文档库 最新最全的文档下载
当前位置:文档库 › 九年级数学旋转几何综合单元练习(Word版 含答案)

九年级数学旋转几何综合单元练习(Word版 含答案)

九年级数学旋转几何综合单元练习(Word版 含答案)
九年级数学旋转几何综合单元练习(Word版 含答案)

九年级数学旋转几何综合单元练习(Word版含答案)

一、初三数学旋转易错题压轴题(难)

1.探究:如图①和②,在四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在BC、CD 上,∠EAF=45°.

(1)如图①,若∠B、∠ADC都是直角,把ABE

△绕点A逆时针旋转90°至△ADG,使AB与AD重合,则能得EF=BE+DF,请写出推理过程;

(2)如图②,若∠B、∠D都不是直角,则当∠B与∠D满足数量关系时,仍有

EF=BE+DF;

(3)拓展:如图③,在ABC中,∠BAC=90°,AB=AC=22,点D、E均在边BC上,且∠DAE=45°.若BD=1,求DE的长.

【答案】(1)见解析;(2)∠B+∠D=180°;(3)5 3

【解析】

【分析】

(1)根据已知条件证明△EAF≌△GAF,进而得到EF=FG,即可得到答案;

(2)先作辅助线,把△ABE绕A点旋转到△ADG,使AB和AD重合,根据(1),要使EF=BE+DF,需证明△EAF≌△GAF,因此需证明F、D、G在一条直线上,即

180

ADG ADF

∠+∠=?,即180

B D

∠+∠=?;

(3)先作辅助线,把△AEC绕A点旋转到△AFB,使AB和AC重合,连接DF,根据已知条件证明△FAD≌△EAD,设DE=x,则DF=x,BF=CE=3﹣x,然后再Rt BDF中根据勾股定理即可求出x的值,即DE的长.

【详解】

(1)解:如图,

∵把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,

∴AE=AG,∠BAE=∠DAG,BE=DG,

∵∠BAD=90°,∠EAF=45°,

∴∠BAE+∠DAF=45°,

∴∠DAG+∠DAF=45°,

即∠EAF=∠GAF=45°,

在△EAF和△GAF中

AF AF

EAF GAF

AE AG

=

?

?

∠=∠

?

?=

?

∴△EAF≌△GAF(SAS),

∴EF=GF,

∵BE=DG,

∴EF=GF=BE+DF;

(2)解:∠B+∠D=180°,

理由是:

如图,把△ABE绕A点旋转到△ADG,使AB和AD重合,则AE=AG,∠B=∠ADG,∠BAE=∠DAG,

∵∠B+∠ADC=180°,

∴∠ADC+∠ADG=180°,

∴F、D、G在一条直线上,

和(1)类似,∠EAF=∠GAF=45°,

在△EAF和△GAF中

AF AF

EAF GAF

AE AG

=

?

?

∠=∠

?

?=

?

∴△EAF≌△GAF(SAS),

∴EF=GF,

∵BE=DG,

∴EF=GF=BE+DF;

故答案为:∠B+∠D=180°;

(3)解:∵△ABC中,2BAC=90°,

∴∠ABC=∠C=45°,由勾股定理得:22

AB AC

+,

如图,把△AEC 绕A 点旋转到△AFB ,使AB 和AC 重合,连接DF . 则AF=AE ,∠FBA=∠C=45°,∠BAF=∠CAE , ∵∠DAE=45°,

∴∠FAD=∠FAB+∠BAD=∠CAE+∠BAD=∠BAC ﹣∠DAE=90°﹣45°=45°, ∴∠FAD=∠DAE=45°, 在△FAD 和△EAD 中

AD AD FAD EAD AF AE =??

∠=∠??=?

∴△FAD ≌△EAD , ∴DF=DE , 设DE=x ,则DF=x , ∵BD=1,

∴BF=CE=4﹣1﹣x=3﹣x , ∵∠FBA=45°,∠ABC=45°, ∴∠FBD=90°,

由勾股定理得:222DF BF BD =+,

22(3)1x x =-+,

解得:x=53

, 即DE=

53. 【点睛】

本题综合考查三角形的性质和判定、正方形的性质应用、全等三角形的性质和判定、勾股定理等知识,解题关键在于正确做出辅助线得出全等三角形.

2.已知抛物线y=ax 2+bx-3a-5经过点A(2,5) (1)求出a 和b 之间的数量关系.

(2)已知抛物线的顶点为D 点,直线AD 与y 轴交于(0,-7) ①求出此时抛物线的解析式;

②点B 为y 轴上任意一点且在直线y=5和直线y=-13之间,连接BD 绕点B 逆时针旋转90°,得到线段BC ,连接AB 、AC ,将AB 绕点B 顺时针旋转90°,得到线段BH .截取BC 的中点F 和DH 的中点G .当点D 、点H 、点C 三点共线时,分别求出点F 和点G 的坐标.

【答案】(1)a+2b=10;(2)①y= 2x 2+4x-11,②G 1(478,91-8

+),

F 1(,,

G 2,F 2,) 【解析】 【分析】

(1)把点A 坐标代入抛物线y=ax 2+bx-3a-5即可得到a 和b 之间的数量关系;

(2)①求出直线AD 的解析式,与抛物线y=ax 2+bx-3a-5联立方程组,根据直线与抛物线有两个交点,结合韦达定理求出a ,b ,即可求出解析式;

②作AI ⊥y 轴于点I ,HJ ⊥y 轴于点J.设B (0,t ),根据旋转性质表示粗H 、D 、C 坐标,应含t 式子表示直线AD 的解析式,根据D 、H 、C 三点共线,把点C 坐标代入求出

131t -

4+=,2t -4

=,分两类讨论,分别求出G 、F 坐标。

【详解】

解:(1)把A (2,5)代入y=ax 2+bx-3a-5得4a+2b-3a-5=5 ∴a+2b=10

∴a 和b 之间的数量关系是a+2b=10 (2)①设直线AD 的解析式为y=kx+c ∵直线AD 与y 轴交于(0,-7),A (2,5) ∴2k c 5{

c -7+==解得k 6{c -7

==即直线AD 的解析式为y=6x-7

联立抛物线y=ax 2+bx-3a-5与直线AD :y=6x-7 得2

y ax +bx-3a-5

{y 6x-7

==

消去y 得ax 2+(b-6)x-3a+2=0 ∵抛物线与直线AD 有两个交点 ∴由韦达定理可得:x A +x D =b-6-a =2a 2a +,x A x D =-3a 2

a

+ ∵A (2,5)∴x A =2即x D =2a -22a +∵x D =b -2a =a-104a

2a -22a +=a-104a 解得a=2∴b=10-a

2= 4 ∴此时抛物线的解析式为y= 2x 2+4x-11

②如图所示:作AI ⊥y 轴于点I ,HJ ⊥y 轴于点J.设B (0,t ) ∵A (2,5),∴AI=2,BJ=5-t

∵AB 绕点B 顺时针旋转90°,得到线段BH ∴AB=BH ,∠ABH=90°,∠AIB=∠BJH=90° ∵∠IAB+∠IBA=90°,∠ABH+∠IBA+∠JBH=180° ∴∠IBA+∠JBH=90°即∠IAB=∠JBH ∴△AJB ≌△BJH 即AI=BJ=2,BI=IH=5-t ∴H (5-t ,t-2)

∵D (-1,-13)∴y B -y D =t+13 同理可得:C (t+13,t-1) 设DH 的解析式为y=k 1x+b 1

∴1111-k b -13{5-t k b t-2

+=+=()解得11t 11k 6-t {t 11b -13-t-6

+=

+=

即直线AD 的解析式为t 1111

y x-13-66

t t t ++=--

∵D 、H 、C 三点共线 ∴把C (t+13,t-1)代入AD t 1111y x-13-66t t t ++=--得:t 1111

t-1t 13-13-66t t t ++=+--()

整理得2t 2+31t+82=0解得131305t +=,231-305

t =

由图可知:①当131305

t +=如图1所示: 此时H (

513054,39305-4) ,C (305-21-4,35305

-4

+)

∵点G为DH中点,点F为BC中点

∴G1(47305

+

91305

-

+

),F1(

305-21

-,

33305

-

+

由图可知:当

231-305

t-

=如图2所示:

此时H(51-305

4

39-305

-

4

),C(

30521

4

+

35-305

-

4

∵点G为DH中点,点F为BC中点

∴G2(47-305

91-305

-),F2(

30521

+

33-305

-)(14分)

∴综上所述:G1(47305

8

+

91305

-

8

+

),F1(

305-21

-

8

33305

-

4

+

G2(47-305

8

91-305

-

8

),F2(

30521

8

+

33-305

-

4

)。

【点睛】

本题为含参数的二次函数问题,综合性强,难度较大,解题关键在于根据旋转性质,用含参数式子分别表示点的坐标,函数关系式,结合韦达定理,分类讨论求解。

3.已知如图1,在ABC 中,90ABC ∠=?,BC AB =,点D 在AC 上,DF AC ⊥交BC 于F ,点E 是AF 的中点.

(1)写出线段ED 与线段EB 的关系并证明;

(2)如图2,将CDF 绕点C 逆时针旋转(

)

090a α?

<

(3)将CDF 绕点C 逆时针旋转一周,如果6BC =,32CF =,直接写出线段CE 的范围.

【答案】(1)ED EB =,DE BE ⊥,证明见解析;(2)结论不变,理由见解析;

(3)最大值

92

2

=最小值

32

2

=.

【解析】

【分析】

(1)在Rt△ADF中,可得DE=AE=EF,在Rt△ABF中,可得BE=EF=EA,得证ED=EB;然后利用等腰三角形的性质以及四边形ADFB的内角和为180°,可推导得出∠DEB=90°;

(2)如下图,先证四边形MFBA是平行四边形,再证△DCB≌△DFM,从而推导出△DMB 是等腰直角三角形,最后得出结论;

(3)如下图,当点F在AC上时,CE有最大值;当点F在AC延长线上时,CE有最小值.【详解】

(1)∵DF⊥AC,点E是AF的中点

∴DE=AE=EF,∠EDF=∠DFE

∵∠ABC=90°,点E是AF的中点

∴BE=AE=EF,∠EFB=∠EBF

∴DE=EB

∵AB=BC,

∴∠DAB=45°

∴在四边形ABFD中,∠DFB=360°-90°-45°-90°=135°

∠DEB=∠DEF+∠FEB=180°-2∠EFD+180°-2∠EFB=360°-2(∠EFD+∠EFB)

=360°-2×135°=90°

∴DE⊥EB

(2)如下图,延长BE至点M处,使得ME=EB,连接MA、ME、MF、MD、FB、DB,延长MF交CB于点H

∵ME=EB,点E是AF的中点

∴四边形MFBA是平行四边形

∴MF∥AB,MF=AB

∴∠MHB=180°-∠ABC=90°

∵∠DCA=∠FCB=a

∴∠DCB=45°+a,∠CFH=90°-a

∵∠DCF=45°,∠CDF=90°

∴∠DFC=45°,△DCF是等腰直角三角形

∴∠DFM=180°-∠DFC-∠CFH=45°+a

∴∠DCB=∠DFM

∵△ABC和△CDF都是等腰直角三角形

∴DC=DF,BC=AB=MF

∴△DCB≌△DFM(SAS)

∴∠MDF=∠BDC,DB=DM

∴∠MDF+∠FDB=∠BDC+∠FDB=90°

∴△DMB是等腰直角三角形

∵点E是MB的中点

∴DE=EB,DE⊥EB

(3)当点F在AC上时,CF有最大值,图形如下:

∵BC=6,∴在等腰直角△ABC中,2

∵2,∴2

∴CE=CF+FE=CF+1

2AF92

2

当点F在AC延长线上时,CE有最小值,图形如下:

同理,CE=EF-CF

32

【点睛】

本题考查三角形的旋转变换,用到了等腰直角三角形的性质和平行四边形的性质,解题关键是构造并证明△BDM是等腰直角三角形.

4.(特例发现)如图1,在△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB,AC 为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.求证:EP=FQ.

(延伸拓展)如图2,在△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB,AC为直角边,向△ABC外作Rt△ABE和Rt△ACF,射线GA交EF于点H.若AB=kAE,AC=kAF,请思考HE与HF之间的数量关系,并直接写出你的结论.

(深入探究)如图3,在△ABC中,G是BC边上任意一点,以A为顶点,向△ABC外作任意△ABE和△ACF,射线GA交EF于点H.若∠EAB=∠AGB,∠FAC=∠AGC,AB=kAE,

AC=kAF,上一问的结论还成立吗?并证明你的结论.

(应用推广)在上一问的条件下,设大小恒定的角∠IHJ分别与△AEF的两边AE、AF分别交于点M、N,若△ABC为腰长等于4的等腰三角形,其中∠BAC=120°,且

∠IHJ=∠AGB=θ=60°,k=2;

求证:当∠IHJ在旋转过程中,△EMH、△HMN和△FNH均相似,并直接写出线段MN的最小值(请在答题卡的备用图中补全作图).

【答案】(1)证明参见解析;(2)HE=HF;(3)成立,证明参见解析;(4)证明参见解析,MN最小值为1.

【解析】

试题分析:(1)特例发现:易证△AEP≌△BAG,△AFQ≌△CAG,即可求得EP=AG,

FQ=AG,即可解题;(2)延伸拓展:过点E、F作射线GA的垂线,垂足分别为P、Q.易证△ABG∽△EAP,△ACG∽△FAQ,得到PE=AG,FQ=AG,∴PE=FQ,然后证明

△EPH≌△FQH,即可得出HE=HF;(3)深入探究:判断△PEA∽△GAB,得到PE=AG,

△AQF∽△CGA,FQ=,得到FQ=AG,再判断△EPH≌△FQH,即可得出HE=HF;(4)应用推广:由前一个结论得到△AEF为正三角形,再依次判断△MHN∽△HFN∽△MEH,即可得出结论.

试题解析:(1)特例发现,如图:

∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,

∵∠EPA=∠AGB,AE=AB,∴△PEA≌△GAB,∴PE=AG,同理,△QFA≌△GAC,

∴FQ=AG,∴PE=FQ;

(2)延伸拓展,如图:

∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,∴∠EPA=∠AGB,

∴△PEA∽△GAB,∴,∵AB=kAE,∴,∴PE=AG,同理,

△QFA∽△GAC,∴,∵AC=kAF,∴FQ=AG,∴PE=FQ,∵EP∥FQ,

∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;

(3)深入探究,如图2,

在直线AG上取一点P,使得∠EPA═∠AGB,作FQ∥PE,∵∠EAP+∠BAG=180°﹣∠AGB,∠ABG+∠BAG=180°﹣∠AGB,∴∠EAP=∠ABG,∵∠EPA=∠AGB,∴△APE∽△BGA,

∴,∵AB=kAE,∴PE=AG,由于∠FQA=∠FAC=∠AGC=180°﹣∠AGB,同理可得,

△AQF∽△CGA,∴,∵AC=kAF,∴FQ=AG,∴EP=FQ,∵EP∥FQ,

∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;

(4)应用推广,如图3,

在前面条件及结论,得到,点H是EF中点,∴AE=AF,∵∠EAB=∠AGB,

∠FAC=∠AGC∴∠EAB+∠FAC=180°∴∠EAF=360°﹣(∠EAB+∠FAC)﹣∠BAC=60°,∴△AEF 为正三角形.又H为EF中点,∴∠EHM+∠IHJ=120°,∠IHJ+∠FHN=120°,

∴∠EHM=∠FHN.∵∠AEF=∠AFE,∴△HEM∽△HFN,∴,∵EH=FH,

∴,且∠MHN=∠HFN=60°,∴△MHN∽△HFN,∴△MHN∽△HFN∽△MEH,在△HMN中,∠MHN=60°,根据三角形中大边对大角,∴要MN最小,只有△HMN是等边三角形,∴∠AMN=60°,∵∠AEF=60°,MN∴MN∥EF,∵△AEF为等边三角形,∴MN为

△AEF的中位线,∴MN min=EF=×2=1.

考点:1.几何变换综合题;2.三角形全等及相似的判定性质.

5.如图1,正方形ABCD与正方形AEFG的边AB、AE(AB<AE)在一条直线上,正方形AEFG以点A为旋转中心逆时针旋转,设旋转角为. 在旋转过程中,两个正方形只有点A 重合,其它顶点均不重合,连接BE、DG.

(1)当正方形AEFG旋转至如图2所示的位置时,求证:BE=DG;

(2)当点C在直线BE上时,连接FC,直接写出∠FCD 的度数;

(3)如图3,如果=45°,AB =2,AE=,求点G到BE的距离.

【答案】(1)证明见解析;(2)45°或135°;(3).

【解析】

试题分析:(1)根据正方形的性质可得AB=AD,AE=AG,∠BAD=∠EAG=90°,再求出

∠BAE=∠DAG,然后利用“边角边”证明△ABE和△ADG全等,根据全等三角形对应边相等证明即可.

(2)当点C在直线BE上时,可知点E与C重合或G点C与重合,据此求解即可.

(3)根据和求解即可.

试题解析:(1)如图2,∵四边形ABCD是正方形,∴AB=AD,∠BAE+∠EAD=90°.

∵四边形AEFG是正方形,∴AE=AG,∠EAD+∠DAG=90°.

∴∠BAE=∠DAG..

∴△ABE≌△ADG(SAS).

∴BE=DG..

(2)如图,当点C在直线BE上时,可知点E与C重合或G点C与重合,此时∠FCD 的度数为45°或135°.

(3)如图3,连接GB、GE.

由已知α=45°,可知∠BAE=45°.

又∵GE为正方形AEFG的对角线,∴∠AEG=45°.∴AB∥GE.

∵,∴GE =8.

∴.

过点B作BH⊥AE于点H.

∵AB=2,∴. ∴..

设点G到BE的距离为h.

∴.

∴.

∴点G到BE的距离为.

考点:1.旋转的性质;2.正方形的性质;3.全等三角形的判定和性质;4.平行的判定和性质;5.勾股定理;6.分类思想的应用.

6.如图,在直角坐标系中,已知点A(-1,0)、B(0,2),将线段AB绕点A按逆时针方向旋转90°至AC.

(1)点C的坐标为(,);

(2)若二次函数的图象经过点C.

①求二次函数的关系式;

②当-1≤x≤4时,直接写出函数值y对应的取值范围;Z_X_X_K]

③在此二次函数的图象上是否存在点P(点C除外),使△ABP是以AB为直角边的等腰直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理

由.

【答案】(1) ∴点C的坐标为(-3,1) .

(2)①∵二次函数的图象经过点C(-3,1),

∴.解得

∴二次函数的关系式为

②当-1≤x≤4时,≤y≤8;

③过点C作CD⊥x轴,垂足为D,

i) 当A为直角顶点时,延长CA至点,使,则△是以AB为直角边的等腰直

角三角形,过点作⊥轴,

∵=,∠=∠,∠=∠=90°,

∴△≌△,∴AE=AD=2,=CD=1,

∴可求得的坐标为(1,-1),经检验点在二次函数的图象上;

ii)当B点为直角顶点时,过点B作直线L⊥BA,在直线L上分别取,得到以AB为直角边的等腰直角△和等腰直角△,作⊥y轴,同理可证

△≌△∴BF=OA=1,可得点的坐标为(2, 1),经检验

点在二次函数的图象上.同理可得点的坐标为(-2, 3),经检验点不在二次函数的图象上

综上:二次函数的图象上存在点(1,-1),(2,1)两点,使得△和△

是以AB为直角边的等腰直角三角形.

【解析】

(1)根据旋转的性质得出C点坐标;

(2)①把C点代入求得二次函数的解析式;②利用二次函数的图象得出y的取值范围;

③分二种情况进行讨论.

7.阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE,

(1)在图1中证明小胖的发现;

借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:

(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;

(3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).

【答案】(1)证明见解析;(2)证明见解析;(3)∠EAF =1

2 m°.

【解析】

分析:(1)如图1中,欲证明BD=EC,只要证明△DAB≌△EAC即可;

(2)如图2中,延长DC到E,使得DB=DE.首先证明△BDE是等边三角形,再证明

△ABD≌△CBE即可解决问题;

(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到

M,使得DM=DE,连接FM、CM.想办法证明△AFE≌△AFG,可得∠EAF=∠FAG=1

2 m°.

详(1)证明:如图1中,

∵∠BAC=∠DAE , ∴∠DAB=∠EAC , 在△DAB 和△EAC 中,

AD AE DAB EAC AB AC ??

∠∠???

===, ∴△DAB ≌△EAC , ∴BD=EC .

(2)证明:如图2中,延长DC 到E ,使得DB=DE

∵DB=DE ,∠BDC=60°, ∴△BDE 是等边三角形, ∴∠BD=BE ,∠DBE=∠ABC=60°, ∴∠ABD=∠CBE , ∵AB=BC , ∴△ABD ≌△CBE , ∴AD=EC ,

∴BD=DE=DC+CE=DC+AD . ∴AD+CD=BD .

(3)如图3中,将AE 绕点E 逆时针旋转m°得到AG ,连接CG 、EG 、EF 、FG ,延长ED 到M ,使得DM=DE ,连接FM 、CM .

由(1)可知△EAB≌△GAC,

∴∠1=∠2,BE=CG,

∵BD=DC,∠BDE=∠CDM,DE=DM,∴△EDB≌△MDC,

∴EM=CM=CG,∠EBC=∠MCD,

∵∠EBC=∠ACF,

∴∠MCD=∠ACF,

∴∠FCM=∠ACB=∠ABC,

∴∠1=3=∠2,

∴∠FCG=∠ACB=∠MCF,

∵CF=CF,CG=CM,

∴△CFG≌△CFM,

∴FG=FM,

∵ED=DM,DF⊥EM,

∴FE=FM=FG,

∵AE=AG,AF=AF,

∴△AFE≌△AFG,

∴∠EAF=∠FAG=1

2 m°.

点睛:本题考查几何变换综合题、旋转变换、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会利用“手拉手”图形中的全等三角形解决问题,学会构造“手拉手”模型,解决实际问题,属于中考压轴题.

8.如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.

(1

)求证:DE ⊥AG ;

(2)正方形ABCD 固定,将正方形OEFG 绕点O 逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.

①在旋转过程中,当∠OAG′是直角时,求α的度数;

②若正方形ABCD 的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.

【答案】(1)见解析;(2)①30°或150°,②AF '的长最大值为2

22

+

,此时0315α=. 【解析】 【分析】

(1)延长ED 交AG 于点H ,易证△AOG≌△DOE,得到∠AGO=∠DEO,然后运用等量代换证明∠AHE=90°即可;

(2)①在旋转过程中,∠OAG′成为直角有两种情况:α由0°增大到90°过程中,当∠OAG′=90°时,α=30°,α由90°增大到180°过程中,当∠OAG′=90°时,α=150°;

②当旋转到A 、O 、F′在一条直线上时,AF′的长最大,AF′=AO+OF′=2

+2,此时α=315°. 【详解】

(1)如图1,延长ED 交AG 于点H,

∵点O 是正方形ABCD 两对角线的交点, ∴OA=OD ,OA ⊥OD , ∵OG=OE ,

在△AOG 和△DOE 中,

90OA OD AOG DOE OG OE =??

∠=∠=???=?

, ∴△AOG ≌△DOE , ∴∠AGO=∠DEO , ∵∠AGO+∠GAO=90°,

∴∠GAO+∠DEO=90°,

∴∠AHE=90°,

即DE⊥AG;

(2)①在旋转过程中,∠OAG′成为直角有两种情况:(Ⅰ)α由0°增大到90°过程中,当∠OAG′=90°时,

∵OA=OD=1

2

OG=

1

2

OG′,

∴在Rt△OAG′中,sin∠AG′O=OA

OG

=

1

2

∴∠AG′O=30°,

∵OA⊥OD,OA⊥AG′,

∴OD∥AG′,

∴∠DOG′=∠AG′O=30°°,

即α=30°;

(Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时,

同理可求∠BOG′=30°,

∴α=180°?30°=150°.

综上所述,当∠OAG′=90°时,α=30°或150°.

②如图3,当旋转到A. O、F′在一条直线上时,AF′的长最大,

∵正方形ABCD的边长为1,

∴OA=OD=OC=OB=

2

2

∵OG=2OD,

∴2,∴OF′=2,

九年级数学旋转几何综合专题练习(解析版)

九年级数学旋转几何综合专题练习(解析版) 一、初三数学旋转易错题压轴题(难) 1.探究:如图①和②,在四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在BC、CD 上,∠EAF=45°. (1)如图①,若∠B、∠ADC都是直角,把ABE △绕点A逆时针旋转90°至△ADG,使AB与AD重合,则能得EF=BE+DF,请写出推理过程; (2)如图②,若∠B、∠D都不是直角,则当∠B与∠D满足数量关系时,仍有 EF=BE+DF; (3)拓展:如图③,在ABC中,∠BAC=90°,AB=AC=22,点D、E均在边BC上,且∠DAE=45°.若BD=1,求DE的长. 【答案】(1)见解析;(2)∠B+∠D=180°;(3)5 3 【解析】 【分析】 (1)根据已知条件证明△EAF≌△GAF,进而得到EF=FG,即可得到答案; (2)先作辅助线,把△ABE绕A点旋转到△ADG,使AB和AD重合,根据(1),要使EF=BE+DF,需证明△EAF≌△GAF,因此需证明F、D、G在一条直线上,即 180 ADG ADF ∠+∠=?,即180 B D ∠+∠=?; (3)先作辅助线,把△AEC绕A点旋转到△AFB,使AB和AC重合,连接DF,根据已知条件证明△FAD≌△EAD,设DE=x,则DF=x,BF=CE=3﹣x,然后再Rt BDF中根据勾股定理即可求出x的值,即DE的长. 【详解】 (1)解:如图, ∵把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合, ∴AE=AG,∠BAE=∠DAG,BE=DG, ∵∠BAD=90°,∠EAF=45°,

∴∠BAE+∠DAF=45°, ∴∠DAG+∠DAF=45°, 即∠EAF=∠GAF=45°, 在△EAF和△GAF中 AF AF EAF GAF AE AG = ? ? ∠=∠ ? ?= ? ∴△EAF≌△GAF(SAS), ∴EF=GF, ∵BE=DG, ∴EF=GF=BE+DF; (2)解:∠B+∠D=180°, 理由是: 如图,把△ABE绕A点旋转到△ADG,使AB和AD重合,则AE=AG,∠B=∠ADG,∠BAE=∠DAG, ∵∠B+∠ADC=180°, ∴∠ADC+∠ADG=180°, ∴F、D、G在一条直线上, 和(1)类似,∠EAF=∠GAF=45°, 在△EAF和△GAF中 AF AF EAF GAF AE AG = ? ? ∠=∠ ? ?= ? ∴△EAF≌△GAF(SAS), ∴EF=GF, ∵BE=DG, ∴EF=GF=BE+DF; 故答案为:∠B+∠D=180°; (3)解:∵△ABC中,2BAC=90°, ∴∠ABC=∠C=45°,由勾股定理得:22 AB AC +,

北京中考数学专题复习旋转的综合题

一、旋转真题与模拟题分类汇编(难题易错题) 1.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG. (1)请问EG与CG存在怎样的数量关系,并证明你的结论; (2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?(请直接写出结果,不必写出理由) 【答案】(1)证明见解析(2)证明见解析(3)结论仍然成立 【解析】 【分析】 (1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG. (2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明 △AMG≌△ENG,得出AG=EG;最后证出CG=EG. (3)结论依然成立. 【详解】 (1)CG=EG.理由如下: ∵四边形ABCD是正方形,∴∠DCF=90°.在Rt△FCD中,∵G为DF的中点,∴CG=1 2 FD, 同理.在Rt△DEF中,EG=1 2 FD,∴CG=EG. (2)(1)中结论仍然成立,即EG=CG. 证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点. 在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG(SAS),∴AG=CG; 在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG (ASA),∴MG=NG. ∵∠EAM=∠AEN=∠AMN=90°,∴四边形AENM是矩形,在矩形AENM中,AM=EN.在△AMG与△ENG中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG=CG.

旋转类几何变换

旋转类几何变换 一几何变换——旋转 旋转中的基本图形 利用旋转思想构造辅助线 ? ? ? (一)共顶点旋转模型(证明基本思想“SAS”) 等边三角形共顶点 共顶点等腰直角三角形 共顶点等腰三角形 共顶点等腰三角形 以上给出了各种图形连续变化图形,图中出现的两个阴影部分的三角形是全等三角形,此模型需要注意的是利用“全等三角形”的性质进行边与角的转化 自检自查必考点

二 利用旋转思想构造辅助线 (1)根据相等的边先找出被旋转的三角形 (2)根据对应边找出旋转角度 (3)根据旋转角度画出对应的旋转的三角形 三 旋转变换前后具有以下性质: (1)对应线段相等,对应角相等 (2)对应点位置的排列次序相同 (3)任意两条对应线段所在直线的夹角都等于旋转角θ. 考点一 旋转与最短路程 ?考点说明:旋转与最短路程问题主要是利用旋转的性质转化为两点之间线段最短的问题,同时与旋转有关路程最短的问题,比较重要的就是费马点问题,涉及费马点问题,视学生程度进行选择性讲解。 【例1】 如图,四边形ABCD 是正方形,ABE ?是等边三角形,M 为对角线BD 上任意一点,将BM 绕点B 逆时针旋转60?得到BN ,连接AM 、CM 、EN . ⑴求证:AMB ENB ??≌ ⑵①当M 点在何处时,AM CM +的值最小; ②当M 点在何处时,AM BM CM ++的值最小,并说明理由; ⑶当AM BM CM ++的最小值为31+时,求正方形的边长. 中考满分必做题 E N M D C B A

【例2】 阅读下列材料 对于任意的ABC ?,若三角形内或三角形上有一点P ,若PA PB PC ++有最小值,则取到最小值时,点P 为该三角形的费马点。 ①若三角形内有一个内角大于或等于120?,这个内角的顶点就是费马点 ②若三角形内角均小于120?,则满足条件120APB BPC APC ∠=∠=∠=?时,点P 既为费马点 解决问题: ⑴如图,ABC ?中,三个内角均小于120?,分别以AB 、AC 为边向外作等边ABD ?、ACE ?,连接CD 、BE 交于点P , 证明:点P 为ABC ?的费马点。(即证明120APB BPC APC ∠=∠=∠=?)且PA PB PC CD ++= P E D C B A Q A B C D E P ⑵如图,点Q 为三角形内部异于点P 的一点,证明:QA QC QB PA PB PC ++>++ ⑶若30ABC ∠=?,3AB =,4BC =,直接写出PA PB PC ++的最小值 考点二 利用旋转求点的坐标 ?考点说明:利用全等三角形的性质进行边与角的转化。 【例3】 正方形ABCD 在坐标系中的位置如图所示,将正方形ABCD 绕D 点顺时针方向旋转90?后,B 点 的坐标为( ) A.(22)-, B.(41), C.(31), D.(40), 【例4】 如图,在平面直角坐标系中,Rt OAB ?的顶点A 的坐标为(31),, 若将OAB ?绕点O 逆时针旋转60?后,B 点到达'B 点,则'B 点的坐标是________ D C B A O y x y x B A O

中考数学几何旋转压轴题

中考数学几何旋转压轴 题 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

中考数学几何旋转综合题 1、已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG . (1)求证:EG =CG ; (2)将图①中△BEF 绕B 点逆时针旋转45o ,如图②所示,取DF 中点G ,连接EG ,CG .问(1)中的结论是否仍然成立若成立,请给出证明;若不成立,请说明理由. (3)将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立通过观察你还能得出什么结论(均不要求证明) 2. 在△ABC 中,=BC =2,∠ABC =120°,将△ABC 绕点B 顺时针旋转角(0°<<90°)得△A 1BC 1,A 1交AC 于点E ,A 1C 1分别交AC ,BC 于D ,F 两点. (1)如图22-4(a),观察并猜想,在旋转过程中,线段EA 1与FC 是怎样的数量关系?并证明你的结论; 图23-4(a) (2)如图23-4(b),当=30°时,试判断四边形BC 1DA 的形状,并说明理由; 图23-4(b) (3)在(2)的情况下,求ED 的长. 3. 如图23-8(a),若△ABC 和△ADE 为等边三角形,M ,N 分别为EB ,CD 的中点,易证:CD =BE ,△AMN 是等边三角形. 图23-8 (1)当把△ADE 绕A 点旋转到图23-8(b)的位置时,D ,E ,B 三点共线,CD =BE 是否仍然成立?若成立请证明;若不成立请说明理由; (2)当△ADE 绕A 点旋转到图23-8(c)的位置时,D ,E ,B 三点不共线,△AMN 是否还是等边三角形?若是,请给出证明;并求出当AB =2AD 时,△ADE 与△ABC 及△AMN 的面积之比;若不是,请说明理由. 4. 如图23-9(a),在平面直角坐标系中,O 为坐标原点,点A 的坐标为(-8,0),直线BC 经过点B (-8,6),C (0,6),将四边形OABC 绕点O 按顺时针方向旋转得到四边形OA ′B ′C ′,此时直线OA ′,直线B ′C ′分别与直线BC 相交于点P ,Q . 图23-9 (1)四边形OABC 的形状是______, 当=90°时, BQ BP 的值是______; (2)①如图23-9(b),当四边形OA ′B ′C ′的顶点B ′落在y 轴的正半轴上时,求 BQ BP 的值; A D E G D F A D C E G F A C E

初三数学旋转单元测试题

初三数学旋转综合知识点检测题 一、选择题 1.将叶片图案旋转180°后,得到的图形是( ) 2.如图,在等腰直角△ABC中,B=90°,将△ABC绕顶点A逆时针方向旋转60°后得到△AB′C′,则等于() °°°° 3.如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在位置,A 点落在位置,若,则的度数是( ) °°°° 4.在平面直角坐标系中,A点坐标为(3,4),将OA绕原点O逆时针旋转90°得 到OA′,则点A′的坐标是( ) A.(-4,3) B.(-3,4) C.(3,-4) D.(4,-3) 5.在平面直角坐标系中,将点A1(6,1)向左平移4个单位到达点A2的位置,再向上平移3个单位到达点A3的位置,△A1A2A3绕点A2逆时针方向旋转900,则旋转后A3的坐标为( ) A.(-2,1) B.(1,1) C.(-1,1) D.(5,1) 6.如图,8×8方格纸上的两条对称轴EF、MN相交于中心点O,对△ABC分别作下列变换: ①先以点A为中心顺时针方向旋转90°,再向右平移4格、向上平移4格; ②先以点O为中心作中心对称图形,再以点A的对应点为中心逆时针方向旋转90°; ③先以直线MN为轴作轴对称图形,再向上平移4格,再以点A的对应点为中心顺时针方向旋转90°. 其中,能将△ABC变换成△PQR的是( )

A.①② B.①③ C.②③ D.①②③ 7.在下列四个图案中,既是轴对称图形,又是中心对称图形的是( ) 8.如图,边长为1的正方形绕点逆时针旋转到正方形, 图中阴影部分的面积为( ) A. B. C. D. 二、填空题 9.写出两个你熟悉的中心对称的几何图形名称,它们是____________. 10.如图所示的五角星绕中心点旋转一定的角度后能与自身完全重合,则其旋转的角度至少为 _____________. 11.△ABC是等边三角形,点O是三条中线的交点,△ABC以点O为旋转中心,旋转____________度后能与原来的图形重合 12.如图,若将△ABC绕点O顺时针旋转180°后得到△A′B′C′,则A点 的对应点A′点的坐标是 _____________. 13.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转60°得 点P1,延长OP1到点P2,使OP2=2OP1,再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐 标是__________.

几何变换之旋转

【例1】 如图,在Rt ABC ?中,AB AC AD BC =⊥,,垂足为D .E F 、分别是CD AD 、上 的点,且CE AF =.如果62AED ∠=?,那么DBF ∠=__________. F C B A 【答案】28? 【例2】 E 、F 分别是正方形ABCD 的BC 、CD 边上的点,且BE CF =.求证:AE BF ⊥. P F E D C B A 【答案】在ABE ?和BCF ?中 AB BC ABE BCF BE CF =?? ∠=∠??=? ∴ABE BCF ??≌ ∴BAE CBF ∠=∠ ∵90BAE AEB ∠+∠=? ∴90CBF AEB ∠+∠=? ∴AE BF ⊥ 【例3】 E 、F 、 G 分别是正方形ABCD 的BC 、CD 、AB 边上的点,GE EF ⊥,GE EF =.求证:BG CF BC +=. G A B C D E F 【例4】 如图,矩形ABCD 中,E 是AD 上一点,CE EF ⊥交AB 于F 点,若2DE =,矩 形周长为16,且CE EF =,求AE 的长. E D C B F A 【答案】∵FE EC ⊥,∴90AEF DEC ∠+∠=?. ∵90AEF AFE ∠+∠=?, ∴AFE DEC ∠=∠. 在三角形AFE 与DEC ?中,FE CE =,90A D ∠=∠=?, AFE DEC ∠=∠, ∴AFE DEC ??≌. ∴AE DC =.

∵矩形周长为16, ∴8AD DC +=. ∵AD AE DE =+, ∴且2DE =.∴28AE DE =-. 即3AE = 【例5】 如图,已知ABC ?中,90ABC AB BC ∠=?=,,三角形的顶点在相互平行的三条直 线123l l l ,,上,且12l l ,之间的距离为2,23l l ,之间的距离为3,则AC 的长是______. C B A l 3 l 2 l 1 【答案】 【例6】 两个全等的30?、60?的三角板ADE 、BAC ,如右下图所示摆放,E 、A 、C 在 一条直线上,连结BD .取BD 的中点M ,连结ME 、MC ,试判断EMC ?的形状,并说明理由. M E D C B A 【解析】判断EMC ?是等腰直角三角形.理由: 如图,连结AM . D M B C A E ∵30DAE ∠=?,60BAC ∠=?,∴90DAB ∠=? ∵ADE BAC ??≌,∴AD AB = 又∵M 是BD 的中点,∴AM DM BM == ∴45ADM MAB ∠=∠=? ∴6045105EDM EDA ADM ∠=∠+∠=?+?=? ∴4560105MAC MAB BAC ∠=∠+∠=?+?=? ∴EDM MAC ∠=∠ ∵ED CA =,∴EDM CAM ??≌ ∴EM CM =,DME AMC ∠=∠ 而90DME EMA ∠+∠=?,∴90AMC EMA ∠+∠=? 即90EMC ∠=?,∴EMC ?是等腰直角三角形.

九年级上数学旋转专题

九年级上数学《旋转》复习专题 班级:姓名: 【知识点梳理】 1、旋转:在平面内,将一个图形绕一个图形按某个方向转动一个角度,这样的运动叫做图形的旋转。这个定点叫做,转动的角度叫做。 练习1: 在右边四个图形中,既是轴对称图形又是中心对称图形的是() A.①②③④ B.③ C.①③ D.①③④ 练习2: 如图,该图形围绕自己的旋转中心,按下列角度旋转后,不能 ..与其自身重合的是() A.72° B.108° C.144° D.216° 练习 3: 如图,将正方形图案绕中心O旋转180°后,得到的图案是( ) 2、旋转的性质 (1)对应点到的距离相等。 (2)对应点与旋转中心所连线段的夹角等于。 )旋转前后两个图形 练习4: 如图1,P是正△ABC内的一点,若将△PBC绕点B旋转到△P’BA,则∠PBP’的度数是() B.60° C.90° D.120° 练习5: ABCD是正方形,△ADE旋转后能与△ABF重合.则旋转中心是,旋转角等于度,如果连接EF,那么△AEF是

3 3 2 3、中心对称图形与中心对称: (1)中心对称图形:如果把一个图形绕着某一点旋转度后能与自身重合,那么我们就说,这个图形成中心对称图形。 (2)中心对称:如果把一个图形绕着某一点旋转度后能与重合,那么我们就说,这两个图形成中心对称。 注意:中心对称和中心对称图形的区别 (3)中心对称的性质: 关于中心对称的两个图形。 关于中心对称的两个图形,对称点连线都经过心,并且被心平分。关于中心对称的两个图形,对应线段(或者在同一直线上)且。 练习6:如图是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,BC=1,则BB’的长为() A.4 B. C. D. 3 3 4 4、坐标系中对称点的特征 (1)关于原点对称的点的特征 两个点关于原点对称时,它们的坐标的符号,即点P(x,y)关于原点的对称点为P’(,) (2)关于x轴对称的点的特征 两个点关于x轴对称时,它们的坐标中,x,y的符号,即点P(x,y)关于x轴的对称点为P’() (3)关于y轴对称的点的特征 两个点关于y轴对称时,它们的坐标中,y,,x的符号,即点)关于y轴的对称点为P’() 练习7:在平面直角坐标系中,点A的坐标是(﹣6,8),则点A关于x轴对称的点的坐标是,点A关于y轴对称的点的坐标是,点A关于原点对称的点的坐标是.【巩固练习】 一、选择题: 1、下列图形中,中心对称图形的是() A. B. C. D. 2、下列图形中,是轴对称图形而不是中心对称图形的是() A.等边三角形 B.矩形 C.平行四边形 D.菱形 3、将方格纸中的图形(如图所示)绕点O沿顺时针方向旋转90°后,得到的图形是 30° A C B’ B C’ 3 3

九年级数学旋转几何综合易错题(Word版 含答案)

九年级数学旋转几何综合易错题(Word 版 含答案) 一、初三数学 旋转易错题压轴题(难) 1.已知如图1,在ABC 中,90ABC ∠=?,BC AB =,点D 在AC 上,DF AC ⊥交BC 于F ,点E 是AF 的中点. (1)写出线段ED 与线段EB 的关系并证明; (2)如图2,将CDF 绕点C 逆时针旋转( ) 090a α? <

∴∠DAB=45° ∴在四边形ABFD中,∠DFB=360°-90°-45°-90°=135° ∠DEB=∠DEF+∠FEB=180°-2∠EFD+180°-2∠EFB=360°-2(∠EFD+∠EFB) =360°-2×135°=90° ∴DE⊥EB (2)如下图,延长BE至点M处,使得ME=EB,连接MA、ME、MF、MD、FB、DB,延长MF交CB于点H ∵ME=EB,点E是AF的中点 ∴四边形MFBA是平行四边形 ∴MF∥AB,MF=AB ∴∠MHB=180°-∠ABC=90° ∵∠DCA=∠FCB=a ∴∠DCB=45°+a,∠CFH=90°-a ∵∠DCF=45°,∠CDF=90° ∴∠DFC=45°,△DCF是等腰直角三角形 ∴∠DFM=180°-∠DFC-∠CFH=45°+a ∴∠DCB=∠DFM ∵△ABC和△CDF都是等腰直角三角形 ∴DC=DF,BC=AB=MF ∴△DCB≌△DFM(SAS) ∴∠MDF=∠BDC,DB=DM ∴∠MDF+∠FDB=∠BDC+∠FDB=90° ∴△DMB是等腰直角三角形 ∵点E是MB的中点 ∴DE=EB,DE⊥EB (3)当点F在AC上时,CF有最大值,图形如下:

初中数学竞赛辅导几何变换(旋转)

第2讲几何变换——旋转 典型例题 【例1】C是线段AE上的点,以AC、CE为边在线段AE的同侧作等边三角形ABC、CDE, △是等设AD的中点是M,BE的中点是N,连结MN、MC、NC,求证:CMN 边三角形.Array【例2】如图,两个正方形ABCD和AKLM有一个公共点A.求证:这两个正方形的中心以 及线段BM,DK的中点是某正方形的顶点. L

【例3】 已知:如图,ABC △、CDE △、EHK △都在等边三角形,且A 、D 、K 共线, AD DK =.求证:HBD △也是等边三角形. 【例4】 ABC △是等边三角形,P 是AB 边的中点,Q 是AC 边的中点,R 为BC 边的中点, M 为RC 上任意一点,且PMS △是等边三角形,S 与Q 在PM 的同侧,求证: RM QS =. E C H D B A Q ? S M P C B A R

【例5】 ABCD 是正方形,P 是ABCD 内一点,1PA =,3PB = ,PD =求正方形ABCD 的面积. 【例6】 P 是等边三角形ABC 内的一点,6PA =,8PB =,10PC =.求ABC △的边长. D

【例7】 设O 是等边ABC △内一点,已知115AOB ?∠=,125BOC ?∠=,求以线段OA 、OB 、 OC 为边所构成的三角形的各内角大小. 【例8】 如图,在ABC △中,90ACB ?∠=,AC BC =,P 是ABC △内一点,3PA =,1PB =, 2PC =,求BPC ∠. A P C

如图,已知ABC △中,90A =,AB AC =,D 为BC 上一点,求证:2222BD DC AD +=. 【例9】 如图,在等腰直角ABC △中,90ACB ?∠=,CA CB =,P 、Q 在斜边AB 上,且 45PCQ ?∠=,求证:222PQ AP BQ =+. A D C B A Q B C P

神奇的旋转几何题

例1.有公共顶点C 的△ABC 和△CDE 都是等边三角形. (1)求证:AD=BE ; (2)如果将△CDE 绕点C 沿顺时针方向旋转一个任意角,AD=BE 还成立吗? 推广:四边形ABDE 和ACFG 都是正方形,连结EC,BG ,如果将ABDE 绕点A 旋转一个任意角,问EC 与BG 有何关系. 例2.课本例题推广: (1)如图,在四边形ABCD 中,AB =AD ,∠BAD=∠BCD=90°,且四边形ABCD 的面积36,求线段BC 与CD 的和. (2)已知:在五边形ABCDE 中,AB =AE ,BC +DE =CD ,∠ABC +∠AED =180°. 求证:AD 是∠CDE 的平分线. (3)如图,在梯形ABCD 中,AD ∥BC ,且BC >AD ;∠D =90°,BC =CD =12,∠ABE =45°.若AE =10,求CE 的长. 例3.已 知E 、F 分别在正方形ABCD 边AB 和BC 上,AB=1,∠EDF=45°.求 △BEF 的周长. 例4.已知:在△ACB 中,∠ACB =90°,AC =BC ,D 、E 在AB 边上,且使得∠DCE =45°.求证:AD 、DE 、EB 三条线段确定的数 量关系 练习: 1. 在△ABC 中,AB=AC ,如图,∠BAC=90°,∠DAE=45°,BD=2,CE=3 . 求DE 的长. 拓展:如图,在等腰三角形ABC 中,AB=AC , (1)P 是三角形内的一点,且∠APB=∠APC .求证:PB=PC . (2)D 是三角形内一点,若∠ADB >∠ADC .求证∠DBC >∠DCB . (3)若P 为正方形ABCD 内一点,PA ∶PB ∶PC=1∶2∶3.试证∠APB=135° P C B A D C B A F E D C B A 2.(正方形中的三角形旋转)已知:如图,E 是正方形ABCD 边BC 上任意一点,AF 平分∠EAD 交CD 于F , F C M A E D C B A

九年级上数学旋转讲义(供参考)

D B 旋转 1、旋转的定义:把一个平面图形绕平面内 转动 就叫做图形的旋转。 旋转的三要素:旋转 ;旋转 ;旋转 旋转的基本性质: (1)对应点到 的距离相等。 (2)每一组对应点与旋转中心所连线段的夹角相等都等于 (3)旋转前后的两个图形是 2、 旋转作图基本步骤: ○ 1明确旋转三要素:______________、______________、_______________ ○ 2找出原图形中的各顶点在新图形中的对应点的位置。 ○ 3按原图形中各顶点的排列规律,将这些对应点连成一个新的图形。 3、中心对称:把一个图形绕着某一个点旋转?180,如果它能够与 重合, 那么就说 关于这个点对称或中心对称。这个点叫做对称中心。 性质:(1)中心对称的两个图形,对称点所连线段都经过 ,而且被对称中心 。 (2)中心对称的两个图形是 图形。 4、中心对称图形:把一个图形绕着某一个点旋转?180,如果旋转后的图形能够与 完全重合,那么这个图形叫做中心对称图形。 中心对称、中心对称图形是两个不同的概念,它们既有区别又有联系。 区别:中心对称是针对 图形而言的,而中心对称图形指是 图形。 联系:把中心对称的两个图形看成一个“整体”,则成为 。把中心对称图形的两个部分看成“两个图形”,则它们 。 5、 利用尺规作关于中心对称的图形: ○ 1明确对称中心的位置 ○ 2利用“对应点的连线被对称中心平分”的特性,分别找出原图形中各个关键点的对应点 ○ 3按原图形中各点的次序,将各对应点连接起来 6、点(x ,y )关于x 轴对称后是( , )

点( , )关于y 轴对称后是(-x ,y ) 点(x ,y )关于原点对称后是( , ) 第二部分:例题剖析 例题1、如图,根据要求画图. (1)把△ABC 向右平移5个方格,画出平移的图形. (2)以点B 为旋转中心,把△ABC 顺时针方向旋转90 度,画出旋转后的图形. 例题2、如图,已知P 是正方形ABCD 内一点,PA=1,PB=2, PC=3,以点B 为旋转中心,将△ABP 沿顺时针方向旋转, 使点A 与点C 重合,这时P 点旋转到G 点. (1)请画出旋转后的图形,并说明此时△ABP 以点B 为旋转中心旋转了多少度? (2)求出PG 的长度; (3)请你猜想△PGC 的形状,并说明理由. 第三部分:典型例题 例题1、如图,在画有方格图的平面直角坐标系中,△ABC 的三个顶点均 在格点上. (1)填空:△ABC 是 ________三角形,它的面积等于_______平方单 位; (2)将△ACB 绕点B 顺时针方向旋转90°,在方格图中用直尺画出旋转 后对应的△A′C′B ,则A′点的坐标是(, ),C′点的坐标是( , ). 【变式练习】 1、如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (-2,-1)、 B (-1,1)、 C (0,-2). (1)点B 关于坐标原点O 对称的点的坐标为_______ (2)将△ABC 绕点C 顺时针旋转90°,画出旋转后得到的△A 1B 1C ; (3)求过点B 1的反比例函数的解析式. 2、如图,在由边长为1的小正方形组成的方格纸中,有两个全等的 三角形,即111A B C △和222A B C △. (1)请你指出在方格纸内如何运用平移、旋转变换,将111A B C △重 合到222A B C △上; (2)在方格纸中将111A B C △经过怎样的变换后可以与222A B C △成 中心对称图形?画出变换后的三角形并标出对称中心. 例题2、如图,在Rt △ABC 中,∠ABC=90°,点D 在BC 的延长线上,且BD=AB ,过点B 作BE ⊥AC ,

中考数学初中数学 旋转(大题培优)及详细答案

中考数学初中数学 旋转(大题培优)及详细答案 一、旋转 1.已知正方形ABCD 的边长为4,一个以点A 为顶点的45°角绕点A 旋转,角的两边分别与BC 、DC 的延长线交于点E 、F ,连接EF ,设CE =a ,CF =b . (1)如图1,当a =42时,求b 的值; (2)当a =4时,在图2中画出相应的图形并求出b 的值; (3)如图3,请直接写出∠EAF 绕点A 旋转的过程中a 、b 满足的关系式. 【答案】(1)422)b =8;(3)ab =32. 【解析】 试题分析:(1)由正方形ABCD 的边长为4,可得AC =2 ,∠ACB =45°. 再CE =a =2∠CAE =∠AEC ,从而可得∠CAF 的度数,既而可得 b=AC ; (2)通过证明△ACF ∽△ECA ,即可得; (3)通过证明△ACF ∽△ECA ,即可得. 试题解析:(1)∵正方形ABCD 的边长为4,∴AC =2,∠ACB =45°. ∵CE =a =2∴∠CAE =∠AEC = 452 ? =22.5°,∴∠CAF =∠EAF -∠CAE =22.5°,∴∠AFC =∠ACD -∠CAF =22.5°,∴∠CAF =∠AFC ,∴b=AC =CF =42 (2)∵∠FAE =45°,∠ACB =45°,∴∠FAC +∠CAE =45°,∠CAE +∠AEC =45°,∴∠FAC =∠AEC . 又∵∠ACF =∠ECA =135°,∴△ACF ∽△ECA ,∴AC CF EC CA =,∴42442 =∴CF =8,即b =8. (3)ab =32. 提示:由(2)知可证△ACF ∽△ECA ,∴∴ AC CF EC CA =,∴4242 =,∴ab =32. 2.(探索发现) 如图,ABC ?是等边三角形,点D 为BC 边上一个动点,将ACD ?绕点A 逆时针旋转 60?得到AEF ?,连接CE .小明在探索这个问题时发现四边形ABCE 是菱形. 小明是这样想的:

初中数学几何专题旋转

初中数学几何专题——旋转 一.选择题(共5小题) 1.如图,ABCD是矩形纸片,翻折∠B,∠D,使AD,BC边与对角线AC重叠,且顶点B,D恰好落在同一点O上,折痕分别是CE,AF,则等于() A.B.2 C.D. 2.下列轴对称图形中,只用一把无刻度的直尺不能画出对称轴的是()A.菱形B.矩形C.等腰梯形D.正五边形 3.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为() A.4 B.8 C.16 D.8 4.如图,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,已知∠AP′B=135°,P′A:P′C=1:3,则P′A:PB=() A.1: B.1:2 C.:2 D.1: 5.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,则它们的公共部分的面积等于() A.1﹣ B.1﹣ C.D. 二.填空题(共5小题) 6.如图,矩形ABCD中,AB=4,BC=8,E为CD的中点,点P、Q为BC上两个动点,且PQ=3,当CQ= 时,四边形APQE的周长最小. 7.如图,在平面直角坐标系中有一矩形ABCD,其中A(0,0),B (8,0),D (0,4),若将△ABC沿AC所在直线翻折,点B落在点E处.则E点的坐标是.

8.如图,将等边△ABC沿BC方向平移得到△A 1B 1 C 1 .若BC=3,,则BB 1 = . 9.已知一个直角三角板PMN,∠MPN=30°,MN=2,使它的一边PN与正方形ABCD 的一边AD重合(如图放置在正方形内)把三角板绕点P旋转,使点M落在直线BC上一点F处,则CF的长为. 10.如图,在矩形ABCD中,AB=9,AD=3,E为对角线BD上一点,且DE=2BE,过E作FG⊥BD,分别交AB、CD于F、G.将四边形BCGF绕点B旋转180°,在此过程中,设直线GF分别与直线CD、BD交于点M、N,当△DMN是以∠MDN为底角的等腰三角形时,则DN的长是. 三.解答题(共6小题) 14.已知,直角三角形ABC中,∠C=90°,点D、E分别是边AC、AB的中点,BC=6.(1)如图1,动点P从点E出发,沿直线DE方向向右运动,则当EP= 时,四边形BCDP是矩形; (2)将点B绕点E逆时针旋转. ①如图2,旋转到点F处,连接AF、BF、EF.设∠BEF=α°,求证:△ABF是直角三角形; ②如图3,旋转到点G处,连接DG、EG.已知∠BEG=90°,求△DEG的面积. 15.问题发现:如图1,△ABC是等边三角形,点D是边AD上的一点,过点D 作DE∥AC交AC于E,则线段BD与CE有何数量关系 拓展探究:如图2,将△ADE绕点A逆时针旋转角α(0°<α<360°),上面的结论是否仍然成立如果成立,请就图中给出的情况加以证明. 问题解决:如果△ABC的边长等于2,AD=2,直接写出当△ADE旋转到DE与AC 所在的直线垂直时BD的长. 16.如图,正方形ABCD的面积为4,对角线交于点O,点O是正方形A 1B 1 C 1 O的

九年级数学: 旋转基础知识及专题练习(含答案)

旋转及综合专题 一、旋转相关定义 1、定义:把一个图形绕着某一点 O 转动一个角度的图形变换叫做旋转,点 O 叫做旋转中心,转 动的角叫做旋转角。 2、如果图形上的点 P 经过旋转变为 P 1 ,那么这两个点叫做这个旋转的对应点。 3、(1)对应点到旋转中心的距离相等,即旋转中心在对应点所连线段的垂直平分线上; (2)对应点与旋转中心所连线段的夹角等于旋转角; (3)旋转前、后图形全等。 4、把一个图形绕着某一点旋转180? ,如果它能够与另一个图形重合,那么就说这两个图形关于 这个点对称或中心对称,这个点叫做对称中心。这两个图形的对称点叫做关于中心的对称点。 5、(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心平分; (2)关于中心对称的两个图形是全等图形。 6、把一个图形绕着某一点旋转180? ,如果旋转后的图形能够与原来的图形重合,那么这个图形 叫做中心对称图形,这个点就是它的对称中心。 二、旋转相关结论 如 图 , 将 ?ABC 绕 点 A 逆 时 针 旋 转 α 角 到 ?AB 1C 1 。点 B 和点 B 1 为对应点,点 C 和C 1 为对 应点。 结论 1:旋转中心为对应点所连线段垂直平分 线的交点,也即对应点所连线段的垂直平分线 均经过旋转中心。如图,线段 BB 1 的垂直平分 线l 1 、线段CC 1 的垂直平分线l 2 都经过旋转中心 点 A 。利用这个结论我们可以利用对应点坐标 求出旋转中心的坐标。由于对应点所连线段的 垂直平分线均经过旋转中心,因此只需求出两 组对应点所连线段的垂直平分线解析式,然后 联立即可求出旋转中心坐标。 结论 2:对应点与旋转中心所构成的三角形均为等腰三角线,且等腰三角形顶角均等于旋转角α。 如图, ?ABB 1 和 ?ACC 1 均为等腰三角形, ∠BAB 1 = ∠CAC 1 = α。

(完整版)中考数学专题训练旋转模型几何变换的三种模型手拉手、半角、对角互补

几何变换的三种模型手拉手、半角、对角互补 ?????? ?? ?? ??? ???? ? ????????等腰三角形手拉手模型等腰直角三角形(包含正方形)等边三角形(包含费马点)特殊角旋转变换对角互补模型一般角特殊角角含半角模型一般角 等线段变换(与圆相关) 【练1】 (2013北京中考)在ABC △中,AB AC =,BAC α∠=(060α?<

【练2】 (2012年北京中考)在ABC △中,BA BC BAC α=∠=, ,M 是AC 的中点,P 是线段上的动点,将线段PA 绕点P 顺时针旋转2α得到线段PQ . (1)若α=60?且点P 与点M 重合(如图1),线段CQ 的延长线交射线BM 于点D ,请补全图形,并写出CDB ∠的度数; (2)在图2中,点P 不与点B M ,重合,线段CQ 的延长线与射线BM 交于点D ,猜 想CDB ∠的大小(用含α的代数式表示),并加以证明; (3)对于适当大小的α,当点P 在线段BM 上运动到某一位置(不与点B ,M 重合)时,能使得线段CQ 的延长线与射线BM 交于点D ,且PQ QD =,请直接写出α的范围.

例题精讲 考点1:手拉手模型:全等和相似 包含:等腰三角形、等腰直角三角形(正方形)、等边三角形伴随旋转出全等,处于各种位置的旋转模型,及残缺的旋转模型都要能很快看出来 (1)等腰三角形旋转模型图(共顶点旋转等腰出伴随全等) (2)等边三角形旋转模型图(共顶点旋转等边出伴随全等) (3)等腰直角旋转模型图(共顶点旋转等腰直角出伴随全等) (4)不等边旋转模型图(共顶点旋转不等腰出伴随相似)

初中数学旋转解题几何

旋转基础练习一 一、选择题 1.在26 个英文大写字母中,通过旋转180°后能与原字母重合的有()A.6 个B.7 个C.8 个D.9 个 2.从 5 点15 分到 5 点20 分,分针旋转的度数为()A.20°B.26°C.30°D.36° 3.如图1,在Rt△ABC 中,∠ACB=90°,∠A=40°,以直角顶点 C 为旋转中心,将△ABC 旋转到△A′B′的C位置,其中A′、B′分别是A、B 的对应点,且点 B 在斜边A′B上′,直角边CA′交AB 于D,则旋转角等于()A.70°B.80°C.60°D.50° (图1) (图2) (图3) 二、填空题. 1.在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动称为________,这个定点称为________,转动的角为________. 2.如图2,△ABC 与△ADE 都是等腰直角三角形,∠ C 和∠AED 都是直角,点 E 在AB 上,如果△ABC 经旋转后能与△ADE 重合,那么旋转中心是点_________;旋转的度数是__________. 3.如图3,△ABC 为等边三角形, D 为△ABC 内一点,△ABD 经过旋转后到达△ACP 的位置,则,(1)旋转中心是________;(2)旋转角度是________;(3)△ADP 是________ 三角形. 三、解答题. 1.阅读下面材料: 如图4,把△ABC 沿直线BC 平行移动线段BC 的长度,可以变到△ECD 的位置. 如图5,以BC 为轴把△ABC 翻折180°,可以变到△DBC 的位置. (图4) (图5) (图6) (图7) 如图6,以A 点为中心,把△ABC 旋转90°,可以变到△AED 的位置,像这样,其中 一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置, 不改变形状和大小的图形变换,叫做三角形的全等变换.

九年级旋转专题复习

九年级旋转专题复习 1.下列图案既是中心对称,又是轴对称的是( ) A B C D 2.已知点A 的坐标为()a b ,,O 为坐标原点,连结OA ,将线段OA 绕点O 按逆时针方向旋转90得1OA ,则点1A 的坐标为( ) A .()a b -, B .()a b -, C .()b a -, D .()b a -, 3.下面图形:四边形,三角形,正方形,梯形,平行四边形,圆,从中任取一个图形既是轴对称图形又是中心对称图形的概率为 . 4.如图,把面积为1的正方形纸片ABCD 放在平面直角坐标系中, 点B 、C 在x 轴上,A 、D 关于y 轴对称,将C 点折叠到y 轴上的C′,折痕BP ,则经过P 点反比例函数的解析式为 . 5.(1)点(2,4)绕点(0,2)顺时针旋转90°得到的点的坐标是 . (2)直线y=2x 绕点(0,2)顺时针旋转90°得到的直线解析式是 . (3) 求直线y=2x+2绕点(0,2)顺时针旋转90°得到的直线的解析式是 . 6.如图,已知ABC △: (1)AC 的长等于_______. (2)若将ABC △向右平移2个单位得到A B C '''△, 则A 点的对应点A '的坐标是_____; (3)若将ABC △绕点C 按顺时针方向旋转90后得到 ?A 1B 1C 1,则A 点对应点A 1的坐标是_________. 7. 正方形ABCD 中,对角线AC 、BD 交于O ,Q 为CD 上任意一点, AQ 交BD 于M ,过M 作MN ⊥AM 交BC 于N ,连AN 、QN. 下列结论:①MA =MN ;②∠AQD =∠AQN ; ③ABNQD AQN S S 五边形2 1 = ?; ④AQ.MN=QN.CD 。其中正确的结论有( ) (A )①②③④. (B )只有①③④. (C )只有②③④. (D )只有①②. 8.如图,在Rt △ABC 中,AB AC =,D 、E 是斜边BC 上两点,且∠DAE =45°, 将△ADC 绕点A 顺时针旋转90?后,得到△AFB ,连接EF ,下列结论: ①△AED ≌△AEF ; ②△ABE ≌△ACD ; ③BE DC DE +=; ④2 22BE DC DE += 其中正确的是 【 】 (第8题图) A B C D E F 12题 Q N M D O C B A

相关文档
相关文档 最新文档