文档库 最新最全的文档下载
当前位置:文档库 › 低压电力线载波通信

低压电力线载波通信

低压电力线载波通信
低压电力线载波通信

PL2102--功能特征

PL2000A/B 是专为电力线通讯网络设计的半双工异步调制解调器,是PL2000 的升级产品。它仅由单一的 +5V 电源供电,以及一个外部的接口电路与电力线耦合。PL2000A/B 除具备原有系统基本的通讯控制功能外,还内置了四种常用的功能电路:32 Bytes SRAM,电压监测,看门狗定时器及复位电路,它们通过标准的 I2C接口与外部的微处理器相联。PL2000B内建高灵敏度放大器及四象限模拟乘法器,进一步提高了集成度(无需外部模拟混频器)。

PL2000A/B 是特别针对中国电力网恶劣的信道环境所研制开发的低压电力线载波通信芯片,低信噪比数据传输性能比 PL2000 有了大幅度的提高,同时将数据传输速率提升一倍。由于采用了直接序列扩频、数字信号处理、直接数字频率合成等新技术,以及大规模数字 /模拟混合 0.5um CMOS 工艺制作,所以在抗干扰、抗衰落性能以及国内外同类产品性能价格比等方面有着更加出众的表现。

■0.35um CMOS 数摸混合集成电路

■直序扩频半双工异步调制解调器

■二相相移键控,120KHz载频,带宽15KHz,传输速率500 bps

■接收灵敏度:100μVRMS

■15位伪码长度,可编程同步捕获门限

■I2C串行通信接口

■32Bytes SRAM (电池维护)

■可编程实时钟(秒/分/时/日/月/星期/年) (电池维护),支持数字频率校正

■上电复位/电压监测电路及看门狗定时器

■单+5V供电,I/O 口带 2500V ESD 保护

■工业级温度标准: -40oC ~ +85oC

■SOP20 / SOP24 / SOP28 封装

典型应用图:

基于PL2101的单片机低压电力线载波通信接口扩展

发布:2011-09-05 | 作者: | 来源: menglongfei | 查看:328次 | 用户关注:

本文介绍了低压电力线通信接口芯片PL2101与MSP430F149的接口。早期的低压电力线载波通信芯片的接口电路相对复杂、抗干扰能力差,且多为国外产品,性价比低,因此,单片机系统较少采用低压电力线载波通信。随着通信技术的发展,新型低压电力线载波通信接口芯片解决了以上缺点,使得单片机系统采用低压电

力线载波通信变得简单易用。PL2101简介PL2101采用二相相移键控,载波频率120KHz,带宽15KHz,传输速率500bps。它由单一的+5V电源

本文介绍了低压电力线通信接口芯片PL2101与MSP430F149的接口。

早期的低压电力线载波通信芯片的接口电路相对复杂、抗干扰能力差,且多为国外产品,性价比低,因此,单片机系统较少采用低压电力线载波通信。随着通信技术的发展,新型低压电力线载波通信接口芯片解决了以上缺点,使得单片机系统采用低压电力线载波通信变得简单易用。

PL2101简介

PL2101 采用二相相移键控,载波频率120KHz,带宽15KHz,传输速率500bps。它由单一的+5V电源供电,与单片机的接口简单,外围模拟发射/接收电路也较简单,工作时无需外接模拟混频器。PL2101内置有5种实用的功能电路:时钟电路、32 Bytes SRAM、电压监测、看门狗定时器及复位电路。其中,时钟与SRAM 在主电源掉电后可由3V备用电池供电继续工作。

采用PL2101扩展单片机低压电力线载波通信接口

硬件电路设计

PL2101 的半双工收发控制端、HEAD(数据同步端)、RXD_TXD (半双工数据收发、数据输入/输出端)引脚用于与单片机、DSP处理器收发数据,实现低压电力线载波通信功能;PL2101内部的寄存器采用标准I2C接口(由SCL、SDA引脚组成进行操作;另外,PL2101的 WDI(看门狗计数器清零输入端)、 RESET(上电及看门狗计数器溢出复位输出端)和PFo(电源掉电指示端)用于单片机对PL2101的工作状态监测。

采用PL2101为 MSP430单片机扩展低压电力线载波通信接口的原理如图1所示。图中只画出了PL2101和MSP430F149的接口部分,PL2101的外围模拟发射/接收电路可参考芯片手册的典型电路。使用MSP430F149的P1口与PL2101的8个引脚连接。使用MSP430F149具有中断功能的 P1口的引脚P1.6连接HEAD,以实现在中断方式下发送/接收PL2101的数据;由于MSP430F149未集成I2C总线接口,因此, MSP430F149通过P1.2、P1.3引脚软件模拟I2C时序来访问PL2101的内部寄存器;另外,由于MSP430F149采用3.3V逻辑电平,PL2101采用5V COMS

逻辑电平,因此不能直接连接引脚,需要进行电平转换。

数据收发软件设计

MSP430F149只需对P1口操作就可以通过PL2101进行数据收发,实现与其它单片机的低压电力线载波通信。

单片机对PL2101的发送/接收数据工作时序如图2所示。当PL2101相对单片机处于发射态时,PL2101由 HEAD的上升沿对内部解调的数据进行锁存输出,外部

单片机可在HEAD的下降沿后读取PL2101从电力线接收到的数据。而当PL2101处于接收态时,PL2101在 HEAD的上升沿对RXD_TXD的数据进行锁存,可让外部单片机在 HEAD的下降沿后将数据置于RXD_TXD引脚,由PL2101发送到电力线上。

MSP430F149接收数据流程如图3所示。程序采用子程序形式,采用中断方式接收数据。MSP430F149发送数据流程与接收流程相似,可以看出,通过PL2101发送/接收数据的软件设计比较简单。

PL2101配置及监控软件设计

PL2101 的配置通过对其内部寄存器的操作来实现。PL2101上电复位后,除写保护寄存器外,其它寄存器均处于写保护状态。单片机系统对PL2101上电复位后,应先向PL2101的写保护寄存器写1xxx xxxx B以打开写保护,再按电网特性向捕获门限寄存器写入相关数据来配置PL2101。

外部单片机读写PL2101内部寄存器时,先产生起始位启动I2C总线,根据芯片要求,外部单片机须发出器件代码(1011000,高7位)和读写控制位(0,表示写,最低位),当数据正确时,PL2101将发出第1个确认位,外部单片机读出后再发出读写地址,然后外部单片机等待PL2101发送第2个确认位。

外部单片机读出PL2101发出的第2个确认位后,如果要向PL2101内部寄存器写一个字节时,则可直接发出数据,当PL2101接收完发出第3个确认位后,外部单片机则应发出停止位结束写操作。

MSP430F149写PL2101内部寄存器操作流程如图4所示。也采用子程序形式。I2C 总线时序请参考有关资料,本文不作讨论。

外部单片机读出PL2101发出的第2个确认位后,若要读PL2101内部寄存器的一个字节,必须再次发出一个总线起始位、发出一次器件代码和读写控制位 (1表示读),PL2101收到后将在发出第3个确认位后接着发送8位数据,由外部单片机接收。外部单片机接收完后,可发出一个不确认位和结束位结束读操作;如果外部单片机发出确认位,则PL2101将发送下一个地址的寄存器数据,直至外部单片机发出一个不确认位和结束位结束读操作。

PL2101监控部分的软件设计比较简单,只需定时清PL2101的WDI引脚和扫描PFo 引脚就可实现,对RST操作可使PL2101恢复正常工作状态。

结语

对于单片机系统的通信,除广泛应用的RS-232、485等方式外,采用基于新型接口芯片的低压电力线载波通信也是一个不错的选择。

参考文献

1魏小龙.MSP430系列单片机接口技术及系统设计实例.北京:北京航空航天大学

出版社,2002.

2 北京福星晓程电子科技股份有限公司.PL2101芯片手册.

国内外低压电力线载波通信应用现状分析

国内外低压电力线载波通信应用现状分析1.概述 电力线载波通信(PLC)是电力系统特有的、基本的通信方式。早在20世纪20年代,电力载波通信就开始应用到10KV配电网络线路通信中,并形成了相关的国际标准和国家标准。对于低压配电网来说,许多新兴的数字技术,例如扩频通信技术,数字信号处理技术和计算机控制技术等,大大提高和改善了低压配电网电力载波通信的可用性和可靠性,使得电力载波通信技术具有更加诱人的应用前景。为此,美国联邦通信委员会FCC规定了电力线频带宽度为100~450kHZ;欧洲电气标准委员会的EN50065-1规定电力载波频带为3~148.5kHZ。这些标准的建立为电力载波技术的发展做出了显著的贡献。利用低压电力线来传输用户用电数据,实现及时有效收集和统计,是目前国内外公认的一个最佳方案。低压电力线是最为广泛的一种通讯媒介网络,采用合适的技术充分用好这一现成的媒介,所产生的经济效益和生产效率是显而易见的。 在20世纪90年代,一些欧洲公司进行涉及电力线数据传输的试验,虽然最初实验效果好坏参半,通信技术的不断进步与互联网业务的蓬勃发展带动了电力线通信的显著增长。在美国,弗吉尼亚州马纳萨斯市首次开始大范围部署PLC的服务,提供抄表、上网等业务,速率达到了10Mbps,费用为30美元/每月,在该地区已覆盖3.5万城市居民用户。目前,摩托罗拉公司正在进行Powerline MU计划,该技术提高到一个新系统,摩托罗拉的系统只使用居民住宅方面的低压电力线传输,以减少天线效应。摩托罗拉公司邀请美国无线电中继联盟参加与这些测试,甚至摩托罗拉在其总部安装了系统,初步结果非常乐观的展示了抗干扰特性。该PLC技术仅用于最后电网分支向室内的一段进行数据传输,而信号通过无线电获取传到配电网节点,这就限制了从最后这一段到室内的信号对周围地区的干扰,实现了居民用户的电能数据采集。在埃及,综合项目工程办公室(EOIP)部署了广泛的PLC技术应用在亚历山德里亚、法耶德和坦塔。立足于本土开发的系统,该公司提供了为

电力通信网络的现状及未来发展方向探讨

电力通信网络的现状及未来发展方向探讨 发表时间:2019-05-06T15:53:40.293Z 来源:《防护工程》2019年第1期作者:周建波 [导读] 努力开创电力市场崭新经济增长点,提高竞争实力和可持续发展能力,实现电力系统经济利益最大化。 国网青岛供电公司 266001 摘要:本文通过对我国电力通信网络现状的介绍,针对电力系统特点,从未来业务发展的角度出发,给出今后电力通信业务扩展可行方案,阐述了电力通信网络今后发展方向。 关键词:电力通信;能源互联网;发展方向 0.前言 2018年,国网确立了“建设具有卓越竞争力的世界一流能源互联网企业”的企业战略目标。未来电网发展方式必然会发生巨大的变化,大电网安全控制、“源网荷储”友好交互、企业管理信息化对通信网络新的更为苛刻的要求,通信网络必然会与电网生产、企业经营、客户服务深度融合发展,各型智能化终端必然会在电网智能化建设中大量普及应用,大电网安全控制、“源网荷储”友好交互对通信网络的接入需求必然会有爆炸性的增长。电网对通信网络架构、带宽、时延、可靠性、灵活性、泛在性等指标有着新的更为苛刻的要求。本文主要针对电力通信系统未来的发展做出较为详实的阐述与探讨。 1.电力通信网简介 1.1 概述 电力系统通信网是一种专业的通信网,是由发电厂及变电所等各级电力部门相互连接的传输系统和设在这些部门的交换系统或终端设备构成,是电网重要组成部分,由电网的结构、运行管理模式、经济性等因素决定。 1.2 主要发展历程 通信技术经历了从纵横交换到程控交换、从明线和同轴电缆到光纤传输、从模拟网到数字通信网、从定点通信到移动通信、从主要面向硬件到面向软件技术的几大阶段变化。我国电力专用通信网也是基于此进程,随着电网的建设、发展以及电网自动化水平的不断提高形成并逐步成长起来的。在60、70年代,电力通信是以音频、载波、模拟微波等通信方式为主。80年代之后,随着大规模集成电路的发展,出现了数字微波、光纤通信、程控交换机等,这也是目前电网通信系统的主要组成单元。到了90年代,我国电力通信装备水平与日新月异的通信技术发展相比已显滞后。随着信息交流的日益强烈,跨行业技术交叉与渗透越发明显,电力通信作为电力系统的重要基础设施、系统的神经中枢、行业的高科技先驱,更应该跟上飞速发展的时代步伐,率先引领电力科技领域新潮流。 2.主要扩展业务形式 随着网络通信技术在电力行业内的广泛应用,对我国电力基建、生产和营销时刻产生着深层的影响。以下简要介绍一些可以基于我国电力通信网的扩展业务类型。 2.1 电网安全监视和稳定控制方面 (1)电力系统崩溃的根本原因是网络结构的薄弱性和不合理性,利用测量控制装置的投入(如:及时定位线路故障点的线路故障测距装置;实时监视通信全网路健康状况的通信全线路自动监视系统等),通过网络传递实时信息,实现在线监控。利于迅速排除输电线路事故,快速恢复故障电网,防止大面积停电。 (2)在电力系统中实施相量控制是电力系统稳定控制最直接的方法,通过采用全球卫星定位系统GPS实现的同步相量测量技术和光纤通信技术使任一变电站均可通过精确时间脉冲给当地测量的电压波形以时间标记。通信系统将测量收集汇总处理后,根据各变电站之间动态相量变化实施控制。GPS相量测量装置与常规RTU相配合,使调度中心的EMS系统功能从稳态向动态转变,将使大电力系统的全局稳定和恢复控制成为可能。 2.2 气象与新能源方面 (1)降水量监测装置:在水电站上游某位置(如:野外无人职守监测台站)进行常年降雨量的采集,给每一个采集点分配相应的网络地址号或频点,通过网络传递信息,进行数据统一分析处理。再如,水电站水位网络报警装置:当汛期或其它原因使水库水位异常时可通过网络自动向下游传递实时信息,并提示对策便于宏观调控。 (2)雷电观测系统:由于雷击是造成线路事故的主要原因,随着电力工业的发展,电网建设密度的加大,雷击故障点的精确定位、轨迹跟踪及处理难度也随之提高,就要求我们制定出一整套较为完善的方案,以加强对雷电的实时监测。 (3)新型能源发电技术 太阳能、风能、潮汐等新能源发电技术实施是今后国家电力进程的一个目标,对新能源的预报及充分利用也是今后电力通信网络的任务之一。 2.3 环境保护方面 随着环境保护力度的加大,要求对火电厂、核电站的排放(包括烟气、放射线等)实时监测。监测系统将采集的数据就地分析处理,并提示采取相应措施;同时通过网络传输,由中央级单元统一备案集中调控。 GPS系统、地理信息系统(GIS)、遥感技术(RS)等的出现及应用,为电力通信网络业务扩展实施提供了可能。特别是允许用户利用基于Windows环境下的具有可视化界面的VB、VC等软件自主二次开发GPS用户接收机单元,通过接收机自身的串行通信口传输数据,实现对雷电、降雨、水位、烟气、放射线、电磁等的时间、地址、数量、强度、浓度等各种信息、数据的实时监测。对上述几项业务的开展提供了技术上的支持。 2.4电网商业化运营方面 随着电力改革的不断深化,依托于全国联网工程和开放性电力市场的电网商业化运营方针已经逐步形成,具有集成、拓展、安全性的基于国际互联网的企业电子商务系统是今后发展的必然。电子商务系统以其快捷安全的性能使电力市场的开放交易成为可能,电量的即时交易、用户的个性定制,既极大的改善了交易与服务,又降低了成本。互动式电子商务平台的建立,其所提供的服务不仅停留在销售层面

电力线载波通信系统解读

摘要 电力线载波通信是以输电线路为载波信号的传输媒介的电力系统通信。由于输电线路具备十分牢固的支撑结构,并架设3条以上的导体(一般有三相良导体及一或两根架空地线),所以输电线输送工频电流的同时,用之传送载波信号,既经济又十分可靠。这种综合利用早已成为世界上所有电力部门优先采用的特有通信手段。这次的课程设计通过电力线在波芯片设计一个电力线载波通信系统。 电力线载波通信具有广阔的应用前景但由于电力线的噪声和干扰对信道的污染很大,严重影响了低压电线载波通信的质量。本文就电力线载波通信的优点缺点及发展现状进行了讨论,并分析了电力信道的噪声分类,特性及对我们信号的影响。以及我们对噪声的滤波耦合等。并且详细的介绍了电力线载波通信的具体实现形式方法和步骤最终形成一个系统达到我们的要求。 课程设计选用青岛东软的SSC1641的电力线载波芯片该芯片具有调制解条,a/d,d/a通信的功能,该芯片直接对信号数字信号处理,极大地提高了通信的可靠性。文中包括了他的外围电路,信号放大,耦合,滤波等最终实现功能。 实现了接收电力线的含有噪声的信号,然后对这个信号滤波模数转换等处理后通过串行通信的方式发送到过单片机,单片机经过数据处理后通过LCD1602显示出来,并且也通过串行通信发送到PC机显示出来。PC机或开关电路输入信号经过SSC1641处理后通过电力线发送。这样一个系统阶完成了接收与发送信号,形成了一个通信系统。 关键字:电力线载波通信系统SSC1641 调制解调 1、绪论 1.1设计任务及要求 电力线载波通信系统设计基本要求:下图一个电力线载波通信模块的结构组成,请看懂,并查阅资料了解电力线载波通信的原理和电力线载波芯片的技术资料。根据系统结构,完成载波芯片外的其他器件选型、配套硬件电路设计(包括原理图、PCB图)、软件设计和仿真调试。系统至少具备以下特性: 1)开关量输入和输出各5路; 2)系统24V供电; 3)具有通信状态指示功能; 4)有232、485或USB有线通信接口; 5)断电继续工作能力; 6)其他自己发挥的功能。

低压电力线载波通信技术及应用

低压电力线载波通信技术及应用 摘要:低压电力线在实际应用的过程中有很多优良的特性,并且在多个领域中 都有着广泛的应用。低压电力线载波通信技术经历了很长时间的发展过程,在技 术的应用上已经趋于成熟。本文先对低压电力线载波通信技术的系统设计进行了 分析,并介绍了它的工作原理和具体的应用,希望可以为相关领域提供一些参考 意见。 关键词:低压电力线;载波通信技术;应用 低压电力线载波通信技术可以应用于很多不同的领域,并且具有覆盖规模广、操作简单等优势。基于此,该技术逐渐发展成为我国现阶段完成高速数据传播的 主重要技术之一。但是由于受到各种因素的限制,该技术存在的潜能难以进行有 效的挖掘,所以该技术还有丰富的可开发利用空间。在此情况下,我国有关部门 不断提高了对该技术的重视程度并且对其加以改进和完善,从而保障我国的通信 技术向着更加优化的方向发展。 1.低压电力线载波通信系统设计概述 该技术发展的关键性因素在于其进行信号传输时的质量,而信号传输有着抗 阻和不断衰减的特点,并且会对信号的质量产生直接的影响。另外,利用低压电 力线载波通信技术进行传输时,信号的质量还会受到不同噪音的干扰,使得信号 质量被消弱,最终对通信效果产生不良影响。而且信号传输时的抗阻和不断衰减 这两种特性对信号传输的实际距离起着决定性的影响,对噪音的抗干扰能力在很 大程度上影响着信号在传输过程中的质量。因此,在应用该技术时必须要对多方 面的因素进行综合考虑,从而有效的促进信号传输距离不断扩大,信号质量得以 提高,最终实现良好的传输效果。 在对电力线进行设计时,必须要将其抗阻能力考虑在内。正常情况下,电力 线都具备良好的抗阻性,所以在对通信系统进行设计时一般只需要保证信号输出 和接收两端具有良好的的抗阻性即可,尽可能的对信号接收和传输时的能量消耗 进行有效的控制。在电力线上进行信号传输的过程中,高频传输信号会出现大幅 度的衰减,并且无法避免噪音干扰。为了确保信号在传输过程中的强度,电力线 需要具备良好的抗干扰能力。在此通信技术中,为了实现信号强化一般可以应用 扩频以及正交频复用这两种技术手段。应用扩频技术一般多应用于信噪微弱的环 境下,用于接收信噪比较为强烈的信号。此外,在选取宽带和载波频率的时候应 该注意以下内容:尽量按照噪音干扰程度最小和信号衰减速度最低的要求进行选取。在不同频域中,结合信号的实际衰减情况和噪音出现的密度来确定最适宜的 载波频率。按照信号干扰强度的实际情况,在频谱中如果信号衰减会比噪音干扰 对信号产生更大的影响,首先需要对不同频谱中出现的信号衰减情况进行考虑, 然后再结合噪音频谱的实际密度进行分析,一般会选取处于低频段的载波频谱。 反之如果噪音干扰所带来的影响更大,则应该先对噪音频谱的实际密度进行分, 这种情况下一般回选取高频率频段。 2.低压电力线载波通信技术原理分析 该技术一般包括三个部分,分别为低压电力线、终端设备以及系统管理中心。在通信系统中,低压电力线担任信号传输过程中的媒介。因为信号在进行传输期 间会受到很大程度的衰减,所以该技术进行信号传输的距离会被限制。为了处理 这个问题,系统管理中心有负责进行信号接收的设备,接收完成后再对信号进行 解调,然后再经过其他一系列的处理之后,应用串口的方法或GPRS技术将经过

低压电力线载波通信

PL2102--功能特征 PL2000A/B 是专为电力线通讯网络设计的半双工异步调制解调器,是PL2000 的升级产品。它仅由单一的 +5V 电源供电,以及一个外部的接口电路与电力线耦合。PL2000A/B 除具备原有系统基本的通讯控制功能外,还内置了四种常用的功能电路:32 Bytes SRAM,电压监测,看门狗定时器及复位电路,它们通过标准的 I2C接口与外部的微处理器相联。PL2000B内建高灵敏度放大器及四象限模拟乘法器,进一步提高了集成度(无需外部模拟混频器)。 PL2000A/B 是特别针对中国电力网恶劣的信道环境所研制开发的低压电力线载波通信芯片,低信噪比数据传输性能比 PL2000 有了大幅度的提高,同时将数据传输速率提升一倍。由于采用了直接序列扩频、数字信号处理、直接数字频率合成等新技术,以及大规模数字 /模拟混合 0.5um CMOS 工艺制作,所以在抗干扰、抗衰落性能以及国内外同类产品性能价格比等方面有着更加出众的表现。

■0.35um CMOS 数摸混合集成电路 ■直序扩频半双工异步调制解调器 ■二相相移键控,120KHz载频,带宽15KHz,传输速率500 bps ■接收灵敏度:100μVRMS ■15位伪码长度,可编程同步捕获门限 ■I2C串行通信接口 ■32Bytes SRAM (电池维护) ■可编程实时钟(秒/分/时/日/月/星期/年) (电池维护),支持数字频率校正 ■上电复位/电压监测电路及看门狗定时器 ■单+5V供电,I/O 口带 2500V ESD 保护 ■工业级温度标准: -40oC ~ +85oC ■SOP20 / SOP24 / SOP28 封装 典型应用图: 基于PL2101的单片机低压电力线载波通信接口扩展 发布:2011-09-05 | 作者: | 来源: menglongfei | 查看:328次 | 用户关注: 本文介绍了低压电力线通信接口芯片PL2101与MSP430F149的接口。早期的低压电力线载波通信芯片的接口电路相对复杂、抗干扰能力差,且多为国外产品,性价比低,因此,单片机系统较少采用低压电力线载波通信。随着通信技术的发展,新型低压电力线载波通信接口芯片解决了以上缺点,使得单片机系统采用低压电

通信领域中电力线载波通信的应用及其原理

通信领域中电力线载波通信的应用及其原理 Power Line Carrier 电力线载波Power Line Carrier - PLC通信是利用高压电力线在电力载波领域通常指35kV及以上电压等级中压电力线指10kV电压等级或低压配电线380/220V用户线作为信息传输媒介进行语音或数据传输的一种特殊通信方式。 近年来高压电力线载波技术突破了仅限于单片机应用的限制,已经进入了数字化时代,并且随着电力线载波技术的不断发展和社会的需要中/低压电力载波通信的技术开发及应用亦出现了方兴未艾的局面。电力线载波通信这座被国外传媒喻为未被挖掘的金山正逐渐成为一门电力通信领域乃至关系到千家万户的热门专业。在这种形势下,本文旨在通过对电力线载波通信技术的发展及所涉及的一些技术问题的讨论,阐明电力线载波通信的发展历程特点及技术关键。 电力通信网是为了保证电力系统的安全稳定运行而应运而生的,它同电力系统的安全稳定控制系统,调度自动化系统,被人们合称为电力系统安全稳定运行的三大支柱。目前,它更是电网调度自动化网络运营市场化和管理现代化的基础,是确保电网安全稳定经济运行的重要手段,是电力系统的重要基础设施。由于电力通信网对通信的可靠性保护控制信息传送的快速性和准确性具有及严格的要求,并且电力部门拥有发展通信的特殊资源优势,因此世界上大多数国家的电力公司都以自建为主的方式建立了电力系统专用通信网[1]。长期以来,电力线载波通信网一直是电力通信网的基础网络。目前,在长达670000km的35kV以上电压等级的输电线路上,多数已开通电力线载波通道[1]。形成了庞大的电力线载波通信网,该网络主要用于地市级或以下供电部门构成面向终端变电站及大用户的调度通信远动及综合自动化通道使用。 近年来,随着光纤通信的发展,电力线载波通信已从主导的电力通信方式改变为辅助通信方式,但是由于我国电力通信发展水平的不平衡,由于电力通信规程要求主要变电站必须具有两条

电力通信网络管理探讨

电力通信网络管理探讨 摘要: 随着我国信息技术的发展,我国各行业均呈现出新的发展趋势。电力通信网络技术也发挥了一定应用作用,电力通信网运行能提升网络运行的可靠性,确保通信资源的最优配置。本文将对电力通信网网络管理及规划做简要探讨,为电力生产提供保障支撑。 关键词: 电力通信;网络管理;对策研究 正文: 电力通信网的可靠性、安全性均会影响到电力通信网络的有效运行,通过电力通信网的运用可促进电力通信网通信质量的提升,电力企业要想提高通信网的安全性、实时性,应建立一套有效的管理方式。 一、电力通信网络 电力通信又称为电力线载波通信,是一种数据传输方式。电力通信业务按业务属性可分为生产业务、管理业务;按业务流类型可分为数据、语音、多媒体业务;按时延可划分为实时业务、非实时业务;按业务分布可分为均匀性、集中性业务、相邻性业务;按用户对象则可分为电网公司、变电站业务、营业所、供电局;按电力二次系统可划分I、II、III、IV等业务。 二、电力通信网络应用技术 在人们的日常生活与社会生产中,电能属于一种常用能源。就电力系统而言,其不仅有配电与发电等相关的设备,而且有通信与用电

保护系统,在系统中存在诸多设备,获得国内很多领域的普遍认可。近几年,伴随电力系统的不断扩大,机组容量也日益增加,使得电网的规模不断扩大,这在很大程度上会阻碍了电力系统安全运行,严重者会引起安全事故,所以为保证电力系统运行稳定性,需要相关人员深入分析电力系统的稳定标准。 (一)通信技术 与传统电路交换网不同,IP化优势更加显著,电力结构相对单一。宽带化:现阶段,HDTV等业务层出不穷,移动化:通信技术主要体现在接入层面,越来越多的用户开展了移动接入业务,使行业发展的重心从固定网向移动网转移,移动网的用户数、业务量和业务收入均呈现出增长势头。 (二)同步网络技术 同步网包括频率同步网与时间同步网,主要有三种方式,即:DCLS+E1方式、NTP方式、1PPS+STM-N方式。DCLS+E1方式拥有了较成熟的同步组网技术,利用SDH网络EI通道将信息传输到同步节点,如图一。而1PPS+STM-N这种方式依然处于开发阶段,将时间同步与频率同步的有机结合,避免时延产生。同步网络技术在实际应用中,网元客户端会向服务器发送NTP数据包,当数据包发送时,客户端时间标签为T1,该数据包中所含时间标签3个:当服务器接到数据包后,时间标签为T2,服务器数据包时间标签为T3。客户端接受数据包后,时间标签为T4,客户间的传输时延和时钟偏差式如下: (三)软交换技术

电力线载波通信---有线通信

电力线载波通信---有线通信

电力线载波通信---有线通信

抄表系统及其方法 本发明公开了一种抄表系统包括电力线宽带载 波通信单元、无线通信单元、时钟单元、控制单元以及存储单元;所述电力线宽带载波通信单元用于收发通过电力线载波方式传送的抄表信号;所述无线通信单元用于收发通过无线通信方式 传送的抄表信号;控制单元用于信道状况的侦测,根据侦测结果控制抄表系统在电力线宽带载波通信以及无线通信之间的信道自动切换,切换信道后进行自动组网,并将从电力线宽带载波通信单元以及无线通信单元接收到的抄表信号进 行格式转换生成电表数据。本抄表系统利用宽带载波通信可靠性高、数据传输率高、数据容量大、双向传输等特点,将无线通信方式以及电力线通信方式相互结合,使抄表布线等现场施工工作变得简便灵活。 电力线载波Power Line Carrier - PLC通信是利用高压电力线在电力载波领域通常指35kV及

以上电压等级中压电力线指10kV电压等级或低压配电线380/220V用户线作为信息传输媒介进行语音或数据传输的一种特殊通信方式 PLC = Power Line Carrier,电力线载波 电力线载波(PLC)是电力系统特有的通信方式,电力线载波通讯是指利用现有电力线,通过载波方式将模拟或数字信号进行高速传输的技术。最大特点是不需要重新架设网络,只要有电线,就能进行数据传递。 近年来电力线载波技术突破了仅限于单片机应用的限制,已经进入了数字化时代,并且随着电力线载波技术的不断发展和社会的需要中/低压电力载波通信的技术开发及应用亦出现了方兴未艾的局面。电力线载波通信这座被国外传媒喻为未被挖掘的金山正逐渐成为一门电力通信领域乃至关系到千家万户的热门专业。 但是电力线载波通讯因为有以下缺点,导致PLC主要应用--“电力上网”未能大规模应用: 1、配电变压器对电力载波信号有阻隔作用,所以电力载波信号只能在一个配电变压器区域范围内传送; 2、三相电力线间有很大信号损失(10 dB -30dB)。通讯距离很近时,不同相间可能会收到信号。一般电力载波信号只能在单相电力线上传输; 3、不同信号藕合方式对电力载波信号损失不同,藕合方式有线-地藕合和线-中线藕合。线-地藕合方式与线-中线藕合方式相比,电力载波信号少损失十几dB,但线-地藕合方式不是所有地区电力系统都适用; 4、电力线存在本身因有的脉冲干扰。目前使用的交流电有50HZ和 60HZ,则周期为20ms和16.7ms,在每一交流周期中,出现两次峰值,两次峰值会带来两次脉冲干扰,即电力线上有固定的100HZ或120HZ脉冲干扰,干扰时间约2ms,因定干扰必须加以处理。有一种利用波形过0点的短时间内进行数据传输的方法,但由于过0点时间短,实际应用与交流波形同步不好控制,现代通讯数据帧又比较长,所以难以应用; 5、电力线对载波信号造成高削减。当电力线上负荷很重时,线路阻抗可达1欧姆以下,造成对载波信号的高削减。实际应用中,当电力线空载时,点对点载波信号可传输到几公里。但当电力线上负荷很重时,只能传输几十米。

低压电力线载波通信报告1

低压电力线载波通信 1.引言: 电力线载波通信(PLC)是电力系统特有的、基本的通信方式。早在20世纪20年代,电力载波通信就开始应用到10 kV配电网络线路通信中,并形成了相关的国际标准和国家标准。对于低压配电网来说,利用电力线来传输用户用电数据,实现及时有效收集和统计,是国内外公认的最佳方案。但在早期的实际应用中,由于我国电网环境恶劣,电力线信道高衰减、强干扰和波动范围大等特点,导致数据采集的成功率和实时性不能完全满足实际通信的需求。近年来,随着许多新兴的数字技术,例如扩频通信、数字信号处理和网络中继拓扑等技术的大力发展,提高和改善低压配电网电力载波通信的可用性和可靠性成为可能,电力载波通信技术的应用前景变得更为广阔。 2.国内外现状: 2.1国外现状: 国外低压电力线载波通信开展较早,美国联邦通信委员会FCC规定了电力线频带宽度为100~450 kHz;欧洲电气标准委员会的EN 50065-1规定电力载波频带为3.0~148.5 kHz。这些标准的建立为电力载波技术的发展做出了显著的贡献。20世纪90年代,一些欧洲公司进行涉及电力线数据传输的试验,实验结果好坏参半,但随着通信技术的不断进步与互联网业务的蓬勃发展,电力线载波通信技术也得到了显著增长。在美国,弗吉尼亚州马纳萨斯市首次开始大范围部署PLC的服务,提供抄表、上网等业务,速率达到了10Mbit/s。 国外利用电力线传输信号已经有一百多年的历史。如早在1838年,埃德华戴维就提出了用遥控电表来监测伦敦利物浦无人地点的电压等级。直到20世纪20年代,国外一些著名的公司和研究机构才开始对低压电力载波通信技术进行研究。1930年西门子公司在德国波茨坦建立了用于低压配电网络和传输媒介的波纹载波系统(RCS系统)。该系统能够以最小的损耗通过低压配电网实现对终端设备的管理。1958至1959年间,美国德克萨斯元件公司的Jack Kilby和Fairchild半导体公司的Robert Noyce最早发明了电力线载波通信集成电路。1971年Intel公司的Ted Hoff发明了低功耗的电力线通信微处理器。Intellon公司在2000年2月7日召开的DEM200会议上展示了其高速达1Mbps的Power PacketTM 住宅网络技术

低压电力线载波通信传输线参数测试与分析

SPWMcontrolbasedoncompensationfunctionformatrixconverter WANGRutian,WANGJianze,JIYanchao,ZENGFanpeng (SchoolofElectricalEngineeringandAutomation,HarbinInstituteofTechnology,Harbin150001,China) Abstract:Non-controlledrectificationandSPWM(SinePulseWidthModulation)areappliedtothevirtualrectifierandvirtualinverterofmatrixconverterequivalentAC/DC/ACmodelrespectively.VirtualrectifiergeneratesfluctuantDCvoltagewhensymmetricorunsymmetricthree-phasevoltagesaresupplied.InordertoeliminatetheeffectofthefluctuantDCvoltageontheSPWMoutputvoltageandcurrentofvirtualinverter,thecompensationfunctionisdeducedformodulationwavebasedontheconceptofswitchingfunction.Theprincipleisthat,asinewave,whichfollowsthefluctuantDCvoltagewithreversedpolarity,isinjectedtothemodulationwavetoeliminatethelowharmonicsofoutputvoltage.Thismethodisalsoapplicabletounsymmetricinputvoltageconditionanditsrealizationisverysimple.SimulationswithMatlab/Simulinkshowthat,highqualityoutputvoltagesareobtainedunderbothsymmetricandunsymmetricthree-phaseinputvoltageconditions,whichverifiesthevalidityandeffectivenessoftheproposedcontrolmethod. Keywords:matrixconverter;indirectconversion;switchingfunction;compensationfunction 0引言 低压配电网电力线通信是一个日益看好的数字 通信网络,逐步在工业和民用系统中得到应用。但是,低压配电网电力线通信稳定性有待于进一步提高。电力线信道特性的分析是当前电力线载波通信研究的一个重要内容,也是作为提高稳定性研究的非常重要的组成部分。国内外一些专家学者在信道估计与选择、信道编码、滤波设计、功率分配等方面作了 较为深入的研究[1-12]。在进行信道估算时的一个主要问题在于低压配电网负载复杂,存在输入阻抗不匹配问题,信号衰减严重。所以,有必要对电力线通信传输线的阻抗特性参数进行理论分析、总结和实际测试。在文献[2]中对在40kHz ̄1.5MHz频率范围内的10kV中压电力线信道传输特性进行了测试,并根据测量结果,结合传输线的基本模型,对信道的传输特性作了深入分析。该文对于中压电力线通信的传输特性研究具有研究方法上的指导意义,同样,对于研究低压电力线的传输特性也有参考意义。现从传输线阻抗特性出发,分别对基于理想均匀传输线理论、集肤效应传输线理论条件下的电力线传输特 低压电力线载波通信传输线 参数测试与分析 黄文焕1,戚佳金2,黄南天3,李 琰2 (1.吉林化工学院化工与材料工程学院,吉林吉林132022; 2.哈尔滨工业大学电气工程及自动化学院,黑龙江哈尔滨150001; 3.吉林化工学院信息与控制工程学院,吉林吉林132022) 摘要:为给低压配电网电力线载波通信信道估算提供参考依据,有必要对电力线通信传输线的阻抗特性参数进行理论分析和实际测试研究。在简述配电网电力线载波通信传输线理论和传输线方程的基础上,总结了理想均匀传输线理论下和考虑集肤效应的电力线参数模型。使用HP4194阻抗相位增益分析仪对3+1芯交联聚乙烯绝缘聚氯乙烯护套钢带铠装电力电缆线进行实际测试,并根据测试结果使用Matlab计算出单位长度导线的电阻、电感以及两导线间的电容和电导,验证了电力线物理参数模型公式的准确性和其实际可使用性。同时,这些实测参数也为电力线通信信道特性分析和估算提供了一定的参考依据。 关键词:电力线通信;传输线方程;阻抗特性中图分类号:TN913.6;TM934 文献标识码:A 文章编号:1006-6047(2008)04-0041-04收稿日期:2007-07-16;修回日期:2007-09-13基金项目:黑龙江省自然科学基金资助(F200508) 电力自动化设备 ElectricPowerAutomationEquipment Vol.28No.4Apr.2008 第28卷第4期2008年4月 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 41

ATC 系统中采用电力线载波通信技术的研究.docx

ATc 系统中采用电力线载波通信技术 的研究 摘要介绍了正交频分复用(ofdm) 的基本原理, 并结合城市轨道交通a tc 系统的特点,提出了利用基于ofdm 的电力线载波通信技术在接触网上实现信息传输的思路。 关键词列车自动控制,电力线载波通信系统,正交频分复用 在城市轨道交通列车自动控制(a tc) 系统中, 通常利用轨道电路传输信息。 由于钢轨不是理想的信息传输通道,信息容量、传输速率受到了限制。本文提出了利用正 交频分复用(ofdm) 的电力线载波通信技术在接触网上实现信息传输的思路。1 ofdm 的 基本原理 ofdm 是一种多载波调制技术(mcm) ,可以在强干扰环境下高速传输 数据。传统的数字通信系统将符号序列调制在一个载波上进行串行传输, 每个符号的频谱 占用信道的全部可用带宽。ofdm 则并行传输数据,采用频率上等间隔的n 个子载波构成, 它们分别调制一路独立的数据信息,调制之后n 个子载波的信号相加同时发送。因此每个 符号的频谱只占用信道全部带宽的一部分。在ofdm 中,通过选择载波间隔,使这些子载波 在整个符号周期上保持频谱的正交特性,各子载波上的信号在频谱上互相重叠;接收端利用 载波之间的正交特性,可以无失真地将接收到的信号还原成发送信息,从而提高系统的频谱 利用率。图1 表示了ofdm 的基本原理[2 ] 。假设一个周期内传送的符号序 列为(d0 , d1 , ?, dn-1),每一个符号di 是经过基带调制后的复信号, di = ai+j bi , 串行符号序列的间隔为δt= 1/ fs,其中fs 是系统的符号传输速率。串并转换之后,它们 分别调制n 个子载波(f0 , f1 , ?fn-1),这n 个子载波频分复用整个信道带宽,相邻子载 波之间的频率间隔为1/ t , 符号周期t从δt增加到nδt。合成的传输信~号可以用 其低通复包络d (t) 表示。 图1 正交频分复用ofdm 的基本原理因此,ofdm 系统的调制和解调过 程等效于离散付氏逆变换(idf t) 和离散付氏变换(df t) 处理,实际上系统通常采用dsp 技术和fft 快速算法来实现。由于ofdm 系统的符号周期延长了n 倍,增强了其消除码间串扰的能力。在数字基带调制部分,可以根据子信道特性采用不同的调制方式(如bpsk,qpsk ,qam , tcm 等) 。如果某个频段信号衰减严重,发送端还可以关闭该频段 的子载波, 实现信道自适应均衡。通过采用信道编码技术, ofdm 还可以进行前向纠错(fcc) 。由于dsp 和大规模集成电路技术的推动, ofdm 调制技术已经得到广泛应用,在数字音频广播(dab) 和数字视频广播(dvb -t) 领域中被欧洲地面广播标准采纳。采用ofdm 技术在电力线上高速传输数据也有产品问世,如homeplug 组织成员中的 intellon 公司产品powerpacket , 传输速率可以达到14 mbit/s , 频带4. 3~20. 9 mhz ,84 个子载波,支持dqpsk ,dbpsk ,robo 调制。2 在a tc 系统中采用ofdm 技 术城市轨道交通对列车速度控制提出很高的要求,要达到安全性、可靠性、适 用性和经济性的目标,还要考虑到迅速、准确和价格合理等因素。这需要列车、沿线、车

电力通信网络管理与规划探讨

电力通信网络管理与规划探讨 发表时间:2017-11-15T19:07:49.193Z 来源:《电力设备》2017年第20期作者:张林 [导读] 摘要:电力通信网的可靠性、安全性均会影响到电力通信网络的有效运行,通过电力通信网的运用可促进电力通信网通信质量的提升,电力企业要想提高通信网的安全性、实时性,应建立一套有效的管理方式。 (身份证号:23212619880919xxxx 国网内蒙古东部电力有限公司经济技术研究院内蒙古呼和浩特 010020) 摘要:电力通信网的可靠性、安全性均会影响到电力通信网络的有效运行,通过电力通信网的运用可促进电力通信网通信质量的提升,电力企业要想提高通信网的安全性、实时性,应建立一套有效的管理方式。本文将对电力通信网网络管理及规划做简要探讨,为电力生产提供保障支撑。 关键词:电力通信;网络管理;对策研究 随着我国信息技术的发展,我国各行业均呈现出新的发展趋势。电力通信网络技术也发挥了一定应用作用,电力通信网运行能提升网络运行的可靠性,确保通信资源的最优配置。 1电力通信网络 电力通信又称为电力线载波通信,是一种数据传输方式。电力通信业务按业务属性可分为生产业务、管理业务;按业务流类型可分为数据、语音、多媒体业务;按时延可划分为实时业务、非实时业务;按业务分布可分为均匀性、集中性业务、相邻性业务;按用户对象则可分为电网公司、变电站业务、营业所、供电局;按电力二次系统可划分I、II、III、IV等业务。 2电力通信网络应用技术 在人们的日常生活与社会生产中,电能属于一种常用能源。就电力系统而言,其不仅有配电与发电等相关的设备,而且有通信与用电保护系统,在系统中存在诸多设备,获得国内很多领域的普遍认可。近几年,伴随电力系统的不断扩大,机组容量也日益增加,使得电网的规模不断扩大,这在很大程度上会阻碍了电力系统安全运行,严重者会引起安全事故,所以为保证电力系统运行稳定性,需要相关人员深入分析电力系统的稳定标准。 2.1通信技术 与传统电路交换网不同,IP化优势更加显著,电力结构相对单一。宽带化:现阶段,HDTV等业务层出不穷,移动化:通信技术主要体现在接入层面,越来越多的用户开展了移动接入业务,使行业发展的重心从固定网向移动网转移,移动网的用户数、业务量和业务收入均呈现出增长势头。 2.2同步网络技术 同步网包括频率同步网与时间同步网,主要有三种方式,即:DCLS+E1方式、NTP方式、1PPS+STM-N方式。DCLS+E1方式拥有了较成熟的同步组网技术,利用SDH网络EI通道将信息传输到同步节点。而1PPS+STM-N这种方式依然处于开发阶段,将时间同步与频率同步的有机结合,避免时延产生。 同步网络技术在实际应用中,网元客户端会向服务器发送NTP数据包,当数据包发送时,客户端时间标签为T1,该数据包中所含时间标签3个:当服务器接到数据包后,时间标签为T2,服务器数据包时间标签为T3。客户端接受数据包后,时间标签为T4。 2.3软交换技术 广义上的软交换泛指一种体系结构,利用这种体系结构,可以构建下一代网络,我们称之为软交换系统,也可称之为基于软交换的下一代网络。狭义的软交换特指基于软件提供呼叫控制功能的实体,为下一代网络提供实时性要求的业务呼叫控制和连接控制功能,是下一代网络呼叫与控制的核心。软交换技术作为一种新型技术,目前已得到了广泛应用,许多城市已经运用了NGN网络,我国许多企业应应用了该模式。 3电力通信网管理与规划特点 ①复杂化。通信网络整体变化十分复杂,因此网络管理系统一定要全面。电力通信网要发展就必须和其它相关技术联合起来,随着高新技术更新速度的加快,也就意味着电力通信网的管理和规划将更为复杂。②变化速度快。要保障电力通信网络持续发展,加大技术投入使很有必要的,因为通信网络中的容量、宽带范围以及环境要求都是不断变化的,且变化速度很快。③敏感性比较高。因为电力通信网承载的是电力调度自动化、继电保护等敏感性高的业务,为保障业务的高质量,就必须强化网络管理系统的实时性和实效性。 4电力通信网络运行的标准设计 4.1电力通信网络经济性 因为电力通信网络花费资金的数量比较庞大,所以在相关人员设计电力通信网络时,需要高度重视经济效益,可以通过节约成本的方式提高经济的效益,防止发生浪费情况。在相关人员设计电力通信网络规模时,需要制定相应的方案,确保电力通信网络设计满足经济性与安全性要求,不可以只重视安全性与稳定性,需要兼顾经济与安全。但是在实际的设计环节中,对于经济与安全间平衡点把握不好,这就需要相关人员引起重视。近几年,在输电工程的规划不断地改革背景下,容易估算出经济效益,但对网架工程而言,人们过于重视起安全性与稳定性,导致经济与安全之间不平衡,也就会加大建设成本。所以相关企业需要完善安全稳定的标准相关原则,有效调整安全稳定的标准,明确电力通信网络设计数据与内容,进而提高经济性与安全性。 4.2电力通信网络协调性 在电力通信网络之中,就其安全稳定而言,一共有3个等级,主要表现为以下几个方面:第一等级要求是保证电力通信网络可以顺利运作,确保电网能够正常的供电;第2个等级需要在保证电力通信网络安全运作基础上,允许负荷发生适当损失;第3个等级如果系统未正常运作,电力通信网络相关人员需要对系统崩溃情况发生进行预防,防止负荷损失数量过大。但是在过去设计过程中,对电网调度运作与规划设计均不采用统一系统来完成,反而分成两个相应系统,这会导致调度运作与规划设计两方面有协调不足,这在很大程度上容易因为相关调度运作与规划设计出现衔接问题,影响到电网运行安全性。尤其在某种特定因素下,上述情况比较突出,所以在相关人员规划电力通信网络过程中,需要充分考虑电网的调度运作,确保调度运作产生数据可以为电力通信网络运行提供参考,给各个等级电网带来好处,保证电力通信网络运作安全性与稳定性。 为了能够较好地保障通信系统可以在电力系统中发挥其积极作用,除了做好上述两个方面的工作之外,还需要从管理方面提供具体的

基于低压电力线的通信技术与实现

基于低压电力线的通信技术与实现 刘 侃 肖 鑫 刘 扬 (武汉纺织大学 湖北 武汉 430200) 程PL3201芯片采用的就是CDMA技术,其在单相多功能数字电能 0 引言 表芯片产品中有优异表现。 低压电力线载波通信(Power Line Communication)是 3)正交频分复用技术OFDM是将信道分成若干正交子信利用现有的低压电线网络作为载体,进行信息传输。近年来, 道,将高速数据信号转换成并行的低速子数据流,调制到每个随着电力系统的发展,利用现有的电力线网络系统能提供低成 子信道上进行传输。OFDM有很强的抗波间干扰和码间干扰的能本高效益的网络服务。然而我国电力线组网复杂,干扰强、负 力。同时也有易受载波频偏的影响,峰值平均功率比过大,带荷情况复杂、信号衰减大等因素,严重的影响通信的质量。因 宽利用率不高的缺点。采用OFDM技术的是深圳力合微电子此,对于低压电力线载波有必要进一步具体分析。 LME2980芯片。LME2980的瞬时速率可达36kbps,工频过零传输 1 国内外发展历程及现状 平均速率超过10kbps。 国外对电力线载波的研究已有一百多年。目前已有多个国 4)多载波码分复用技术MC-CDMA。MC-CDMA是OFDM和际研究机构对高速电力线载波技术进行研究和开发,并取得了 CDMA相结合的技术,信息先通过一个扩频码扩频,然后将扩频优秀的成果,产品的传输速率也从初期的1Mbps提高到 后的数据分别调制到子载波上进行传输,最后在接收端进行解24Mbps,48Mbps,甚至85Mbps。与国外相比,国内对电力载波 调和解扩,还原出原始信号。MC-CDMA具有二者的特点,能有通信的研究起步较晚,但发展迅速。国内研究正由早期利用国 效地避免时延扩展所带来的影响,具有抗多径、码间和波间干外的电力载波调制技术和芯片进行研发,向适合我国电网复杂 扰能力强、容量大、有效地克服子载波受深衰落的影响和极高的信道特性的调制技术和载波芯片研制转变,并已经取得了一 的频带利用率,非常适宜于PLC高速数据传输。 些重大的进步。 2.3 电力载波通信芯片和模块的研制 2 低压电力载波通信技术研究 目前国内可以使用的芯片主要是国外进口的通用电力载波 2.1 低压电力网络的特点 芯片(如美国埃施朗echelon公司的PL3170系列芯片)和国内低压电力载波通信技术有着许多优势,只要有电的地区都 自主研发的电力载波芯片(如长沙新竹数公司的XZ386芯片、有电力线的存在,所以作为数据传输的载体,与其他的通信方 深圳力合微电子公司的LME2980芯片等)。下表为国内市场上式相比有以下几个优势: 各种芯片模块进行分类介绍。 1)价格优势。电力线载波通信的载体是电力线,无需再 表1 国内市场上电力载波芯片及模块介绍 铺设宽带和光缆线路,它不需要高昂的发送和接收设备。 2)使用优势。当设备的输入端和输出端接入电源后,即 接入了电力线。 3)电力网络覆盖度高,应用前景广阔。电力线网络普及 程度远胜其他通信网络,为实现物联网奠定了坚实的基础。 目前国内的电力网络信道特别复杂,通信环境也十分恶 劣。在实际使用中,电网上负载数量多、种类复杂、随机性等 因素的影响,对输入阻抗、噪声干扰、信号衰减等方面都有较 大影响[2]。 2.2 关键技术分析 为了克服低压电力线存在的各种噪声和干扰、降低信号的衰减,研究表明可以用调制技术来提高系统的抗干扰和抗噪能力[3]。下面对目前流行的调制技术做简单分析: 1)二相频移键控技术BFSK。二进制频移键控调制方式的特点是转换速度快、抗干扰能力强、稳定度高且易于实现,但其传送效率比较低。目前青岛东软PLCi36G-III-E芯片和鼎信TCC081C芯片正是采用的BFSK技术。其通讯速率最高达9600bps,具备通信中继能力,可自动实现载波节点侦听、主动上报等功能。 2)码分多址技术CDMA,CDMA为每个用户分配特定地址码,地址码之间具有准正交性,使用伪随机码进行调制,使原带宽扩展,接收端进行相反的过程进行解扩得到最终的信号。CDMA具有抗干扰能力强、保密性能好、易于实现码分多址、具有抗衰落、抗多径干扰能力。CDMA也有缺点,如果不同用户的扩频码不是完美正交的,则CDMA系统性能将降低。北京福星晓 3 低压电力载波技术的应用 低压电力线载波通信具有无需重新布线、不占用无线频道资源、造价低、维护简单等优点,在我国的应用也越来越广泛。目前典型的应用包括以下3方面。 3.1 智能家居 科技以人为本,随着科技的发展,人们对家庭生活的安全、舒适、便捷等方面的要求越来越高。你是否会为家里数量繁多的遥控器而烦恼?经常找不到遥控器,也不容易分辨具体是控制哪个电器。智能家居就是人们所期待的,可以通过电力线传输把所有的电器设备统一控制,只要有插座的地方就可以接入网络。电力载波智能家居系统成本低廉,系统稳定,信息安全度高,因而是智能家居组网的首选方式。 电力载波系统主要由外部网络、内部网络、智能网关、连接方式等子系统组成,它们都不是独立的,而是和其他子系统相互关联、融合为一个整体,并相互响应做到真正义上的智能 中图分类号:TP393 文献标识码:A 文章编号:1671-7597(2012)1110025-01

相关文档