文档库 最新最全的文档下载
当前位置:文档库 › 非良导体热导率的测量带实验数据处理

非良导体热导率的测量带实验数据处理

非良导体热导率的测量带实验数据处理
非良导体热导率的测量带实验数据处理

导热系数的测量实验报告

导热系数的测量 导热系数(又称导热率)是反映材料热性能的重要物理量,导热系数大、导热性能好的材料称为良导体,导热系数小、导热性能差的材料称为不良导体。一般来说,金属的导热系数比非金属的要大,固体的导热系数比液体的要大,气体的导热系数最小。因为材料的导热系数不仅随温度、压力变化,而且材料的杂质含量、结构变化都会明显影响导热系数的数值,所以在科学实验和工程设计中,所用材料的导热系数都需要用实验的方法精确测定。 一.实验目的 1.用稳态平板法测量材料的导热系数。 2.利用稳态法测定铝合金棒的导热系数,分析用稳态法测定不良导体导热系数存在的缺点。 二.实验原理 热传导是热量传递过程中的一种方式,导热系数是描述物体导热性能的物理量。单位时间内通过某一截面积的热量dQ/dt 是一个无法直接测定的量,我们设法将这个量转化为较容易测量的量。为了维持一个恒定的温度梯度分布,必须不断地给高温侧铜板加热,热量通过样品传到低温侧铜板,低温侧铜板则要将热量不断地向周围环境散出。单位时间通过截面的热流量为: 当加热速率、传热速率与散热速率相等时,系统就达到一个动态平衡,称之为稳态,此时低温侧铜板的散热速率就是样品内的传热速率。这样,只要测量低温侧

铜板在稳态温度 T2 下散热的速率,也就间接测量出了样品内的传热速率。但是,铜板的散热速率也不易测量,还需要进一步作参量转换,我们知道,铜板的散热速率与冷却速率(温度变化率)dQ/dt=-mcdT/dt 式中的 m 为铜板的质量, C 为铜板的比热容,负号表示热量向低温方向传递。 由于质量容易直接测量,C 为常量,这样对铜板的散热速率的测量又转化为对低温侧铜板冷却速率的测量。铜板的冷却速率可以这样测量:在达到稳态后,移去样品,用加热铜板直接对下铜板加热,使其温度高于稳态温度 T2(大约高出 10℃左右),再让其在环境中自然冷却,直到温度低于 T2,测出 温度在大于T2到小于T2区间中随时间的变化关系,描绘出 T —t 曲线(见图 2),曲线在T2处的斜率就是铜板在稳态温度时T2下的冷却速率。 应该注意的是,这样得出的 t T ??是铜板全部表面暴露于空气中的冷却速率, 其散热面积为 2πRp2+2πRphp (其中 Rp 和 hp 分别是下铜板的半径和厚度),然而, 设样品截面半径为R ,在实验中稳态传热时,铜板的上表面(面积为 πRp2)是被 样品全部(R=Rp )或部分(R

不良导体导热系数测量

实验题目:不良导体导热系数的测量 实验目的:了解热传导现象的物理过程,学习用稳态平板法测量不良导体的导热系数并利用作图法求冷却 速率。 实验原理:1、导热系数 导热系数是反映材料热性能的重要物理量。目前对导热系数的测量均建立在傅立叶热传导 定律的基础上。本实验采用稳态平板法。 根据热传导理论,当物体内部存在温度梯度时,热量从高温向低温传导: dx dt dT dt dQ ?-=λ 其中λ就是导热系数。 2、不良导体导热系数的测量 样品为一平板,当上下表面温度稳定在T 1、T 2,以h B 表示样品高度,S B 表样品底面积: B B S h T T dt dQ ?-=21λ 由于温差稳定,那么可以用A 在T 2附近的dT/dt (冷却速率)求出dQ/dt 。 根据散热速率与散热面积成正比,则 dt dQ h R h R dt dQ h R R h R R dt dQ P A A A A P A A A A A A ?++=?++=2)(2)2(ππ 又根据 dt dT mc dt dQ P ? = 有 dt dT h R T T R h R mch A A B A A B ?+-+= ))((2)2(212 πλ 从而通过测量以上表达式中的量得到导热系数。 实验装置:如图 实验内容:1、用游标卡尺测量A 、B 两板的直径、厚度(每个物理量测量3次); 2、正确组装仪器后,打开加热装置,将电压调至250V 左右进行加热至一定温度(对应T 1电

压值大约在3.20-3.40mV ); 3、将电压调至125V 左右,寻找稳定的温度(电压),使得板上下面的温度(电压)10分钟内 的变化不超过0.03mV ,记录稳定的两个电压值; 4、直接加热A 板,使得其温度相对于T 2上升10度左右; 5、每隔30s 记录一个温度(电压)值,取相对T 2最近的上下各6个数据正式记录下来; 6、整理仪器;数据处理。 实验数据: 几何尺寸测量: 表一:A 、B 板的几何尺寸测量结果 A 质量m=806g ,比热容c=0.793kJ/kgK 。 稳定温度(实际是电压值): T 1:3.09mV T 2:2.73mV 表二:自由散热温度(最接近T 2的12个) 数据处理: 将导热系数的公式变形为 dt dV h D V V D h D mch A A B A A B ?+-+= )2)(()4(2212 πλ A 盘直径的平均值 mm mm D D D D A A A A 89.129390 .12972.12904.1303321=++=++= B 盘直径的平均值 mm mm D D D D B B B B 46.129352 .12944.12942.1293321=++=++= A 盘厚度的平均值 mm mm h h h h A A A A 95.6392 .690.602.73321=++=++= B 盘厚度的平均值 mm mm h h h h B B B B 98.7300 .892.702.83321=++=++= 利用ORIGIN 作图得到dV/dt :

(精品)热阻及热导率的测量方法

热阻及热导率测试方法 范围 本方法规定了导热材料热阻和热导率的测试方法。本方法适用于金属基覆铜板热 阻和导热绝缘材料热阻和热导率的测试。 术语和符号 术语 热触热阻 contact resistance 是测试中冷热两平面与试样表面相接触的界面产生热流量所需的温差。接触热阻 的符号为R I 面积热流量areic heat flow rate 指热流量除以面积。 符号 下列符号适用于本方法。 λ:热导率,W/(m﹒K); A:试样的面积,m 2 ; H:试样的厚度,m; Q:热流量,W 或者 J/s; q:单位面积热流量,W/ m 2 ; R:热阻,(K﹒m 2 )/W。 原理 本方法是基于测试两平行等温界面中间厚度均匀试样的理想热传导。 试样两接触界面间的温 度差施加不同温度,使得试样上下两面形成温度梯度,促使热流量全部垂直穿过试样测试表 面而没有侧面的热扩散。 使用两个标准测量块时本方法所需的测试: T1=高温测量块的高温,K; T2=高温测量块的低温,K; T3=低温测量块的高温,K; T4=低温测量块的低温,K; A=测试试样的面积,m 2 ; H=试样的厚度,m。 基于理想测试模型需计算以下参数: T H:高温等温面的温度,K; T C:低温等温面的温度,K; Q:两个等温面间的热流量 热阻:两等温界面间的温差除以通过它们的热流量,单位为(K﹒m 2 )/W; 热导率:从试样热阻与厚度的关系图中计算得到,单位为W/(m.K)。

接触热阻存在于试样表面与测试面之间。 接触热阻随着试样表面特性和测试表面施加给试样 的压力的不同而显著变化。因此,对于固体材料在测量时需保持一定的压力,并宜对压力进 行测量和记录。热阻的计算包含了试样的热阻和接触热阻两部分。 试样的热导率可以通过扣除接触热阻精确计算得到。 即测试不同厚度试样的热阻,用热阻相 对于厚度作图,所得直线段斜率的倒数为该试样的热导率,在厚度为零的截取值为两个接触 界面的接触热阻。如果接触热阻相对于试样的热阻非常小时(通常小于1%),试样的热导率 可以通过试样的热阻和厚度计算得出。 通过采用导热油脂或者导热膏涂抹在坚硬的测试材料表面来减小接触热阻。 仪器 符合本测试方法的一般特点要求的仪器见图A.1和图A.2。 该套仪器增加测厚度及压力监测等 功能,加强了测试条件的要求来满足测试精度需要。 仪器测试表面粗糙度不大于0.5μm;测试表面平行度不大于5μm。 精度为1μm归零厚度测试仪(测微计、LVDT、激光探测器等)。 压力监测系统。 图A.1 使用卡路里测量块测试架 图A.2 加热器保护的测量架 热源可采用电加热器或是温控流体循环器。主热源部分必需采用有保护罩进行保护, 保护罩 与热源绝缘,与加热器保持±0.2K的温差。避免热流量通过试样时产生热量损失。无论使用 哪一种热源,通过试样的热流量可以用测量块测得。 热流量测量块由测量的温度范围内已知其热导率的高热导率材料组成。为准确测量热流量, 必须考虑热传导的温度灵敏度。推荐测量块材料的热导率大于50 W/(m.K)。 通过推算测量块温度与测试表面的线性关系(Fourier传热方程),确定测量块的热端和冷端 的表面温度。 冷却单元通常是用温度可控的循环流体冷却的金属块,其温度稳定度为±0.2 K。 试样的接触压力通过测试夹具垂直施加在试样的表面上,并保持表面的平行性和对位。

大学物理实验不良导体的热导系数的测量讲义

不良导体的热导系数的测量 实验简介 材料的导热系数是反映材料热性能的物理量,导热机理在很大程度上取决与它的微观结构,热量的传递依靠原子、分子围绕平衡位置的振动以及自由电子的迁移。导热系数不仅与构成材料的物质种类密切相关,而且与它的微观结构、温度、 压力及杂质含量相联系。 测量导热系数的方法比较多,但可以归并为两类基本方法:一类是稳态法,另一类是动态法。用稳态法时,先用热源对测试样品进行加热,并在样品内部形成稳定的温度分析,然后进行测量。而在动态法中,待测样品中的温度分布是随时间变化的,例如按周期性变化等。本实验采用稳态法进行测量。 实验目的 了解热传导现象的物理过程,学习用稳态平板法测量不良导体的导热系数并用作图法求冷 却速率。 实验仪器 待测橡皮垫、黄铜板、加热铜质圆盘(带隔热层)、红外灯、热电偶、杜瓦瓶、冰水混合物、0~250V 变压器、秒表、游标卡尺等 实验原理 1,导热系数 当物体内存在温度梯度时,热量从高温流向低温,谓之热传导或传热,传热速率正比于温度梯度以及垂直于温度梯度的面积,比例系数为热导系数或导热率: dS dx dT dt dQ λ-= (1) 2,不良导体导热系数的测量 厚度为h 、截面面积为S 的平板形样品(橡胶板)夹在加热圆盘和黄铜盘之间。热量由加热盘传入。加热盘和黄铜盘上各有一小孔,热电偶可插入孔内测量温度,两面高低温度恒定为T 1 和T 2时,传热速率为 S h T T dt dQ 21--=λ (2)

图 1 图 2 由于传热速率很难测量,但当T 1 和T 2稳定时,传入橡胶板的热量应等于它向周围的散热量。 这时移去橡胶板,使加热盘与铜盘直接接触,将铜盘加热到高于T 2约10度,然后再移去加热盘,让黄铜盘全表面自由放热。每隔30秒记录铜盘的温度,一直到其温度低于T 2,据此求出铜盘在T 2附近的冷却速率 dt dT 。 铜盘在稳态传热时,通过其下表面和侧面对外放热;而移去加热盘和橡胶板后是通过上下表面以及侧面放热。物体的散热速率应与它们的散热面积成正比, ()()dt Q d h R R h R R dt dQ ' ++=222ππ (3) 式中 dt Q d ' 为盘自由散热速率。而对于温度均匀的物体,有

2.基尔霍夫定律和叠加原理的验证(实验报告答案)含数据处理

实验二 基尔霍夫定律和叠加原理的验证 一、实验目的 1. 验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。 2. 验证线性电路中叠加原理的正确性及其适用范围,加深对线性电路的叠加 性和齐次性的认识和理解。 3. 进一步掌握仪器仪表的使用方法。 二、实验原理 1.基尔霍夫定律 基尔霍夫定律是电路的基本定律。它包括基尔霍夫电流定律(KCL)和基尔霍 夫电压定律(KVL)。 (1)基尔霍夫电流定律(KCL) 在电路中,对任一结点,各支路电流的代数和恒等于零,即 ΣI =0。 (2)基尔霍夫电压定律(KVL) 在电路中,对任一回路,所有支路电压的代数和恒等于零,即 ΣU =0。 基尔霍夫定律表达式中的电流和电压都是代数量,运用时,必须预先任意假 定电流和电压的参考方向。当电流和电压的实际方向与参考方向相同时,取值为 正;相反时,取值为负。 基尔霍夫定律与各支路元件的性质无关,无论是线性的或非线性的电路,还 是含源的或无源的电路,它都是普遍适用的。 2.叠加原理 在线性电路中,有多个电源同时作用时,任一支路的电流或电压都是电路中 每个独立电源单独作用时在该支路中所产生的电流或电压的代数和。某独立源单 独作用时,其它独立源均需置零。(电压源用短路代替,电流源用开路代替。) 线性电路的齐次性(又称比例性),是指当激励信号(某独立源的值)增加 或减小 K 倍时,电路的响应(即在电路其它各电阻元件上所产生的电流和电压 值)也将增加或减小 K 倍。 三、实验设备与器件 1. 直流稳压电源 1 2. 直流数字电压表 1 3. 直流数字毫安表 1 4. 万用表 1 5. 实验电路板 1 四、实验内容 1.基尔霍夫定律实验 按图 2-1 接线。 台块 块 块块

不良导体的导热系数

热导系数的测量 学号:PB07210137 姓名:昝涛 实验名称:热导系数的测量 实验目的:了解热传导现象的物理过程,学习用稳态平板法测量不良导体的热传导系数 并用作图法求冷却速率 实验原理: 1. 导热系数 当物体内存在温度梯度时,热量从高温流向低温,谓之热传导或传热,传热速率正比于温度梯度以及垂直于温度梯度的面积,比例系数为热导系数或导热率: dS dx dT dt dQ λ-= (1) 2. 不良导体导热系数的测量 厚度为h 、截面面积为S 的平板形样品(橡胶板)夹在加热圆盘和黄铜盘之间。热量由 加热盘传入。加热盘和黄铜盘上各有一小孔,热电偶可插入孔内测量温度,两面高低温度恒定为T 1 和T 2时,传热速率为 S h T T dt dQ 21--=λ (2) 由于传热速率很难测量,但当T 1 和T 2稳定时,传入橡胶板的热量应等于它向周围的散 热量。 这时移去橡胶板,使加热盘与铜盘直接接触,将铜盘加热到高于T 2约10度,然后再移去加热盘,让黄铜盘全表面自由放热。每隔30秒记录铜盘的温度,一直到其温度低于T 2,据此求出铜盘在T 2附近的冷却速率 dt dT 。 铜盘在稳态传热时,通过其下表面和侧面对外放热;而移去加热盘和橡胶板后是通过上下表面以及侧面放热。物体的散热速率应与它们的散热面积成正比, ()()dt Q d h R R h R R dt dQ ' ++= 222ππ (3) 式中 dt Q d ' 为盘自由散热速率。而对于温度均匀的物体,有 dt dT mc di Q d =' (4) 这样,就有 ()()dt dT mc h R R h R R dt dQ 222++=ππ (5) 结合(2)式,可以求出导热系数 ()()dt dT h R T T R h R h c m A A B A A B +-+= )(22212 πλ铜铜

非良导体热导率的测量带实验数据处理

本科实验报告 (阅) 实验名称:非良导体热导率的测量 实验11 非良导体热导率的测量 【实验目的和要求】 1.学习热学实验的基本知识和技能。 2.学习测量非良导体热导率的基本原理的方法。 3.通过做物体冷却曲线和求平衡温度下物体的冷却速度,加深对数据图事法的理解。 【实验原理】 热可以从温度高的物体传到温度低的物体,或者从物体的高温部分传到低温部分,这种现象叫做热传递。热传递的方式有三种:传导,对流和辐射。 设有一厚度为l、底面积为S?的薄圆板,上下两底面的温度T ,T 不相等,且T1>T2,则有热量自上底面传乡下底面(见图1),其热量可以表示为 (1)

图1 测量样品 式中,为热流量,代表单位时间里流过薄圆板的热量;为薄圆板内热流方向上的温度梯度,式中的负号表示热流方向与温度梯度的方向相反;为待 测薄圆板的热导率。 如果能保持上下两底面的温度不变(稳恒态)和传热面均匀,则,于是 (2) 得到 关键1.使待测薄圆板中的热传导过程保持为稳恒态。 2.测出稳恒态时的。 1.建立稳恒态 为了实现稳恒态,在试验中将待测薄圆板B置于两个直径与B相同的铝圆柱A,C 之间,且紧密接触,(见图2)。 图二测量装置 C内有加热用的电阻丝和用作温度传感器的热敏电阻,前者被用来做热源。首先,

可由EH-3数字化热学实验仪将C内的电阻丝加热,并将其温度稳定在设定的数值上。B的热导率尽管很小,但并不为零,固有热量通过B传递给A,使A的温度T A逐渐升高。当T A高于周围空气的温度时,A将向四周空气中散发热量。由于C的温度恒定,随着A的温度升高,一方面通过C通过B流向A的热流速率不断减小,另一方面A向周围空气中散热的速率则不断增加。当单位时间内A 从B 获得的热量等于它向周围空气中散发的热量时,A的温度就稳定不变了。 2.测量稳恒态时的 因为流过B的热流速率就是A从B获的热量的速率,而稳恒态时流入A的热流速率与它散发的热流速率相等,所以,可以通过测A在稳恒态时散热的热流速率来测。当A单独存在时,它在稳恒温度下向周围空气中散热的速率为 (3) 式中,为A的比热容;为A的质量;n=T=T2成为在稳恒温度T2时的冷却速度。 A的冷却速度可通过做冷却曲线的方法求得。具体测法是:当A、C已达稳恒态后,记下他们各自的稳恒温度T2,T1后,再断电并将B移开。使A,C接触数秒钟,将A 的温度上升到比T2高至某一个温度,再移开C,任A自然冷却,当TA降到比T2约高To(℃)时开始计时读数。以后每隔一分钟测一次TA,直到TA 低于T2约To(℃)时止。测的数据后,以时间t为横坐标,以TA为纵坐标做A 的冷却曲线,过曲线上纵坐标为T2的点做此曲线的切线,则斜率就是A在TA 的自然冷却速度,即 (4) 于是有(5) 但要注意,A自然冷却时所测出的与试验中稳恒态时A散热是的热流速率是不同的。因为A在自然冷却时,它的所有外表面都暴漏在空气中,都可以 散热,而在实验中的稳恒态时,A的上表面是与B接触的,故上表面是不散热的。由传热定律:物体因空气对流而散热的热流速率与物体暴露空气中的表面积成正比。设A的上下底面直径为d,高为h,则有 (6)

误差理论与数据处理 实验报告

《误差理论与数据处理》实验指导书 姓名 学号 机械工程学院 2016年05月

实验一误差的基本性质与处理 一、实验内容 1.对某一轴径等精度测量8次,得到下表数据,求测量结果。 Matlab程序: l=[24.674,24.675,24.673,24.676,24.671,24.678,24.672,24.674];%已知测量值 x1=mean(l);%用mean函数求算数平均值 disp(['1.算术平均值为:',num2str(x1)]); v=l-x1;%求解残余误差 disp(['2.残余误差为:',num2str(v)]); a=sum(v);%求残差和 ah=abs(a);%用abs函数求解残差和绝对值 bh=ah-(8/2)*0.001;%校核算术平均值及其残余误差,残差和绝对值小于n/2*A,bh<0,故以上计算正确 if bh<0 disp('3.经校核算术平均值及计算正确'); else disp('算术平均值及误差计算有误'); end xt=sum(v(1:4))-sum(v(5:8));%判断系统误差(算得差值较小,故不存在系统误差) if xt<0.1 disp(['4.用残余误差法校核,差值为:',num2str(x1),'较小,故不存在系统误差']); else disp('存在系统误差'); end bz=sqrt((sum(v.^2)/7));%单次测量的标准差 disp(['5.单次测量的标准差',num2str(bz)]);

p=sort(l);%用格罗布斯准则判断粗大误差,先将测量值按大小顺序重新排列 g0=2.03;%查表g(8,0.05)的值 g1=(x1-p(1))/bz; g8=(p(8)-x1)/bz;%将g1与g8与g0值比较,g1和g8都小于g0,故判断暂不存在粗大误差if g1

测量刚体的转动惯量实验报告及数据处理

测量刚体的转动惯量实验报告及数据处理 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

实验讲义补充: 1.刚体概念:刚体是指在运动中和受力作用后,形状和大小不变,而且内部各点的相对位置不 变的物体。 2.转动惯量概念:转动惯量是刚体转动中惯性大小的量度。它取决于刚体的总质量,质量分 布、形状大小和转轴位置 3.转动定律:合外力矩=转动惯量×角加速度 4.转动惯量叠加: 空盘:(1)阻力矩(2)阻力矩+砝码外力→J1 空盘+被测物体:(1)阻力矩(2)阻力矩+砝码外力→J2 被测物体:J3=J2-J1 5.转动惯量理论公式:圆盘&圆环J=0.5mr2,J=0.5m(r12+r12) 6.转动惯量实验仪器:水准仪;线水平;线与孔不产生摩擦;塔轮选小的半径;至少3个塔轮 半径,3组砝码质量 7.计数器:遮光板半圈π;单电门,多脉冲;空盘15圈,20个值;加上被测物体,8个值; 8.泡沫垫板 9.重力加速度:s^2 10.质量:1次读数,包括砝码,圆盘,圆环,以及两圆柱体; 11.游标卡尺:6次读数,包括圆盘半径,圆环内外半径,塔轮半径,转盘上孔的内外半径(求 平均值) 12.实验目的:测量值与理论值对比 实验计算补充说明: 1.有效数字:质量,故有效数字为3位 2.游标卡尺:,读数最后一位肯定为偶数; 3.误差&不确定度: (1)理论公式计算的误差: 圆盘:J=0.5mR2(注意:直接测量的是直径) 质量m=±;(保留4位有效数字) um=*100%=% 半径R=± 若测6次,x1,x2,x3,x4,x5,x6,i=6,计算x平均值 , 取n=6时的 ,我们处理为0 C=,仪器允差,δB= 总误差:,ux= m

大学物理实验不良导体的热导系数的测量讲义

dQ dt 不良导体的热导系数的测量 实验简介材料的导热系数是反映材料热性能的物理量,导热机理在很大程度上取决与它的微观结构,热量的传递依靠原子、分子围绕平衡位置的振动以及自由电子的迁移。导热系数不仅与构成材料的物质种类密切相关,而且与它的微观结构、温度、压力及杂质含量相联系。测量导热系数的方法比较多,但可以归并为两类基本方法:一类是稳态法,另一类是动态法。用稳态法时,先用热源对测试样品进行加热,并在样品内部形成稳定的温度分析,然后进行测量。而在动态法中,待测样品中的温度分布是随时间变化的,例如按周期性变化等。本实验采用稳态法进行测量。 实验目的了解热传导现象的物理过程,学习用稳态平板法测量不良导体的导热系数并用作图法求冷 却速率。 实验仪器待测橡皮垫、黄铜板、加热铜质圆盘(带隔热层)、红外灯、热电偶、杜瓦瓶、冰水混合物、 0~250V 变压器、秒表、游标卡尺等实验原理 1,导热系数 当物体内存在温度梯度时,热量从高温流向低温,谓之热传导或传热,传热速率正比于温度梯度以及垂直于温度梯度的面积,比例系数为热导系数或导热率: dQ dT dS (1) dt dx 2,不良导体导热系数的测量 厚度为h 、截面面积为S的平板形样品(橡胶板)夹在加热圆盘和黄铜盘之间。热量由加热盘传入。加热盘和黄铜盘上各有一小孔,热电偶可插入孔内测量温度,两面高低温度恒定为T1 和T2 时,传热速率为 2)

由于传热速率很难测量,但当T1 和T2 稳定时,传入橡胶板的热量应等于它向周围的散热 量。这时移去橡胶板,使加热盘与铜盘直接接触,将铜盘加热到高于T2约10 度,然后再移去加热盘,让黄铜盘全表面自由放热。每隔30 秒记录铜盘的温度,一直到其温度低于T2,据此求出铜盘在T2 附近的冷却速率dT。 dt 铜盘在稳态传热时,通过其下表面和侧面对外放热;而移去加热盘和橡胶板后是通过上下表面以及侧面放热。物体的散热速率应与它们的散热面积成正比, dQ R R 2h dQ (3) dt R 2R 2h dt () 式中dQ为盘自由散热速率。而对于温度均匀的物体,有 dt

实验十七稳态法测定非良导体的热导率

实验十七 稳态法测定非良导体的热导率 实验内容 1.学习传热学的有关概念和冷却速度的测定方法。 2.了解傅立叶传热定律,测定非良导体的热导率。 教学要求 ?? 1.了解物理量的间接测量方法。 2.学习用作图法确定瞬态量的方法。 实验器材 EH-3数字化热学实验仪,盘式加热器,待测非良导体,温度计(0~500C 和0~1000C 各一支),游标卡尺,电子秒表(具有多次记时功能)。 热传导是热量传播的三种方式之一,它是由物体直接接触而产生的,热导率是反映物体热传导性能的一个物理量,热导率大的物体具有良好的导热性能,称为热的良导体;热导率小的物体则称为热的非良导体。一般说来,金属的热导率比非金属大,固体的热导率比液体大,气体最小。测定物体的热导率对于了解物体的传热性能具有重要意义,在消防研究与鉴定中,经常需要了解材料的热导率,以确定建筑物的放火等级与耐火极限等。本实验是用稳态法测定非良导体的热导率。 实验原理 稳态法测定热导率是利用傅立叶传热定律来进行的。 设有一厚度为L,底面积为S0的薄圆板,上、下两底面的温度分别为T1和T2,且T1>T2,则有热量自上底面传向下底面。由傅立叶传热定律得: dl dT S dt dQ 0λ-= (17-1) 记dt dQ =?,称为热流速率,?它代表单位时间流过薄圆板的热量。dl dT 是薄圆板内热流方向上的温度梯度,由于热流方向与温度梯度的方向相反,式中用一个负号来表示。λ是待测薄圆板材料的热导率,它是由薄圆板的传热性质所决定的常数。 如果能保持上、下两底面温度不变(这种状态称为稳恒态),且传热面均匀(在实际实验中,即要求L 很小或2 L 《0S ,薄圆板侧面的散热可以忽略,则 L T T l T dl dT 12-=??= (17-2) 将(17-2)式代入(17-1)式得L T T S dt dQ 120--==λ?,整理可得 ) (120T T S L --=?λ (17-3) 由(17-3)式可知,测量热导率λ的关键是:一是在待测薄圆板中建立热传导稳恒态,测出待测薄圆板两底面的稳恒温度;二是测出稳恒态时待测薄圆板内的热流速率?。下面就分别予以讨论。 1.稳恒态的建立 为了获得稳恒态,实验中将待测圆盘B置于两个直经与B相同的铝圆柱体A、C之间,且紧密接触。C内有加热用的电阻丝和用作温度传感器的热敏电阻,前者是用来作热源的,后者是用于控制C 盘的温度。首先,接通EH-物理实验仪与C内的加热电阻 丝,并将其温度稳定在设定的温度值上(如850C )。待测薄圆板B的热导率尽管很小,但

大学物理实验报告数据处理及误差分析

篇一:大学物理实验1误差分析 云南大学软件学院实验报告 课程:大学物理实验学期: - 学年第一学期任课教师: 专业: 学号: 姓名: 成绩: 实验1 误差分析 一、实验目的 1. 测量数据的误差分析及其处理。 二、实验内容 1.推导出满足测量要求的表达式,即 0? (?)的表达式; 0= (( * )/ (2*θ)) 2.选择初速度A,从[10,80]的角度范围内选定十个不同的发射角,测量对应的射程, 记入下表中: 3.根据上表计算出字母A 对应的发射初速,注意数据结果的误差表示。 将上表数据保存为A. ,利用以下程序计算A对应的发射初速度,结果为100.1 a =9.8 _ =0 =[] _ = ("A. "," ") _ = _ . ad ()[:-1] = _ [:]. ('\ ') _ = _ . ad ()[:-1] = _ [:]. ('\ ') a (0,10): .a d( a . ( a ( [ ])* / a . (2.0* a ( [ ])* a . /180.0))) _

+= [ ] 0= _ /10.0 0 4.选择速度B、C、D、重复上述实验。 B C 6.实验小结 (1) 对实验结果进行误差分析。 将B表中的数据保存为B. ,利用以下程序对B组数据进行误差分析,结果为 -2.84217094304 -13 a =9.8 _ =0 1=0 =[] _ = ("B. "," ") _ = _ . ad ()[:-1] = _ [:]. ('\ ') _ = _ . ad ()[:-1] = _ [:]. ('\ ') a (0,10): .a d( a . ( a ( [ ])* / a . (2.0* a ( [ ])* a . /180.0))) _ += [ ] 0= _ /10.0 a (0,10): 1+= [ ]- 0 1/10.0 1 (2) 举例说明“精密度”、“正确度”“精确度”的概念。 1. 精密度 计量精密度指相同条件测量进行反复测量测值间致(符合)程度测量误差角度说精密度所 反映测值随机误差精密度高定确度(见)高说测值随机误差定其系统误差亦。 2. 正确度 计量正确度系指测量测值与其真值接近程度测量误差角度说正确度所反映测值系统误差 正确度高定精密度高说测值系统误差定其随机误差亦。 3. 精确度 计量精确度亦称准确度指测量测值间致程度及与其真值接近程度即精密度确度综合概念 测量误差角度说精确度(准确度)测值随机误差系统误差综合反映。 比如说系统误差就是秤有问题,称一斤的东西少2两。这个一直恒定的存在,谁来都是 这样的。这就是系统的误差。随机的误差就是在使用秤的方法。 篇二:数据处理及误差分析 物理实验课的基本程序

不良导体导热系数的测定实验报告

非金属固体材料导热系数的测量 2004/04 用热线法测量不良导体导热系数是一种广泛使 用的方法,国家对此制定了标准——“非金属固体材 料导热系数的测定——热线法”(GB/T 10297-1998)。 基本原理如图1所示,在匀质均温的物体内部放置一 电阻丝,即热线,对其以恒定功率加热时,热线及其 附近试样的温度将随时间变化。根据时间与温度的变化关系,可以确定该试样的导热系数。[1] [原理简述] 由热传导理论[2]可知,恒定功率的热线对匀质物体进行热传导时,可以用一维柱坐标系的 热传导方程对物体的温度场进行描述:r r r t ??+??=??θθθα1122 (1) 边界条件为: 00 =r θ(t =0,r ≥0),0=∞r θ(t >0,r =∞),const.π0 =??-==r r q θ λ(t >0,r =0)[3] (2) 根据热传导方程和边界条件得到解为:t t e q t t r r t d π40 42? - = αλ θ (3) 其中各物理量含义为,t :热线的加热时间,单位为s ;r :距热线的距离,单位为m ;q :热线单位长度的加热功率,单位为W/m ;t r θ:加热时间t ,距离热线距离r 处的温升,单位为K ;α:试样的热扩散率,单位为m 2/s ;λ:试样的导热系数,单位为W/(m ·K ),对于非金属固体材料,该系数一般小于2 W/(m ·K )。 假设t r α42 →0,即r →0或αt →∞,利用Euler 公式,忽略展开后二次项以后的各项。如果 在不同时间t 1、t 2,测的同一点r 处的温升为1t r θ、2 t r θ,则:12ln π41 2 t t q t t r r λ θθ= - (4) 根据(4)可以得到试样的导热系数 ()()1 2 1 2 1212ln πL 4ln π4t t t t r r r r t t IU t t q θθθθλ-=-= [4] (5) (5)式中,I 、U 分别热线的通电电流(单位为A )和电压(单位为V ),L 为有效加热长度(单位为m )。因此,当等时间间隔测量试样的温升时,ln(t 2/t 1)和1 2 t t r r θθ-呈线性关系,据此计算试 样的导热系数。 [实验设计] 实验装置如图2所示。试样为环氧树脂,有效长度220mm ,直径28mm 。加热丝为钨杆,直径1mm ,R Wu =0.01650Ω,加热电流3~5A 。温度测量利用电阻——温度系数(αR =0.00393℃ 图1、热线法测定非金属固体材料导热系数 的原理示意图 试样 热线

热波法测热导率

热波法测热导率 实验仪器:(注明规格和型号) 本实验使用RB-1型热导率动态测量仪,包括主机、控制单元、记录单元三大部分。 1. 主机:棒状样品及热电偶阵列,脉动热源,冷却装置 2. 控制单元 3. 记录系统 实验目的: 1. 学习一种测量热导率的方法 2. 了解动态法测量热导率的特点和优点 3. 认识热波,加强对波动理论的认识

实验原理简述: 1. 导热微分方程的建立 热传导是指发生在固体内部或静止流体内部的热量交换过程 为使问题简化, 假设样品为棒状, 热量沿一维传播; 在棒上取微元 x→x+dx, 如图中所示. 根据Fourrier导热定律, 单位时间内流过某垂 直于热流方向, 面积为A的热量, 即热流为: 其中q为热流, 表示等温面上沿温度降低方向单位时间内传递的热 量; K为热导率, 表示单位时间内在单位长度上温度降低1K时, 单位 面积上通过的热量; 而在Δt时间内通过截面A流入小体积元dV=Adx的热量为: ,而小体积元升高温度ΔT所需要的热量为: 在无外界条件变化的情况下,以上两式应当相等,联立以上两 式,可以得到: ,并可以由此推知热流方程: 其中D=K/cρ为热扩散率。 该热流方程的解将给出材料上各点温度随时间的变化,解的具 体形式还将取决于边界条件

2. 方程求解 若使热端的温度围绕T0作简谐变化:T=T0+Tm*sinωt,而另一端无反射并且保持恒定温度T0,则可以得到原微分方程的解为并且由上式可以得到热波的波长,热波在棒中的传播速度为因而,在被测样品棒热端温度的周期变化角频率ω已知的情况下,只要测出热波的波速或波长,就可以计算出热扩散率D,进而计算出热导率K。

不良导体导热系数的测量 (6)

实验报告 一、实验题目:不良导体导热系数的测量 二、实验目的 了解热传导现象的物理过程,学习用稳态平板法测量不良导体的导热系数并用作图法求冷却速率。 三、实验原理 1、导热系数 当物体内存在温度梯度时,热量从高温流向低温,谓之热传导或传热,传热速率正比于温度梯度以及垂直于温度梯度的面积,其比例系数为热导系数或导热率,即 dQ dT dS dt dx λ=- 其中 dQ dt 为传热速率,dT dx 是与面积相垂直的方向上的温度梯度,“—”表示热量从高温区域传向低温区域, λ是导热系数,表示物体导热能力的大小。 2、不良导体导热系数的测量 厚度为B h 、截面面积为B S 的平板形样品(橡胶板)夹在加热圆盘和黄铜盘A 之间,热量由加热盘传入。加热盘和黄铜盘上各有一小孔,热电偶可插入孔内测量温度,两面高低温度恒定为T 1 和T 2时,传热速率为 11B B T T dQ S dt h λ-=- (1) 由于传热速率很难测量,但当T 1 和T 2稳定时,传入橡胶板的热 量应等于它向周围的散热量。 这时移去橡胶板,使加热盘与铜盘直接接触,将铜盘加热到高于T 2约10度,然后再移去加热盘,让黄铜盘全表面自由放热。每隔30秒记录铜盘的温度,一直到其温度低于T 2,据此求出铜盘在T 2附近的冷却速率 dQ dt 。 铜盘在稳态传热时,通过其下表面和侧面对外放热;而移去加热盘和橡胶板后是通过上下表面以及侧面放热。物体的散热速率应与它们的散热面积成正比,即 ' A A A A A A R (R 2h )dQ dQ dt R (2R 2h )dt ππ+=? +

式中' dQ dt 为盘自由散热速率。而对于温度均匀的物体,有'dQ dT mc dt dt =。这样,就有 A A A A Cu A A A R (R 2h )dQ dT =m c dt R (2R 2h )dt ππ+?+ (2) 比较(1)和(2)式,可以求出导热系数为 A Cu B A A 2B A A 12m c h (R 2h )dT = 2R (R h )(T -T )dt λπ+?+ (3) 四、实验内容 1、观察和认识传热现象、过程及其规律: (1)自拟数据表格,用卡尺测量铜盘A 和样品B 的厚度及其直径,并求出平均值和误差(各测三次); (2)熟悉各仪表的使用方法,并按书上的图示连接好仪器; (3)接通调压器电源,将红外灯升压,使其从零缓慢升至200V 。当1T 达到3.2—3.4mV 之间时,将电压调至125V 左右。来回切换单刀双掷开关,观察1T 和2T 的值(每1—2min 记录一次)。若10min 基本不变(变化量小于0.03mV ),则认为达到稳态,记录下1T 和2T 的值; (4)移走样本盘B ,直接加热A 盘(200V 条件下),使之比2T 高10℃(约0.4mV )。调压器调至零,再断电。移走加热灯和传热筒,使A 盘自然冷却,每隔30s 记录其温度(中间不要间断),选择最接近的前后各6个数据填入自拟表格。 2、用逐差法求出铜盘A 的冷却速率dT dt ,并由公式(3)求出样品的导热系数λ。 3、绘出T —t 关系图,用作图法求出冷却速率 dT dt 。 4、用方程回归法进行线性拟合,求解冷却速率dT dt 及其误差,将结果 代入公式(3),计算样品的导热系数λ及其标准差λσ。 五、实验器材(如下图所示) 杜瓦瓶、传热筒、数字电压表(测温度用)、红外灯、热电偶、铜盘、橡胶圆盘(待测)、双刀双掷开关、调压器电源、支架、支杆等。

叠加原理 实验报告范文(含数据处理)

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 叠加原理实验报告范文 一、实验目的 验证线性电路叠加原理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。 二、原理说明 叠加原理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。 线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K倍时,电路的响应(即在电路中各电阻元件上所建立的电流和电压值)也将增加或减小K倍。 三、实验设备 高性能电工技术实验装置DGJ-01:直流稳压电压、直流数字电压表、直流数字电流表、叠加原理实验电路板DGJ-03。 四、实验步骤 1.用实验装置上的DGJ-03线路,按照实验指导书上的图3-1,将两路稳压电源的输出分别调节为12V和6V,接入图中的U1和U2处。 2.通过调节开关K1和K2,分别将电源同时作用和单独作用在电路中,完成如下表格。 表3-1

3.将U2的数值调到12V,重复以上测量,并记录在表3-1的最后一行中。 4.将R3(330 )换成二极管IN4007,继续测量并填入表3-2中。 表3-2 五、实验数据处理和分析 对图3-1的线性电路进行理论分析,利用回路电流法或节点电压法列出电路方程,借助计算机进行方程求解,或直接用EWB软件对电路分析计算,得出的电压、电流的数据与测量值基本相符。验证了测量数据的准确性。电压表和电流表的测量有一定的误差,都在可允许的误差范围内。 验证叠加定理:以I1为例,U1单独作用时,I1a=8.693mA,,U2单独作用时, I1b=-1.198mA,I1a+I1b=7.495mA,U1和U2共同作用时,测量值为7.556mA,因此叠加性得以验证。2U2单独作用时,测量值为-2.395mA,而2*I1b=-2.396mA,因此齐次性得以验证。其他的支路电流和电压也可类似验证叠加定理的准确性。 对于含有二极管的非线性电路,表2中的数据不符合叠加性和齐次性。

不良导体的热导率

不良导体得热导率 摘要 物体导热性能得好坏,称为物体得热导率。不同得物质,热导率值就是不同得热导率大得称为热得良导体,热导率小得称为热得不良导体。测定不良导体得热导率得方法就是当样品两端达到稳态温度差时,样品得传热速率与散热盘从侧面与底面向周围散热得速率相等为依据。由此测出散热盘在稳定温度时得散热速率,以此求出不良导体得热导率,测量物质热导率得方法有稳态法与动态法两种,它们以傅里叶热传导定律作为基础。 目录 1.实验目得……………………………………………………………… 2.实验仪器……………………………………………………………… 3.实验原理……………………………………………………………… 4.实验内容与步骤……………………………………………………… 5.注意事项……………………………………………………………… 6.数据及处理………………………………………………………… 7.问题讨论……………………………………………………………… 8.知识拓展……………………………………………………………… 引言:导热系数就是表征物质热传导性质得物理量,就是各类科学研究与工程设计得重要基础参数.迄今为止,尚无法用纯理论得方法,导出物质(特别就是固体)导热系数得精确计算公式.研究材料得导热性质,在科学研究与工程应用中就是一个重要课题,凡联系到新型材料得开发,设备及装置得热设计等方面都离不开它,对于不同材料得不同性质(非金属不良导体;金属良导体)可采用不同得测试研究方法.因此材料得导热系数常需要由实验具体测定。测量导导热系数得方法一般分两类:一类就是稳态法,另一类就是动态法。 在稳态法中,先利用热源在待测样品内形成一稳定得温度分布;然后进行测量。在动态法中,待测样品中得温度分布就是随时间变化得,例如呈周期性得变化等。本实验采用稳态法测定不良导体得导热系数。 【实验目得】 (1)了解掌握热传导现象得物理过程。 (2)掌握用稳态法测量不良导体热导率得原理及方法. (3)学会测定橡胶盘得热导率. (4)体会物理思想与对知识得拓展. 【实验仪器】

导热系数的测定

导热系数的测定 一、实验目的 1.理解导热系数稳态测量方法的特点,掌握双向平板法的测量原理。 2.学会使用NK-III 100E型双试件热导率测定仪,测量并计算石英玻璃板的导热系数。 二、导热系数的测定原理 本实验所用的仪器为NK-III 100E型双试件热导率测定仪,装置原理如图1。按一维稳态的傅立叶公式,在均质试材内部λ=-Q/[A(dt/dn)],式中dt/dn为温度梯度;由于试件的内部温度梯度dt/dn无法直接测得,因此导热系数无法用测试装置简单测出。在NK-III 100E型双试件热导率测定装置中可以测得的是热 面温度T 1,冷面温度T 2 和经过试件的热流量Q,此外就是冷热面的间距即试件厚 度δ。将dt/dn=(T 2-T 1 )/δ代入傅立叶公式,得到λ =Qδ/[A(T 1 -T 2 )],便可 以计算出材料的导热系数。 图1:双试件导热系数测试装置原理示意图 A=计量面加热器 B=计量面面板 C=防护加热器 D=防护面 E=冷却单元 Es=冷却单元 F=温度平衡检测热偶 G=加热单元表面热偶H=冷却单元表面热偶 I=试件 P=加压机构 1 2 3 4 5 6 7 8为测温点

三、实验步骤 1、试件一式两块,尺寸与装置型号一致厚度不超过指标规定限度,两面尽可能加工到平整。不平衡度不超过试件厚度的1%,两块试件厚度相差不超过2%. 2.将测试装置一面的压紧装置取下,拿出冷却器,取出前次试件,置入按步(1)制备后的试件一块(放在热板边上四个卡子中间),注意放试件时,热板板面必须清洁,不能夹入周围保温材料或其它杂质,试件就位后轻轻在边上掀按,若无摇动,即可将冷却器盖上(注意冷板热偶勿夹入),装上压簧机构,调节压紧螺旋,使压紧弹簧指示器指示规定指标处。 3.将装置旋过180度,在另一面按步骤2装上另一试件。 4.接上冷却器进出水管,注意调节水量的夹子应在进水一侧,两面的出水管各自回到恒温水浴(不可并成一路回路),按需要将装置固定于水平和垂直位置(以试件位置为准)。 5.将装置接线面板上标明计量加热器,防护加热器,热偶等接线柱按图5的原则分别与电工仪表和稳压电源及电位差计等妥善连接,把所附热偶接点(公共参考点)浸入至少一公升容量的冰瓶内,注意:冰瓶内必须全部是冰屑和水的混合物,整个测验过程中需经常检查,如融化太多,必须加冰屑并排水。因实验条件有限,现在我们用自来水代替。 6.此时电位差计检查所有8个测温点,此时8点读数应基本一致,相互偏差不超过10微伏。 7.事先按试件大致的导热系数值,以温差为30℃-70℃,100E型计量面直径为0.05m。已知试件厚度,计算计量面加热器所需功率,接通电源,将计量面加热器的输入功率调节到上述计算值,防护加热器输入功率暂按主炉(计量面加热器)功率的2倍计算。 8.冷面温度用自来水冷却,预先调节到冷面温度。 9.立即记录开始加热时间、各表读数等,除第一小时外,以后每隔15分钟到20分钟记录一次。记录内容包括:8点测温读数(精确到0.1微伏),加热器各自的电流电压,室温及各种情况(如停电XX分钟,冰瓶加冰,加热器从XX 电流XX电压调到XX电流XX电压,故障等等)。 10.从第2次记录开始,可按不平衡温差情况调节主炉或环炉(只调一个加热器),按热板两面试件温差情况,调节一个冷却器的水流量(要求两面温差尽可能相等,差别不超过2%)。 11.步骤10以后第2次记录时,根据上述调节以后的情况变化,继续观察或再作调节,但调节不可频繁。 12.经过步骤10和11达到平衡(即不平衡温差在限度以下两试件温差差别在2%以后)后,若连续四次记录的试件温度改变率不超过±1%(功率不变),即认为达到稳定状态。

相关文档
相关文档 最新文档