目的是帮助学生巩固旧知识,有助于学生对前面学习的知识的掌握和理解,也为本节课的学习奠定了基础。其次,用一个例子让学生思考,引导学生用已学的知识来解决,结果学生发现无法用已掌握的知识来解决,从而激发学生探究新知识的欲望,进而可以很自然的引入本节内容。新课部分,主要借助向量证明了余弦定理,这样可以帮助学生复习向量的相关内容,同时向量方法是一种较简单的证明方法,学生较易理解和掌握。最后举了两个例子,让学生可以通过解题加强对知识的理解,从而将知识与实际相结合。 2.达到的预期目标:本节主要目标是让学生在掌握正弦定理的基础 上达到对余弦定理的理解和掌握,明白正弦定理和余弦定理是解三角形问题的两种不同但又很类似的重要方法,从学生上课的反应和学生作业的情况,大部分学生对本节的内容已经基本掌握,但还不是很熟练。有待加强练习,已达到让学生熟练掌握的地步。 3.设计的优点和不足:优点:由一个学生用现在的知识无法解决的 问题引出课题,激发了学生探索新知的欲望,同时也给本节课题的提出铺平了道路,很好的进行了知识点之间的过度,同时用向量的方法来证明定理,有助于学生的理解和掌握。 不足:定理的证明虽然用了向量的证明,学生容易理解和掌握,

但没有很好的发掘学生的潜力,没有让学生思考还有没有其他证明的方法,还有例2的选择不是很好,数据太大,加大学生的计算难度。学生初中已学习过直角三角形的勾股定理,勾股定理其实是余弦定理的特例,本教案没有让学生思考勾股定理与余弦定理之间的关系。 4.如何改进:首先在证明定理时可以让学生思考有没有其他的方法 可以证明,提醒他们利用建立平面直角坐标系把各点的坐标写出来和勾股定理(分钝角和锐角)这两种方法来证明,给学生提供一个思路,让他们课下自己证明。这样有助于打开学生的思路,培养他们的发散思维能力。例2可以换一个判断三角形形状的例题,同时数据可以弄的好算一些。可以设计一个思考,让学生思考余弦定理与勾股定理之间的关系,从而加深学生对新知识的理解,弄清知识点之间的联系。 余弦定理 三维目标 (1)知识与技能:能推导余弦定理及其推论,能运用余 弦定理解已知“边,角,边”和“边,边,边”两类三 角形。 (2)过程与方法:培养学生知识的迁移能力;归纳总结 的能力;运用所学知识解决实际问题的能力。 (3)情感、态度与价值观:从实际问题出发运用数学知

余弦定理教学设计说明

数学:1.1《正弦定理与余弦定理》教案(新人教版必修5)(原创) 余弦定理 一、教材依据:人民教育出版社(A版)数学必修5第一章第二节 二、设计思想: 1、教材分析:余弦定理是初中“勾股定理”内容的直接延拓,是解三角形这一章知识的一个重要定理,揭示了任意三角形边角之间的关系,是解三角形的重要工具,余弦定理与平面几何知识、向量、三角形有着密切的联系。因此,做好“余弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力。 2、学情分析:这节课是在学生已经学习了正弦定理及有关知识的基础上,转入对余弦定理的学习,此时学生已经熟悉了探索新知识的数学教学过程,具备了一定的分析能力。 3、设计理念:由于余弦定理有较强的实践性,所以在设计本节课时,创设了一些数学情景,让学生从已有的几何知识出发,自己去分析、探索和证明。激发学生浓厚的学习兴趣,提高学生的创新思维能力。 4、教学指导思想:根据当前学生的学习实际和本节课的内容特点,我采用的是“问题教学法”,精心设计教学内容,提出探究性问

题,经过启发、引导,从不同的途径让学生自己去分析、探索,从而找到解决问题的方法。 三、教学目标: 1、知识与技能: 理解并掌握余弦定理的内容,会用向量法证明余弦定理,能用余弦定理解决一些简单的三角度量问题 2.过程与方法: 通过实例,体会余弦定理的内容,经历并体验使用余弦定理求解三角形的过程与方法,发展用数学工具解答现实生活问题的能力。 3.情感、态度与价值观: 探索利用直观图形理解抽象概念,体会“数形结合”的思想。通过余弦定理的应用,感受余弦定理在解决现实生活问题中的意义。 四、教学重点: 通过对三角形边角关系的探索,证明余弦定理及其推论,并能应用它们解三角形及求解有关问题。 五、教学难点:余弦定理的灵活应用 六、教学流程: (一)创设情境,课题导入: 1、复习:已知A=030,C=045,b=16解三角形。(可以让学生板练 ) 2、若将条件C=045改成c=8如何解三角形? 设计意图:把研究余弦定理的问题和平面几何中三角形全等

垂径定理教学设计

垂径定理(第一课时)教学设计 兰甲明 【教学内容】§7.3垂径定理(初三《几何》课本P 76~P 78) 【教学目标】 1.知识目标:①通过观察实验,使学生理解圆的轴对称性; ②掌握垂径定理,理解其证明,并会用它解决有关的证明与计算问题; ③掌握辅助线的作法——过圆心作一条与弦垂直的线段。 2.能力目标:①通过定理探究,培养学生观察、分析、逻辑思维和归纳概括能力; ②向学生渗透“由特殊到一般,再由一般到特殊”的基本思想方法。 3.情感目标:①结合本课教学特点,向学生进行爱国主义教育和美育渗透; ②激发学生探究、发现数学问题的兴趣和欲望。 【教学重点】垂径定理及其应用。 【教学难点】垂径定理的证明。 【教学方法】探究发现法。 【教具准备】自制的教具、自制课件、实物投影仪、电脑、三角板、圆规。 【教学设计】 一、实例导入,激疑引趣 1.实例:同学们都学过《中国石拱桥》这篇课文(初二语文第三册第一课·茅以 升),其中介绍了我国隋代工匠李春建造的赵州桥 (如图)。因它位于现在的历史文化名城河北省赵 县(古称赵州)而得名,是世界上现存最早、保存 最好的巨大石拱桥,距今已有1400多年历史,被 誉为“华北四宝之一”,它的结构是当时世界桥梁 界的首创,这充分显示了我国古代劳动人民的创造智慧。 2.导入:赵州桥的桥拱呈圆弧形的(如图1),它的跨度(弧所对的弦长)为37.4 米,拱高(弧的中点到弦AB 的距离, 也叫弓高)为7.2米。请问:桥拱的 半径(即AB 所在圆的半径)是多少? 通过本节课的学习,我们将能很容易解决这一问题。 (图1) ⌒

二、尝试诱导,发现定理 1.复习过渡: ①如图2(a),弦AB 将⊙O 分成几部分?各部分的名称是什么? ②如图2(b),将弦AB 变成直径,⊙O 被分成的两部分各叫什么? ③在图2(b)中,若将⊙O 沿直径AB 对折,两部分是否重合? (a) (b) (a) (b) (c) (图2) (图3) 2.实验验证: 让学生将准备好的一张圆形纸片沿任一直径对折,观察两部分是否重合;教师用电脑演示重叠的过程。从而得到圆的一条基本性质—— 圆是轴对称图形,过圆心的任意一条直线(或直径所在的直线)都是它的对称轴。 3.运动变换: ①如图3(a),AB 、CD 是⊙O 的两条直径,图中有哪些相等的线段和相等的弧? ②如图3(b),当AB ⊥CD 时,图中又有哪些相等的线段和相等的弧? ③如图3(c),当AB 向下平移,变成非直径的弦时,图中还有哪些相等的线段和相等的弧?此外,还有其他的相等关系吗? 4.提出猜想:根据以上的研究和图3(c),我们可以大胆提出这样的猜想—— (板书) ?????===????⊥BD AD BC AC BD AE CD E AB,CD O 垂足为弦的直径是圆 5.验证猜想:教师用电脑课件演示图3(c)中沿直径CD 对折,这条特殊直径两侧的图形能够完全重合,并给这条特殊的直径命名为——垂直于弦的直径。 三、引导探究,证明定理 1.引导证明: 猜想是否正确,还有待于证明。引导学生从以下两方面寻找证明思路。 ①证明“AE=BE ”,可通过连结OA 、OB 来实现,利用等腰三角形性质证明。 ②证明“弧相等”,就是要证明它们“能够完全重合”,可利用圆的对称性证明。 B B B ⌒ ⌒ ⌒ ⌒

(完整word版)人教版高中余弦定理教案

《余弦定理》教案 一、教材分析 《余弦定理》选自人教A版高中数学必修五第一章第一节第一课时。本节课的主要教学内容是余弦定理的内容及证明,以及运用余弦定理解决“两边一夹角”“三边”的解三角形问题。 余弦定理的学习有充分的基础,初中的勾股定理、必修一中的向量知识、上一课时的正弦定理都是本节课内容学习的知识基础,同时又对本节课的学习提供了一定的方法指导。其次,余弦定理在高中解三角形问题中有着重要的地位,是解决各种解三角形问题的常用方法,余弦定理也经常运用于空间几何中,所以余弦定理是高中数学学习的一个十分重要的内容。 二、教学目标 知识与技能:1、理解并掌握余弦定理和余弦定理的推论。 2、掌握余弦定理的推导、证明过程。 3、能运用余弦定理及其推论解决“两边一夹角”“三边”问题。 过程与方法:1、通过从实际问题中抽象出数学问题,培养学生知识的迁移能力。 2、通过直角三角形到一般三角形的过渡,培养学生归纳总结能力。 3、通过余弦定理推导证明的过程,培养学生运用所学知识解决实际 问题的能力。 情感态度与价值观:1、在交流合作的过程中增强合作探究、团结协作精神,体验 解决问题的成功喜悦。 2、感受数学一般规律的美感,培养数学学习的兴趣。 三、教学重难点 重点:余弦定理及其推论和余弦定理的运用。 难点:余弦定理的发现和推导过程以及多解情况的判断。 四、教学用具 普通教学工具、多媒体工具 (以上均为命题教学的准备)

远处的空旷处选一点A,测量出AB,AC的距 离以及A ∠,就可以求出BC的距离了。】 求知欲,充分调动学生学 习的积极性。 分 析 问 题 、 探 究 定 理 1、回顾正弦定理以及正弦定理能解决的解三角 形问题的类型。 【正弦定理: C c B b A a sin sin sin = = 正弦定理能解决的问题类型: (1)已知两个角和一条边 (2)已知两条边和一边的对角】 2、简化问题,假设A ∠为直角。从最特殊的直 角三角形入手,运用勾股定理解决问题。 【记c AB b AC a BC= = =, ,,运用勾股定理 2 2 2c b a+ =,解得a即可。】 3、回归一般三角形,让学生思考如何求解。直 角三角形中可以运用勾股定理,没有直角那就 构造直角来求解。(以锐角三角形为例,钝角 三角形类似) D C A B 【2 2 2BD CD BC+ =, A AC CD sin =,A AC AD cos =,AD AB BD- =, ()()2 2 2cos sin A AC AB A AC BC? - + ? =, A AB AC AB AC BC cos 2 2 2 2? ? - + =】 4、根据以上探究过程,得到余弦定理: A bc c b a cos 2 2 2 2? - + =, B ac c a b cos 2 2 2 2? - + =, 用正弦定理来尝试解释技 术人员的方案,学生发现 还是解决不了问题。将学 生带入困境,激发学生的 创造思维。 用勾股定理解决问题,给 学生解决一般三角形的问 题提供参考。

垂径定理教学设计

《24.1.2 垂径定理》教学设计柳城县寨隆镇中学覃光洋

学 案 导 案 (教学流程) 设计意图 2.你能发现图中有哪些相等的线段和弧?为什么? 相等的线段: . 相等的弧: = ; = . 3.你能用一句话概括这些结论吗? 垂径定理:垂直于弦的直径 弦,并且 的两条弧. 4.你能用几何方法证明这些结论吗? 5.你能用符号语言表达这个结论吗? 如图2 CD 是直径(或CD 经过圆心),且CD AB ⊥ ∴ = ; = ; = (三)探究垂径定理的推论 如上图,若直径CD 平分弦AB 则 1.直径CD 是否垂直且平分弦所对的两条弧?如何证 明? 2.你能用一句话总结这个结论吗?(即推论:平分弦的直径也垂直于弦,并且平分弦所对的两条弧) ③如果弦AB 是直径,以上结论还成立吗? 推论: _______________________________________________________________________. 符号语言:∵CD 是⊙O 的直径 又∵AE=BE ∴CD AB ⊥ = ; = . (四)探究:用垂径定理解决问题 已知:⊙O 的直径为10cm ,圆心O 到AB 的距离为3cm , 求弦AB 的长 归纳:圆中常用辅助线---作弦心距,构造Rt △.弦的一半(2 a )、弦心距(d)、半径(r )三个量的数量关系为 . 教师出示问题 学生小组讨论,发现垂径定理的证明方法,并由学生代表发言。 学生尝试将文字转变为符号语言,用几何符号表达定理的逻辑关系。教师更正。 教师提出问题,引导学生进行思考和讨论。 学生尝试得出垂径定理和推论,教师规 范并板书。 教师提醒学生此中的弦一定不能是直径。 学生先独立完成,再小组交流讨论,让一名学生展示。 教师讲评,引导学生联系弦、半径、弦心距等因素,从而构成直角三角形,利用 勾股定理解决问题。 培养学生的观察能力,概括能力,分析能力, 从而调动学生学习积极性,使学生主动的获得知识。 让学生进一步熟悉垂径定理的条件与结论,并为探索垂径定理的推论打基础。 让学生亲自探索出各条推论,以使学生以后在应用中可明明白白的应用。 巩固并熟练垂径定理的使用方法。 总结规律,培养学生的归纳总结能力。 C A B D E O C A B D E O (图2) (图1)

相关文档
相关文档 最新文档