文档库 最新最全的文档下载
当前位置:文档库 › CATIA自由曲面造型——吹风机

CATIA自由曲面造型——吹风机

CATIA自由曲面造型——吹风机
CATIA自由曲面造型——吹风机

吹风机设计实例

本节通过电吹风的造型设计,介绍自由曲面设计的综合应用,如图1所示。设计流程如图2。

图1

图2

1.1吹筒主体设计

(1)在自由曲面设计窗口中新建一个文件。

(2)单击“俯视图”按钮(Top View) ,将当前窗口切换到俯视视图。

(3)单击“空间曲线”(3D Curve)按钮,用控制点的绘制方式,绘制如图3所示的空间曲线。

图3

(4)在控制点上单击鼠标右键,在弹出的菜单中单击选项,弹出Turner对话框,调整上面建立的5个控制点的坐标,如图4所示。

图4

(5)用拉伸曲面功能,将上面建立的曲线拉伸成为曲面,如图5所示。

图5

(6)用控制点编辑功能,对拉伸曲面的控制点进行编辑,注意需要单

击辅助工具栏中的阶数按钮,将拉伸方向上的阶数改变为6,如

图6所示。

图6

(7)单击Control points对话框中的“对称”按钮,用指南针工具栏中的辅助工具,设定拉伸曲面的对称面,如图7所示,在Use the

current plane对话框中单击按钮,建立对称平面。

图7

(8)选中如图8所示圆圈画出的4个控制点,单击Control points对话框中的和两个按钮,调整控制点的位置如图8所示。

图8

(9)按照同样的方法,调整另一端对应的4个控制点的位置,如图9所示。

在Control points对话框中单击OK按钮,完成控制点编辑。

图9

(10)再次用控制点编辑功能,如图10所示。

图10

用指南针工具栏中的辅助工具,将控制点的拉伸方向改变成为如图10所示

的方向。仍然单击对话框中的和两个按钮,选中所有的控制点,用Tuner对话框移动如图10所示的控制点,调整到图中所示的位置。

(11)将曲面调整到合适的位置后,将对称平面调整到ZX平面上,如图11所示。将图所示的控制点编辑为如图编辑对话框所示的情况。

图11

(12)将指南针移动到上一步中调整的端点上,单击指南针工具栏中的

按钮,选择该端点,在单击可以将指南针定位到该点上。单击

按钮,可以将指南针方向定位到X轴上,结果如图12所示。

选择如图12所示的对称的两条边线。再Control points对话框中的Project选

项区域中单击按钮,将所选择的两条边线投影到指南针所在的平面上,也就是YZ平面上。完成投影后,在对话框中单击OK按钮,退出控制点编辑功能。

图12

(13)用拉伸曲面功能,将两条边线沿着指南针的方向向下拉伸任意长度,如图13所示。

图13

(14)用匹配曲面功能,首先选择主体曲面的一条边线,再选择上一步

中生成的拉伸曲面的边线,并将边线的连续性改变为Tangent(相切),

如图14所示。按照同样的方法建立另一边的匹配。

图14

(15)至此就完成了吹筒主体的设计。

1.2吹筒手柄的设计

(1)单击“后视图”(Back View)按钮,将窗口切换到后视图。在指南针工具栏中单击按钮,将YZ平面作为当前的工作平面。用空

间曲线功能,建立如图15所示的两条曲线,两条曲线对应的两个

端点Y坐标相同。

图15

(2)用创成式曲面设计中点复制工具,对图16中鼠标所指的曲线创建5分点(包括端点)。

图16

(3)用空间曲线功能,在上一步建立的5个点中,分别在每两个点上,建立如图17所示的4条曲线。

图17

(4)用桥接曲线功能,在上一步建立的曲线上桥接,如图18所示,曲线之间的连续性选择Curvature。其他曲线也按照同样的方法进行桥接,结果如图19所示。

图18

图19

(5)用分割功能,将第(4)步中建立的桥接曲线对第(3)步中建立的空间曲线进行裁剪,如图20所示,结果如图21所示。再用连接功

能,将曲线连接起来。

图20

图21

(6)用点功能建立如图22所示的中点。

图22

(7)将指南针移动到上一步建立的点上。单击指南针辅助工具栏中的按钮

,将YZ平面作为工作平面。编辑指南针的位置,向上平移30mm。

单击“俯视图”按钮,将窗口切换到俯视状态,如图27所示。

图27

(8)用空间曲线功能,绘制如图28所示的第3条曲线,曲线的两个端点与其他曲线的端点对齐。

图28

(9)用空间曲线功能,建立手柄的轮廓线。

①将手柄的3条曲线的3个端点连接起来,并在控制点上单击鼠标右键,

在弹出的菜单上单击选项,设置建立的曲线与其他曲线保持斜率连续约束,如图29所示。

图29

②在斜率方向上箭头上单击鼠标右键,在弹出的菜单中取消选择

选项,如图30所示。

图30

③再次在斜率箭头上单击鼠标右键,弹出如图31所示的菜单,并单击Edit

选项。在弹出的Vector Tuner对话框中设置3个斜率方向,如图32所示。

图31

图32

(10)用拉伸曲面功能,将如图33所示的两条曲线,沿着如图中指南针

所示的方向向下拉伸20mm。也可以用指南针工具栏中的辅助工具,将指南针调整到如图中所示的方向。

图33

(11)用拉伸曲面功能,将手柄的另一条曲线拉伸,如图34所示。

图34

(12)将用于拉伸的3条曲线隐藏。

(13)用扫掠曲面功能,将第(9)步中建立的曲线作为轮廓线,用中间的拉伸的边线为脊线,用侧面的边线为导引线,建立如图35所示的扫掠曲面。设置扫略曲面与其他曲面的连续性为相切。

图35

(14)用同样的方法,建立手柄另一侧的拉伸曲面,如图36所示。

图36

(15)将拉伸的侧面隐藏,完成拉伸手柄的设计。

1.3手柄与主体的连接

(1)用曲面上的曲线,在主体曲面上建立如图37所示的曲线。

图37

(2)用分割功能将上一步建立的曲线,将吹筒主体分割,如图38。

图38

(3)把1.2节中建立的手柄的两个曲面转化为NUPBS曲面,再用连接功能,将它们连接起来,如图39所示。

图39

(4)用桥接曲面功能,将主体曲面与手柄曲面桥接起来,选择斜率连续作为连续性约束。

自由曲面设计

第1章自由曲面设计 自由曲面设计(Free Style)功能模块提供使用方便的基于曲面的工具,用以创建符合审美要求的外形,其界面如图1-1所示。通过草图或数字化的数据,设计人员可以高效地创建任意的3D曲线和曲面,通过实时交互更改功能,可以在保证连续性规范的同时调整设计,使之符合审美要求和质量要求。为保证质量,该模块提供了大量的曲线和曲面诊断工具进行实时质量检查。该模块也提供了曲面修改的关联性,曲面的修改会传送到所有相关的拓扑上,如曲线和裁剪区域。 该模块提供强大的、使用方便的曲面工具,帮助设计者创建风格化外形,即使是临时用户也可以很容易地光顺和裁剪曲线和曲面。大量的面向企业的曲线和曲面诊断工具可以执行实时质量检查,以保证设计质量。 自由曲面优化模块扩展了CATIA自由曲面造型设计的外形和曲面造型功能,主要针对复杂的多曲面外形的变形设计。设计者可以像处理一个曲面片一样对多曲面进行整体更改,而同时保持每个曲面先前规定的设计品质。系统能够使一个设计和其他的几何元素(比如一个物理样机的扫描形状)匹配。为检验曲面的设计质量,用户可以实施一个虚拟展室,通过计算出的反射光线对曲面进行检查。 图1-1

1.1 曲线创建 自由曲面设计模块提供了多种建立和编辑曲线的方法,如空间曲线、曲面上曲线、投影曲线、桥接曲线、圆角造型和匹配曲线等。 1.1.1 空间曲线 空间曲线(3D curve)功能,是在空间的一系列点上建立样条线,或者在指南针的XY平面上建立样条线。打开附带光盘中“第1章自由曲面设计”目录下的文件3D Curve.CATPart,如图1-2所示。 图1-2 (1)在Curve Creation工具栏中单击“空间曲线”功能按钮,弹出如图1-3所示的3D curve对话框。 图1-3 (2)在对话框中的Creation type下拉列表框中选择一种建立曲线的方式。 Through points是选择一系列点,作为样条线上的点,如图1-4所示,建立的样条线通过所选择的点。

自由曲线曲面的基本原理(上)

自由曲线曲面的基本原理(上) 浙江黄岩华日(集团)公司梁建国 浙江大学单岩 1 前言 曲面造型是三维造型中的高级技术,也是逆向造型(三坐标点测绘)的基础。作为一个高水平的三维造型工程师,有必要了解一些自由曲线和曲面的基本常识,主要是因为:(1)可以帮助了解CAD/CAM软件中曲面造型功能选项的意义,以便正确选择使用;(2)可以帮助处理在曲面造型中遇到的一些问题。由于自由曲线和自由曲面涉及的较强的几何知识背景,因此一般造型人员往往无法了解其内在的原理,在使用软件中的曲(线)面造型功能时常常是知其然不知其所以然。从而难以有效提高技术水平。 针对这一问题,本文以直观形象的方式向读者介绍自由曲线(面)的基本原理,并在此基础上对CAD/CAM软件中若干曲面造型功能的使用作一简单说明,使读者初步体会到背景知识对造型技术的促进作用。 2 曲线(面)的参数化表达 一般情况下,我们表达曲线(面)的方式有以下三种: (1)显式表达 曲线的显式表达为y=f(x),其中x坐标为自变量,y坐标是x坐标的函数。曲面的显式表达为z=f(x,y)。在显式表达中,各个坐标之间的关系非常直观明了。如在曲线表达中,只要确定了自变量x,则y的值可立即得到。如图1所示的直线和正弦曲线的表达式就是显式的。

曲线的隐式表达为f(x,y)=0,曲面的隐式表达为f(x,y,z)=0。显然,这里各个坐标之间的关系并不十分直观。如在曲线的隐式表达中确定其中一个坐标(如x )的值并不一定能轻易地得到另外一个(如y )的值。图2所示的圆和椭圆曲线的表达式就是隐式的。 图2 (3) 参数化表达 曲线的参数表达为x=f(t);y=g(t)。曲面的参数表达为x=f(u,v);y=g(u,v);z=g(u,v)。这时各个坐标变量之间的关系更不明显了,它们是通过一个(t )或几个(u,v )中间变量来间接地确定其间的关系。这些中间变量就称为参数,它们的取值范围就叫参数域。 显然,所有的显式表达都可以转化为参数表达,如在图1所示的直线表达式中令x=t 则立即可有y=t 。于是完成了显式表达到参数化表达的转换。由此,我 y 2 x 2/a

曲面造型的心得

家电产品的三维造型设计方法的研究 随着社会的进步,人们生活水平的不断提高,追求完善已成为时尚.人们对消费产品的要求已不仅仅满足于基本功能的完备,同时更注重外观的美感.家电产品在不断提高和完善其功能的同时,在外观造型上要求越来越高,多以复杂方式自由地变化的曲线曲面即所谓自由型曲线曲面组成.而这一类形状单纯用画法几何与机械制图是不能表达的.这就给家电产品的设计及制造带来了挑战.计算机技术和计算机图形学的不断发展,为人们提供了强有力的工具,三维CAD/CAM/CAE集成化软件被广泛应用于制造业.然而,要快速高质量地完成一个家电产品的造型设计,必须根据家电产品的特点,总结出一套建模方法和技巧.这样才能大大缩短设计周期,提高设计效率,满足客户对产品的各种特殊需求. 1掌握三维CAD造型的原理,充分了解应用软件中的造型方法 CAD的三维模型有三种,即线框、曲面和实体。早期的CAD系统往往分别对待以上三种造型。而当前的高级三维软件,例如UGII,PRO/E,EUCLID等则是将三者有机结合起来,形成一个整体,在建立产品几何模型时兼用线、面、体三种设计手段[1]。其所有的几何造型享有公共的数据库,造型方法间可互相替换,而不需要进行数据交换。此在进行产品造型时,必须首先充分了解应用软件中的各种造型方法,总结出造型方法的特点、相关参数及应用技巧,减少造型时的盲目性,便能快捷有效地获得满意结果。 1.1线框造型 线框造型可以生成、修改、处理二维和三维线框几何体。可以生成点、直线、圆、二次曲线、样条曲线等,又可以对这些基本线框元素进行修剪、延伸、分段、连接等处理,生成更复杂的曲线,线框造型的另一种方法是通过三维曲面的处理来进行,即利用曲面与曲面的求交,曲面的等参数线,曲面边界线,曲线在曲面上的投影,曲面在某一方向的分模线等方法来生成复杂曲线。实际上,线框功能是进一步构造曲面和实体模型的基础工具。在复杂的产品设计中,往往是先用线条勾划出基本轮廓,即所谓“控制线”,然后逐步细化,在此基础上构造出曲面和实体模型。 1.2曲面造型 曲面造型分两种方法,一是由曲线构造曲面;二是由曲面派生曲面。 (1)由曲线构造曲面 1)旋转曲面:一轮廓曲线绕某一轴线旋转某一角度而生成的曲面。 2)线性拉伸面:一曲线沿某一矢量方向拉伸一段距离而得到的曲面。 3)直纹面:在两曲线间,把其参数值相同的点用直线段连接而成的曲面。4)扫描面:截面发生曲线沿一条、二条或三条方向控制曲线运动,变化而生成的曲面。可根据各发生曲线与脊骨曲线的运动关系,把扫描面分为平行扫描曲面、法向扫描曲面和放射状扫描曲面。 5)网格曲面:由一系列曲线构成的曲面。根据构造曲面的曲线的分布规律,网格曲面可分为单方向网格曲面和双方向网格曲面。单方向网格曲面由一组平行或近似平行的曲线构成;而双方向网格曲面由 一组横向曲线和另一组与之相交的纵向曲线构成。 6)拟合曲面:由一系列有序点拟合而成的曲面。 7)平面轮廓面:由一条封闭的平面曲线所构成的曲面。 8)二次曲面:椭圆面q_抛物面,双曲面等。

CATIA自由曲面造型——吹风机

吹风机设计实例 本节通过电吹风的造型设计,介绍自由曲面设计的综合应用,如图1所示。设计流程如图2。 图1 图2 1.1吹筒主体设计 (1)在自由曲面设计窗口中新建一个文件。 (2)单击“俯视图”按钮(Top View) ,将当前窗口切换到俯视视图。

(3)单击“空间曲线”(3D Curve)按钮,用控制点的绘制方式,绘制如图3所示的空间曲线。 图3 (4)在控制点上单击鼠标右键,在弹出的菜单中单击选项,弹出Turner对话框,调整上面建立的5个控制点的坐标,如图4所示。 图4

(5)用拉伸曲面功能,将上面建立的曲线拉伸成为曲面,如图5所示。 图5 (6)用控制点编辑功能,对拉伸曲面的控制点进行编辑,注意需要单 击辅助工具栏中的阶数按钮,将拉伸方向上的阶数改变为6,如 图6所示。 图6 (7)单击Control points对话框中的“对称”按钮,用指南针工具栏中的辅助工具,设定拉伸曲面的对称面,如图7所示,在Use the current plane对话框中单击按钮,建立对称平面。

图7 (8)选中如图8所示圆圈画出的4个控制点,单击Control points对话框中的和两个按钮,调整控制点的位置如图8所示。 图8 (9)按照同样的方法,调整另一端对应的4个控制点的位置,如图9所示。 在Control points对话框中单击OK按钮,完成控制点编辑。

图9 (10)再次用控制点编辑功能,如图10所示。 图10 用指南针工具栏中的辅助工具,将控制点的拉伸方向改变成为如图10所示 的方向。仍然单击对话框中的和两个按钮,选中所有的控制点,用Tuner对话框移动如图10所示的控制点,调整到图中所示的位置。

复杂曲面精密加工的发展现状和趋势

复杂曲面精密加工的发展现状和趋势 摘要:随着高新技术的发展,人们对外观美学效果的需要,复杂曲面的应用也越来越广泛。但是复杂曲面的应用在应用方面仍然需要取决于力学特性和功能的需要和满足人们对产品外形的需求。复杂曲面的发展和实现,又取决于复杂曲面的设计技术和制造技术。所以我们从3个方面分别阐述它们的研究现状与发展趋势:复杂曲面设计技术,复杂曲面加工技术,复杂曲面加工设备。指出复杂曲面设计技术、加工技术及加工设备发展存在的主要问题,对其发展趋势进行科学预测。 关键词:复杂曲面精密加工装备现状趋势 一前言 随着全球经济的发展,市场竞争日趋激烈,具有复杂曲面的产品越来越多,广泛应用于模具、工具、能源、交通、航空航天、航海等领域。复杂曲面的复杂性主要体现在:许多边缘学科、高科技产品领域对产品涉及的曲面造型有很高的精度要求,以达到某些数学特征的高精度为目的;现代社会中,人们在注重产品功能的同时,对产品的外观造型提出了越来越高的要求,以追求美学效果或功能要求为目的。因此,进一步提高复杂曲面的设计和加工水平成了国内外竞相研究的焦点。 二主题 1 复杂曲面设计与加工技术的发展 1.1 复杂曲面造型技术的发展及现状 复杂曲面造型技术是计算机辅助设计和计算机图形学中最为活跃、同时也是最为关键的学科分支之一,它随着CAD/CAM技术的发展而不断完善,渐趋成熟。它主要研究在计算机图像系统的环境下对曲面的表示、设计、显示和分析,肇源于飞机、船舶的外形放样工艺。从研究领域来看,曲面造型技术已从传统的曲面表示、曲面求交和曲面拼接,扩充到曲面变形、曲面重建、曲面简化、曲面转换和曲面等距性。此外,随着工业生产的发展和需要,其他学科的技术方法被引进到计算机图形学中来,形成一种融合的趋势,出现了许多新造型方法的研究:如基于物理模型优化的曲面造型方法、基于力密度方法的曲线曲面的造型方法等。 1.2复杂曲面反求技术的发展和现状 反求技术,也称逆向技术、反向技术,是指用一定的测量手段对实物或模型进行测量,根据测量数据通过三维几何建模方法重构实物的CAD模型的过程,是一个从样品生成产品数字化信息模型,并在此基础上进行产品设计开发及生产的全过程。 随着计算机、数控和激光测量技术的飞速发展,反求技术不再是对己有产品进行简单的“复制”,其内涵与外延都发生了深刻变化,成为家电、汽车、玩具、轻工、

CATIA_自由曲面教程

自由造型单元可以创建不规则的曲面,构图方式自由,故称自由造型。自由造型构图方式是透过移动控制点的方式来决定曲面或曲线的外形,与其他实体为主的单元的不同处,在于自由造型可以脱离实体的限制,由用户的主观意识来决定所要的外形。 自由曲面优化模块扩展了CATIA自由曲面造型设计的外形和曲面造型功能,主要针对复杂的多曲面外形的变形设计。设计者可以象处理一个曲面片一样对曲面进行整体更改,而同时保持每个曲面先前规定的设计品质。系统能够使一个设计和其他的几何元素匹配。为检验曲面的设计质量,用户可以实施一个虚拟展室,通过计算出反射光线对曲面进行检查。 2.1 进入自由曲面造型单元 打开CATIA软件后,在菜单栏中的开始菜单中选择形状模块,并单击FreeStyle单元,如图2.1所示,进入自由曲面造型单元。 图 2.1 自由曲面造型功能总览: 自由曲面造型单元共有八项主要的工具栏,可以在插入和工具菜单中找到,全部的工具栏请参考图2.2。插入工具栏所提供的功能主要用于曲面与曲线的创建和修改,工具菜单中所提供的功能主要为辅助用户的设计工作。

图 2.2 八项主要工具简介如下: . Curve Creation(曲Array线创建):可以 用各种条件创 建并修改曲 线。 . Surface Creation(曲Array面创建):可以 用各种条件创 建并修改曲 面。 . Shape Modification Array (外形修正): 可以对曲面、 曲线的外形进 行修正。 . 修改操作):可 以对曲线、曲

面等对象进行 修改。 . Shape Analysis(外 形分析):可以 对曲面、曲线 进行间隙、曲 率、曲面品质、 距离误差等的 分析。 . Generic Tools(一般工Array具):可以显示 曲面的几何状 态,改变指南 针方向。 . View Manipulation (自定义观察Array方式):可以修 改屏幕的显示 比例,使用指 南针来移动视 角,变换前后 视角。 . FreeStyle Dashboard(自Array由造型辅助面 板):建立与修 改曲面、曲线 时的辅助工 具。 2.2 曲线创建 曲线创建(Curve Creation)工具栏可以用来绘制曲线,提供数种方式,如:空间曲线(3D Curve)、曲面上的曲线(Curve on Surface)、投影曲线(Project Curve)、并可以利用已知曲线绘制新的曲线,如:桥接曲线(FreeStyle Blend

自由造型设计(中文)

第四章自由风格曲面设计 CA TIA V5的自由风格外形设计是一个使用灵活、功能强大的曲面建模模块。它是一种基于修改曲面的特征网格,来控制所生成曲面形状的造型方法。因此,采用这种方法所构建的曲面具有很高的曲面光顺度和质量,非常适合于诸如汽车外形A级表面的造型设计等。该功能模块不仅提供了强有力的曲面生成与修改方法,而且还为曲面之间的匹配、拟合以及外形整体变形等高级编辑修改功能提供了丰富的工具。 CA TIA V5的自由风格外形设计由自由风格造型器(FreeStyle Shaper)、自由风格优化器(FreeStyle Optimizer)和基于曲线的自由风格造型器(FreeStyle Profile)组成。自由风格造型器为生成与修改曲面提供了丰富的手段。自由风格优化器为曲面的超级拟合和外形整体变形等高级修改功能提供了强有力的建模手段。 4.1 相关的图标菜单 CA TIA V5的自由风格曲面设计由以下几组图标菜单组组成:曲线生成图标菜单组(Curve Creation)、曲面生成图标菜单组(Surface Creation)、外形编辑图标菜单组(Shape Modification)、几何操作图标菜单组(Operations)、外形分析图标菜单组(Shape Analysis)和相关工具图标菜单组(Tools)。 4.1.1曲线生成图标菜单组(Curve Creation) 在曲线生成图标菜单组中为用户提供了以下生成三维曲线的工具,用这些工具生成的曲线,既可以用来编辑曲面(如切割曲面等),也可以用来直接生成曲面(如风格扫描曲面等)。 3D Curve 创建三维曲线 Curve on Surface 创建位于曲面上的曲线 Project Curve 创建投影曲线 FreeStyle Blend Curve 创建风格桥接曲线 Styling Corner 创建风格拐角 Match Curve 创建匹配曲线 4.1.2曲面生成图标菜单组(Surface Creation) 自由风格外形设计模块为用户提供了丰富的生成曲面工具,用这些工具不仅可以方便、快捷地生成简单的平面片、拉伸面、回转面等基本曲面,还可以生成风格扫描面、网格面等复杂曲面。这些曲面生成工具包括: Planar Patch 由二点创建平面片 3-Point Patch 由三点创建平面片 4-Point Patch 由四点创建面片 Geometry Extraction 从已有几何体中提取部分几何体 Revolve创建回转面 Extrude Surface 创建拉伸面 Offset 创建偏移面

《计算机图形学》的主要研究内容及发展趋势

《计算机图形学》作业 第一次作业 《计算机图形学》的主要研究内容及发展趋势: 图形通常由点、线、面、体等几何元素和灰度、色彩、线型、线宽等非几何属性组成。从处理技术上来看,图形主要分为两类,一类是基于线条信息表示的,如工程图、等高线地图、曲面的线框图等,另一类是明暗图,也就是通常所说的真实感图形。 计算机图形学一个主要的目的就是要利用计算机产生令人赏心悦目的真实感图形。为此,必须建立图形所描述的场景的几何表示,再用某种光照模型,计算在假想的光源、纹理、材质属性下的光照明效果。所以计算机图形学与另一门学科计算机辅助几何设计有着密切的关系。事实上,图形学也把可以表示几何场景的曲线曲面造型技术和实体造型技术作为其主要的研究内容。同时,真实感图形计算的结果是以数字图像的方式提供的,计算机图形学也就和图像处理有着密切的关系。 图形与图像两个概念间的区别越来越模糊,但还是有区别的:图像纯指计算机内以位图形式存在的灰度信息,而图形含有几何属性,或者说更强调场景的几何表示,是由场景的几何模型和景物的物理属性共同组成的。 计算机图形学的研究内容非常广泛,主要有以下几个方面:计算机图形学的应用;计算机图形设备和系统;国际标准化组织(ISO) 发布的图形标准;人机交互接口技术;基本图形实体、自由曲线和自由曲面的生成算法;图形变换和裁剪;曲面和实体造型算法;颜色、光照模型及真实感图形显示技术与算法等内容。 从计算机图形学目前学科发展来看,有以下几个发展趋势:与图形硬件的发展紧密结合,突破实时高真实感、高分辨率渲染的技术难点;研究和谐自然的三维模型建模方法;利用日益增长的计算性能,实现具有高度物理真实的动态仿真;研究多种高精度数据获取与处理技术,增强图形技术的表现;计算机图形学与图像视频处理技术的结合;从追求绝对的真实感向追求与强调图形的表意性转变。 第二次作业 上机实习 目的: 1、在掌握计算机图形学的基本原理、算法和实现技术的基础上,通过编程实现简单的二维图形生成。 2、培养综合运用计算机高级语言(C语言)有关课程的知识去分析和解决实际问题的能力。以进一步巩固,深化,扩展本课程所学到的理论知识。

最经典CATIA曲线曲面设计基本理论

CATIA曲线曲面设计基本理论 一、概述 曲面造型(Surface Modeling)是计算机辅助几何设计(Computer Aided Geometric Design,CAGD)和计算机图形学的一项重要内容,主要研究在计算机图象系统的环境下对曲面的表示、设计、显示和分析。它起源于汽车、飞机、船舶、叶轮等的外形放样工艺,由Coons、Bezier等大师于二十世纪六十年代奠定其理论基础。经过三十多年的发展,曲面造型现在已形成了以有理B样条曲面(Rational B-spline Surface)参数化特征设计和隐式代数曲面(Implicit Algebraic Surface)表示这两类方法为主体,以插值(Interpolation)、逼近(Approximation)这二种手段为骨架的几何理论体系。 1.发展历程 形状信息的核心问题是计算机表示,既要适合计算机处理,且有效地满足形状表示与设计要求,又便于信息传递和数据交换的数学方法。象飞机、汽车、轮船等具有复杂外形产品的表面是工程中必须解决的问题。曲面造型的目的就在如此。 1963年美国波音(Boeing)飞机公司的佛格森(Ferguson)最早引入参数三次曲线(三次Hermite 插值曲线),将曲线曲面表示成参数矢量函数形式,构造了组合曲线和由四角点的位置矢量、两个方向的切矢定义的佛格森双三次曲面片,从此曲线曲面的参数化形式成为形状数学描述的标准形式。

仅用端点的位置和切矢控制曲线形状是不够的,中间的形状不易控制,且切矢控制形状不直接。 1964年,美国麻省理工学院(MIT )的孔斯(Coons )用四条边界曲线围成的封闭曲线来定义一张曲面,Ferguson 曲线曲面只是Coons 曲线曲面的特例。而孔斯曲面的特点是插值,即构造出来的曲面满足给定的边界条件,例如经过给定边界,具有给定跨界导矢等等。但这种方法存在形状控制与连接问题。 1964年,舍恩伯格(Schoenberg )提出了参数样条曲线、曲面的形式。 1971年,法国雷诺(Renault )汽车公司的贝塞尔(Bezier )发表了一种用控制多边形定义曲线和 曲面的方法。这种方法不仅简单易用,而且漂亮地解决了整体形状控制问题,把曲线曲面的设计向前推 进了一大步,为曲面造型的进一步发展奠定了坚实的基础。 但当构造复杂曲面时,Bezier 方法仍存在连接问题和局部修改问题。 同期,法国雪铁龙(Citroen )汽车公司的德卡斯特里奥(de Castelijau )也独立地研究出与Bezier 类似的方法。 1972年,德布尔(de Boor )给出了B 样条的标准计算方法。 1974年,美国通用汽车公司的戈登(Gorden )和里森费尔德(Riesenfeld )将B 样条理论用于形状描述,提出了B 样条曲线和曲面。这种方法继承了Bezier 方法的一切优点,克服了Bezier 方法存在的缺点,较成功地解决了局部控制问题,又轻而易举地在参数连续性基础上解决了连接问题,从而使自由型曲线曲面形状的描述问题得到较好解决。但随着生产的发展,B 样条方法显示出明显不足,不能精确表示圆锥截线及初等解析曲面,这就造成了产品几何定义的不唯一,使曲线曲面没有统一的数学描述形式,容易造成生产管理混乱。 1975年,美国锡拉丘兹(Syracuse )大学的佛斯普里尔(Versprill )提出了有理B 样条方法。 80年代后期皮格尔(Piegl )和蒂勒(Tiller )将有理B 样条发展成非均匀有理B 样条方法(即NURBS ),并已成为当前自由曲线和曲面描述的最广为流行的技术。 NURBS 方法的突出优点是:可以精确地表示二次规则曲线曲面,从而能用统一的数学形式表示规则曲面与自由曲面,而其它非有理方法无法做到这一点;具有可影响曲线曲面形状的权因子,使形状更宜于控制和实现;NURBS 方法是非有理B 样条方法在四维空间的直接推广,多数非有理B 样条曲线 曲面的性质及其相应算法也适用于NURBS 曲线曲面,便于继承和发展。 由于NURBS 方法的这些突出优点,国际标准化组织(ISO)于1991年颁布了关于工业产品数据交换的STEP 国际标准,将NURBS 方法作为定义工业产品几何形状的唯一数学描述方法,从而使NURBS 方法成为曲面造型技术发展趋势中最重要的基础。

建筑中自由曲面造型的理性构思

第28卷第6期 Vol.28No.62007青岛理工大学学报Journal of Qingdao Technological University 建筑中自由曲面造型的理性构思 苏 毅,曾 坚 (天津大学建筑学院,天津300072) 摘 要:公众对建筑中的自由曲面造型多有“不理性”和“形式主义”的看法.通过对优秀曲面建筑 设计案例的分析,认为这些曲面造型背后,存有合理的构思,可弥补日益高密度化的城市环境,回 应比过去复杂的城市文脉,满足受力和其他物理方面的要求等.因此,建筑师们应放下观念上的包 袱,为设计更理性、更优雅、更经济的自由曲面造型做准备. 关键词:曲面建筑;理性构思;高密度城市环境 中图分类号:TU201 文献标志码:A 文章编号:1673—4602(2007)06—0058—04 曲面型建筑在我国源远流长,传统建筑中的屋面、翼角、檐口曲线已成为制度而历代相传.近年来又兴建了不少新的曲面建筑,如:国家大剧院、2008年奥运会主体育场、北京天文馆等.但不少人对当代自由曲面型建筑还不甚理解,有“不理性”与“形式主义”之议.这里面实际上多少有一点误会,因为这些曲面造型并非仅仅出于建筑师一时的灵感,而是有它产生的必然性.不少优秀的自由曲面造型是与环境、功能、结构等理性因素紧密结合的 . 图1 马岩松设计的曲面型公寓楼 图2 坂茂的梅斯(Metz )蓬皮杜中心分馆设计竞标方案1 曲面造型是对日益高密度化的都市 环境的一种弥补措施 当代大都市中心区具有超高的容积率,在这样的 “水泥森林”中建设,如何满足人对自然景观的需要就 成了建筑师所必需面对的问题. 荷兰人口密度非常高,荷兰建筑事务所MVRDV 把密度问题作为他们要处理的主要问题.就密度这个 专题,MVRDV 采用“数据可视化”手段,发表了《三公 里》(KM3)和《极限容积率》 (MAX FA R )等著作,还提出了“空间连续景观”等概念,旨在采用曲面型的楼板 和坡道打破水平分层的禁锢,创造三维的人工绿色环 境,其中一个例子是汉诺威世博会荷兰馆的设计[1].其 实,早在1967年,以色列建筑师萨夫迪(Mo she Safdie )在著名的“蒙特利尔67号住宅”方案设计中, 已经做过给每家分摊大阳台的尝试.不过,因为还没有 引入连续曲面楼板,这些“绿色大阳台”还只能呈零散、 孤立状态,效果就不如有三维连续景观道路的荷兰馆. 我国建筑师马岩松,最近在加拿大举办的一次国 际建筑竞赛中中标.此次竞赛的目的是评选出密西沙收稿日期:2007—04—16 基金项目:国家教育部博士点基金资助项目(20050056031);国家自然科学基金资助项目(50578106)

CATIA自由造型

第四章自由风格曲面设计 CATIA V5的自由风格外形设计是一个使用灵活、功能强大的曲面建模模块。它是一种基于修改曲面的特征网格,来控制所生成曲面形状的造型方法。因此,采用这种方法所构建的曲面具有很高的曲面光顺度和质量,非常适合于诸如汽车外形A级表面的造型设计等。该功能模块不仅提供了强有力的曲面生成与修改方法,而且还为曲面之间的匹配、拟合以及外形整体变形等高级编辑修改功能提供了丰富的工具。 CATIA V5的自由风格外形设计由自由风格造型器(FreeStyle Shaper)、自由风格优化器(FreeStyle Optimizer)和基于曲线的自由风格造型器(FreeStyle Profile)组成。自由风格造型器为生成与修改曲面提供了丰富的手段。自由风格优化器为曲面的超级拟合和外形整体变形等高级修改功能提供了强有力的建模手段。 4.1 相关的图标菜单 CATIA V5的自由风格曲面设计由以下几组图标菜单组组成:曲线生成图标菜单组(Curve Creation)、曲面生成图标菜单组(Surface Creation)、外形编辑图标菜单组(Shape Modification)、几何操作图标菜单组(Operations)、外形分析图标菜单组(Shape Analysis)和相关工具图标菜单组(Tools)。 4.1.1曲线生成图标菜单组(Curve Creation) 在曲线生成图标菜单组中为用户提供了以下生成三维曲线的工具,用这些工具生成的曲线,既可以用来编辑曲面(如切割曲面等),也可以用来直接生成曲面(如风格扫描曲面等)。 3D Curve 创建三维曲线 Curve on Surface 创建位于曲面上的曲线 Project Curve 创建投影曲线 FreeStyle Blend Curve 创建风格桥接曲线 Styling Corner 创建风格拐角 Match Curve 创建匹配曲线 4.1.2曲面生成图标菜单组(Surface Creation) 自由风格外形设计模块为用户提供了丰富的生成曲面工具,用这些工具不仅可以方便、快捷地生成简单的平面片、拉伸面、回转面等基本曲面,还可以生成风格扫描面、网格面等复杂曲面。这些曲面生成工具包括: Planar Patch 由二点创建平面片 3-Point Patch 由三点创建平面片 4-Point Patch 由四点创建面片 Geometry Extraction 从已有几何体中提取部分几何体 Revolve创建回转面 Extrude Surface 创建拉伸面 Offset 创建偏移面

曲线曲面基本理论

第二讲曲线曲面基本理论一、概述 曲面造型(Surface Modeling)是计算机辅助几何设计(Computer Aided Geometric Design,CAGD)和计算机图形学的一项重要内容,主要研究在计算机图象系统的环境下对曲面的表示、设计、显示和分析。它起源于汽车、飞机、船舶、叶轮等的外形放样工艺,由Coons、Bezier等大师于二十世纪六十年代奠定其理论基础。经过三十多年的发展,曲面造型现在已形成了以有理B样条曲面(Rational B-spline Surface)参数化特征设计和隐式代数曲面(Implicit Algebraic Surface)表示这两类方法为主体,以插值(Interpolation)、逼近(Approximation)这二种手段为骨架的几何理论体系。 1.发展历程 形状信息的核心问题是计算机表示,既要适合计算机处理,且有效地满足形状表示与设计要求,又便于信息传递和数据交换的数学方法。象飞机、汽车、轮船等具有复杂外形产品的表面是工程中必须解决的问题。曲面造型的目的就在如此。 1963年美国波音(Boeing)飞机公司的佛格森(Ferguson)最早引入参数三次曲线(三次Hermite 插值曲线),将曲线曲面表示成参数矢量函数形式,构造了组合曲线和由四角点的位置矢量、两个方向的切矢定义的佛格森双三次曲面片,从此曲线曲面的参数化形式成为形状数学描述的标准形式。 图 Ferguson曲线 t= 0 t= 1 Q0 Q1 Q’ 0Q’ 1 图 Ferguson曲面 Q 0 0 u v Q 0 1 Q 1 0 Q 1 1

仅用端点的位置和切矢控制曲线形状是不够的,中间的形状不易控制,且切矢控制形状不直接。 1964年,美国麻省理工学院(MIT )的孔斯(Coons )用四条边界曲线围成的封闭曲线来定义一张曲面,Ferguson 曲线曲面只是Coons 曲线曲面的特例。而孔斯曲面的特点是插值,即构造出来的曲面满足给定的边界条件,例如经过给定边界,具有给定跨界导矢等等。但这种方法存在形状控制与连接问题。 图 Coons曲面 Q u v Q 0 1 Q 1 0 Q 1 1 Q(u,0) Q(u,1) Q(0,v) Q(1,v) 1964年,舍恩伯格(Schoenberg )提出了参数样条曲线、曲面的形式。 1971年,法国雷诺(Renault )汽车公司的贝塞尔(Bezier )发表了一种用控制多边形定义曲线和曲面的方法。这种方法不仅简单易用,而且漂亮地解决了整体形状控制问题,把曲线曲面的设计向前推进了一大步,为曲面造型的进一步发展奠定了坚实的基础。 但当构造复杂曲面时,Bezier 方法仍存在连接问题和局部修改问题。 同期,法国雪铁龙(Citroen )汽车公司的德卡斯特里奥(de Castelijau )也独立地研究出与Bezier 类似的方法。 1972年,德布尔(de Boor )给出了B 样条的标准计算方法。 1974年,美国通用汽车公司的戈登(Gorden )和里森费尔德(Riesenfeld )将B 样条理论用于形状描述,提出了B 样条曲线和曲面。这种方法继承了Bezier 方法的一切优点,克服了Bezier 方法存在的缺点,较成功地解决了局部控制问题,又轻而易举地在参数连续性基础上解决了连接问题,从而使自由型曲线曲面形状的描述问题得到较好解决。但随着生产的发展,B 样条方法显示出明显不足,不能精确表示圆锥截线及初等解析曲面,这就造成了产品几何定义的不唯一,使曲线曲面没有统一的数学描述形式,容易造成生产管理混乱。 1975年,美国锡拉丘兹(Syracuse )大学的佛斯普里尔(Versprill )提出了有理B 样条方法。 80年代后期皮格尔(Piegl )和蒂勒(Tiller )将有理B 样条发展成非均匀有理B 样条方法(即NURBS ),并已成为当前自由曲线和曲面描述的最广为流行的技术。 NURBS 方法的突出优点是:可以精确地表示二次规则曲线曲面,从而能用统一的数学形式表示规则曲面与自由曲面,而其它非有理方法无法做到这一点;具有可影响曲线曲面形状的权因子,使形状更宜于控制和实现;NURBS 方法是非有理B 样条方法在四维空间的直接推广,多数非有理B 样条曲线曲面的性质及其相应算法也适用于NURBS 曲线曲面,便于继承和发展。 由于NURBS 方法的这些突出优点,国际标准化组织(ISO)于1991年颁布了关于工业产品数据交换的STEP 国际标准,将NURBS 方法作为定义工业产品几何形状的唯一数学描述方法,从而使NURBS 方法成为曲面造型技术发展趋势中最重要的基础。

造型 第二章 编修自由曲面

第二章编修自由曲面(Edit Free Form Feature) 第一节曲面延伸 第二节曲面融接 第三节修整曲面

第一节 薄体延伸 说明︰在本节中,将介绍薄体的延伸、补正和增厚薄体等三项之指令说明。其中延伸的主要功能在于将已有的薄体,依照所需要的条件,做不同数值、不同方向的延伸;补正的主要功能在于将原有的薄体做正负方向的补正以产生另一薄体;增厚薄体的主要功能在于将厚度为零的薄体指定其厚度,使薄体增厚成为实体。 延伸 補正 增厚薄體 第一项 延伸﹙工具箱>造型特征>延伸﹚ 说明:在本项中,将说明如何对已有的薄体做延伸,其延伸方式包括沿切线、沿法线、成一定角度、成圆形的和依照法则控制等五种,其延伸方向皆不相同,系统将依照所定义的数值和方向作为延伸的标准。 法則控制 圓形的角度與曲面正交相切 相切(延伸>相切) 此选项用于将已有的薄体,沿切线方向延伸到一个面、边缘、或是角落,其中包括固定长度和百分比两个选项,系统将依照指定的固定长度或百分比作为延伸的长度值。

固定長度 百分比 (1)固定长度(Fixed Length):此选项用于设定延伸薄体的长度,在选取此选项后,系统将显示筛选对话框,要求选取要延伸的薄体和边缘,之后显示的对话框将要求输入延伸的长度值,系统将依照指定的长度值做延伸。下图为输入长度值的对话框。 長度 (2)百分比(Percentage):此选项依照薄体长度的百分比,设定延伸薄体的长度,在选取此选项后,系统将显示筛选对话框,要求选取边缘延伸或角落延伸。 邊緣延伸 角落延伸 〈1〉边缘延伸(Edge Extension):此选项可将薄体向边缘延伸,在选取此选项后,系统将显示筛选对话框,要求选取要延伸的薄体和边缘,之后显示的对话框将要求输入百分比值。下图为输入百分比值的对话框。 百分比 下图为边缘延伸之图标。 〈2〉角落延伸(Corner Extension):此选项可将薄体向角落延伸,在选取此选项

自由曲面

自由曲面 自由曲面简介 自由曲面是工程中最复杂而又经常遇到的曲面,在航空、造船、汽车、家电、机械制造等部门中许多零件外形,如飞机机翼或汽车外形曲面,以及模具工件表面等均为自由曲面。工业产品的形状大致上可分为两类或由这两类组成:一类是仅由初等解析曲面例如平面、圆柱面、圆锥面、球面等组成。大多数机械零件属于这一类。可以用画法几何与机械制图完全清楚表达和传递所包含的全部形状信息。另一类是不能由初等解析曲面组成,而由复杂方式自由变化的曲线曲面即所谓的自由曲线曲面组成。例如飞机,汽车,船舶的外形零件。自由型曲线曲面因不能由画法几何与机械制图表达清楚,成为摆在工程师面前首要解决的问题。 自由曲面用途 主要用于汽车拉伸模型、注模、轮机叶片、舰船螺旋桨及各种玩具成型塑料模等,随着自由曲面应用的日益广泛,对自由曲面的设计、加工越来越受到人们的关注己成为当前数控技术和CAD/CAM的主要应用和研究对象。 自由曲面特征识别方法 自由曲面特征识别方法的种类己经很多,从整体上可以将它们分为两大类,一类是基于边界匹配的特征识别方法,另一类是基于立体分解的特征识别方法。Ratnakar Sonthi在1997年提出了一种基于曲率区域表示的特征识别方法。Eelco van den Berg等在2002年提出了一种基于形状匹配的自由形状特征识别算法。 自由曲面的加工 自由曲面加工包括曲面造型、曲面光顺、轨迹规划和数控编程等。其中NC 轨迹的生成是自由曲面加工的关键,而对于形状复杂的自由曲面零件,如何解决NC轨迹生成过程中的干涉处理又是其中的关键。过程大致总结如下:首先在被加工曲面上规划刀具路径,确定合理的走刀步距,在给定的步距点上检查干

相关文档