文档库 最新最全的文档下载
当前位置:文档库 › 群智能优化算法研究及其应用

群智能优化算法研究及其应用

群智能优化算法研究及其应用
群智能优化算法研究及其应用

广西民族大学

硕士学位论文

群智能优化算法研究及其应用

姓名:陈建荣

申请学位级别:硕士

专业:计算机应用技术

指导教师:王勇

20090301

群智能优化算法综述

现代智能优化算法课程群智能优化算法综述 学生姓名: 学号: 班级: 2014年6月22日

摘要 工程技术与科学研究中的最优化求解问题十分普遍,在求解过程中,人们创造与发现了许多优秀实用的算法。群智能算法是一种新兴的演化计算技术,已成为越来越多研究者的关注焦点,智能优化算法具有很多优点,如操作简单、收敛速度快、全局收敛性好等。群智能优化是智能优化的一个重要分支,它与人工生命,特别是进化策略以及遗传算法有着极为特殊的联系。群智能优化通过模拟社会性昆虫的各种群体行为,利用群体中个体之间的信息交互和合作实现寻优。本文综述群智能优化算法的原理、主要群智能算法介绍、应用研究及其发展前景。 关键词:群智能;最优化;算法

目录 摘要 (1) 1 概述 (3) 2 定义及原理 (3) 2.1 定义 (3) 2.2 群集智能算法原理 (4) 3 主要群智能算法 (4) 3.1 蚁群算法 (4) 3.2 粒子群算法 (5) 3.3 其他算法 (6) 4 应用研究 (7) 5 发展前景 (7) 6 总结 (8) 参考文献 (9)

1 概述 优化是人们长久以来不断研究与探讨的一个充满活力与挑战的领域。很多实际优化问题往往存 在着难解性,传统的优化方法如牛顿法、共扼梯度法、模式搜索法、单纯形法等己难以满足人们需求。 因此设计高效的优化算法成为众多科研工作者的研究目标。随着人类对生物启发式计算的研究, 一些社会性动物( 如蚁群、蜂群、鸟群) 的自组织行为引起了科学家的广泛关注。这些社会性动物在漫长的进化过程中形成了一个共同的特点: 个体的行为都很简单, 但当它们一起协同工作时, 却能够“突现”出非常复杂的行为特征。基于此,人们设计了许多优化算法,例如蚁群算法、粒子群优化算法、混合蛙跳算法、人工鱼群算法,并在诸多领域得到了成功应用。目前, 群智能理论研究领域主要有两种算法: 蚁群算法(Ant Colony Optimization, ACO) 和粒子群优化算法(ParticleSwarm Optimization, PSO)。 2 定义及原理 2.1 定义 群集智能优化算法源于对自然界的生物进化过程或觅食行为的模拟。它将搜索和优化过程模拟成个体的进化或觅食过程,用搜索空间中的点模拟自然界中的个体;将求解问题的目标函数度量成个体对环境的适应能力;将个体的优胜劣汰过程或觅食过程类比为搜索和优化过程中用好的可行解取代较差可行解的迭代过程。从而,形成了一种以“生成+检验”特征的迭代搜索算法,是一种求解极值问题的自适应人工智能技术。各类优化算法实质上都是建立问题的目标函数,求目标函数的最优解,因而实际工程优化问题均可转化为函数优化问题。其表达形式如下: 求: ,,2,1,0)(..), (min , ,,2,1,),,,(21Lm j X g t s X f n L i x L x x X i T n i =≤== 。Ω∈X 其中, i X 为设计变量;)(X f 为被优化的目标函数;0)(≤X g j 为约束函数;Ω为设计变量的 可行域。

群智能算法教学讲义

第六章群智能算法 智能优化计算 6.1 群智能 6.1.1 群智能的概念 6.1.2 群智能算法 6.2 蚁群优化算法原理 6.2.1 蚁群算法的起源 6.2.2 蚁群算法的原理分析 6.3 基本蚁群优化算法 6.3.1 蚂蚁系统的模型与实现 6.3.2 蚂蚁系统的参数设置和基本属性 6.4 改进的蚁群优化算法 6.4.1 蚂蚁系统的优点与不足 6.4.2 最优解保留策略蚂蚁系统 6.4.3 蚁群系统 6.4.4 最大-最小蚂蚁系统 6.4.5 基于排序的蚂蚁系统 6.4.6 各种蚁群优化算法的比较 智能优化计算 6.5 蚁群优化算法的应用 6.5.1 典型应用 6.5.2 医学诊断的数据挖掘 6.6 粒子群算法的基本原理 6.6.1 粒子群算法的提出 6.6.2 粒子群算法的原理描述 6.7 基本粒子群优化算法 6.7.1 基本粒子群算法描述 6.7.2 参数分析 6.7.3 与遗传算法的比较 6.8 改进粒子群优化算法 6.8.1 离散二进制PSO 6.8.2 惯性权重模型 6.8.3 收敛因子模型 6.8.4 研究现状 智能优化计算 6.9 粒子群优化算法的应用 6.9.1 求解TSP问题 6.9.2 其它应用 6.10 群智能算法的特点与不足 智能优化计算 6.1 群智能 智能优化计算 群智能(Swarm Intelligence, SI ) 人们把群居昆虫的集体行为称作“群智能”(“群体智能”、“群集智能”、“集群智能”

等) 特点 个体的行为很简单,但当它们一起协同工作时,却能够突现出非常复杂(智能)的行为特征。 6.1.1 群智能的概念 6.1 群智能 智能优化计算 描述 群智能作为一种新兴的演化计算技术已成为研究焦点,它与人工生命,特别是进化策略以及遗传算法有着极为特殊的关系。 特性 指无智能的主体通过合作表现出智能行为的特性,在没有集中控制且不提供全局模型的前提下,为寻找复杂的分布式问题求解方案提供了基础。 6.1.2 群智能算法 6.1 群智能 智能优化计算 优点 灵活性:群体可以适应随时变化的环境; 稳健性:即使个体失败,整个群体仍能完成任务; 自我组织:活动既不受中央控制,也不受局部监管。 典型算法 蚁群算法(蚂蚁觅食) 粒子群算法(鸟群捕食) 6.1.2 群智能算法 6.2 蚁群优化算法原理 智能优化计算 蚁群的自组织行为 “双桥实验” 通过遗留在来往路径 上的信息素 (Pheromone)的挥 发性化学物质来进行 通信和协调。 6.2.1 蚁群算法的起源 6.2 蚁群优化算法原理 智能优化计算 蚁群的自组织行为 “双桥实验” 6.2.1 蚁群算法的起源 6.2 蚁群优化算法原理 智能优化计算 提出蚁群系统 1992年,意大利学者M. Dorigo在其博士论文中提出 蚂蚁系统(Ant System)。

群体协同智能优化算法改进及其应用研究

群体协同智能优化算法改进及其应用研究优化问题广泛地存在于实际工程问题和科学研究中。优化问题具有解空间规模大、维数高的特点,一些传统优化算法在求解大规模优化问题时,存在计算复杂度高、时间长等问题。群体智能算法因其参数少、模型简单、易于实现等优点,已成为求解优化问题新的研究方向。随着人工智能的高速发展,电子商务、移动互联网金融无时无刻不断产生数据。 数据挖掘技术越来越受到众多领域的广泛关注。聚类技术是数据挖掘领域的一个重要分支,在无监督条件下,用于挖掘数据潜在结构,已成为人工智能领域研究热点。密度峰值快速搜索聚类算法是聚类算法中极具竞争力的一种新型聚类算法,已得到各领域广泛认可,但其仍存在手动设置参数的缺陷。本文将布谷鸟搜索算法作为主要研究对象,对其进行研究与改进,并对密度峰值快速搜索聚类算法存在缺陷进行改进。 本文主要内容和创新点如下:(1)针对布谷鸟搜索算法在处理复杂函数时,算法收敛速度慢;在处理多维数据时,算法寻优精度低,算法稳定性较差的问题,提出动态自适应步长的双重策略的布谷鸟搜索算法。算法引入动态自适应步长机制和双重评价策略,动态步长中学习因子加速算法在解空间中搜索速度,在算法迭代前期,双重评价策略中的逐列排序策略在全局搜索中快速定位,并引入动态发现概率增加全局搜索能力。(2)针对密度峰值快速搜索聚类算法存在手动设置截断距离d_c,欧式距离无法准确反映数据间的相似性等缺陷,提出布谷鸟优化的密度峰值快速搜索聚类算法。算法通过布谷鸟搜索算法优化截断距离,并引入余弦相似度,将方向与实际距离相结合,更好区分两类中间区域数据点的归属度。 仿真实验结果表明,改进密度峰值快速搜索聚类算法具有较好聚类性能。(3)基于布谷鸟优化的密度峰值快速搜索聚类算法,对银行个人信贷数据进行聚类。仿真实验结果表明,本文提出的方法能够较为有效地分析和预测银行个人信贷违约情况,帮助银行信贷部门合理地做出决策。

混合群智能优化算法研究及应用

混合群智能优化算法研究及应用 优化问题广泛地存在于科学研究和工程实践中。群智能优化算法是优化算法中最新的一个分支,也是最热门的发展方向。群智能优化算法是通过模拟自然界中生物间相互合作、共享信息等群体行为而建立起来的随机搜索算法,相较于经典优化算法具有结构简单、易于实现等优点。不同的群智能优化算法是模拟不同生物行为形成的,所以它们各具特点和适用场景。然而,单一的群智能优化算法均有其局限性,如搜索精度不够高、收敛速度慢、性能受参数影响较大和容易陷入局部最优等。将不同群智能优化算法有机结合,设计混合群智能优化算法是一种提高算法性能的有效方法,具有重要的研究意义。本文的主要研究内容及创新点包括以下几个方面:(1)针对单目标数值优 化问题提出了一种基于跟随蜂搜索的自适应粒子群算法(Follower Bee Search Based Adapitve Particle Swarm Optimization,F-APSO)。首先在经典粒子群算法粒子飞行轨迹分析的基础上提出了一种自适 应的粒子群算法(Adapitve Particle Swarm Optimization,APSO), 提高了算法在求解单峰问题时的性能。然后提出了一种针对自适应粒子群算法的稳定性分析方法,基于该方法对APSO进行了稳定性分析,给出了能够保证算法稳定的参数取值条件。接着通过引入人工蜂群算法中的跟随蜂搜索,提高了算法的开拓性,并将APSO的稳定性条件拓展到了 F-APSO中。仿真实验表明F-APSO在求解单目标数值优化问题时在解的质量和时间消耗上都具有良好表现。将F-APSO用于解决矿山生产排程优化问题,与原有生产方案相比优化后的方案在不同铁

智能优化算法综述

智能优化算法的统一框架 指导老师:叶晓东教授 姓名:李进阳 学号:2 班级:电磁场与微波技术5班 2011年6月20日

目录 1 概述 (3) 2群体智能优化算法.................................. 错误!未定义书签。 人工鱼群算法 (4) 蚁群算法 (5) 混合蛙跳算法 (9) 3神经网络算法 (10) 神经网络知识点概述 (10) 神经网络在计算机中的应用 (11) 4模拟退火算法 (15) 5遗传算法.......................................... 错误!未定义书签。 遗传算法知识简介 (17) 遗传算法现状 (18) 遗传算法定义 (19) 遗传算法特点和应用 (20) 遗传算法的一般算法 (21) 遗传算法的基本框架 (26) 6总结 (28) 7感谢 (29)

1概述 近年来,随着人工智能应用领域的不断拓广,传统的基于符号处理机制的人工智能方法在知识表示、处理模式信息及解决组合爆炸等方面所碰到的问题已变得越来越突出,这些困难甚至使某些学者对强人工智能提出了强烈批判,对人工智能的可能性提出了质疑。众所周知,在人工智能领域中,有不少问题需要在复杂而庞大的搜索空间中寻找最优解或准优解。像货朗担问题和规划问题等组合优化问题就是典型的例子。在求解此类问题时,若不能利用问题的固有知识来缩小搜索空间则会产生搜索的组合爆炸。因此,研究能在搜索过程中自动获得和积累有关搜索空间的知识,并能自适应地控制搜索过程,从而得到最优解或准有解的通用搜索算法一直是令人瞩目的课题。智能优化算法就是在这种背景下产生并经实践证明特别有效的算法。 2群体智能优化算法 自然界中群体生活的昆虫、动物,大都表现出惊人的完成复杂行为的能力。人们从中得到启发,参考群体生活的昆虫、动物的社会行为,提出了模拟生物系统中群体生活习性的群体智能优化算法。在群体智能优化算法中每一个个体都是具有经验和智慧的智能体 (Agent) ,个体之间存在互相作用机制,通过相互作用形成强大的群体智慧来解决复杂的问题。自 20世纪 90年代模拟蚂蚁行为的蚁群算法(ACO)提出以来,又产生了模拟鸟类行为的微粒群算法 ( PSO)、模拟鱼类生存习性的人工鱼群算法、模拟青蛙觅食的混合蛙跳算法 ( SFLA)等。这些群体智能优化算法的出现,使原来一些复杂的、难于用常规的优化算法进行处理的问题可以得到解决,大大增强了人们解决和处理优化问题的能力,这些算法不断地用于解决工程实际中的问题,使得人们投入更大的精力对其理论和实际应用进行研究。群体智能优化算法本质上是一种概率搜索,它不需要问题的梯度信息具有以下不同于传统优化算法的特点: ①群体中相互作用的个体是分布式的,不存在直接的中心控制,不会因为个别个体出现故障而影响群体对问题的求解,具有较强的鲁棒性; ②每个个体只能感知局部信息,个体的能力或遵循规则非常简单,所以群体智能的实现简单、方便; ③系统用于通信的开销较少,易于扩充; ④自

群智能优化算法综述

现代智能优化算法课程群智能优化算法综述学生姓名: 学号: 班级: 2014年6月22日

摘要 工程技术与科学研究中的最优化求解问题十分普遍,在求解过程中,人们创造与发现了许多优秀实用的算法。群智能算法就是一种新兴的演化计算技术,已成为越来越多研究者的关注焦点,智能优化算法具有很多优点,如操作简单、收敛速度快、全局收敛性好等。群智能优化就是智能优化的一个重要分支,它与人工生命,特别就是进化策略以及遗传算法有着极为特殊的联系。群智能优化通过模拟社会性昆虫的各种群体行为,利用群体中个体之间的信息交互与合作实现寻优。本文综述群智能优化算法的原理、主要群智能算法介绍、应用研究及其发展前景。 关键词:群智能;最优化;算法

目录 摘要 0 1 概述 (2) 2 定义及原理 (2) 2、1 定义 (2) 2、2 群集智能算法原理 (3) 3 主要群智能算法 (3) 3、1 蚁群算法 (3) 3、2 粒子群算法 (4) 3、3 其她算法 (5) 4 应用研究 (6) 5 发展前景 (6) 6 总结 (7) 参考文献 (8)

1 概述 优化就是人们长久以来不断研究与探讨的一个充满活力与挑战的领域。很多实际优化问题往往存 在着难解性,传统的优化方法如牛顿法、共扼梯度法、模式搜索法、单纯形法等己难以满足人们需求。 因此设计高效的优化算法成为众多科研工作者的研究目标。随着人类对生物启发式计算的研究, 一些社会性动物( 如蚁群、蜂群、鸟群) 的自组织行为引起了科学家的广泛关注。这些社会性动物在漫长的进化过程中形成了一个共同的特点: 个体的行为都很简单, 但当它们一起协同工作时, 却能够“突现”出非常复杂的行为特征。基于此,人们设计了许多优化算法,例如蚁群算法、粒子群优化算法、混合蛙跳算法、人工鱼群算法,并在诸多领域得到了成功应用。目前, 群智能理论研究领域主要有两种算法: 蚁群算法(Ant Colony Optimization, ACO) 与粒子群优化算法(ParticleSwarm Optimization, PSO)。 2 定义及原理 2、1 定义 群集智能优化算法源于对自然界的生物进化过程或觅食行为的模拟。它将搜索与优化过程模拟成个体的进化或觅食过程,用搜索空间中的点模拟自然界中的个体;将求解问题的目标函数度量成个体对环境的适应能力;将个体的优胜劣汰过程或觅食过程类比为搜索与优化过程中用好的可行解取代较差可行解的迭代过程。从而,形成了一种以“生成+检验”特征的迭代搜索算法,就是一种求解极值问题的自适应人工智能技术。各类优化算法实质上都就是建立问题的目标函数,求目标函数的最优解,因而实际工程优化问题均可转化为函数优化问题。其表达形式如下: 求: ,,2,1,0)(..), (min , ,,2,1,),,,(21Lm j X g t s X f n L i x L x x X i T n i =≤== 。Ω∈X 其中,i X 为设计变量;)(X f 为被优化的目标函数;0)(≤X g j 为约束函数;Ω为设计变量的可行

群体智能优化算法-群体智能总结

第十六章群体智能优化算法总结 总结一下最近一段时间关于群体智能优化算法的文章,这方面的文章目前一共发表了13篇,涉及粒子群(鸟)、人工蜂群、蜘蛛猴、蚁群、布谷鸟、萤火虫群、萤火虫、蝙蝠、鱼群、蟑螂、猫群、细菌觅食和烟花算法,虽然这都是些五花八门的小东西,但也不是无规律可循,这里需要注意的是,群体智能一般是指具有生命的种群(鸟、鱼等),但也有像烟花这样的无生命个体,这里我们将所有这些个体统称为智能体,认为它们具有一定的能动性,可以在解空间中进行搜索。图1为各主要优化算法的提出时间和提出者,可以看出大多数算法诞生于2000~2010年这十年左右,随着计算机计算能力的提升,人们开始依赖于这种既能得到较优的结果又不会消耗太多计算时间的元启发式算法。 图1 群体智能优化算法发展历程 下面总结一下这些算法的共同点: 1、都有多个粒子,代表每种智能体; 2、每个个体通过一定的机制进行位置的变化或者移动,来对解的空间进行搜索; 3、个体之间具有一定的独立性,利用局部信息和全局信息进行交互;

4、群体在演变过程中都引入了随机数,以便进行充分地探索。 其实人群也算是一种特殊的群体,只不过他不像其他的群体那样,仅仅是觅食,人作为一种高级动物,除了吃饱肚子以外,还有其他很多精神方面的需求,比如幸福度、快乐度和舒适度等等各个方面,并且人类具有的最大优势是语言沟通和学习能力,因此,基于这样的特性也可以提出基于人群的优化算法,只不过可能需要结合更多的组织行为学和行为心理学等相关的知识,对人的群集行为进行理论解释,同时可以采用更多以机器学习或人工智能为基础的高级策略,并应用于多目标优化问题。不过好像在2006年就已经有类似的算法了,至于为什么没有普及开来,可能还是人的行为太复杂了吧。 对于群体智能优化方面的更新将暂时告一段落,接下来将更多的关注另一种元启发式算法-进化计算,这类算法主要是基于生物的进化理论,包括遗传算法、进化策略、进化规划等,都将在后续的内容中逐渐详细讲解。

智能优化算法作业

一、优化算法及其应用 1.简介 共轭梯度法(Conjugate Gradient )是介于最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法需要存储和计算Hesse 矩阵并求逆的缺点,共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。 在各种优化算法中,共轭梯度法是非常重要的一种。其优点是所需存储量小,具有步收敛性,稳定性高,而且不需要任何外来参数。 2.算法原理 共轭梯度法是利用目标函数梯度逐步产生共轭方向作为线搜索方向的方法,每次搜索方向都是在目标函数梯度的共轭方向,搜索步长通过一维极值算法确定。 设二次函数为1 ()2T T f X C b X X AX =++,其中C 为常数,,b X 为n 维列向 量,A 为对称正定矩阵,用共轭梯度法求()f X 的极小点: 共轭梯度法探索的第一步是沿负梯度方向。即()k X 点按()()()k k S f X =-?方向找到(1)k X +,然后沿着与上一次探索方向()k S 相共轭的方向(1)k S +进行探索直达到最小点*X 。 令()(1)(1)()k k k k S f X S β++=-?+。 上式的意义就是以原来的负梯度()()()k k f X S -?=的一部分即()k k S β,加上新的负梯度()(1)k f X +-?,构造(1)k S +。 在上式中k β的选择,应使n 维欧氏空间n E 中的两个非零向量()k S 与(1)k S +关于矩阵A 共轭。即 (1)() (0,1,2,...1)T k k S AS k n +??==-?? 因 1()2 T T f X C b X X AX =++ ,故有()f X b AX ?=+ 若令 ()()()()k k k g f X b AX =?=+ ()(1)(1)(1)k k k g f X b AX +++=?=+

群智能优化算法_萤火虫算法

2012年第32 期 群智能算法是人们受自然界或生物界种群规律的启发,根据其原理,仿生模拟其规律而设计求解问题的算法。近几十年来,人们通过模拟自然生态系统机制以求解复杂优化问题的仿生智能算法相继被提出和研究。群智能算法有遗传算法、模拟退火算法、蚁群算法、粒子群算法等。 萤火虫算法是一种新颖的仿生群智能算法,是受自然界中的萤火虫通过荧光进行信息交流这种群体行为的启发演变而来的。萤火虫算法目前有两种版本:a)由印度学者Krishnanand等人[1]提出,称为GSO(glowworm swarm optimization);b)由剑桥学者Yang[2]提出,称为FA( firefly algorithm)。两种算法的仿生原理相同,但在具体实现方面有一定差异。 本文分析了萤火虫算法的仿生原理,并从数学角度对两种版本的算法实现优化过程进行定义。 1.GSO算法 1.1算法的数学描述与分析 在基本GSO中,把n个萤火虫个体随机分布在一个D维目标搜索空间中,每个萤火虫都携带了萤光素li。萤火虫个体都发出一定量的萤光相互影响周围的萤火虫个体,并且拥有各自的决策域r i d(0<r i d ≤r s)。萤火虫个体的萤光素大小与自己所在位置的目标函数有关,荧光素越大,越亮的萤火虫表示它所在的位置越好,即有较好的目标值,反之则目标值较差。决策域半径的大小会受到邻域内个体的数量的影响,邻域内萤火虫密度越小,萤火虫的决策域半径会加大,以便找到更多的邻居;反之,则萤火虫的决策域半径会缩小。最后,大部分萤火虫会聚集在多个位置上。初始萤火虫时,每个萤火虫个体都携带了相同的萤光素浓度l0和感知半径r0。 定义1萤光素更新 l i(t)=(1-ρ)l i(t-1)+γJ(x i(t))(1) 其中,J(x i(t))为每只萤火虫i在t迭代的位置x i(t)对应的目标函数值;l i(t)为荧光素值转化为荧光素值;γ为荧光素更新率。 定义2概率选择选择移向邻域集N i(t)内个体j的概率p ij(t): p ij(t)=l j(t)-l i(t) k∈N i (t) Σ(l k(t)-l i(t)) (2) 其中,邻域集N i(t)={j:d ij(t)

智能优化方法论文

研究生课程论文及评阅书 (2013—2014学年下学期) 论文题目:几种现代优化算法的比较研究课程名称:智能优化方法及应用 任课教师:周永权 授课时间:2014年2月日至2014年6月日 学号:2013081203402 姓名:吴丽佳 专业名称:计算机应用技术 所在学院:信息科学与工程学院

课程论文格式要求 1.课程论文一律使用标准A4复印纸打印,以左侧为准装订成册,本页装订在封面的背面。 2.课程论文格式按照《广西民族大学学报》论文的格式要求实行。 3.论文打印的格式要求: (1)论文标题(使用黑体二号加黑;一级标题、二级标题、三级标题分别使用宋体三号、四号及小四号并加黑); (2)摘要、关键字(需使用宋体小四号); (3)正文(使用宋体小四号,行距23磅); (4)参考文献(使用宋体五号)。 4.“任课教师的评语”放在最后,单独一页。

几种现代优化算法的比较研究 摘要:现代最优化算法比较常见的有遗传算法、粒子群算法、群体复合形进化算法、鱼群算法、模拟退火算法和蚁群算法。文章主要是对遗传算法、粒子群算法和鱼群算法三个算法的优化性能进行比较。首先介绍了三个算法的基本思想和算法优化过程,以此可以了解三种算法有着自身的特点和优势,促进理解后面不同的优化结果和改进方向。文章中,将三种算法分别对这三个函数用VC编出程序,得出优化结果,再针对结果分析算法。三个典型函数特点各不同,但对算法的优化能力要求都比较高,在不同方面考验了算法的收敛和爬山功能。最后,通过分析三个函数的九个优化结果,提出这三种算法的优点和不足,并列出改进措施。从分析结果可以看出遗传算法要优于另两种算法,并且其改进的余地也是最大的,粒子群算法的优化结果次之,鱼群算法的优化结果相对来说是最差的,但三种算法都可以进行改进以达到更好的优化结果。 关键词:优化;遗传算法;粒子群算法;鱼群算法;比较 Abstract: Modern optimization includes genetic algorithm, particle swarm algorithm, multi-complex algorithm, fish school algorithm, Simulated Annealing algorithm and ant colony algorithm. The paper mainly compares the optimization abilities of genetic algorithm, particle swarm algorithm and fish school algorithm. Firstly, the article introduces the basic ideas and the optimization processes of the three algorithms, from which the characteristics and advantages of the three algorithms will be found out, after that, the optimization results and the ways of improvements behind will be understood easily. Secondly, the three algorithms program with VC for the three functions, so get the results of optimization and analyze them. The three representative functions have specialties from each other, but they have one same point which is having much more demands on the algorithms, which tests the abilities of astringency and mountain climbing. At last, through analyzing the nine optimization results of three functions, the paper explains the advantages and the disadvantages of the three algorithms, and puts forward the improvement means. From the conclusion, genetic algorithm is much better than the other two optimization algorithms, and its room of improvement is the most maximum in the three algorithms too. The article also

群体智能方法在最优化问题的应用和未来

群体智能方法在最优化问题的应用和发展前景 姓名:曾燕亭学号:201110510133 班级:11计科1班 摘要:将遗传算法解决最优化问题,即将最优化问题转化为求解目标函数的最优解问题。关键词:遗传算法;最优化 1.定义 1.1定义及原理 顾名思义,群体智能即群其实质是将物理问题数字化,体产生的智能,与集体智慧类似。我们可以从两个方面来理解群体智能的含义。一方面,群体智能是自然界广泛存在的一种现象,指大量简单个体构成的群体按照简单的交互规则相互协作,完成了其中任何一个个体不可能单独完成的复杂任务。以蚁群为例,正如斯坦福大学生物学家D.Gordon的概括:蚂蚁很笨,但蚁群很聪明。另一方面,人们通过对这些群体行为的研究,逐步形成了群体智能理论,即研究大量个体的简单行动如何成为群体的高智能行为的理论。群体智能理论自20世纪80年代出现以来便吸引了众多研究者的关注,是人工智能及经济、社会、生物等交叉学科的热点和前沿领域,因此设计高效的优化算法成为众多科研工作者的研究目标。随着人类对生物启发式计算的研究, 一些社会性动物( 如蚁群、蜂群、鸟群) 的自组织行为引起了科学家的广泛关注。这些社会性动物在漫长的进化过程中形成了一个共同的特点: 个体的行为都很简单, 但当它们一起协同工作时, 却能够“突现”出非常复杂的行为特征。基于此,人们设计了许多优化算法,例如蚁群算法、粒子群优化算法、混合蛙跳算法、人工鱼群算法,并在诸多领域得到了成功应用。目前, 群智能理论研究领域主要有两种算法: 蚁群算法和粒子群优化算法。 群集智能优化算法源于对自然界的生物进化过程或觅食行为的模拟。它将搜索和优化过程模拟成个体的进化或觅食过程,用搜索空间中的点模拟自然界中的个体;将求解问题的目标函数度量成个体对环境的适应能力;将个体的优胜劣汰过程或觅食过程类比为搜索和优化过程中用好的可行解取代较差可行解的迭代过程。从而,形成了一种以“生成+检验”特征的迭代搜索算法,是一种求解极值问题的自适应人工智能技术。各类优化算法实质上都是建立问题的目标函数,求目标函数的最优解,因而实际工程优化问题均可转化为函数优化问题。其表达形式如下: 求:

第1章群体智能算法概述

第1章 群体智能算法概述 1975年,美国Michigan大学的John Holland[1]教授发表了其开创性的著作《Adapatation in Natural and Artificail System》,在该著作中John Holland教授对智能系统及自然界中的自适应变化机制进行了详细阐述,并提出了计算机程序的自适应变化机制,该著作的发表被认为是群体智能(Swarm Intelligence)[2]算法的开山之作。随后,John Holland和他的学生对该算法机制进行了推广,并正式将该算法命名为遗传算法(Gentic Algorithm,GA)[3]~[5]。遗传算法的出现和成功,极大地鼓舞了广大研究工作者向大自然现象学习的热情。经过多年的发展,已经诞生了大量的群体智能算法,包括:遗传算法、蚁群优化(Ant Colony Optimization,ACO)[6]~[7]算法、差异演化(Differential Evolution,DE)[8]~[12]算法、粒子群优化(Particle Swarm Optimization,PSO)[13]~[16]算法等。 随着群体智能算法在诸如机器学习、过程控制、经济预测、工程预测等领域取得了前所未有的成功,它已经引起了包括数学、物理学、计算机科学、社会科学、经济学及工程应用等领域的科学家们的极大兴趣。目前关于群体智能计算的国际会议在全世界各地定期召开,各种关于信息技术或计算机技术的国际会议也都将智能进化技术作为主要研讨课题之一。甚至有专家指出,群体智能计算技术、混沌分析技术、分形几何、神经网络等将会成为研究非线性现象和复杂系统的主要工具,也将会成为人们研究认知过程的主要方法和工具。 1.1 群体智能算法的特点 1.1.1 智能性 群体智能算法通过向大自然界中的某些生命现象或自然现象学习,实现对于问题的求解,这一类算法中包含了自然界生命现象所具有的自组织、自学习和自适应性等特性。在运算过程中,通过获得的计算信息自行组织种群对解空间进行搜索。种群在搜索过程中依据事先设定的适应度函数值,采用适者生存、优胜劣汰的方式进化,所以算法具有一定的智能性。 由于群体智能算法具有的这种优点,应用群体智能算法求解问题时,不需要事

智能优化算法(蚁群算法和粒子群算法)

7.1 蚁群优化算法概述 ?7.1.1 起源 ?7.1.2 应用领域 ?7.1.3 研究背景 ?7.1.4 研究现状 ?7.1.5 应用现状

7.1.1 蚁群优化算法起源 20世纪50年代中期创立了仿生学,人们从生物进化的机理中受到启发。提出了许多用以解决复杂优化问题的新方法,如进化规划、进化策略、遗传算法等,这些算法成功地解决了一些实际问题。

20世纪90年代意大利学者M.Dorigo,V.Maniezzo,A.Colorni等从生物进化的机制中受到启发,通过模拟自然界蚂蚁搜索路径的行为,提出来一种新型的模拟进化算法——蚁群算法,是群智能理论研究领域的一种主要算法。

背景:人工生命 ?“人工生命”是来研究具有某些生命基本特征的人工系统。人工生命包括两方面的内容。 ?研究如何利用计算技术研究生物现象。?研究如何利用生物技术研究计算问题。

?现在关注的是第二部分的内容,现在已经有很多源于生物现象的计算技巧。例如,人工神经网络是简化的大脑模型,遗传算法是模拟基因进化过程的。 ?现在我们讨论另一种生物系统-社会系统。更确切的是,在由简单个体组成的群落与环境以及个体之间的互动行为,也可称做“群智能”(swarm intelligence)。这些模拟系统利用局部信息从而可能产生不可预测的群体行为(如鱼群和鸟群的运动规律),主要用于计算机视觉和计算机辅助设计。

?在计算智能(computational intelligence)领域有两种基于群智能的算法。蚁群算法(ant colony optimization)和粒子群算法(particle swarm optimization)。前者是对蚂蚁群落食物采集过程的模拟,已经成功运用在很多离散优化问题上。

几种智能优化方法

1.遗传算法 遗传算法(Genetic Algorithms, GA)是由美国密歇根大学的John H.Holland教授及其学生于20世纪60年代末到70年代初提出的。在1975年出版的《自然与人工系统的自适应性》一书中,Holland系统地阐述了遗传算法的基本原理和方法,提出了对遗传算法的理论发展极为重要的模板理论。 遗传算法基本思想: 遗传算法是根据问题的目标函数构造一个适值函数,对于有多个解构成的种群进行评估、遗传运算、选择,经多代繁殖,获得适应值最好的个体作为问题的最优解。具体描述如下。 1)产生初始种群 遗传算法是一种基于群体寻优的方法,算法运行时是以一个种群在搜索空间进行搜索。一般是采用随机方法产生一个初始种群。也可以采用其他方法构造一个初始种群。 2)根据问题的目标函数构造适值函数 在遗传算法中使用适值函数来表征种群中每个个体对其生存环境的适应能力,每个个体具有一定的适应值。适应值是种群中个体生存机会的唯一确定值。适值函数直接决定着群体的进化行为。适值函数基本上依据优化的目标函数来确定。为了能够直接将适值函数与群体中的个体优劣相联系,在遗传算法中适应值规定为非负,并且在任何情况下总是希望越大越好。 3)根据适应值的好坏不断选择和繁殖 在遗传算法中自然选择规律的体现就是以适应值的大小决定的概率分布来进行计算选择。个体的适应值越大,该个体被遗传到下一代的概率越大;反之,个体适应值越小,该个体被遗传到下一代的概率越小。被选择的个体两两进行繁殖,繁殖产生的个体组成新的种群。这样的选择和繁殖的过程不断重复。 4)若干代后得到适应值最好的个体即为最优解 在若干代后,得到适应值最好的个体所对应的解即被认为是问题的最优解。 遗传算法构成要素: a)种群和种群大小 种群是有染色体构成的。每个个体就是一个染色体,每个染色体对应着问题的一个解。种群中个体的数量称为种群大小或种群规模。种群规模通常采用一个不变的常数。一般来说种群规模越大越好,但是种群规模增大也将导致运算时间的增大。在一些特殊情况下,群体规模也可能采用与遗传代数相关的变量,以获取更好的优化效果。 b)编码方法(Encoding Scheme) 编码方法也称为基因的表达方法。在遗传算法中,种群中每个个体,即染色体是由基因构成的。所以染色体与要优化的问题的解如何进行对应,就需要通过基因来进行表示,即染色体进行正确的编码(一般用二进制编码)。正确地对染色体进行编码来表示问题的解是遗传算法的基础工作,也是最重要的工作。 c)遗传算子(Genetic Operator) 遗传算子包括交叉(Crossover)和(Mutation)。遗传算子模拟了每一代中创造后代的繁殖过程,是遗传算法的精髓。 交叉是最重要的遗传算子,它同时对两个染色体进行操作,组合二者的特性产生新的后代。交叉最简单的方式是在双亲的染色体上随机地选择一个断点,将断点的右段相互交换,从而形成两个新的后代。这种方式对于二进制编码最适合。遗传算法的性能很大程度上取决于采用的交叉运算的方式。 交叉率定义为各代中交叉产生后代数与种群中个体数的比。显然,较高的交叉率将达到更大的解空间,从而减小停止在非最优解上的机会;但交叉率过高,会因过多搜索不必要的

基于群集智能的最优化算法研究及其应用

基于群集智能的最优化算法研究及其应用当前经济管理和工程领域遇到的众多问题,例如设施选址问题、车辆路径问题、网络流设计问题等,均可归结为最优化问题。随着科技与社会的发展,现实优化问题也日趋复杂,朝着高维度、非线性、大规模等方向发展,这为优化理论的研究提出了新的挑战。传统的优化理论方法包括单纯形法、二次规划法、牛顿法、内点法、梯度法等。传统方法的不足之处有两点:1)待优化问题需满足特定的数学特性,例如可凸性、可导性、可微性等;2)解决大规模复杂优化问题的能力有限,无法满足实际管理与工程优化的需求。 群集智能作为新型仿生启发式算法,由于其机制简单、智能高效等优点正成为新的研究热点,已被成功用于许多优化问题的求解。本文考虑群集智能中不同的生物模拟视角及搜索行为的差异,选取粒子群算法(particle swarm optimization,PSO)与细菌觅食算法(bacterial foraging optimization,BFO)作为群集智能的代表算法进行研究。针对当前群集智能算法研究的不足之处进行改进,主要的研究问题与贡献如下:(1)针对传统PSO算法历史信息利用率较低、种群多样性丧失较快、较差个体无退出机制的缺陷,提出一种正交混合学习PSO 算法。利用正交实验设计构建类似新陈代谢机制的粒子置换策略,提高种群多样性;同时,为了加快粒子的收敛速度,设计了混合学习机制,使粒子以一定概率向个体与全局两部分信息分别进行学习。 通过数值实验验证了所提算法的有效性。(2)传统PSO对复杂问题的求解性能仍有待提升。尽管人们提出了多群体PSO(MS-PSO)以避免传统PSO对复杂问题早熟收敛,但仍存在众多不足。例如,当前绝大多数MS-PSO均针对特定问题域进行优化,对其它问题表现较弱;没有考虑多群体间的竞争关系;群体规模为预设值且固定。 针对上述不足,提出了异质多群体自适应PSO算法。在种群中建立包含了同质个体的异质子群模型。各子群使用不同的搜索策略;设计了自适应竞争机制,根据实时搜索表现动态地调节异质群体的规模;研究了两种互补的搜索机制和两种不同的种群规模迁移模型。仿真结果表明,所提策略有效提升了算法对不同问题域的搜索性能。 (3)针对传统BFO算法存在求解精度较低、收敛速度较慢、算法性能随问题

相关文档