文档库 最新最全的文档下载
当前位置:文档库 › 功率计量芯片HLW8012

功率计量芯片HLW8012

功率计量芯片HLW8012
功率计量芯片HLW8012

STPM01计量芯片资料

1/9 September 2004 s INTEGRATED LINEAR VREGS TO SUPPLY THE DIGITAL AND ANALOG CORES s ADVANCED BICMOS TECHNOLOGY FOR HIGH PERFORMANCE s OTP FOR CALIBRATION AND CONFIGURATION s INTEGRATED OSCILLATOR WITH EXTERNAL RESISTOR OR CRYSTAL s MONITOR BOTH LIVE AND NEUTRAL FOR TAMPER DETECTION s SIGMA DELTA 1st ORDER CONVERTER s POWER SUPPLY CURRENT LESS THAN 6mA s SUPPORT 50 ÷ 60 Hz – IEC 62052-11, IEC 62053-2X SPECIFICATION FOR CLASS 0.5 AC WATT METERS s PRECISION VOLTAGE REFERENCE ON CHIP: 1.25 V AND 30 ppm/°C MAX s TSSOP20 PACKAGE DESCRIPTION The STPM01 is designed for effective measurement of active energy in a power line system using the Rogowski and/or Shunt principle. This device can be implemented as a single chip 1-phase energy meter or as a peripheral measurement in a microprocessor based 1-phase or 3-phase energy meter. The STPM01 consists, essentially, of two parts:the analog part and the digital part. The former, is composed by preamplifier and 1st order ΣD AD converter blocks, Bandgap voltage reference,Lowdrop voltage regulator and a pair of DC buffer,the latter, is composed by system control, clock generator, hard wired DSP and SPI interface.There is also a OTP block, which is controlled through the SPI by means of a dedicated command set. The configured bits are used for testing, configuration and calibration purpose.From a pair of ΣD output signals coming from analog section, a DSP unit computes the amount of consummated active, reactive and apparent energy, RMS values of voltage and current value.The results of computation are available as pulse frequency and states on the digital outputs of the device or as data bits in a data stream, which can be read from the device by means of SPI interface. This system bus interface is used also during production testing of the device and/or for temporary or permanent programming of bits of internal OTP. In the STPM01 the calibration is very easy: an output signal with pulse frequency proportional to energy is generated, this signal is used to enable the calibration of the energy meter. When the device is fully configured and calibrated,a dedicated bit of OTP block, can be written permanently in order to prevent accidental entering into some test mode or changing any configuration. Table 1: Order Codes Type Temperature Range Package Comments STPM01 -40 to 85 °C TSSOP20 (Tape & Reel) 2500 parts per reel STPM01 PROGRAMMABLE SINGLE PHASE ENERGY METERING IC WITH TAMPER DETECTION This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice. PRELIMINARY DATA Rev. 1

用于IGBT与功率MOSFET的栅驱动器通用芯片

用于IGBT与功率MOSFET的栅驱动器通用芯片 1 引言 scale-2芯片组是专门为适应当今igbt与功率mosfet栅驱动器的功能需求而设计的。这些需求包括:可扩展的分离式开通与关断门级电流通路;功率半导体器件在关断时的输出电压可以为有源箝位提供支持;多电平变换器与并联功率器件的专业控制功能的兼容性;可以选择使用低成本的双向信号的变压器接口或抗电磁干扰光纤接口;可扩展设置,并具备故障管理;次级故障信号输入/输出,3.3v到15v的逻辑兼容性。 在延伸漏极双井双栅氧cmos制造工艺中使用了这个芯片组,它包括几个不尽相同的次级智能门级驱动(igd)asic和一个初级逻辑驱动插口(ldi)asic。2 集成的栅驱动器核心 初级逻辑驱动插口(ldi)asic实现了一个双沟道双向变压器接口,一个带有专用启动序列可扩展的dc-dc转换器,并且具有可扩展设置和故障管理功能。图2所示为逻辑驱动插口asic原型的显微照片,其有源区约为4mm 乘以2 mm,常规封装为soic-16。 为了提高igbt的抗短路能力,一般在开启过程和导通状态下将其栅极-发射极电压限制在+15v以下。由于近来的igbt的阈值栅压已经超过3v,所以在关断过程和断开状态下把栅极-发射极电压设置为 0v就足够了。这对于直接把栅驱动器集成在功率模块中的智能功率模块(ipm)来说是一种惯例。与这些小型的ipm相比,现今常规的大型igbt模块,带有36个以上的并联igbt芯片,它的栅极互连线产生的电阻以及集电极-栅极转移电容都会增大,这会对它的关断速度,抗噪声特性造成严重的影响,特别是还有可能产生由于瞬间电压导致的局部误导通。为了减少这些影响,栅极-发射极关断电压通常设定为-5v15 v。 因此,在第一种工作模式下,igdasic可以通过在vee管脚(见图3)调节发射极电压的方式,提供给开启导通状态一个调节过的+15v栅极-发射极电压来作为整个栅驱动器的供给电压,其测量精

单相电能计量芯片MCP3906及其应用

单相电能计量芯片MCP3906及其应用 引言电能表作为电能计量的专用仪表,在电能管理仪器仪表中占有很大比例,其性能直接影响着电能管理的效率和科技水平。从产品的功能、性能及经济效益等多方面来看,全电子电能表与传统的感应式电能表相比,存在着明显的优势。而且电能表作为计量管理和用电管理的终端,它所提供的各种功能是实现电力系统自动化管理必不可少的。传统的测量都是采用A/D转换电路,但这种方法使部分电参量测量精度欠佳,性价比不理想,且软件编程相对复杂,微控制器必须对采样电路进行数据处理(如电压、电流的平均值、有效值,有功、无功计算等)。而随着现代电子产业的高速发展,测量电路的集成化、模块化成为未来发展的趋势,各大器件公司也纷纷推出自己的电能计量芯片。这种集成芯片不仅精确度高,而且硬件、软件设计简单,价格便宜,性价比高,极具市场潜力。本文给出了基于Microchip公司的MCP3906单相电能计量芯片,并以AVR公司的ATMega16为MCU设计开发的一款新型单相电能表实现方案。与以往电能表相比,该方案具有设计接口简单、结构紧凑、可靠性高等特点。 1 MCP3906单相电能计量芯片 MCP3906是Microch ip公司推出的单相电能计量芯片,它支持国际电能计量标准技术规范IEC62053,可提供与平均有功功率成比例的频率输出,以及与瞬时功率成比例的高频输出用于电表校准。MCP3906内部包含两个16位△-∑ADC,可用于各种IB和IMAX电流和小分流器(<200μΩ )的电表设计。该芯片还包含一个超低温漂(<15ppm/℃)参考电压,通过特殊设计的带隙温度曲线,可在整个工业级温度范围内使温度梯度达到最小。固定功能的片上DSP模块可用于计算有功功率,此外,片上还有驱动机械计数器的高输出驱动器,可以减少现场故障和机械计数器咬合。芯片的空载门限模块可防止任何电流潜变(Creep)测量,而上电复位(Power on Reset,POR)模块则可在低电压时限制电表测量。因此,MCP3906是具备高现场可靠性的精密电能计量IC,并采用业界标准的引脚配置。 1.1 MCP3906的内部结构及工作原理 MCP3906是混合模拟/数字信号的CMOS集成电路,其内部结构框图。 MCP3906可提供与有功功率成比例的频率输出和与瞬时功率成比例的高频输出来用于校准。它的两个通道均使用16位二阶△-∑ADC,能以MCLK/4的频率对输入进行采样,同时允许对动态范围很宽的输入信号进行采样。可编程增益放大器(Programmable Gain Amplifier,PGA)扩大了电流输入通道(通道0)的可用范围。其有功功率的计算以及与计算有关的滤波均可在数字域中完成,从而提高了其稳定性和温漂性能。 MCP3906的两个数字高通滤波器(HPF1和HPF2)可以滤除两个通道的系统偏移量,因此,有功功率的计算不含任何电路或系统偏移量。经过高通滤波后,电压和电流信号相乘,即可得出瞬时功率信号。此信号不含直流偏移分量,因此可有效利用求平均法(Averaging Technique)计算出所需的有功功率输出。 瞬时功率信号包含的有功功率信息就是瞬时功率的直流分量。求平均法可用于计算正弦和非正弦波形,以及所有功率因数。瞬时功率经过低通滤波器(LPF)就可以产生瞬时有功功率信号。 通过MCP3906的DTF转换器可对瞬时有功功率信息进行累加,以产生输出脉冲,此脉冲的频率与平均有功功率成比例。FOUT0和FOUT1输出的低频脉冲可用于设计驱动机电式计数器和双相步进电机,以便显示实际消耗的有功功率。每个脉冲对应于一个固定的有功电量值,其功能可由F2、F1和F0的逻辑进行选择。HFOUT输出具有较高的频率设定和较低的积分周

基于功率测量芯片HLW8012的功率显示表设计

基于功率测量芯片HLW8012的功率显示表设计 [摘要] 功率显示表是一种用于显示电量数据的仪表,是针对电力系统、公共设施、智能大厦的电力监控需求而设计的。 本文主要讲述功率显示表的主要功能、硬件原理图等。该功率显示表可以对单相交流电路中的用电设备进行功率、电压和电流等参数的检测。仪表采用HLW7021作为控制MCU,以专用电能计量集成电路芯片HLW8012为电量采集的核心器件,显示电路由芯片SM1642驱动4位数码管显示。 [关键词] 功率显示模块,功率计量,功率检测,功率计量模块,,功率计量方案,HLW8012,智能家电,功率监测模块 [正文] 一、功率显示表原理 为了能够测量单相电路中的电流、电压、功率、电量和功率因系素等有效值,本次设计的采样电路以电能计量芯片HLW8012为主,不需使用复杂的设计电路和编写复杂的软件。因为HLW8012内置了晶振和参考电源,所以外围电路非常简单。 HLW8012主要特性 ●高频脉冲CF,指示有功功率,在1000:1范围内达到±0.3%的精度 ●高频脉冲CF1,指示电流或电压有效值,使用SEL选择,在500:1范围内达到±0.5%的精 度 ●内置晶振、2.43V 电压参考源及电源监控电路 ●5V单电源供电,工作电流小于3mA HLW8012输入输出 图1 芯片引脚图 功率显示表是对负载设备的用电情况进行实时的检测,将负载设备的用电数据进行收集,提供给控制终端,并通过4位数码管进行显示。使用HLW8012设计的功率检测模块的测量精度<0.3%,可以准确的测量功率、用电量等信息,具有性能稳定、设计简单等特点。 功率检测模块主要包含以下几个系统模块:电源模块,功率采集模块,主控制器模块和显示模块。 功率显示表的原理框图如下:

大功率电机驱动芯片 应用实例

AN1794 Application note PractiSPIN evaluation system configuration and set up guide Introduction PractiSPIN is an evaluation and demonstration system that can be used with several STMicroelectronics motor driver integrated circuit devices. The system consists of a Graphical User Interface (GUI) program which runs on an IBM-PC under windows, a common ST7 based interface board that communicates with the PC and the practiSPIN software via a serial COMM port, and a device specific evaluation or target board that connects to the ST7 interface board via a standard 34 pin ribbon cable interface, as shown in Figure1. The target PCB connects to the motor or motors and to a user supplied DC power supply generally in the range of 12 to 48 Vdc. The practiSPIN system is designed to operate the device being evaluated (the target device) under control of the practiSPIN software. Depending on which target device is being used, the practiSPIN software can operate the device to drive a stepper motor, 1 or 2 DC motors or a brushless DC (BLDC) motor. Figure 1.System block diagram January 2008 Rev 21/34 https://www.wendangku.net/doc/2c16129044.html,

基于功率计量芯片HLW8012的计量插座方案

基于功率计量芯片HLW8012计量插座方案 【摘要】 计量插座是一种插座转换装置,可以显示电量、功率、电压、电流、时钟等参数,是针对于家庭电器节能要求而设计。 本文主要讲述计量插座的主要功能、硬件原理图等。该计量插座可以对单相交流用电的电器进行电量、功率、电压及电流等参数的测量。此方案采用HLW7031作为控制MCU,以专用功率计量芯片HLW8012为电量采集器件,HT1621为LCD驱动芯片,DS1302作为时钟记录芯片。【关键词】 计量插座,功率计量,功率计量,节能插座,智能插座,HLW8012,智能家电 【正文】 一、计量插座原理 计量插座需要测量功率、电量、电流和电压等参数,同时计量插座产品内部空间小,本次设计使用功率计量芯片HLW8012作为各个电参数的测量器件。因为HLW8012可以测量功率、电量、电流和电压值,内置晶振、参考源,SOP8封装,外围电路简单,在满足性能要求的同时,可以做到体积更小。 ●HLW8012主要特性 (1)高频脉冲CF,指示有功功率,在1000:1范围内达到±0.3%的精度 (2)高频脉冲CF1,指示电流或电压有效值,使用SEL选择,在500:1范围内达到±0.5%的精度(3)内置晶振、2.43V电压参考源及电源监控电路 (4)5V单电源供电,工作电流小于3mA ●HLW8012输入输出 VIP SEL CF CF1输出 电流/电压值 /电压值 图1 HLW8012芯片引脚图 (1)V1P,V1N输入电流采样信号:峰峰值V P-P:±43.75mV,最大有效值:±30.9mV。

(2)V2P输入电压采样信号:峰峰值V P-P:±700mV,最大有效值:±495mV。 (3)高频脉冲CF(PIN6):指示功率,计算电能;输出占空比为1:1的方波。 (4)高频脉冲CF1(PIN7):指示电流或电压有效值,SEL选择;输出占空比为1:1的方波。 计量插座实际上是一个插座转接设置,电器通过计量插座之后再连接到电网。MCU从功率计量模块获取用电器的电量、功率、电压、电流等参数,从时钟模块获取当前时钟,MCU将这些数据通过LCD驱动芯片显示在LCD屏上。MCU可以打开或关闭插座孔的电源,通过按键直接操作或设置定时自动操作,电源的打开与关闭是通过MCU控制继电器的闭合与切断实现。 时钟设置是通过按键进行设置,可以设置日期、小时、分、秒,自动设置星期。可以设置一星期内哪几天定时打开或关闭插座孔的电源,实现无人自动控制插座孔的电源。一般在出厂前会设置好时间。计量插座结构框图如图2所示。 图2 计量插座方案结构框图 二、计量插座硬件设计 计量插座硬件设计相对应于结构框图,有6部分模块电路:电源管理电路、功率计量电路、显示模块电路、继电器控制电路、时钟电路及按键。 所有功率计量测量,电压、电流通道的采样方式有2种:互感器采样方式(隔离采样)、电阻采样方式(非隔离采样)。互感器采样方式成本高,本设计使用电阻采样方式。 1、电源管理电路 使用LNK304设计的AC-DC非隔离电源,L与N分别是交流火线与零线,以零线作为地线。此电路无需变压器,稳压5V,可以提供150mA左右的电流,能够保证在AC85V~265V的交流范围内,实现稳定的电压输出,纹波也很小,在50mV左右。此电源为所有模块提供工作电压。

电能计量芯片

电能计量芯片 ADE7755是ADI公司生产的一款用于电能计量的芯片,其技术指标超过了IEC1036规定的准确度要求[7]。它将有功功率的信息以频率的形式输出。在50 / 60Hz 输入信号时都能满足IEC687 / 1036标准规定的测试精度要求,在1000:1的输入动态范围内,测试误差小于0.1%。其功能框图如图3.1所示,实物图如图3.2所示。 图3.1 ADE7755功能框图 图3.2 ADE7755芯片实物图 3.1 ADE7755的特点 ADE7755 应用了过采样ADC和DSP相结合的技术,对温度的敏感度很低,即使在很高的环境温度下也能维持较高的测试精度。ADE7755只在ADC和基准源中使用模拟电路,所有其他信号处理(如相乘和滤波)都使用数字电路,这使其在恶劣的环境条件下仍能保持极高的准确度和长期稳定性。

其主要特点如下: (1)工作温度范围-40~85℃。 (2)低阈值启动,启动电流小于 0.2%Ib。 (3)低成本 CMOS 工艺。 (4)片内设有电源监控电路。 (5)片内带有防潜动功能(空载阈值)。 (6)片内带有抗混叠滤波器。 (7)+5V 单电源、低功耗(典型值 15mW)。 (8)具有负功率或错线指示功能。 (9)5V 单电源工作,正常工作时芯片功耗 30Mw。 (10)1Vpeak-peak 的最大模拟信号输入范围。 (11)电流通道具有 1/2/8/16 四种增益选择,以便灵活选用不同大小的锰铜采样电阻。 (12)2.5V 片内高精度参考电压源,绝对偏差小于!4%,温漂小于!20ppm/℃。 (13)片内基准电压 2.5V±8%(温度系数典型值 30ppm/℃),能为外部电路提供基准。 (14)带有电源电压检测功能,当电源电压降低到 80%VDD 时芯片自动复位。 (15)灵活的模拟信号输入电路,既可单端输入也可全差分输入并且输入共模电压可在 0V 和2V 之间选择,由管脚 SCOM 控制。 (16)有功功率平均值从 ADE7755 引脚 F1 和 F2 以频率方式输出,且F1、F2能直接驱动步进电机。 (17)有功功率瞬时值从引脚 CF 以较高频率方式输出,能用于仪表校验;逻辑输出引脚 REVP 能指示负功率或错线;FI 和 F2 能直接驱动机电式计度 器和两相步进电机;电流通道中的可编程增益放大器(PGA)使仪表能使 用小阻值的分流电阻。 3.2 ADE7755工作原理 ADE7755内部拥有两个16位的二阶∑-△模数转换器,这两个ADC对来自电流 和电压传感器的电压信号进行数字化,过采样速率达900KHz。AD7755的模拟 输入结构具有宽动态范围,大大简化了传感器接口(可以与传感器直接连接),也

电能计量芯片汇总

电能计量SA9904B, 1引言新型集成芯片不仅精确度高,而且硬件软件设计简单性价比高 1引言 新型集成芯片不仅精确度高,而且硬件软件设计简单、性价比高。着重介绍SA9904B,ATT7026A及CS54633种三相电能计量芯片的工作原理,比较其性能指标,为合理选择电能芯片提供了有力的帮助。 2电能计量芯片 SA9904B是南非微电子系统有限公司设计开发的一种电能计量芯片, ATY7026A是珠海炬力集成电路设计有限公司开发的电能计量芯片,CS5463是美国CRYSTAL公司推出的带有串行接口的单相双向功率/电能计量集成电路芯片。这三者都用于三相多功能电能计量,均适用于三相三线制的具有50Hz 或60Hz标准频率的电网,支持电阻网络校表和软件校表两种方式。由于电能计量、参数测量和数据读取是电能芯片的核心部分。下面主要从有功计量、无功计量、视在功率/电能计量、有效值测量、中断和SPI接口6个方面介绍芯片原理。 2.1SA9904B简介 SA9904B有20个引脚,PDIP封装,12个元暂存器。SA9904B包含9个代表各相的有功电能、无功电能与电源电压的24位元暂存器。第10个24位元暂存器代表任何有效相位的市频,包含3个位址以保存与SA9604A的兼容性。3个位址的任何其一可用于存取频率暂存器。每相位的有功与无功功率被积存于24位元暂存器。被测电路的电能或功率不直接提供给用户,但是可以通过公式计算。计算每相的有功或无功电能:电能每计数=(VRATED×IRATED)/320 000;计算每相的有功或无功功率:功率=VRATED×IRATED×N/INTTIME/320 000。其中:VRATED为电表的额定电源电压,IRATED为电表的额定电源电流,N=相继读数间的暂存器数值差数(△值),INTTIME为相继读数间的时间差值(单位为秒)。若要求合相有功电能,只能通过程序对三相有功电能求和,或通过有功功率脉冲输出F50计数。芯片内的3个电压暂存器包含各相位测得的RMS电压值.用户可以直接从暂存器中读取。SA9904B不具有中断功能。串行周边的接口汇流排(SPI)为一同步汇流排,使用于微控器与SA9904B之间的数据传输。引脚D0(串行数据出端),DI(串行数据入端),CS(芯片选项)与SCK(串行时脉)用于此汇流排的应用。SA9904B为从器件,。而微控器为汇流排主器件。CS 输入启始与终止数据传输。SCK信号(微控器发送的)选通微控器与SA9904B的SCK引脚间的数据。DI与DO引脚为SA9904B的串行数据输入与输出引脚。2.2ATT7026A简介 ATT7026A44个引脚,QFP44封装,102个寄存器翻。有功功率通过求瞬时功率代数均值获得。分相、合相有功功率分别存入指定寄存器,供用户读取。。无功功率是通过将电压采样信号作一90°相移,再求瞬时功率的代数均值获得。分相、合相无功功率同样提供给用户。芯片中有电能累加寄存器,能够提供分相、合相有功、无功电能,但不提供电网周期累加模式。芯片通过能量脉冲生成器,提供校表脉冲CFl和驱动步进电机的低频脉冲F1/F2。由于芯片提供电流和电压有效值,用户也可用公式S=VRMS×IRMS,通过MCU计量分相、合相视在功率。有效值测量通过对电压、电流的采样数据求均方值实现。能够同时计算6通道的有效值,结果存在指定的寄存器中供用户读取。此外,芯片不仅提供分相电流、电压有效值.还提供三相电流、电压矢量和的有效值,用户可在指定寄存

电机驱动芯片资料全

A4954 双路全桥式DMOS PWM 电动机驱动器 特点 ?低R DS(on)输出 ?过电流保护(OCP) 电动机短路保护 o o电动机引脚接地短路保护 o电动机引脚电池短路保护 ?低功耗待机模式 ?可调PWM 电流限制 ?同步整流 ?部欠压锁定(UVLO) ?交叉电流保护 描述 通过脉宽调制(PWM) 控制两个直流电动机,A4954 能够承受峰值输出电流达±2 安培,并使电压达到40 伏特。 输入端通过应用外部PWM 控制信号以控制直流电动机的速度与方向。部同步整流控制电路用来降低脉宽调制(PWM) 操作时的功率消耗。 部电路保护包括过电流保护、电动机接地或电源短路、因滞后引起的过热关机、V BB欠压监视以及交叉电流保护。 A4954 采用带有外置散热板的16 引脚TSSOP 小型封装(后缀LP)。该封装为无铅封装,且引脚框采用100% 雾锡电镀。 ?功能方框图

A4950 全桥式DMOS PWM 电动机驱动器特点 ?低R DS(开)输出 ?过电流保护(OCP) o电动机短路保护 o电动机引脚接地短路保护 o电动机引脚电池短路保护 ?低功耗待机模式 ?可调PWM 电流限制 ?同步整流 ?部欠压锁定(UVLO) ?交叉电流保护

描述 通过脉宽调制(PWM) 控制直流电动机,A4950 能够提供±3.5 安培的峰值输出电流,工作电压为40 伏特。 该产品可提供输入端子,通过外部施加的PWM 控制信号控制直流电动机的速度与方向。采用部同步整流控制电路降低脉宽调制(PWM) 操作时的功率消耗。 部电路保护包括过电流保护、电动机引脚接地短路或电源短路、带时延的过热关机、V BB欠压监视以及交叉电流保护。 A4950 采用带有外露散热板的8 引脚SOICN 小型封装(后缀LJ)。该封装为无铅封装,且引脚框采用100% 雾锡电镀。 ? 功能方框图 A4938 三相无刷直流电动机预驱动器 功能及优点 ?驱动6 N-通道MOSFET ?同步整流,减少功率耗散

电能计量芯片CS5460及其应用

电能计量芯片CS5460及其应用 1. 概述 CS5460是CRYSTAL公司最新推出的带有串行接口的单相双向功率/电能计量集成电路芯片。与目前在电子式电度表应用中广泛使用的 AD7750和AD7755(见《国外电子元器件》1999年第3期文章)相比较,CS5460增加了以下功能: ●具有片内看门狗定时器(Watch Dog Timer)与内部电源监视器; ●具有瞬时电流、瞬时电压、瞬时功率、电流有效值、电压有效值、功率有效值测量及电能计量功能; ●提供了外部复位引脚; ●双向串行接口与内部寄存器阵列可以方便地与微处理器相连接; ●外部时钟最高频率可达20MHz; ●具有功率方向输出指示。 这些增加的功能更加便于与微处理器(MPU)接口,并能方便地实现电压、电流、功率的测量和用电量累积等功能。

2. 基本结构与技术指标 2.1 内部结构 CS5460内部集成了两个△-∑A/D转换器、高、低通数字滤波器、能量计算单元、串行接口、数字-频率转换器、寄存器阵列和看门狗定时器等模拟、数字信号处理单元,其内部结构框图如图1所示。 2.2 引脚排列及功能 CS5460的引脚排列如图2所示。各引脚的功能如下: 1脚XOUT:晶体振荡器输出; 2脚CPUCLK:CPU时钟输出; 3脚VD+:数字电路电源正极; 4脚DGND:数字地; 5脚SCLK:串行时钟输入; 6脚SDO:串行数据输出; 7脚CS:片选; 8脚NC:空脚; 9脚VIN+:差分电压正输入端; 10脚VIN-:差分电压负输入端;

11脚VREFOUT:参考电压输出;12脚VREFIN:参考电压输入; 13脚VA-:模拟地; 14脚VA+:模拟电源正极; 15脚IIN-:差分电流负输入端;16脚IIN+:差分电流正输入端;17脚PFMON:电源掉电监视输出;18脚NC:空脚; 19脚RESET:复位输入; 20脚INT:中断输出; 21脚EOUT:电能脉冲输出; 22脚EDIR:功率方向指示输出;23脚SDI:串行数据输入; 24脚XIN:晶体振荡器输入。 2.3 主要技术指标 ●差分电压输入范围:150mV; ●温度系数:<60ppm/℃

几种用于IGBT驱动的集成芯片

几种用于IGBT驱动的集成芯片 2. 1 TLP250(TOSHIBA公司生产) 在一般较低性能的三相电压源逆变器中,各种与电流相关的性能控制,通过检测直流母线上流入逆变桥的直流电流即可,如变频器中的自动转矩补偿、转差率补偿等。同时,这一检测结果也可以用来完成对逆变单元中IGBT实现过流保护等功能。因此在这种逆变器中,对IGBT驱动电路的要求相对比较简单,成本也比较低。这种类型的驱动芯片主要有东芝公司生产的TLP250,夏普公司生产的PC923等等。这里主要针对TLP250做一介绍。 TLP250包含一个GaAlAs光发射二极管和一个集成光探测器,8脚双列封装结构。适合于IGBT或电力MOSFET栅极驱动电路。图2为TLP250的内部结构简图,表1给出了其工作时的真值表。 TLP250的典型特征如下: 1)输入阈值电流(IF):5 mA(最大); 2)电源电流(ICC):11 mA(最大); 3)电源电压(VCC):10~35 V; 4)输出电流(IO):± 0.5 A(最小); 5)开关时间(tPLH /tPHL):0.5 μ s(最大); 6)隔离电压:2500 Vpms(最小)。 表2给出了TLP250的开关特性,表3给出了TLP250的推荐工作条件。

注:使用TLP250时应在管脚8和5间连接一个0.1 μ F的陶瓷电容来稳定高增益线性放大器的工作,提供的旁路作用失效会损坏开关性能,电容和光耦之间的引线长度不应超过 1 cm。 图3和图4给出了TLP250的两种典型的应用电路。 在图4中,TR1和TR2的选取与用于IGBT驱动的栅极电阻有直接的

关系,例如,电源电压为24V时,TR1和TR2的Icmax≥ 24/Rg。 图5给出了TLP250驱动IGBT时,1 200 V/200 A的IGBT上电流的实验波形(50 A/10 μ s)。可以看出,由于TLP250不具备过流保护功能,当IGBT过流时,通过控制信号关断IGBT,IGBT中电流的下降很陡,且有一个反向的冲击。这将会产生很大的di/dt和开关损耗,而且对控制电路的过流保护功能要求很高。 TLP250使用特点: 1)TLP250输出电流较小,对较大功率IGBT实施驱动时,需要外加功率放大电路。 2)由于流过IGBT的电流是通过其它电路检测来完成的,而且仅仅检测流过IGBT的电流,这就有可能对于IGBT的使用效率产生一定的影响,比如IGBT在安全工作区时,有时出现的提前保护等。 3)要求控制电路和检测电路对于电流信号的响应要快,一般由过电流发生到IGBT可靠关断应在10 μ s以内完成。 4)当过电流发生时,TLP250得到控制器发出的关断信号,对IGBT的栅极施加一负电压,使IGBT硬关断。这种主电路的dv/dt比正常开关状态下大了许多,造成了施加于IGBT两端的电压升高很多,有时就可能造成IGBT的击穿。 2.2 EXB8..Series(FUJI ELECTRIC公司生产) 随着有些电气设备对三相逆变器输出性能要求的提高及逆变器本身的原因,在现有的许多逆变器中,把逆变单元IGBT的驱动与保护和主电路电流的检测分别由不同的电路来完成。这种驱动方式既提高了逆变器的性能,又提高了IGBT的工作效率,使IGBT更好地在安全工作区工作。这类芯片有富士公司的EXB8..Series、夏普公司的PC929等。在这里,我们主要针对EXB8..Series 做一介绍。 EXB8..Series集成芯片是一种专用于IGBT的集驱动、保护等功能于一体的复合集成电路。广泛用于逆变器和电机驱动用变频器、伺服电机驱动、UPS、感应加热和电焊设备等工业领域。具有以

驱动芯片的选择

电机驱动有单极性和双极性两种。当只需要电机单方向驱动时,可采用单极性驱动,如下图(a)所示,此电路由于续流二极管工作时间较长,损耗大,所以改进后的半桥驱动如下图(b): Figure 1.Illustration of the half bridge. 当需要电机正反两个方向旋转时,采用双极性驱动方式,如下: Figure 2.Illustration of the H bridge. 功能逻辑如下:(1:合并,0:断开) S1 S2 S3 S4 电机动作 1 0 0 1 正传 0 1 1 0 反转 0 0 0 0 自由 0 1 0 1 刹车 1 0 1 0 刹车 这又称为全桥驱动,上图中开关使用大功率MOS管替代,可以使用分立元件,也可以使用集成电路。但是能用于PWM驱动的低电压大电流芯片产品并不多,在智能车比赛中使用最多的有:MC33886, VNH3SP30, BTS7960B, DT340I, IRF3205。 根据查阅的资料,使用单片MC33886时易发生发热、噪声等问题,对电源电压影响过大等问题,所以可以使用两片并联,如下所示:

该接法降低了MOS管的导通内阻,增大了驱动电流,可以起到增强驱动能力、减小芯片发热的作用,但是起始频率受限,电机噪声大且发热严重。 VNH3SP30是意法半导体公司生产的专用于电机驱动的大电流功率集成芯片。芯片核心是一个双单片上桥臂驱动器(HSD)和2个下桥臂开关,HSD开关的设计采用ST的ViPowe 技术,允许在一个芯片内集成一个功率场效应MOS管和智能信号/保护电路。下桥臂开关是采用ST专有的EHD(STripFET)工艺制造的纵向场效应MOS管。3个模块叠装在一个表面组装MultiPowerSO- 30引脚框架电绝缘封装内,具体性能指标如下: ①最大电流30 A、电源电压高达40 V; ②功率MOS管导通电阻0.034 Ω; ③5 V兼容的逻辑电平控制信号输入;④内含欠压、过压保护电路;⑤芯片过热报警输出和自动关断。与MC3886相比,它具有一个显著优点就是芯片不会发热,且保护功能强大,但是存在开关频率限10 kHz,电机噪声大且电机容易发热,但芯片较贵,很多场合性价比不高。 采用2个半桥智能功率驱动芯片BTS7960B组合成一个全桥驱动器,驱动直流电机转动。BTS7960B是应用于电机驱动的大电流半桥集成芯片,它带有一个P沟道的高边MOSFET、一个N沟道的低边MOSFET和一个驱动IC。P沟道高边开关省去了电荷泵的需求,因而减少了电磁干扰(EMI)。集成的驱动IC具有逻辑电平输入、电流诊断、斜率调节、死区时间产生和超温、过压、欠压、过流及短路保护功能。BTS7960B的通态电阻典型值为16 mΩ,驱动电流可达43 A,调节SR引脚外接电阻的大小可以调节MOS

3-计量芯片应用心得之选型篇

电能计量芯片应用心得之选型篇 什么是计量芯片 计量芯片是测量交流电信号的一类芯片,因最早是使用于电表产品,所以在行业内也俗称电表芯片,它可以统计用电负载的用电量、测量用电负载的功率大小和电流大小,以及市电的电压。市电一般分为单相电和三相电,所以电表芯片有两大类,一类是单相计量芯片,一类是三相计量芯片。 随着近几年物联网行业的发展,许多智能产品除了增加无线通讯的功能外,在和市电使用相关的产品中,比如WIFI PLUG、充电桩、智能交通灯和火灾检设备等产品上面都增加了计量芯片,用于测量电能参数,因此电表芯片慢慢从工业应用产品走向了消费类应用产品。 计量芯片有哪些功能 计量芯片最基础的功能是测量用电量、功率大小、有效电流和有效电压,这是计量芯片最基础的测量功能。还有一些计量芯片除了基础的测量功能外,还可以测量功率因素、市电的线性频率、相角、过零点、视在功率等参数,这类计量芯片的功能比较多。下表是列举了几类计量芯片功能分类 下表是不同型号的计量芯片的性能和功能差异表

以上我们基本对于计量芯片有一个初步的了解,也了解到计量芯片可以测量哪些电参数。 现在要回到我们的产品本身,根据产品的定义,要选择合适的计量芯片。 要做一个什么样的产品 选定一款合适的计量芯片之前,我们要先知道我们需要设计一个什么样的产品,这个产品有哪些功能,需要用到计量芯片的哪些功能参数,才能实现这些功能。目前市面上的计量芯片一般都能满足产品的大部分功能,只需要我们关注几个细微的指标,就能够做出判断。 下面给出一个简单的方法,将产品的功能进行分解,然后根据这些功能进行 反向寻找,找出合适的计量芯片。

三相电能计量芯片FAQ

炬力公司三相电能计量芯片FAQ 1、炬力公司三相电能计量芯片有哪些型号? 炬力公司目前已经推出了五款三相电能专用计量芯片,他们分别满足不同的系统应用: ATT7030A是一颗高精度三相有功电能计量芯片,电阻网络校表,可直接驱动机电式计度器用于显示电能,主要应用于有功三相电能表。 ATT7028A是一颗高精度三相有功电能计量芯片,支持软件校表以及电阻网络校表,可计量分相电能和总电能,主要应用于三相有功电能表。 ATT7026A是一颗高精度三相组合表专用计量芯片,提供有功、无功参数,主要应用于三相电能表。 ATT7022A是一颗高精度三相多功能专用计量芯片,可以完成四象限有功、无功测量,可应用于三相多功能电能表以及电测仪表、工业控制等方 面。 ATT7022B是一颗在ATT7022A基础上增加基波/谐波电能计量功能的高精度三相多功能专用计量芯片,可应用于三相多功能电能表以及电测仪 表、工业控制等方面。 2、三相电能芯片对复位操作有何要求? 芯片复位保持25us左右后,芯片才能复位,芯片复位后,一般等待500us 左右才能进行操作SPI。 3、SIG端子有何用?可否不用? SIG信号只在软件校表时有用。外围干扰可能导致计量芯片内部数据错乱,或者计量芯片受干扰复位,校表数据必须由外部MCU通过SPI口进行更新,以保证计量的准确性。SIG信号就是用来通知外部MCU的一个握手信号。 当然也可以不用SIG信号,可以检测工作寄存器的相应状态位,详细信息可以参考芯片用户手册 4、晶振的选用范围为10-25MHz,默认为24.576MHz,可选用12MHz晶振?与 24.576MHz有何区别? 由于芯片计量部分采用了数字滤波器结构,所以为了保证测量精度,建议选用24.576MHz。 5、采样周期是多少?多长时间采样一次? 采样频率是3.2KHz。 6、计量芯片内部寄存器更新时间? 内部有效值、功率、相位、相角、频率等寄存器的更新时间大约是1/3秒。而能量寄存器则是与能量脉冲同步更新。 7、CF的最高输出脉冲频率? 最高约600Hz。

功率计量芯片HLW8012介绍及应用

功率计量芯片HLW8012介绍与应用 一、引言 HLW8012是深圳市合力为科技推出的单相电能计量芯片,可以测量有功功率、电量、电压有效值、电流有效值;SOP8封装,体积小,广泛应用于智能家电、节能插座,智能路灯、智能LED 灯等应用场合。本文主要内容:1、HLW8012介绍;2、HLW8012应用硬件电路;3、HLW8012脉冲软件测量;4、HLW8012应用场合及展望。 二、、HLW8012介绍 1、HLW8012主要特性 (1)高频脉冲CF ,指示有功功率,在1000:1范围内达到±0.3%的精度 (2)高频脉冲CF1,指示电流或电压有效值,使用SEL 选择,在500:1范围内达到±0.5%的精度 (3)内置晶振、2.43V 电压参考源及电源监控电路 (4)5V 单电源供电,工作电流小于3mA 2、HLW8012引脚图 VDD VIP VIN CF1 SEL V2P CF 选择CF1输出 电流/电压值 /电压值 图1芯片引脚图 引脚序号 引脚名称 输入/输出 说明 1 VDD 芯片电源 芯片电源 2,3 V1P ,V1N 输入 电流差分信号输入端,最大差分输入信号为±43.75mV 4 V2P 输入 电压信号正输入端。最大输入信号±700mV 5 GND 芯片地 芯片地 6 CF 输出 输出有功高频脉冲,占空比50% 7, CF1 输出 SEL=0,输出电流有效值,占空比50%; SEL=1,输出电压有效值,占空比50%; 8 SEL 输入 配置有效值输出引脚,带下拉

● 模拟信号输入 (1)V1P ,V1N 输入电流采样信号:峰峰值V P-P :±43.75mV ,最大有效值:±30.9mV 。 (2)V2P 输入电压采样信号:峰峰值V P-P :±700mV ,最大有效值:±495mV 。 ● 数字信号输出 (1)高频脉冲CF (PIN6):指示功率,计算电能;输出占空比为1:1的方波。 (2)高频脉冲CF1(PIN7):指示电流或电压有效值,SEL 选择;输出占空比为1:1的方波。 注:MCU 与HLW8012的接口不是使用协议进行读取,而是通过测量CF 、CF1引脚输出高频脉冲的周期来计算功率、电流、电压值。 3、芯片内部框图 SEL CF1CF 图2 芯片内部框图 HLW8012内部带有2路PGA 及ADC ,对电流、电压采样信号进行模数转换,得到数字信号,芯片内部计算有功功率值、电流有效值、电压有效值,经过频率转换模块,HLW8012将有功功率值、电流有效值、电压有效值转换为方波脉冲输出(占空比1:1),各数值的大小与频率的大小成正比,与周期的大小成反比。 三、HLW8012应用硬件设计 所有电能计量测量,电压、电流通道的采样方式有2种:互感器采样方式、电阻采样方式。互感器采样方式成本高,本文只介绍电阻采样方式。外围硬件主要包含几部分:电源电源、功率计量电路、MCU 接口。 1、电源电路 为了配合电阻采样方式(即从电网直接采样,非隔离),电源电路必须为非隔离电源,非隔离电源有2种方式:AC-DC 非隔离电源、阻容降压电源。两者的比较如下:

相关文档
相关文档 最新文档