文档库 最新最全的文档下载
当前位置:文档库 › 三相不平衡电容器配置

三相不平衡电容器配置

三相不平衡电容器配置
三相不平衡电容器配置

附录1:外文资料翻译

A1.1 不平衡电力系统电容器设置

摘要—本文提出一个针对三相不平衡的电力系统采用的电容器设置方法。这种方法不仅使功率损失和电容器费用降到最小,而且使当前电力系统中谐波引起的畸变降到最小。提出的方法是在平衡的和不平衡的操作条件下都能实现这个目标。当不平衡的系统接近于由他们的正向序列单相等值时,本文的一个目标就是讲述在电容器设置研究结果上的一些重大区别。此外,还讲述了在电容器设置中考虑谐波畸变的作用。并且提供了配电测试电力系统的数字例子来说明此方法。

关键词:优化,电容器设置,损失最小化,谐波畸变,不平衡操作,配电系统。

1绪言

配电系统在各个地点都安装有电容器,为了获得期望的电压波形,合适的功率因素和减少馈线功率损失。当处理一个包含几条馈线和他们旁路的大规模配电系统时,决定这些电容器的最佳安装地点和安装容量成为一个复杂的优化问题。除此之外,还有其他问题需要说明,例如电容器大小、电压和馈线负载的运行限值。针对平衡的配电馈线的有效解决方法已经被开发了[1,2]。这些解决方法主要运用于公式化问题中的正向序列网络模型和连带的功率流动。因此,结果不能直接运用在包含缺相馈线的系统中,不对称负载的馈线或者单相或两相馈线的电容器组。三相不平衡的配电系统将在[3,4]中研究,其中模拟退火算法和遗传算法分别用于解决这个更加复杂的问题。在[5]中,一种被简化的公式和MINOS优化包裹用于解决同一个问题。最近,配电系统中存在由非线性负载和控制设备产生的不需要的谐波。对安装有电容器的配电网,谐波会导致过电压。在[6]中提出了这个问题,并且介绍了一种使谐波过电压最小化的方法[6]。一种避免汇合问题和合并电容器的分离属性以及安装电容器组电压畸变的实用方法,在[7]被开发并且被提出。这种方法针对三相平衡的操作条件并且仅能分析正向序列网络。

在本文,[7]中讲述的内容将延伸到更加普遍的三相不平衡的操作情况下。几条配电馈线分为几段,混有单相、两相和三相负载。这样的系统和那些含有三相不平衡负载的系统一样,可以用本文当前的方法研究。除损失和电容器设施之外的费用,还有就是谐波畸变引起的费用,将在[8-9]中讨论。因此,问题被公式化,在这种情况下网络损失和谐波还有电容器的设置费用一起减到最小。

本文首先提出问题说明。然后描述了三相功率流动和线性谐波分析模块的细节,这部分组成了主要算法。其次是采用开发的程序和测试系统得到的仿真结果。最后一部分提出了结论和对未来工作的展望。

2问题的描述

当前方法的目标是确定最佳的地点和每相电容器组的大小,使得电容器的总成本,网络的总功率损失和网络的谐波畸变减到最小。这个目标的实现决定于网络三相功率流动值,母线电压和电流强度的极限值,以及谐波指数和安装的电容器组的总数量。因此,它可以被公式化作为以下优化问题:

最小化J(X,U) = J C + J L + J IH

条件电压,电流限制

电容器数量限制

目标函数和限制条件在下面被定义。

2.1 目标函数, J

目标函数假设一带有特定负载的系统。如果能把这个函数延伸为一类函数,那么带有任意负载的系统都可以计算,这个在这里不讨论。所有真仿结果和关于提出的算法的讨论根据特定的负载假设。然而这种引伸能不是困难的被合并到被提出的算法里。组成目标函数的三个术语下述:

2.1.1 电容器的费用,J C = C C T?U

C c: 每条母线上电容器组的费用系数

U : 每条母线上电容器组的介质系数

2.1.2 损失的费用,J L= C L?(P G? P D)T

CL: 每单位能量损失的费用

P G: 在 (X,U)中,总的发电功率

P D: 总负载

T : 是损失期间

(X,U): 是对应于安装的电容器介质系数U的功率流动解决方法。

根据需要损失的费用也很容易被合并。

2.1.3 畸变的费用,J IH

畸变费用的评估由[8,9]的作者首先研究。这些费用被认为是运行费用和老化费用的总和。运行费用指的是谐波造成的增加损失的费用,老化费用指的是谐波造成的组成部分过早的老化的增加费用。细节可以在[8,9]找到。

2.2 限制条件

在基频条件下,每种方法应该满足三相功率平衡等式。因此,一种满载的三相功率流动解决方法将用来核实这个限制。这种解决方法也用来检测在基频下母线电压和线路电流的极限侵害值。每个电容器单元对母线电压畸变的影响都必须被检测。这通过解决一个线性三相谐波分析问题完成,所有非线性负载通过他们的谐波电流来表示。这计算细节在下一部分讨论。

3解决方法

上面被描述的优化问题是通过使用一个简单,并且有效的做法解决的,在[7]中,这种方法被开发并成功地应用于单相问题。该做法背后的主导思想是根据增加大小分离电容器组的连续设置。它假设,所有母线的任一相在每个优化步骤上可以设置一台增加分离电容器。如果电容器装设在母线上,为禁止的唯一母线,则这种情况可容易地强行把那条母线从母线名单中分离出来。此外,如果不同的母线上有不同大小的单位电容器组,单位电容器组的设置能相应地修改以适合每条母线。所以,与电容器装置的分离属性和适合不同母线设置的分离单位的同一性相关的物理限制,能够自然地计算,不需要任何复杂的逻辑。

在优化做法的每一步,三相功率流动解决方法和对应于每一条母线上单位电容器组附加的母线电压谐波,都必须计算。注意,这些计算的目的是为了获得和比较所有可能的增加设施的目标函数的价值和选择减少目标函数最多的那个。也需要注意到,通过目标函数比较在不同母线上单位电容器设置的效果的目的,近似三相功率流动解决方法可以使用。一旦某个候选被选择,然后一种准确的解决方法可以为选择的配置获得。一种快速但近似三相功率流动的解决方法在第一部分被实施。进行三相线性谐波分析是为了畸变的演算。这些下面将详细讨论。

3.1 最新的快速三相功率流动

每次在系统总线上增加一个单位电容器,就会增加对三相功率流动解决方法的影响。这个增加的变动可以通过它的第一次命令近似值来表达功率流动解决方法来获得。考虑三相功率流动值通过:

f(X,U) = 0 (1)

第一命令泰勒算法是:

[F x (X0,U0) ] [ dX ] = - [ F u(X0 , U0) ] dui (2)

注意du i 是增加在结点i的单位电容器,母线的一相,并且函数Fx和Fu代表与X和U有关的f (X,U)的梯度。在优化的每一步,最近工作点由(X0,U0)表示,它取决于优化进行到那点的方式。得到新的功率流动解决方法如下:

X’ = X0 + dX (3)

这个做法将根据结点的数量重复许多次,除了那些没有允许设置电容器的地方。在针对所有情况计算目标函数J (X’, U)时,涉及到的目标函数最少的解决方法将被选择。得到一种满载的三相交流功率流动的解决方法,并且所有的运行限制将被检测。万一这种解决方法违犯了任何一个限值,这个做法将被作为第二个最佳解决方法重复一遍。这个做法将继续,直到获得一种可行的解答。如果找不到可以满足所有限制的解答,则优化做法将被终止。否则,它将进入重复的下一步优化。

3.2 畸变的演算

与基频功率流动解决方法同步,需要一种针对网络中当前高次谐波的解决方法,以便评估电力系统中谐波对应的影响。这通过解决指定的网络的线性谐波等式完成:

[Yn] [Vn ] = [In ] (4)

[Yn],[Vn]和[I n]是三相网络矩阵,以第n个谐波频率评估的母线电压向量和独立电流源向量。矩阵随着母线上单位电容器的增加而修改。并且需要注意到,非线性设备的谐波介入根据IEEE PES工作组的推荐

来建模。

需要编辑一个基于Matlab的程序来评估上面描述的针对一般三相不平衡系统的做法。此时,程序应用在单相带负荷的情况,并且电容器设置仅在电容器类型固定的情况下可以被测试。然而,可以随季节性或每日母线负载的变化容易地修改。

4结论

本文提出一种针对三相不平衡电力系统的电容器设置方法。提出的方法不仅节省了系统损失和电容器费用,而且减小了母线电压谐波畸变和不平衡运行的影响。在配电网中非线性负载最近的扩散导致谐波污染成为一个重要的问题,要求我们在配电自动化中要考虑电容器大小和装设地点。本文提出一种简单并且有效的解决方法。在平衡的和不平衡的运行条件下提供了展示做法的有效率的数字例子。

未来工作将涉及更多目标函数中介入谐波费用的可行的方法。

译自 14th PSCC , Sevilla , 24-28 June 2002

A1.2 Capacitor Placement In Unbalanced Power Systems

Abstract– This paper presents a capacitor placement method for three phase unbalanced power systems. The method aims to minimize not only the power losses and capacitor costs, but also the distortions due to

harmonics present in the power system. The proposed method is capable of accomplishing this objective for both balanced and unbalanced operating conditions. One of the objectives of this paper is to demonstrate the significant differences in the results of capacitor placement studies when unbalanced systems are approximated by their positive sequence single phase equivalents. Furthermore, the effects of taking harmonic distortions into account during the capacitor placement procedure are also demonstrated.Numerical examples on a distribution test power system are provided to illustrate the method.

Keywords: Optimization, capacitor placement, loss minimization, harmonic distortion, unbalanced operation, distribution systems.

1INTRODUCTION

Power distribution systems contain shunt capacitors at various strategic locations in order to maintain a desired voltage profile, correct power factor and reduce power losses along feeders. When dealing with a large scale distribution system containing several feeders and their laterals, deciding on the best locations and sizes of these capacitors becomes a complicated optimization problem. In addition to the scale of the problem, there are other issues such as the discrete nature of capacitor sizes, operational limits on voltages and feeder loadings, that need to be addressed. Effective solution algorithms for balanced distribution feeders have been developed [1,2]. These solutions mainly utilize the positive sequence network model and the associated power flows in formulat ing the problem. Hence, the results do not directly apply for systems containing feeders with missing phases, unevenly loaded feeders or shunt capacitors on single or double phase feeders. Three phase unbalanced distribution systems are later studied in [3,4] where simulated annealing and genetic algorithms are respectively used to solve this more complicated problem. A simplified formulation and the MINOS optimization package are used to solve the same problem in [5]. Recently, distribution systems are populated with nonlinear loads or control devices that generate unwanted harmonics in the systems. Harmonics are known to cause overvoltages under certain network configurations involving shunt capacitors. This issue is raised and a solution is proposed for minimizing harmonic overvoltages in [6]. A practical method that avoids convergence problems and incorporates discrete nature of capacitor banks along with the voltage distortions due to the installed capacitors, is developed and presented in [7]. This method is based on the balanced three phase operation and therefore analyzes the positive sequence network only.

In this paper, the work reported in [7] will be extended to the more general case of the three phase unbalanced operation. Several distribution feeders are known to have line sections carrying a mixture of single, double or three phase loads. Such systems as well as those having full three phase but unbalanced loads can be studied using the presented method in this paper.In addition to the cost of losses and capacitor installations, it is possible to associate a cost with the harmonic distortions as discussed in [8-9]. Hence, the problem is formulated in such a

way that both network losses and harmonics are minimized along with the cost of capacitors placed for this purpose.

The paper is organized such that the problem description is presented first. This is followed by the sections describing the details of the three phase power flow and linear harmonic analysis modules, which make up t he main computational engines of the overall algorithm. Simulation results obtained using the developed program and a test system will be presented next.Conclusions and suggestions on future work will be presented in the final section.

2DESCRIPTION OF THE PROBLEM

The objective of the presented method is to determine the best locations and sizes of shunt capacitors for each phase, so that the total cost of the capacitors, of the total power losses of the network and the harmonic distortion of the network are minimized. This objective should be met subject to the network three-phase power flow equations as well as the limits on the bus voltage and current magnitudes, harmonic indices (HI) and the total number of capacitor units to be installed. Hence, it can be formulated as the following optimization problem: Minimize J(X,U) = J C + J L + J IH

Subject to Three-phase PF Eq.s at

fundamental and harmonics

V, I – limits

HI limits

Limits on number of cap.s

where the terms of the objective function and constraint list are defined below.

2.1 The Objective function, J

The objective function assumes a given loading level for the system. While it is possible to extend this function to a sum of similar functions, so that a number of loading levels can be accounted for, this will not be done here. All simulation results and the discussion of the proposed algorithm will be based on single loading assumption. Such an extension can however be incorporated into the presented algorithm without much difficulty. The three terms that make up the objective function are described below:

2.1.1 Cost of Capacitors, J C = C C T?U

C c: is the cost vector for capacitor units at each bus.

U : is the vector of capacitor units placed at each bus.

2.1.2 Cost of Losses, J L= C L?(P G? P D)T

CL: is the cost of a per unit energy loss

P G: is the total generation at (X,U)

P D: is the total load

T : is the loss duration

(X,U): is the power flow solution corresponding to the installed capacitor vector of U.

The cost of demand lost can be also incorporated without difficulty.

2.1.3 Cost of Distortions,J IH

The evaluation of the cost of the distortions is studied first by the authors in [8, 9]. These costs are assumed to be the sum of the operating costs and the aging costs.The operating costs refer to the costs of the incremental losses caused by the harmonics and the aging costs refer to the incremental costs due to the premature aging of the components caused by the harmonics. Details can be found in [8, 9].

2.2 The Constraints

Each solution should satisfy the three-phase power balance equations at the fundamental frequency. Thus,a full three-phase power flow solution is to be run to verify this constraint. This solution will also be used to check the limit violations at fundamental on bus voltages and line currents. The effect of each capacitor unit on the distortions of the bus voltages will have to be also checked. This is accomplished by solving a linear three-phase harmonic analysis problem where all nonlinear loads are represented by their harmonic current injections. Details of this computation are discussed in a later section.

3SOLUTION METHOD

The above described optimization problem is solved by using a simple yet effective procedure, which is developed and successfully employed in solving the single phase problem in [7]. The main idea behind the proposed procedure is based on sequential placement of discrete capacitor units of incremental size. It is assumed that each phase of any bus can be placed an incremental discrete capacitor at each optimization step (three-phase bank in case of three-phase phase bank otherwise). If capacitor installations are bus, single- prohibited for any of the buses, then this condition can easily be enforced by leaving out that bus from the bus list. Furthermore, if different buses have different sizes of unit capacitors, then placement of unit capacitors can be accordingly modified to suit each bus. Therefore, the physical constraints that relate to the discrete nature of capacitor installations as well as the nonhomogeneity of the discrete units available for installations at different buses, are naturally accounted for without any complex logic.

At each step of the optimization procedure, the three phase power flow solution as well as the harmonics of the bus voltages corresponding to the incremental addition of unit capacitors at each possible bus, will have to be computed. Note that, the purpose of these computations is to obtain and compare the values of the objective function for all possible incremental installations and choose the one that reduces the objective function the most. It is also noted that for purposes of comparing effects of unit capacitor installations at different buses on the

objective function, approximate three-phase power flow solutions can be used. Once a candidate is selected, then

an accurate solution can be obtained for the selected configuration only. A fast but approximate three phase power

flow solution is implemented for the first part. A three phase linear harmonic analysis is carried out for the

calculation of distortions. These are discussed in more detail below.

3.1 Fast Three-phase Power Flow Update

The three-phase power flow solution is affected incrementally each time a unit capacitor is added at a system

bus. This incremental change can be captured by expressing the power flow solution by its first order

approximation. Consider the three phase power flow equations given by:

f(X,U) = 0 (1)

The first order Taylor approximation will be:

[F x (X0,U0) ] [ dX ] = - [ F u(X0 , U0) ] dui (2)

Note that du i is the unit capacitor added at node i, one phase of a bus and the functions F x and F u represent the gradient of f(X,U) evaluated with respect to X and U respectively. At each optimization step, the most recent

operating point will be denoted by (X0,U0) which will depend upon the way the optimization proceeded up till that

point. The updated power flow solution will then be obtained as:

X’ = X0 + dX (3)

This procedure will be repeated as many times as the number of nodes excluding those where no capacitors are allowed to be placed. Upon computing the objective function J(X’,U) for all cases, the solution which yields the

smallest objective function will be selected. A full three phase AC power flow solution will be obtained and all

operating constraints will be checked for this case. In case the solution violates any one of the limits, the same

procedure will be repeated for the second best solution. This procedure will continue until a feasible solution is obtained. If no solution can be found satisfying all the constraints, then the optimization procedure will be

terminated. Otherwise, it will proceed to the next optimization iteration.

3.2 Calculation of distortions

In parallel with the fundamental frequency power flow solution, a solution for each dominant harmonic present

in the network will have to be obtained so that the corresponding effects of the power system harmonics can be evaluated. This is accomplished by solving the network’s linear harmonic equations given by:

[Yn] [Vn ] = [In ] (4)

where [Y n], [V n ] and [I n ] are the three phase network admittance matrix, bus voltage vector and independent

current source vector evaluated at the n-th harmonic frequency. The admittance matrix is modified each time a unit capacitor is added at a bus. Also note that, the harmonic injections of nonlinear devices are modeled according to

the recommendations of the IEEE PES Working Group on Harmonics Modeling and Simulation [10-11] where it

is suggested that the phase angles of the injected harmonic current sources be adjusted according to the phase

angle of the fundamental with respect to reference.

A Matlab-based program is developed in order to evaluate the above described procedure for general three phase unbalanced system operation. At this time, the p rogram is implemented for a single loading level and therefore the capacitor placement can be tested only for fixed capacitor types. However, it can be easily modified to account for seasonal or daily load variations of the bus loads.

4CONCLUSIONS

This paper presents a capacitor placement procedure for three phase unbalanced power systems. The proposed procedure not only accounts for system losses and capacitor costs, but also for harmonic distortion of bus voltages and the effects of unbalanced operation. The recent proliferation of nonlinear loads in distribution systems makes the issue of harmonic pollution an important one to be considered in any of the distribution automation functions such as capacitor sizing and location. This paper presents a simple yet effective solution to the problem. Numerical examples demonstrating the effectiveness of the procedure under both balanced and

unbalanced operating conditions are provided.

Future work will involve more realistic representation of the harmonic cost in the objective function.

REFERENCES

[1] M. Baran, F.F. Wu, “Optimal Capacitor Placement on Radial Distribution systems”, IEEE Trans. On Power

Delivery, Vol.4, No.1, Jan. 1989, pp.725-734.

[2] J. J. Grainger, and S. H. Lee, “Optimum Size and Location of Shunt Capacitors for Reduction of Losses on

Distribution Feeders”, IEEE Trans. On PAS, Vol.100, Mar.1981, pp.1105-1118.

[3] H-D. Chiang, J-C. Wang, J. Tong and G. Darling, “Optimal Cap acitor Placement, Replacement and Control in

Large-Scale Unbalanced Distribution Systems: System Modeling and A New Formulation”, IEEE Trans. on Power Systems, Vol.10, No.1, February 1995, pp.356-362.

[4] C.S. Chen, C.T. Hsu and Y.H. Yan, “Optimal Distrib ution Feeder Capacitor Placement Considering Mutual

Coupling Effect of Conductors”, IEEE Trans. on Power Delivery, Vol.10, No.2, April 1995, pp.987-994. [5] K.N. Miu, H-D. Chiang and G. Darling, “Capacitor Placement, Replacement and Control in Large-Scale

Distribution Systems by a GA-Based Two-Stage Algorithm”, IEEE Trans. on Power Systems, Vol.12, No.3, August 1997, pp.1160-1166.

[6] Y. Baghzouz, S. Ertem, “Shunt Capacitor Sizing for Radial Distribution Feeders with Distorted Substation

Voltages”, IEEE T rans. on Power Delivery, Vol.5, April 1990, pp.650-657.

[7] Bei Gou and A. Abur, “Optimal Capacitor Placement for Improving Power Quality”, Paper SM 011.

Proceedings of IEEE/PES Summer Meeting, July 18-22, 1999, Edmonton, Canada.

[8] P. Caramia, G. Carpi nelli, E. Di Vito, A. Losi and P. Verde, “Probabilistic Evaluation of the Economical

Damage due to the Harmonic Losses in Industrial Energy Systems”, IEEE Trans. on Power Delivery, Vol.11, No.2, 1996, pp.1021-1031.

[9] P. Caramia, G. Carpinelli, A. Rus so, P. Varilone, P. Verde: “An Integrated Probabilistic Harmonic Index”,

IEEE PES 2002 Winter Meeting, New York (USA), 27-31 January 2002

[10] IEEE Task Force on Harmonics Modeling and Simulation, “Modeling and Simulation of the Propagation of

Harmonics in Electric Power Networks –Part I: Concepts, Models and Simulation Techniques”, IEEE Trans.

on Power Delivery, Vol.11, No. 1, 1996, pp. 452-465

[11] IEEE Task Force on Harmonics Modeling and Simulation, “Modeling and Simulation of the Propagation of

Harmonics in Electric Power Networks –Part II: Sample Systems and Examples”, IEEE Trans. on Power Delivery, Vol. 11, No. 1, 1996, pp. 466-474

[12] IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems, IEEE

Std 519-1992, IEEE, New York, NY, April 1993.

[13] A.E. Emanuel, C. Kawann, “Passive Shunt Harmonic Filters for Low and Medium Voltage: A Cost

Comparison Study”, IEEE Trans. on Power Systems, Vol. 11, No. 4, 1996, pp. 1825-1831

[14] T.T. Chang, H. Chang, “Application of Differential Evolution to Passive Shunt Harmonic Filter Planning”,

8th IEEE ICHQP, Athens (Greece), 1998, pp.149-153

电容器的接线方式

电容器的接线方式 (2011-07-29 17:08:10) 容量相同的三相电容器,当为星型接法和角型接法时,其额定电流是不相同的,容量的不同存在外形差异。当三相电容器的额定电压与电网额定电压相同时,三相电容器应采用角形连接,因为若采用星形连接,每相电压为线电压的1/1.732,电容器的输出容量将减少。当单相电容器的额定电压低于电网额定电压时,应采用星形连接,或几个电容器串联后,使每相电容器组的额定电压高于或等于电网的额定电压,再接成角形。 近期遇到一个用户补偿要求,其内容为“低压380V系统,要求并联电容器为三相、星型接法、中性点不引出”。可见这种补偿是可以的。其目的可能是线路补偿,工厂里可能用于短路容量较大的地方等。 容量(Q)和电容值(C)是两个概念。电容值是制造概念,当电容器制造出来后,除非损坏,C是不变的。容量是使用概念,是当电容器使用在某电压和频率下所能输出的无功 (Q=ωCU2)。所以,容量相同,电压相同,频率相同的三相电容器,无论是接星还是接角,电流都是一样的(Q=√3UI)。体积是和设计和工艺有关的,例如,我国目前1000v一下并联电容器均采用金属化电容器,由于基膜和镀膜工艺的关系,很少厂家使用4.8um的基膜,所以,690v(一般接星)产品和400v(一般接角)产品体积相差不大,而400v产品和230v (一般接角)产品体积相差较大。“低压380V系统,要求并联电容器为三相、星型接法、中性点不引出”。一般单纯补偿不采用如此接法。如果是系统电压高,可用440v甚至525v 产品,如果是分相补偿,“中性点”要引出。可能是用于滤波吧。如果用于滤波,建议采用滤波电容器,虽然贵点,毕竟谐波不是降低并联电容器使用电压就能解决的 一、当单台电容器为三相时,其标注的额定电压如6.6KV/√3和6.6KV。这两种标注方式主要区别在于说明此三相电容内部接线方式分为星型Y和三角型Δ两种。而加在三相电容器三个接线端电压均为线电压6.6KV。计算其额定电流时和标注中6.6KV/√3分母上的√3无关,不管是Y接法Δ接法,U均为6.6KV。而不是6.6KV/√3。根据三相电功率P=√3IU 得出I=P/√3U(不论星型Y和三角型Δ接法。不考虑COSΦ。)。P为电容器额定容量Karv ,U为电网线电压。 二、当单台电容器为单相时,其标注的额定电压如6.6KV/√3和6.6KV,这两种标注方式主要区别在于说明: 1、标称6.6KV /√3的单台电容当组成电容器组接在三相电网时只能接成Y,电网线电压为6.6KV时,此时电容两个接线柱实际电压为6.6KV/√3即3.8KV。否则当接成Δ时电容器就会过电压,当单只电容接电源时只能接在3.8KV电网中而不是6.6KV电网。这时计算单台电容器电流时I=P/U, P为电容器额定容量Karv ,U为6.6KV/√3即3.8KV也就是电网电压的相电压而不是线电压6.6KV。 2、标称6.6KV的单台电容当组成电容器组接在三相电网时只能接成Δ,如果接成Y时,由于电容器两端实际电压降成相电压6.6KV/√3即3.8KV,他就达不到它的标称Karv 值。

电力电容器保护原理解释

常见电力电容器保护类型: 电容器保护 1 保护熔丝 现代电容器组的每台电容器上都装有单独的熔丝保护,这种熔丝结构简单,安装方便,只要配合得当,就能够迅速将故障电容器切除,避免电容器的油箱发生爆炸,使附近的电容器免遭波及损坏。此外,保护熔丝还有明显的标志,动作以后很容易发现,运行人员根据标志便可容易地查出故障的电容器,以便更换。 2 过电流保护(电流取自线路TA) 过电流保护的任务,主要是保护电容器引线上的相间短路故障或在电容器组过负荷运行时使开关跳闸。电容器过负荷的原因,一是运行电压高于电容器的额定电压,另一种情况是谐波引起的过电流。 为避免合闸涌流引起保护的误动作,过电流保护应有一定的时限,一般将时限整定到0.5s以上就可躲过涌流的影响。 3 不平衡电压保护(电压取自放电TV二次侧所构成的开口三角型) 电容器发生故障后,将引起电容器组三相电容不平衡。电容器组的各种主保护方式都是从这个基本点出发来确定的。 根据这个原理,国内外采用的继电保护方式很多,大致可以分为不平衡电压和不平衡电流保护两种。这两种保护,都是利用故障电容器被切除后,因电容值不平衡而产生的电压和电流不平衡来启动继电器。这些保护方式各有优缺点,我们可以根据需要选择。 单星形接线的电容器组目前国内广泛采用开口三角电压保护。 对于没有放电电阻的电容器,将放电线圈的一次侧与电容器并联,二次侧接成开口三角形,在开口处连接一只低整定值的电压继电器,在正常运行时,三相电压平衡,开口处电压为零,当电容器因故障被切除后,即出现差电压U0,保护采集到差电压后即动作掉闸。 4 不平衡电流保护 这种保护方式是利用故障相容抗变化后,电流变化与正常相电流间形成差电流,来启动过电流继电器,以达到保护电容器组的目的。常见的不平衡电流保护的方式有以下两种: 4.1 双星形中性点间不平衡电流保护 保护所用的低变比TA串接于双星型接线的两组电流器的中性线上,在正常情况下,三相阻抗平衡,中性点间电压差为零,没有电流流过中性线。如果某一台或几台电容器发生故障,故障相的电压下降,中性点出现电压,中性线有不平衡电流I0流过,保护采集到不平衡电流后即动作掉闸。

分析主变纵差动保护不平衡电流原因及解决方法

分析主变纵差动保护不平衡电流原因及解 决方法 摘要:本文从对变压器纵差保护原理进行阐述的基础上,较详细地分析了纵差保护不平衡电流的形成原因,并提出了解决变压器纵差保护中不平衡电流的方法。 关键词:主变;纵差保护;不平衡电流;解决方法 前言:纵差动保护是变电站主变压器的主保护,它灵敏度高、选择性好,在变压器保护上运用较为成功。但是变压器纵差保护一直存在励磁涌流难以鉴定的问题,虽然已经有几种较为有效的闭锁方案,又因为高压输电线路长度的增加、静止无功补偿容量的增大以及变压器硅钢片工艺的改进、磁化特性的改善等因素,使得变压器纵差保护所固有原理性矛盾更加突显。 一、变压器纵差保护原理 纵差保护作为变压器内部故障的主保护,将有许多特点和困难。变压器具有两个或更多个电压等级,构成纵差保护所用电流互感器的额定参数各不相同,由此产生的纵差保护不平衡电流将比发电机的大得多,纵差保护是利用比较被保护元件各端电流的幅值和相位的原理构成的,根据KCL基本定理,当被保护设备无故障时恒有各流入电流之和必等于各流出电流之和。当被保护设备内部本身发生故障时,短路点成为一个新的端子,此时电流大于“0”,但是实际上在外

部发生短路时还存在一个不平衡电流。事实上,外部发生短路故障时,因为外部短路电流大,特别是暂态过程中含有非周期分量电流,使电流互感器的励磁电流急剧增大,而呈饱和状态使得变压器两侧互感器的传变特性很难保持一致,而出现较大的不平衡电流。因此采用带制动特性的原理,外部短路电流越大,制动电流也越大,继电器能够可靠制动。 另外,由于纵差保护的构成原理是基于比较变压器各侧电流的大小和相位,受变压器各侧电流互感器以及诸多因素影响,变压器在正常运行和外部故障时,其动差保护回路中有不平衡电流,使纵差保护处于不利的工作条件下。为保证变压器纵差保护的正确灵敏动作,必须对其回路中的不平衡电流进行分析,找出产生的原因,采取措施予以消除。 二、纵差保护不平衡电流分析 1、稳态情况下的不平衡电流 变压器在正常运行时纵差保护回路中不平衡电流主要是由电流互感器、变压器接线方式及变压器带负荷调压引起。 (1)由电流互感器计算变比与实际变比不同而产生。正常运行时变压器各侧电流的大小是不相等的。为了满足正常运行或外部短路时流入继电器差动回路的电流为零,则应使高、低压两侧流入继电器的电流相等,即高、低侧电流互感器变比的比值应等于变压器的变比。但是,实际上由于电流

电容器参数大全

电容器 电容器通常简称其为电容,用字母C表示。电容是电子设备中大量使用的电子元件之一,广泛应用于隔直,耦合,旁路,滤波,调谐回路,能量转换,控制电路等方面。定义2:电容器,任何两个彼此绝缘且相隔很近的导体(包括导线)间都构成一个电容器。 相关公式 电容器的电势能计算公式:E=CU^2/2=QU/2 多电容器并联计算公式:C=C1+C2+C3+…+Cn 多电容器串联计算公式:1/C=1/C1+1/C2+…+1/Cn 三电容器串联 C=(C1*C2*C3)/(C1*C2+C2*C3+C1*C3) 标称电容量和允许偏差 标称电容量是标志在电容器上的电容量。在国际单位制里,电容的单位是法拉,简称法,符号是F,常用的电容单位有毫法(mF)、微法(μF)、纳法(nF)和皮法(pF)(皮法又称微微法)等,换算关系是:1法拉(F)= 1000毫法(mF)=1000000微法(μF) 1微法(μF)= 1000纳法(nF)= 1000000皮法(pF)。 容量大的电容其容量值在电容上直接标明,如10 μF/16V 容量小的电容其容量值在电容上用字母表示或数字表示 字母表示法:1m=1000 μF 1P2= 1n=1000PF 数字表示法:三位数字的表示法也称电容量的数码表示法。三位数字的前两位数字为标称容量的有效数宇,第三位数宇表示有效数字后面零的个数,它们的单位都是pF。如:102表示标称容量为1000pF。 221表示标称容量为220pF。 224表示标称容量为22x10(4)pF。 在这种表示法中有一个特殊情况,就是当第三位数字用"9"表示时,是用有效数宇乘上10的-1次方来表示容量大小。如:229表示标称容量为22x(10-1)pF=。 允许误差±1% ±2% ±5% ±10% ±15% ±20% 如:一瓷片电容为104J表示容量为μF、误差为±5%。 电容器实际电容量与标称电容量的偏差称误差,在允许的偏差范围称精度。常用的电容器其精度等级和电阻器的表示方法相同。用字母表示:D——005级——±%;F——01级——±1%;G——02级——±2%;J——I 级——±5%;K——II级——±10%;M——III级——±20%。 精度等级与允许误差对应关系:00(01)-±1%、0(02)-±2%、Ⅰ-±5%、Ⅱ-±10%、Ⅲ-±20%、Ⅳ-(+20%-10%)、Ⅴ-(+50%-20%)、Ⅵ-(+50%-30%) 一般电容器常用Ⅰ、Ⅱ、Ⅲ级,电解电容器用Ⅳ、Ⅴ、Ⅵ级,根据用途选取。 注:用表中数值再乘以10n来表示电容器标称电容量,n为正或负整数。 主要参数的意义:标称容量以及允许偏差:目前我国采用的固定式标称容量系列是:E24,E12,E6系列。他们分别使用的允许偏差是+-5% +-10% +-20%。 额定电压:在最低环境温度和额定环境温度下可连续加在电容器的最高直流电压有效值,一般直接标注在电容器外壳上,如果工作电压超过电容器的耐压,电容器击穿,造成不可修复的永久损坏。常见的电容额定电压与耐压测试仪测量值的关系( 600V的耐压测试仪测量电压为760V以上550V的耐压测试仪测量电压为715V以上; 500V的耐压测试仪测量电压为650V以上; 450V的耐压测试仪测量电压为585V以上; 400V的耐压测试仪测量电压为520V以上; 250V的耐压测试仪测量电压为325V以上; 200V的耐压测试仪测量电压为260V以上;

三相电压不平衡导致电容器组跳闸原因分析

三相电压不平衡导致电容器组跳闸原因分析 【摘要】本文通过对220kV某变电站10kV电容器由于三相电压不平衡导致跳闸原因分析,找出引起电压不平衡的因素,为以后查找电容器组故障原因积累经验。 【关键词】不平衡电压;绝缘电阻;直流电阻;电容量;电抗 前言 为了补偿系统无功,变电站基本上都会在10kV系统中装设电容器组。在设备运行过程中,经常会发生电容器组跳闸现象,引起电容器组跳闸的主要原因是由于电压不平衡造成保护动作,使断路器跳闸。通常我们都会认为电压不平衡是电容器组电容量三相不平衡引起的,但实际上断路器三相不同期、放电线圈绕组直流电阻三相不平衡、电抗器三相电抗值不平衡、绝缘老化都会引起三相电压不平衡,使电容器组跳闸。 一、现场试验情况 2014年7月9日,某变电站10kV电容器首次对跳闸,对其进行电容量测量,测量结果为A相173.1μF、B相173.4μF、C相173.3μF。从测试数据看电容值没有问题,就对紫1#电容器组进行投运,此时保护定值设为3V,投上后电容器组马上就跳掉了。随后又将保护定值改到5V,再次将电容器组投上后,过了几分钟电容器再次跳掉。我们初步认为导致电容器组跳闸的可能会是电容器单元其他设备,不是电容器本身。 2014年7月11日,再次对跳闸电容器单元进行全面试验,分别对电容器电容量、绝缘项目,开关特性、直阻、绝缘项目,电抗器电感、电抗、绝缘项目,电缆绝缘项目,测试结果都正常。在对放电线圈一次绕组直流电阻测试时,发现A相1216Ω、B相1413Ω、C相1411Ω。从测试数据上看,A、B、C三相绕组直阻不平衡率约为15%。对其绝缘电阻测试时,发现A相绝缘较低,约10.92 MΩ,B、C两相均在320 MΩ左右。通过对试验数据分析,我们就能确定由于放电线圈一次绕组存在匝间短路造成三相电压不平衡,从而引起紫1#电容器跳闸。 二、影响电压不平衡的因素 1、电容器三相电容值偏差较大引起电压不平衡 Q/GDW1168-2013《输变电设备状态检修试验规程》规定电容器组的电容量与额定值的相对偏差应符合此要求:3Mvar以下的电容器组:-5%~10%;3Mvar 到30Mvar电容器组:0%~10%;30Mvar以上电容器组:0%~5%;且任意两线端的最大电容量与最小电容量之比值,应不超过1.05。如果电容器中某相电容受潮或损坏,都会导致电容值减小,造成无功补偿不均衡,从而导致电压不平衡,

不平衡电流产生的原因

不平衡电流产生的原因 1励磁涌流的影响 变压器在正常运行时,它的励磁电流只流过变压器的电源测,因此,通过电流互感器反映到差动回路中就不能被平衡。在正常情况下,变压器励磁电流不过为变压器额定电流的 2% ~3%;在外部故障时,由于电压降低,励磁电流也相应减少,其影响就更小。在实际整定时可以不必考虑。 但是,在变压器空载投入和外部故障切除后电压恢复时,则可能产生数值很大的励磁涌流,其数值可达变压器额定电流的6~8倍。励磁涌流中含有大量的非周期分量和高次谐波分量。励磁涌流的大小与合闸瞬间外加电压的相位,铁芯中剩磁的大小和方向以及铁芯的特性有关。若正好在电压最大值时合闸,则不会出现励磁涌流,而只有正常时的电流。但对于三相变压器而言,由于三相电压相位不同,无论在任何瞬间合闸,至少有两相要出现程度不同的励磁涌流。励磁涌流可分解成各次谐波,以二次谐波为主,同时在励磁涌流波形中还会出现间断角。励磁涌流的波形如图2。 2绕组连接方式不同的影响 变压器各侧绕组的连接方式不同,如双绕组变压器采用Y,d接线,三绕组变压器采用Y,y,d 接线时,各侧电流相位就不同。这时,即使变压器各侧电流互感器二次电流大小能相互匹配,但不调整,相位差也会在差动回路中产生很大的不平衡电流。 3实际变比与计算变比不同的影响 由于电流互感器选用的是定型产品,其变比都是标准化的,很难与通过计算得出的变比相吻合,这样就会在主变差动回路中产生不平衡电流。 4改变调压档位引起的不平衡电流及克服措施 电力系统中带负荷调整变压器分接头是调节系统电压的重要手段。改变调压档位实际上就是改变变压器的变比。而差动保护已按照某一变比调整好,当分接头改换时,就会产生一个新的不平衡电流流入差动回路。此时不可能再用重新选择平衡线圈匝数的方法来消除这个不平衡电流,这是因为变压器的分接头是经常在改变,而差动保护的电流回路在带电时是不可能进行操作的。因此,对由此产生的不平衡电流,通常是根据具体情况提高保护动作的整定值加以克服。 5型号不同产生的不平衡电流 由于变压器各侧电流互感器的型号不同,它们的饱和特性和励磁电流(归算到同一侧)就不相同,因此,在差动回路中所产生的不平衡电流也就较大。 转子一点接地保护 转子一点接地保护反应发电机转子对大轴绝缘电阻的下降。顾名思义,转子一点接地就是转子上只有一个点与地接触了,发电机转子一点接地后励磁回路对地电压将有所升高。在正常情况下,励磁回路对地电压约为励磁电压的一半。当励磁回路的一端发生金属性接地故障时,另一端对地电压将升高为全部励磁电压值,即比正常电压值高出一倍。在这种情况下运行,当切断励磁回路中的开关或一次回路的主断路器时,将在励磁回路中产生暂态过电压,

并联电容器组的过电压保护

并联电容器组的过电压保护 【摘要】对并联电容器组的过电压保护进行深入研究,对于实际电力的正常运行有着十分重要的作用。本文首先研究了过电压保护的重要作用,然后分析了并联电容器组所承受的不同过电压,然后在探讨过电压保护方法思路的基础上,提出了电容器组运行维护的注意事项。 【关键词】并联;电容器组;过电压;保护 一、前言 并联电容器组在电力系统中的应用十分广泛,作用也十分明显。注重对过电压保护的研究,能够更好地指导电力实践。并联电容器组在实际运行过程中,会承受到多种不同类型的过电压,研究过程中有必要着重进行分析。 二、过电压保护的作用 电容器内部故障发展过程,大多数先是个别元件发生击穿短路,如无内熔丝动作切除故障元件,则为故障元件所在串联段短路,当故障继续发展就会有数个串联段乃至全部击穿短路。设置各种电容器内部保护是期望故障电容器在全击穿之前撤出,以免发生外壳爆裂事故。就保护灵敏度而言,通常是内外熔丝保护高于不平衡保护,而不平衡保护高于过电压保护,从而构成诸种保护的配合顺序。 当电容器组采用内熔丝或外熔丝为主保护时,不平衡保护和过电压保护为后备保护;当电容器组采取无熔丝保护时,不平衡保护为主保护,过电压保护为后备保护。过电压保护作为后备保护,是在主保护失效时起作用。可见,无论是采取何种保护配置组合,过电压保护都是不可或缺的保护方式。根据高压并联电容器装置的使用场所和装置构成及其技术特性的区别。 三、并联电容器组承受的过电压 并联电容器组的过电压问题,主要考虑操作过电压,因为对电容器组来讲遭受雷击大气过电压的机率很小,雷电波在大电容的影响下,陡度较小,减小了对绝缘的危害。常见的操作过电压主要有以下几个方面。 1.电容器组分闸时弧燃引起的过电压 电容器组的操作过电压大多是由于在断路器分闸时电弧重燃所引起的。单相重燃时,在电容器组不接地中性点上,产生中性点对地过电压。此过电压与其它相电容上的电压叠加,形成更高的极对地过电压。 2.合闸时电容器极间过电压

电力电容器保护原理解释

电力电容器保护原理解 释 文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

常见电力电容器保护类型: 电容器保护 1 保护熔丝 现代电容器组的每台电容器上都装有单独的熔丝保护,这种熔丝结构简单,安装方便,只要配合得当,就能够迅速将故障电容器切除,避免电容器的油箱发生爆炸,使附近的电容器免遭波及损坏。此外,保护熔丝还有明显的标志,动作以后很容易发现,运行人员根据标志便可容易地查出故障的电容器,以便更换。 2 过电流保护 (电流取自线路TA) 过电流保护的任务,主要是保护电容器引线上的相间短路故障或在电容器组过负荷运行时使开关跳闸。电容器过负荷的原因,一是运行电压高于电容器的额定电压,另一种情况是谐波引起的过电流。 为避免合闸涌流引起保护的误动作,过电流保护应有一定的时限,一般将时限整定到0.5s以上就可躲过涌流的影响。 3 不平衡电压保护 (电压取自放电TV二次侧所构成的开口三角型) 电容器发生故障后,将引起电容器组三相电容不平衡。电容器组的各种主保护方式都是从这个基本点出发来确定的。 根据这个原理,国内外采用的继电保护方式很多,大致可以分为不平衡电压和不平衡电流保护两种。这两种保护,都是利用故障电容器被切

除后,因电容值不平衡而产生的电压和电流不平衡来启动继电器。这些保护方式各有优缺点,我们可以根据需要选择。 单星形接线的电容器组目前国内广泛采用开口三角电压保护。 对于没有放电电阻的电容器,将放电线圈的一次侧与电容器并联,二次侧接成开口三角形,在开口处连接一只低整定值的电压继电器,在正常运行时,三相电压平衡,开口处电压为零,当电容器因故障被切除后,即出现差电压U0,保护采集到差电压后即动作掉闸。 4 不平衡电流保护 这种保护方式是利用故障相容抗变化后,电流变化与正常相电流间形成差电流,来启动过电流继电器,以达到保护电容器组的目的。常见的不平衡电流保护的方式有以下两种: 4.1 双星形中性点间不平衡电流保护 保护所用的低变比TA串接于双星型接线的两组电流器的中性线上,在正常情况下,三相阻抗平衡,中性点间电压差为零,没有电流流过中性线。如果某一台或几台电容器发生故障,故障相的电压下降,中性点出现电压,中性线有不平衡电流I0流过,保护采集到不平衡电流后即动作掉闸。

6kV电容器不平衡电压保护误动现象的分析 刘勇

6kV电容器不平衡电压保护误动现象的分析刘勇 发表时间:2018-05-30T10:02:58.647Z 来源:《电力设备》2018年第2期作者:刘勇 [导读] 摘要针对最近两年我厂35/6kV变电所电容器频繁出现不平衡电压跳闸现象,根据故障现象、SOE报文、故障录波等数据,对不平衡跳闸原因进行分析和探讨,得出由于放电线圈铁磁饱和所造成,并通过试验和测量给出了整改措施。 (大庆油田有限责任公司第二采油厂黑龙江大庆 163000) 摘要针对最近两年我厂35/6kV变电所电容器频繁出现不平衡电压跳闸现象,根据故障现象、SOE报文、故障录波等数据,对不平衡跳闸原因进行分析和探讨,得出由于放电线圈铁磁饱和所造成,并通过试验和测量给出了整改措施。 关键词:电容器;不平衡电压;放电线圈;铁磁饱和;分析 一、前言 因电网容量增加和老区改造的需要,我厂对17座35/6kV变电所的放电线圈进行了更换。但是,自更换以来,先后出现了19次电容器组不平衡电压跳闸的现象,我们对各变电所的电容器组进行了长期的跟踪分析后认为,电容器组差动保护用放电线圈的故障是引起电容器组不能正常投运的主要原因之一。 二、电容器组的不平衡电压保护 电容器发生故障后,由于熔断器熔断,将故障电容器切除,从而引起电容器组三相电容值不平衡而产生电压不平衡,经放电线圈变换后,放电线圈二次侧的开口三角产生不平衡电压信号,动作于开关跳闸。原理图如图1所示,放电线圈一次绕组与电容器并联作为放电线圈,二次线圈中的一组接成开口三角。在正常运行时,三相电压平衡,开口三角电压值为零,当某相电容器因故障切除后,三相容值不平衡导致电压不平衡,开口处出现电压差,利用这个电压差来启动保护装置,动作于开关跳闸。 图1电容器组的不平衡电压保护 三、频繁不平衡电压动作原因分析 我们对不能正常投运的电容器组进行故障分析统计。所有的不平衡电压跳闸中:电容器损坏引起的不平衡电压动作占10.5%;放电线圈内部有短路,一次侧直流电阻超差占21%,常规试验项目数据正常,但差动保护仍误动作68.5%。由此可见不明确故障率很高,由于差动保护直接接于放电线圈二次侧,因此我们把研究的重点放在放电线圈上。经过分析,原因有如下三点: 1、一、二次线圈间的电压比误差偏大 线圈L1、L2上的电压,在运行中一般是相等的。但如果两个线圈的一、二次侧的电压比出现了差异,相应会引起二次侧电压差值偏大。 2、铁芯在运行电压下饱和,引起线圈伏安特性的非线性化 设备在6kV电压下长期运行,有可能会给铁芯造成剩磁,使铁芯饱和,引起线圈伏安特性的非线性化,继而导致线圈一、二次侧感应电压的严重不相等,引起二次侧电压差值的增大。 3、放电线圈间的角差引起差动电压偏大 放电线圈二次侧电压的相角取决于一、二次线圈之间的耦合系数。在放电线圈的内部构造中,特别是有两个独立铁芯的,因为线圈位置的不同,线圈间的电磁耦合系数也各有不同。即使二次侧的感应电压在数值上完全相等,但它们的相角差却有可能不为零。二次侧电压角差引起的二次压差如图2所示。 图2二次电压角差引起的二次压差 这里,我们可以排除1、3原因,因为在68.5%不明原因跳闸的不平衡电压动作电容器中,再次合闸送电后80%可以继续投入运行,但是,过一段时间又会出现不平衡电压跳闸。如果是放电线圈存在一、二次线圈变比误差或角差,那么会在4.2S(不平衡定值时间)内跳

配电网三相不平衡常见原因分析

龙源期刊网 https://www.wendangku.net/doc/2c1108317.html, 配电网三相不平衡常见原因分析 作者:杨磊刘天纵张兆娴张翠 来源:《科技风》2017年第02期 摘要:随着用电需求不断增加,对配电网的要求也越来越高。不仅要保证供电可靠性,还要保证电能质量。然而,在实际运行中,由于多种原因,可能造成配电台区发生严重三相不平衡,威胁配电网安全经济运行。因此,对造成三相不平衡原因进行归纳分析十分重要。本文阐述了三相不平衡的概念和实际应用中对三相不平衡台区的判定,总结了三相不平衡的四个主要危害,并对遇到的超过100个三相不平衡台区进行重点分析,归纳了产生三相不平衡的四个主要原因,为三相不平衡台区原因查找及治理提供参考。 关键词:配电网;配电变压器;三相不平衡 当前,配电网结构复杂,电力用户的用电类型也多种多样,由于负荷类型不同、用电时间不同等多种原因,可能导致配电变压器台区出现严重的三相不平衡。随着用户对电能质量的要求不断提高,配电网三相不平衡问题日益突出。在配电台区中,理想状态是使负荷平均地分配到A、B、C三相上并运行于三相平衡状态,但实际中很难做到。实际负荷多以单相负荷、单-三相负荷混合形式存在,某些地区单相负荷占比大,所以会产生三相不平衡,严重的三相不平衡状态会对供电质量造成影响,本文主要对实际中遇到的超过100个三相不平衡台区的产生原因进行归纳分析,总结了四个主要原因。 一、三相不平衡概念 三相不平衡是电能质量的指标之一,分为三相电压不衡和三相电流不平衡。对于三相电压不平衡,国标GB15543-2008《电能质量三相电压不平衡》对电压不平衡的定义为,三相电压在幅值上不同或相位差不是120度,或兼而有之[ 1 ]。且规定电力系统公共连接点电压不平衡度限值为负序电压不平衡度允许值不超过2%,短时不超过4%。 在实际中,还常用到三相电流不平衡的概念,三相电流不平衡与三相电压不平衡类似,引入三相电流不平衡度来表示不平衡程度大小,国网公司PMS2.0监测系统中将其定义为: 三相不平衡度=(最大相电流-最小相电流)/最大相电流*100%, 根据上述定义,如果某台区三相不平衡度大于25%且负载率大于60%,持续时间在2小时以上,就认为该台区三相不平衡。图1为某个三相不平衡台区24小时电流波形。 ■ 图1 三相不平衡台区某天电流波形

分流电容器不平衡电流保护CUB1Cap_a

1MRS100117 Issued: 3/2000 Version: A Data subject to change without notice RE_5_ _ 并联电容器不平衡电流保护 (CUB1Cap) 目录 1. 介绍 ............................................................................................... 错误!未定义书签。 1.1 功能 ...................................................................................... 错误!未定义书签。 1.2 应用 ...................................................................................... 错误!未定义书签。 1.3 输入说明............................................................................... 错误!未定义书签。 1.4 输出说明............................................................................... 错误!未定义书签。 2. 动作说明 ........................................................................................ 错误!未定义书签。 2.1 设置 ...................................................................................... 错误!未定义书签。 2.2 保护单元额定值设定............................................................. 错误!未定义书签。 2.3 测量模式 (6) 2.4 动作标准............................................................................... 错误!未定义书签。 2.5 CUB1Cap的IDMT类动作 (9) 2.6 标准曲线组 (9) 2.6.1 RI 曲线组 (10) 2.6.2 RD 曲线组 (11) 2.7 自然不平衡补偿 (11) 2.7.1 分步补偿指令 (12) 2.8 设置组 (13) 2.9 测试模式 (13) 2.10 START, ALARM, TRIP和CBFP输出 (13) 2.11 复位 (13) 3. 参数和事件 (15) 3.1 概述 (15) 3.2 设置值 (16) 3.2.1 实际设置 (16) 3.2.2 设定组1 (16) 3.2.3 设定组2 (17) 3.2.4 控制设置 (18) 3.3 测量量值 (19) 3.3.1 输入 (19) 3.3.2 输出 (19) 3.3.3 记录数据 (20) 3.3.4故障单元计数器 (23) 3.3.5 事件 (23) 4. 技术数据 (24)

三相不平衡电容器配置

附录1:外文资料翻译 A1.1 不平衡电力系统电容器设置 摘要—本文提出一个针对三相不平衡的电力系统采用的电容器设置方法。这种方法不仅使功率损失和电容器费用降到最小,而且使当前电力系统中谐波引起的畸变降到最小。提出的方法是在平衡的和不平衡的操作条件下都能实现这个目标。当不平衡的系统接近于由他们的正向序列单相等值时,本文的一个目标就是讲述在电容器设置研究结果上的一些重大区别。此外,还讲述了在电容器设置中考虑谐波畸变的作用。并且提供了配电测试电力系统的数字例子来说明此方法。 关键词:优化,电容器设置,损失最小化,谐波畸变,不平衡操作,配电系统。 1绪言 配电系统在各个地点都安装有电容器,为了获得期望的电压波形,合适的功率因素和减少馈线功率损失。当处理一个包含几条馈线和他们旁路的大规模配电系统时,决定这些电容器的最佳安装地点和安装容量成为一个复杂的优化问题。除此之外,还有其他问题需要说明,例如电容器大小、电压和馈线负载的运行限值。针对平衡的配电馈线的有效解决方法已经被开发了[1,2]。这些解决方法主要运用于公式化问题中的正向序列网络模型和连带的功率流动。因此,结果不能直接运用在包含缺相馈线的系统中,不对称负载的馈线或者单相或两相馈线的电容器组。三相不平衡的配电系统将在[3,4]中研究,其中模拟退火算法和遗传算法分别用于解决这个更加复杂的问题。在[5]中,一种被简化的公式和MINOS优化包裹用于解决同一个问题。最近,配电系统中存在由非线性负载和控制设备产生的不需要的谐波。对安装有电容器的配电网,谐波会导致过电压。在[6]中提出了这个问题,并且介绍了一种使谐波过电压最小化的方法[6]。一种避免汇合问题和合并电容器的分离属性以及安装电容器组电压畸变的实用方法,在[7]被开发并且被提出。这种方法针对三相平衡的操作条件并且仅能分析正向序列网络。 在本文,[7]中讲述的内容将延伸到更加普遍的三相不平衡的操作情况下。几条配电馈线分为几段,混有单相、两相和三相负载。这样的系统和那些含有三相不平衡负载的系统一样,可以用本文当前的方法研究。除损失和电容器设施之外的费用,还有就是谐波畸变引起的费用,将在[8-9]中讨论。因此,问题被公式化,在这种情况下网络损失和谐波还有电容器的设置费用一起减到最小。 本文首先提出问题说明。然后描述了三相功率流动和线性谐波分析模块的细节,这部分组成了主要算法。其次是采用开发的程序和测试系统得到的仿真结果。最后一部分提出了结论和对未来工作的展望。

电动机三相电流不平衡的原因及处理方法

电动机三相电流不平衡的原因及处理方法 l 当三相电源基本对称时,异步电动机在额定电压下的三相空载电流,其任何一相与平均值的偏差不得大于平均值的10%。因此,只有在三相电压不平衡程度过大,或电动机本身存在故障的情况下,电动机才会出现较大的三相电流不平衡。三相异步电动机运行时出现三相电流不平衡时,其可能原因有: (1)三相电源电压不平衡而引起电动机的三相电流不平衡; (2)电动机绕组匝间短路; (3)绕组断路(或绕组并联支路中一条或几条支路断路); (4)定子绕组内部分线圈接反; (5)电动机三相绕组的匝数不相等。 三相异步电动机如由于上述原因而产生三相电流不平衡故障时,可采用以下方法处理: (1)用电压表测量三相电源电压如确系不平衡时,则应找出原因子以排除; (2)对于电动机绕组匝间短路故障,首先可观察绕组端部有无因高温使线圈烧焦、变色的地方,或闻到绝缘烧焦的气味。当目测观察找不出匝间短路位置时,可用短路侦察器进行检查。如果线圈内存在匝间短路,则串接在短路侦察器线圈回路的电流表读数就将明显增大; (3)绕组的断路故障可用万用表或电桥表测量三相电阻进行检查,电动机绕组三相电阻的最大差值不得超过三相电阻平均值的3%;

(4)检查定子绕组部分线圈接反故障,可对某相绕组施加以低压直流电压,并沿铁心槽面用指南针逐槽检查其极性。如果指南针在每个极相组上的指示方向依次按N、S、N、S改变,则表示绕组的接法正确;反之,即表明某极相组被接反;如果指南针放在同一极相组内邻近的几槽槽面上,其方向变化不定,则说明该极相组内可能有个别线圈嵌反或接错。对接错或嵌反的极相组与线圈,均应按绕组展开图或接线原理图的接法予以更正; (5)对于三相绕组匝数不相等的故障,则可将各相首、尾端串联通电,并用电压表分段测量电压降。先测量每相电压是否相等,再测量不正常一相的各极相组电压是否相等,最后测量不正常极相组内各线圈电压是否相等,这样就可最终找到匝数有错误的线圈。

浅谈三相负荷不平衡的原因及危害(新版)

浅谈三相负荷不平衡的原因及 危害(新版) Safety work has only a starting point and no end. Only the leadership can really pay attention to it, measures are implemented, and assessments are in place. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0423

浅谈三相负荷不平衡的原因及危害(新版) [摘要]低压电网三相负荷可能因多种原因,导致不平衡,甚至不平衡度非常严重。三相负荷不平衡对低压电网、配电变压器、6~10kV高压线路均造成危害,对供电企业安全供电降低线损、用户安全用电影响较大。 [关键词]低压电网、三相负荷不平衡、安全供电、降低线损 1引言 农网改造中采取了诸如配电变压器放置在负荷中心,增添配电变压器数量,缩短供电半径,加大导线直径,增加低压线路,用电户电能表集中安装等措施,极大地改变了农村低压电网状况,给我们建造了一个好的电网“硬件”。但若“软件”配套不好,尤其是三相负荷不平衡,则不能挖掘出这个好“硬件”的内部潜力,致使低压电网的可靠性和稳定性差,线损率较高。

2三相负荷不平衡的原因 低压电网三相负荷失衡有以下数种原因: (1)低压电网三相负荷不平衡要增加损耗,虽然是是早已被提出来了的。但在农网改造前,由于①农村低压电网不在电业部门的必管范围,设备线路状况极差,线损很高,收不够上缴电费就涨电价,即线损水平虽高但降损的压力不大。②农村照明等单相负荷很小,只占总用电负荷的5~20%左右,故虽进行过低压整改,多是把配电变压器移到负荷中心、改造低压线路、整改户内线路等。三相负荷不平衡由于是较次要的因素,没有也不可能引起人们足够注意,故实践很少,亦不可能提出调平三相负荷的具体方法。 (2)农网改造由于规模大、任务重、时间紧,不可能面面俱到(如规划调平三相负荷);加之改造资金有限,为了降低费用,架设了一定数量的单相两线线路,尤其是低压分支线路中,单相两线线路占一定比例;还有在下户线接火施工中,一些施工人员素质低,没有三相负荷平衡的概念,施工中或随意接单相负荷,或为了不接成380V,把单相负荷都接到中间两根线上。这在一定程度上加重了

电容电流计算

Y型时的电流: I相=Qc/(1.732×U相) △型时的电流: I线=Qc/(1.732×U线) (Qc=三相电容额定总量,单位:KVAR,U=电容额定电压,单位:KV) 公式:I=P/(根3×U),I表示电流,单位“安培”(A);P表示功率,单位:无功“千乏”(Kvar),有功“千瓦”(KW);根3约等于1.732;U表示电压,单位“千伏”(KV)。 I=40/(1.732×10)…………(10KV的电容) I=2.3(A) I=40/(1.732*0.4)…………(0.4KV的电容) I=57.7(A)。 回答人的补充 2009-11-30 16:54 计算单台电容器额定电流注意要点 一、当单台电容器为三相时,其标注的额定电压如6.6KV/√3和6.6KV。这两种标注方式主要区别在于说明此三相电容内部接线方式分为星型Y和三角型Δ两种。而加在三相电容器三个接线端电压均为线电压6.6KV。计算其额定电流时和标注中6.6KV/√3分母上的√3无关,不管是Y接法Δ接法, U均为6.6KV。而不是6.6KV/√3。根据三相电功率P=√3IU得出I=P/√3U(不论星型Y和三角型Δ接法。不考虑COSΦ。)。P为电容器额定容量Karv ,U为电网线电压。 二、当单台电容器为单相时,其标注的额定电压如6.6KV/√3和6.6KV,这两种标注方式主要区别在于说明: 1、标称6.6KV /√3的单台电容当组成电容器组接在三相电网时只能接成Y,电网线电压为6.6KV时,此时电容两个接线柱实际电压为6.6KV/√3即3.8KV。

否则当接成Δ时电容器就会过电压,当单只电容接电源时只能接在3.8KV电网中而不是6.6KV电网。这时计算单台电容器电流时I=P/U, P为电容器额定容量Karv , U为6.6KV/√3即3.8KV也就是电网电压的相电压而不是线电压6.6KV。 2、标称6.6KV的单台电容当组成电容器组接在三相电网时只能接成Δ,如果接成Y时,由于电容器两端实际电压降成相电压6.6KV/√3即3.8KV,他就达不到它的标称 Karv 值。如果三只这样的电容器组成电容器组按Δ型可直接接在线电压为6.6KV的三相电网中。单只电容可直接接在三相6.6KV其中两相上。计算电流时I=P/U,P为电容器额定容量Karv ,U为电网线电压。 信息来源: https://www.wendangku.net/doc/2c1108317.html, 三、综上所述单台电容器计算电流时分以下三种情况: 1、电容器为三相电容时:(不论星型Y和三角型Δ接法,不考虑COSΦ)。 I=P/√3U P为电容器额定容量Karv ,U为电网线电压KV。 2、电容器为单相时: a、当标称电压为U/√3时 I=P/(U/√3)即I=√3(P/U) P为电容器额定容量Karv ,U为电网线电压KV。 b、当标称电压为U时 I=P/U P为电容器额定容量Karv ,U为电网线电压KV。

继电保护中电容器保护常用保护原理

继电保护中电容器保护常用保护原理 电力电容器组不平衡保护综述 科技日益进步,经济持续发展,用户用电对电能的要求也日益升高。不单是对电能数量的需求不断增长,其对电压质量要求也越来越高,电容器保护测控装置不单要有足够的电能,还要有稳定的电能——即电压、频率、波形需符合要求,才能保证用户的用电设备持续保持最好的工作性能,从而保证工效效率。其中,电压质量是很重要的一个方面,不单对用户生产、生活、工作有重大影响,对整个电网的安全稳定经济运行也有着至关重要的作用。 与电压质量息息相关的就是无功电源,无功不足,会使得系统的电压幅值降低,对整个电网来说,电压过低可能引起电压崩溃,进而使系统瓦解,造成负荷大幅流失;对单个元件而言,电压的降低可能使其无法运行在最佳工况,同时造成电能损耗增大,甚至可能损坏设备,同时输电线路在同等条件下,电压越低传输的电能就越小。因此,必须保证无功电源的供应。同时,为了确保电网经济运行与用户的用电正常,又必须减小无功功率的流动,因此,无功补偿的基本原则是就地补偿。即在变电站及用户负荷处,将一定量的电容器串联、并联在一起,形成电容组,使其达到一定的容量、满足一定的电压要求,补偿系统无功、调节该节点电压。 1电容器组接线方式的决定因素 电容器通常是将若干元件封装在一铁壳内,构成电容器单元,再

由各单元先并后联,封装在铁箱内组成的。 当电容器组所接入电网的电压等级、容量要求确定以后,接线方式的选择则关系到了电容器组的安全性、可靠性以及经济性。决定接线方式的主要因素包括以下几个方面。 1.1受耐爆容量限制 电容器组在运行过程中,若其中某个电容器击穿短路,这个电容器将承受来自其自身及其他并联10KV电容器保护组的放电。为防止故障元件受放电能量过大冲击,导致电容元件爆炸,必须限制同一串联段上的并联台数,即有所谓的最大并联台数问题。可以通过减少并联数与增大串联段数的方法,来降低冲击故障电容器的放电能量。 1.2接线方式与设备不配套的限制 20世纪90年代末至21世纪初,由于工艺上的改进,使电力电容器的介质,结构发生改变,普遍采用了全膜电容器。电容器的容量越来越大,因此派生出了很多新的结构与接线方式。同时,在一段时间内,由于缺乏较高的 66kV电压等级的放电线圈,致使其66KV电容器保护测控装置选择及相应接线方式的应用受到限制,因此使相关接线方式适用范围受到了限制。由于这种不配套的限制,导致该时期电容器运行故障明显上升。经过阵痛之后,对配套设备的研究也跟上技术的研发进度,因此,这种限制现在基本消除。 1.3与应用的场合有关 在电力企业中,多采用星形接法,在工矿企业变电所中多采用三

交流滤波器电容器不平衡保护

交流滤波器电容器不平衡保护 李君 (国家电网公司宜昌超高压管理处,湖北宜昌 443005) [摘要]文章针对葛洲坝、江陵换流站发生的交流滤波器跳闸事故进行原因分析,研究了交流滤波器电容器不平衡保护的原理,最终就交流滤波器的运行及维护提出建议。文中交流的经验对换流站的运行和维护具有一定参考作用。 [关键词] 换流站;交流滤波器 Unbalance Protection of Capacitors in AC Filter LI Jun (Yichang EHV Management Branch of SP,Yichang 443005,China) [Abstract] This paper analyzes the causes of the trip fault of AC filter happened in GeZhouBa converter station and JiangLing converter station,studies the principle of unbalance ptotection of Capacitors in AC filter.In the end of this paper some suggestions on operation and maintenance of AC filter are made.The experience introduced in this paper could be used for reference on operation and maintenance of converter station. [Key words] converter station; AC filter

相关文档
相关文档 最新文档