文档库 最新最全的文档下载
当前位置:文档库 › 傅里叶变换光学

傅里叶变换光学

傅里叶变换光学
傅里叶变换光学

中山大学光信息专业实验报告:傅里叶光学变换系统

一、实验目的和内容

1、了解透镜对入射波前的相位调制原理。

2、加深对透镜复振幅、传递函数、透过率等参量的物理意义的认识。

3、观察透镜的傅氏变换(FT )图像,观察4f 系统的反傅氏变换(IFT )图像,并进行比较。

4、在4f 系统的变换平面(T )插入各种空间滤波器,观察各种试件相应的频谱处理图像。

二、实验原理

1、透镜的FT 性质及常用函数与图形的关学频谱分析

透镜由于本身厚度的不同,使得入射光在通过透镜时,

图1 点的厚度。设原复振幅分布为(,)L U x y 的光通过透镜后,幅分布受到透镜的位相调制,附加了一个位相因子(,)x y ?为(,)L U x y ':

图1

(,)(,)exp[(,)]L L U x y U x y j x y ?'= (1) 若对于任意一点(x ,y )透镜的厚度为(,)D x y ,透镜的中心厚度为0D 。光线由该点通过透镜时在透镜中的距离为(,)D x y ,空气空的距离为0D -(,)D x y ,透镜折射率为n ,则该点的总的位相差为:

00(,)[(,)](,)(1)(,)x y k D D x y knD x y kD k n D x y ?=-+=+- (2)

(2)中的k =2π/λ,为入射光波波数。

用位相延迟因子(,)t x y 来表示即为:

0(,)exp()exp[(1)(,)]t x y jkD jk n D x y =- (3)

由此可见只要知道透镜的厚度函数(,)D x y 就可得出其相位调制。在球面镜傍轴区域,用抛物面近似球面,可以得到球面透镜的厚度函数为:

22012

111(,)()()2D x y D x y R R =-+- (4) 其中1R 、2R 是构成透镜的两个球面的曲率半径。公式(4)对双凹、双凸、或凹凸透镜都成立。引入焦距f ,其定义为: 12

111(1)()n f R R =-- (5) 代入(3)得: 220(,)exp()exp[()]2k t x y jknD j x y f

=-+ (6) 式(6)即是透镜位相调制的表达式,它表明复振幅(,)L U x y 通过透镜时,透镜各点都发生位相延迟。

从式(6)容易看出第一项位相因子0exp()jknD 仅表示入射光波的常量位相延迟,不影响位相的空间分布,即波面形状,所以在运算过程中可以略去。第二项22exp[()]2k j x y f

-+是具有调制作用的因子,它表明光波通过透镜的位相延迟与该点到透镜中心的距离的平方成正比。而且与透镜的焦距有关。当考虑透镜孔径后,有:

22(,)exp[()](,)2k t x y j x y p x y f

=-+ (7) 其中的(,)p x y 为透镜的光瞳函数,表达式为:

1(,)0p x y ?=?? 孔径内 其 它

(8) 2、透镜的傅里叶变换性质

在单色平面波垂直照射下,夫琅和斐衍射光场的复振幅分布正比于衍射屏透射系数的傅里叶变换。衍射图像的强度分布正比于衍射屏的功率谱分布。一般情况下,我们是将夫朗和斐衍射图像成像到透镜的像方焦平面出,这就是说,作为成像元件的透镜,就相当于傅里叶变换器。

如图2所示,设单位振幅的单色平面光垂直照射一透射系数为(,)t x y 的衍射屏,与衍射屏相距Z 处放置一焦距为f 的薄透镜L ,先观察其像方平面L 的光场分布。为了讨论方便,这里我们忽略透镜材料的吸收、散射、透镜表面的反射以及透镜孔径大小等因素的影响。

图2 透镜的傅里叶变换性质 设(,)E x y 、11E(,)x y 、11E (,)x y '、(,)f f E x y 分别表示衍射屏后、透镜输入平面、输出平面以及像方平面出光波场的复振幅分布。由于透镜的相位调制特性,输出平面与输入平面出光波场之间的关系由下式决定:

221111E (,)E(,)exp[()]2k x y x y i x y f

'=-+ (9) 而从透镜输出平面到像方焦平面,光波相当于经历一次菲涅耳衍射。夫朗和斐近似下观察到平面上的衍射光场复振幅 :

2222100111111()()2()0011111(,)E(,)iz iz

ikz x y x y z z i z ux vy e E x y e x y e e dx dy i z λλλ+∞++-+-∞=?? =221001()22111111{E(,)exp[()]}iz

ikz x y z e e F x y i x y i z z λπλλ++ (10) 式中u 和v 分别表示1x 和1y 方向的空间频率。于是由(9)和(10)式,透镜像方焦平面上的光波场复振幅(,)f f E x y 分布应具有如下形式:

222221111(,){E (,)exp()}2f f x y ikf ik f f f x y e E x y e F x y ik i f f

λ++'= =22211{E(,)}f f x y ikf ik f

e e F x y i

f λ+ ( ,f f

x y u v f f λλ== ) (11)

在单位振幅的平面波垂直照射下,透镜衍射屏的光波场复振幅分布(,)E x y 即等于衍射屏的透射系数(,)t x y ,故其频谱分布为:

{(,)}{(,)}(,)F E x y F t x y T u v ==

(12)

该频谱分量从衍射屏传播到透镜的输入平面处,产生一个相位延迟(,,)u v z ?,即有:

(,)(,)exp[(,,)]E u v T u v i u v z ?= (13) 在傍轴条件下(,,)u v z ?具有如下的形式:

222(,,)()2

k u v z kz z u v ?λ=-+ (14) 由此可以得到透镜输入平面处光波场的频谱分布为:

22211{(,)}(,)(,)exp[()]2k F E x y E u v T u v ikz i

z u v λ==-+ (15) 代入(11)得透镜像方焦平面处的广场分布为: 222222(,)exp[()](,)2f f x y ikf ik f f f e k E x y e ikz i

z u v T u v i f λλ+=-+ =22()

(1)2(,)f f

x y z ik z f ik f f e e T u v i f λ++- (,f

f

x y u v f f λλ==) (16)

从上式可以看到,在单色平面波垂直照射下,透镜像方焦平面处的光场除了一个常数因子外和一个二次因子外,其余的反应了衍射屏透射系数得傅里叶变换。经过进一步的分析我们可以得到在用透镜对二维关学图像进行傅里叶变换时,若将图像放置在透镜的物方焦平面上,则在透镜的像方焦平面上得到输入图像准确的傅里叶变换。若将输入图像放置在透镜与其像方焦平面之间,则像方焦平面上频谱图样的大小可随衍射屏到像方焦平面的距离的变化而改变;并且当输入图像紧贴透镜后放置时可获得最大的频谱图样。而对于球面波照射时,傅里叶变换平面将不是在透镜的像方平面。而是光源的共轭像平面上。

3.透镜孔径的衍射与滤波特性

由于孔径的衍射效应,任何具有有限大小通过光孔径的光学成像系统,均不存在如几何光学中所说的理想像点。所谓共轭像点,实际上是由系统孔径引起的,以物点的几何像点为中心的夫琅和斐衍射图样的中央亮斑——艾里斑。其次,透镜有限大小的通光孔径,也限制了衍射屏函数的较高频率成分(具有较大入射倾角的平面波分量)的传播。这可以从图3可以看出:

图3

:透镜孔径引起渐晕效应

透过衍射屏的基频平面波分量1可以全部通过透镜,具有较高(空间)频率的平面波分量2只能部分通过,而高频平面波分量3则完全不能通过。这样,在透镜像方焦平面上的光波场中就缺少了衍射屏透射光场中部分高频成分,因此,所得衍射屏函数的频谱将不完整。这种现象称为衍射的渐晕效应。由此可将,从光信息处理角度来讲,透镜孔径的有限大小,使得系统存在着有限大小的通频宽带和截止频率;从光学成像的角度来讲,则使得系统存在着一个分辨极限。

4.相干光学图像处理系统(4f 系统)

用夫琅和斐衍射来实现图像的频谱分解,最重要的意义是为空间滤波创造了条件,由于衍射场就是屏函数的傅里叶频谱面,空间频率(u ,v )与衍射场点位置(,ξη)一一对应,使得人们可见从改变频谱入手来改造图像,进行信息处理。为此,设计了图4所示的图像处理系统。

图4 4f 图像处理系统

在此系统中,两个透镜1L 、2L 成共焦组合,1L 的前焦面(x ,y )为物平面O ,图像由此输入,2L 的后焦面(',')x y 为像平面I ,图像在此输出。共焦平面(,ξη)称为变换平面T ,在此可以安插各种结构和性能的屏(即空间滤波器)。

当平行光照射在物平面上时,整个OTI 系统成为相干成像系统。由于变换平面上空间滤波器的作用,使输出图像得以改造,所以OTI 系统又是一个相干光学信息处理系统。这里先研究它的成像问题。

我们将相干光学系统的成像过程看作两步:第一步,从O 面到T 面,使第一次夫琅和斐衍射,它起分频作用。第二步,从T 面到I 面,再次夫琅和斐衍射,起合成作用,即综合频谱输出图像。在这样的两步中,变换平面T 处于关键地位,若在此处设置光学滤波器,就能起到选频作用。要想作到图像的严格复原,T 面必须完全畅通无阻。此处的4f 系统每次衍射都是从焦面到焦面,这就保证了复振幅的变换是纯粹的傅里叶变换。如果光波能够自由通过变换平面,即连续两次的傅里叶变换,函数的形式基本复原,只是自变量变号,

),(),(01y x U y x U --∝''即图像倒置。在有源滤波器的情况下,001U t U U T ≠=这里为滤波器的透过率函数,这也是我们进行滤波实验的依据。

5. 空间滤波实验

要从输入图像中提取或排除某种信息,就要事先研究这类信息的频谱特征,然后针对它制备相应的空间滤波器置于变换平面,经过第二次衍射合成后,就可以达到预期的效果,光信息处理的原理也就是基于如此。

三、实验仪器与装置图

实验仪器:激光器、准直系统、傅里叶透镜、傅里叶变换试件、频谱处理器、CCD光电接收器;

实验装置图:如图5

图5 实验装置图

四、实验内容

1.根据傅里叶变换光路装置简图摆好光路,打开激光电源,调整光路。

2.开启电脑,运行csylaser软件。调节光路中各器件的位置,以得到样品较为清晰的傅

里叶变换图像(根据所用样品,最终应得到“米”字图像)。并将图像保存,作为原始数据。

3.根据反傅里叶变换光路装置简图(4f系统)摆好光路,调节器件位置,以得到样品最为

尖锐的反傅里叶变换图像,并保存。在调节时,主要是调节CCD的位置,傅里叶透镜的位置摆放好不要轻易乱动。

4.在频谱处理器的位置加上带有狭缝的滤波片,将激光依次透过狭缝,观察不同的狭缝对

于光波的透过作用的不同,保存图像,并分析。

5.关闭激光器和电脑电源,整理好仪器。实验结束。

四、实验数据记录与分析

1. 观察样品的傅里叶频谱图图样。

图6所示为样品的原图样,图7为其频谱图:

图6 样品示意图

图7 样品傅里叶变换频谱图

由图可知,样品经过傅里叶变换得到的频谱图

理论验证:

用Mat Lab程序编辑一个二维矩阵做出一个图6所示的图像,使其发光部分值为1,不发光部分为0。如图8(a)所示。

图像在焦平面上的频谱图为图像经过了一次二维傅里叶变换,再将频谱搬移到中心,得到的频谱图如图8(b),可以看到,理论和实际得到的图像很相似,都为“米”字型。

图8 Mat Lab 的模拟图(a)原始图像;(b)图像的频谱图

对比分析:

结合图7与图8(b )可以看出,所测样品的傅里叶变换图像,类似一个“米”字。分析可知,中心的十字经变换后仍为十字形,而顶角处的三角形则经过傅里叶变换后变为“×”形,因为最终样品的傅里叶变换图像为“米”字形。

图7中的“米”字不是很清晰,分析其原因,主要是由于激光器所发激光的光强太大,导致CCD 过曝光,使中心十字过亮而“×”形不明显。图质稍有模糊,分析原因,除了CCD 的采样分辨率太小之外,可能是由于光路没有调节至完全共轴,或者CCD 没有恰好在透镜焦点上,导致了实际上没有在焦平面上获取图像。

由数学理论分析可知,频谱可以认为表示的是图像的衬比度的变化程度。图中处于中心位置的是零频位置,也就是图像的直流成分,可以理解为光强没有发生变化的表象;越远离中心的频谱自然指的是衬比度变化的部分,越远离中心,衬比度的变化程度越大。又由阿贝成像原理,我们可以知道物体在焦面上成的像,其实是图像在透镜经过夫琅禾费衍射所形成的像,于是水平部分指的应是竖直方向上的衬比度变化,竖直部分指的是水平方向上的衬比度变化。而图中的“X”部分就是箭头的斜边部分的衬比度了。故我们实验中得到的频谱图与理论得到的很符合。

改进方法:

降低激光光强,是CCD 尽量不产生过曝;

调整光路,使CCD 尽量正对傅里叶透镜的焦面,得到尽量更好的图样;

更换焦距较大的透镜,由于焦距太小,导致对光的折射角度过大,使对焦点的确定变得很难。故可以试着更换焦距较大的透镜。

2.

观察样品的反傅里叶频谱图图样。

摆好并调节好光路后,可得样品的反傅里叶变换图像如下图所示:

源图像图像的频谱图

图9 样品的反傅立叶变换图像

由上图可以看出,待测样品的反傅里叶变换图像就是它本身,但是图像发生了反转。调节光路,当获得最为清晰,且边缘最为尖锐的图像时,为较理想的图像。

理论验证:

用Mat Lab 软件编辑程序将由步骤1得到的图像的频谱图进行一次傅里叶变换,得打如图10的图样。可知,源图像的频谱图经过傅里叶变换后得到的图样形状和原图一致,但是发生了翻转,与实验得到的结果相同。

图10 基于Mat Lab

的频谱傅里叶变换图样

频谱图傅里叶变换图

对比分析:

实验所得图像和理论图相比,只有部分图像,原因是CCD所采图像不全,其根本的原因是没有调好4F系统导致在CCD上得到的是放大后的像,于是只能得到部分图像。

实验得到的图像边缘模糊,不光滑,其可能原因是CCD没有刚好落在透镜焦点位置,也可能是因为两傅里叶透镜没有完全共轴,或者各器件之间的距离与4F系统所要求的距离有偏差。

实验得到的图像的亮度不完全均匀,原因可能是激光的光点没有全部照在CCD上,使亮度不均匀。

改进方法:

保证光路准直后,检查射出的平行光斑是否为圆斑,若不是,则继续调试准直系统使其成为一个圆斑。总之必须耐心调节光路,尽量使光路接近4F系统。

在由于佳偶等原因没法调出较为准确的4F系统的情况下,可以尝试着以调节CCD为主,前后左右移动以成像找到最佳位置,若仍然能没有理想图像,再微调傅里叶透镜,之后再调CCD,如此反复,以得到最佳的图像。

3. 4F系统下观察样品的滤波后的图像

根据光路摆出4F系统,在频谱变换位放置各种频谱变换器,亦即滤波器。观察经过4F 系统后图像的变化情况。

(1)频谱处理面放置中间有不透明细线,两边全透的滤波片(高通滤波器)。

依次经过细线宽度不断增大的细线,得到的图像如图11:

(a)线宽最细(b)线宽次细

(c)线宽最粗

图11 滤波成像实验图(a)线宽最细(b)线宽次细(c)线宽最粗

由图11可知,CCD得到的图像的亮度与图9相比有明显的降低。图像边缘亮度比中间的亮度稍稍亮,而且仔细观察还可知,图像边缘竖直方向(竖直边缘)的亮度比水平方向(水平边缘)的亮度要大。图像整体模糊而且亮度分布不均匀,可能是4F系统没有非常的精准。

随着线宽的增大,所得到的图像的亮度更低,相反的其边缘的明亮反而更加明显,亦即图像的衬比度增大了。

理论验证:

用Mat Lab软件编辑程序,使频谱经过理想高通滤波器调制,改变高通滤波器的宽度,观察得到的图像。

图12~图14显示的是(a)不同高通滤波器宽度下所能通过的频谱图,也就是经过调制后的频谱图,(b)最终滤波后得到的图像。

(a) (b)

图12线宽最细的高通滤波器(a)滤波后的图像频谱图(b)滤波后的最终图像

(a) (b)

图13线宽次细的高通滤波器(a)滤波后的图像频谱图(b)滤波后的最终图像

(a) (b)

图14线宽最粗的高通滤波器(a)

滤波后的图像频谱图(b)滤波后的最终图像

滤波后的图

像频谱图

高通滤波后

的图像

滤波后的图

像频谱图高通滤波后

的图像

滤波后的图像

频谱图高通滤波后的图像

程序上使用的是理想的高通滤波器,也就是在竖直方向上的中间的部分的频谱全部遮挡,只通过其他的高通部分。得到的频谱图可见竖直方向零频部分亮度为0,其他部分完全通过,高通滤波后的最终图像和理论(图10)相比中间全黑,边缘亮度高,同时也可以发现竖直边缘的亮度大,水平边缘无亮度。理论的图像发生了衍射,可能是细线的宽度太小导致发生了夫琅禾费衍射。相比图12~图14随着线宽的增大,滤波后得到图像可看出:图像中间区域全黑范围增加,边缘的亮度相比之下更加明显。

对比分析:

由理论可知,高通滤波器具有“通高频,挡低频”的作用,也就是说,图像的频谱的中心频率部分(零频部分)被遮挡,导致直流部分的衬比度为0也就是说中间的相同亮度部分亮度丢失。其他高频的部分被保留完全通过,也就是说衬比度变化程度大的部分,即图像的亮-暗边缘被保留。理论得到的图像和实验得到的图像均验证了这一点。

除此之外,由于竖直方向的零频分量被完全遮挡,也就是说源图像的水平部分的衬比度基本为0,故得到的图像只有竖直边缘发亮。理论得到的图像和实验得到的图像也均验证了这一点。

当我们增加高通滤波器所遮挡的低频部分时,图像整体的低频分量会减少,这会导致图像以高频分量为主,故和遮挡低频少的情况相比,边缘的亮度会更加明显。理论得到的图像支持了这一点,但是实验中虽然整体的亮度(直流部分)降低了,但是边缘的亮度没有明显反倒是降低了。原因可能是4F系统下CCD没有刚好在焦点上,也可能是光学系统本身的传递函数的限制(OTF)导致了图像的整体衬比度很低。

(2)频谱处理面放置中间全透明细缝,两边不全透的滤波片(低通滤波器)。

依次经过缝宽度不断增大的细缝,得到的图像如图15:

(a)缝宽最细(b)缝宽次细

(c)缝宽最粗

图15 滤波成像实验图(a)缝宽最细(b)缝宽次细(c)缝宽最粗

由图15可知,CCD得到的图像的亮度与图9相比变化不大。图像边缘模糊化,亮度也没有中间的亮度亮。图像整体模糊亮度分布不均匀,可能是4F系统没有非常的精准。

随着线宽的增大,所得到的图像的亮度更低,相反的其边缘的明亮反而更加明显,亦即图像的衬比度增大了。

理论验证:

用Mat Lab软件编辑程序,使频谱经过理想低通滤波器调制,改变低通滤波器进光缝的宽度,观察得到的图像。

图12~图14显示的是(a)不同高通滤波器宽度下所能通过的频谱图,也就是经过调制后的频谱图,(b)最终滤波后得到的图像。

(a) (b)

图16 缝宽最细的低通滤波器(a)滤波后的图像频谱图(b)滤波后的最终图像

(a) (b)

图17 缝宽次细的低通滤波器(a)滤波后的图像频谱图(b)滤波后的最终图像

(a) (b)

图18 缝宽最粗的低通滤波器(a)滤波后的图像频谱图

(b)滤波后的最终图像

滤波后的图

像频谱图低通滤波后

的图像

滤波后的图像

频谱图

低通滤波

后的图像滤波后的图像

频谱图低通滤波后的图像

程序上使用的是理想的低通滤波器,也就是在竖直方向上的中间的部分的频谱全部透过,不通过其他的频谱。得到的频谱图可见竖直方向零频部分完全透过,其他部分为0,滤波后的最终图像和原图(图10)相比中间衬比度不变化的部分亮度基本无变化,边缘很模糊而且亮度稍暗,同时也可以发现水平边缘和住址边缘相比更加锐利,衬比度明显,竖直边缘模糊且亮度较暗。理论的图像发生了衍射,可能是细线的宽度太小导致发生了夫琅禾费衍射。相比图16~图18随着缝宽的增大,滤波后得到图像可看出:图像中间区域亮度增大,衬比度明显增加,图像边缘相比之下更加清晰。可以理解为图像整体的衬比度增大。缝宽增大时衍射的条纹增多且变密,这个是由于单缝衍射的缝宽增大导致光程差较小造成的结果。

对比分析:

由理论可知,低通滤波器具有“通低频,挡高频”的作用,也就是说,图像的频谱的中心频率部分(零频部分)全部透过,直流部分全透也就是说中间的相同亮度部分不被遮挡。其他高频的部分被完全遮挡,也就是说衬比度变化程度大的部分,即图像的亮-暗边缘丢失。理论得到的图像和实验得到的图像均验证了这一点。

除此之外,由于只有竖直方向的中间频谱透过,也就是说源图像的水平部分的衬比度基本不变,故得到的图像竖直边缘的衬比度降为0。理论得到的图像和实验得到的图像也均验证了这一点。

当我们增加低通滤波器所透过的低频部分时,图像整体的低频分量会增加,这会导致图像更多的直流分量以及衬比度较低的部分可以通过,故与透过低频少的情况相比,中间的亮度会增加。同时由于较高频谱的透过使得图像整体的衬比度会增加,图像变清晰。理论与实验中得到的图像支持了这一点,只是实验中在透过最细的缝的低通滤波时,图像太多余模糊以至于难以辨识图像。原因可能是4F系统下CCD没有刚好在焦点上,也可能是光学系统本身的传递函数的限制(OTF)导致了图像的整体衬比度很低。

改进方法:

在除了耐心调试光路至更为精准的4F系统之外,可以尝试着换一个焦距更大的傅里叶透镜,焦距越小的透镜其频谱面即焦面的位置就越需要精确定位,而焦距大的透镜其焦面的位置的定位就可以不这么严格。故更换焦距更大的透镜可以使4F成像系统更加容易实现。

五、结论

1、本实验的关键在于调节电路,尤其是观察样品反傅里叶变换图像时,注意调节CCD和傅里叶透镜以得到边缘最为尖锐的图像。在做滤波实验时,注意一定要将频谱处理器置于两透镜的焦点位置,找焦点的方法是先用一张小纸片在两透镜之间,找到激光光斑最小的位置,即焦点位置。

2、如果在做滤波实验时,图像的水平边缘位置随狭缝的变化而改变,则可能是因为光路中的各器件没有完全共轴。

3、影响图像质量的一大原因在于CCD没有调到理想位置,若发现图像质量有问题,应先调节CCD,因为CCD在成像光路后面,好调节,不应随意调节光路中的透镜等。

4、实验过程为避免其他光源对于CCD接收光波的影响,应当关灯且避免其他光源的直射。

5、Mat Lab软件模拟傅里傅里叶成像系统,是为了验证在理想情况下成像的结果,从而和实验得到的结果做比较得出我们实验成果的优劣以及提出新的想法。

六、附录

1.Mat Lab程序代码:

close all

%原图像生成

K=zeros(400);

K(101:340,171:240)=1;

K(166:245,101:310)=1;

K(101:300,46:110)=1;

for j=0:74

K(100-j,131+j:280-j)=1;

end

imshow(K);title('源图像');

%傅里叶变换

PQ=paddedsize(size(K));

F=fft2(K,PQ(1),PQ(2));

g=abs(fftshift(F));

figure;imshow(0.01.*g);title('图像的频谱图');

%傅里叶反变换

PQ_2=paddedsize(size(F));

F_2=fft2(F,800,800);

g_2=abs(fftshift(F_2));

figure;imshow(0.01.*g_2(1:400,1:400));title('频谱图傅里叶变换图');

%理想高通滤波

D0=30; %滤波器半宽(改动这个改变低通和高通宽度此处用的依次是10、20、30) H=ones(PQ(1),PQ(2));

H(:,(PQ(2)/2-D0):1:(PQ(2)/2+D0))=0;

figure;imshow(H);title('高通滤波器平面图');

a=fftshift(g).*fftshift(H); %频谱通过滤波器

figure;imshow((0.01.*(fftshift(a))));title('滤波后的图像频谱图');

t=abs(dftfilt(K,fftshift(H)));%通过滤波器后的图像矩阵

t=t(end:-1:1,end:-1:1);

figure;imshow(t,[]);title('高通滤波后的图像');

%理想低通滤波

H_D=zeros(PQ(1),PQ(2));

H_D(:,(PQ(2)/2-D0):(PQ(2)/2+D0))=1;

figure;imshow(H_D);title('低通滤波器平面图');

a=fftshift(g).*fftshift(H_D); %频谱通过滤波器

figure;imshow((0.01.*(fftshift(a))));title('滤波后的图像频谱图');

t=abs(dftfilt(K,fftshift(H_D)));%通过滤波器后的图像矩阵

t=t(end:-1:1,end:-1:1);

figure;imshow(t,[]);title('低通滤波后的图像');

七、思考

1、 透镜相位调试表达式的物理含义

答:(2)式中的相位调制因子(,)L x y ?的表达式可以单从几何光学简单推出来:

00(,)[(,)](,)(1)(,)L x y k D D x y knD x y kD k n D x y ?=-+=+- (4) 其中k 是某频率光波的波矢量,n 是透镜折射率,0D 是透镜中心厚度,(,)D x y 是透镜上各个点的厚度。上式有很明显的物理含义,由于透镜的厚度是位置(x,y )的函数,使得通过透镜平面不同点的光经过的光程是不同的。我们计算光线通过以0D 为厚度的圆柱体时通过的光程,这个光程分为两个部分:一部分是在透镜玻璃中的光程,即上式中的(,)nD x y ;另一部分则是光线在空气中的光程,即上式中的0(,)D D x y -(设空气折射率为1)。这两个光程之和乘以波矢k 就是透镜各个点造成光波的相位延迟。

2、 光信息处理的大概原理是什么?为何用白光做光源却能得到彩色图像?如何实验物像的反衬度反转?

答:阿贝在研究显微镜成像问题时,提出了一种不同于几何光学的新观点,他将物看成是不同空间频率信息的集合,相干成像过程分两步完成,第一步是入射光场经物平面发生夫琅禾费衍射,在透镜后焦面上形成一系列衍射斑;第二步是各衍射斑作为新的次波源发出球面次波,在波面上互相叠加,形成物体的像.将显微镜成像过看成上述两步成像过程,这称为阿贝成像原理。它不仅用傅里叶变换阐述了显微镜成像的机理,更重要的是首次引入频谱的概念,启发人们用改造频谱的手段来改造信息。

根据阿贝成像原理,我们要对一个物体进行光信息处理,首先是要得到它的空间频谱图。这一步可以利用透镜的傅立叶变换性质,构造一个或者多个透镜系统,然后在第一个透镜的物方焦平面上放置衍射屏(要处理的图像),在它的像方焦平面上会得到源图像频谱分布图。我们可以通过在变换频谱面T 上放置各种滤波器来改变原来图像,并再一次通过另一个同样的傅立叶透镜系统,在第二个透镜的像方焦平面上就会出现经过改造后的图像了。同样的,我们可以将要进行处理的光信息进行快速傅立叶变换得到信息的频率分布,通过对频谱进行

改造来改造信息,这就是信息光学处理的大概原理。

因为白光是由各种频率的光合成的,经过衍射屏产生衍射时,不同频率的光分量在屏上同一个点产生的衍射是不同的。于是,经过透镜的变换作用,最后屏上显现的物体的倒像上的各个点并不是具有所有的频率分量,而是因为缺乏某些频率分量而无法维持原来的白色,从而就会出现彩色图像了。

用不插入频谱处理器得到的图像作为频谱处理器,在4f 系统中即可得到物象的反衬度的反转。

3、 为什么透镜对通过的光波具有相位调制能力?

答:波动方程、复振幅、光学传递函数透镜由于本身厚度变化,使得入射光在通过透镜时,各处走过的光程不同,即所受时间延迟不同,因而具有相位调节能力。

4、什么叫渐晕效应,怎样消除渐晕?

答:渐晕效应是指由于透镜的孔径大小有限,从而造成空间频率高频分量的丢失的现象。理论上来说,只有透镜的孔径无限大才能完全消除渐晕效应。所以实际系统总是存在渐晕效应的。从光信息处理角度来说,系统存在有限大小的通频带宽和截至频率;从光学成像上说,系统存在一个极限分辨率。

5、 什么叫光学4f 系统?如何使用这一系统作光学信息处理?

答:相干光学图像处理系统即4f 系统。

相干光学系统的成像过程看作两步在图四中:第一步,从O 面到T 面,使第一次夫琅禾费衍射,它起分频作用。第二步,从T 面到I 面,再次夫琅禾费衍射,起合成作用,即综合频谱输出图像。在这样的两步中,变换平面T 处于关键地位,若在此处设置光学滤波器,就能起到选频作用。要想作到图像的严格复原,T 面必须完全畅通无阻。此处的4f 系统每次衍射都是从焦面到焦面,这就保证了复振幅的变换是纯粹的傅里叶变换。如果光波能够自由通过变换平面,即连续两次的傅里叶变换,函数的形式基本复原,只是自变量变号,~~

10(',')(,)U x y U x y ∝--即图像倒置。在有源滤波器的情况下:

~~~100T U U t U =≠.这里为滤波器的透过率函数,这也是我们进行滤波实验的依据。 【参考文献】

1、 赵建林编.高等光学.北京:国防工业出版社,2002

2、 赵凯华,钟锡华.光学.北京:北京大学出版社.1984

3、 黄婉云编.傅里叶光学教程.北京:北京师范大学出版社,1984

4、程佩青编.数字滤波与快速傅里叶变换.北京:清华大学出版社,1990

5、杨国光主编.近代光学测试技术.浙江大学出版社,1997

6、余向阳编著-信息光学-中山大学物理科学与工程技术学院。2011

7、刘全金,叶璟,基于MATLAB环境的阿贝-波特空间滤波实验仿真,安庆师范学院学报(自然科学版)2009

《傅里叶光学》试题B

一、选择题(每题2分,共40分) 1.三角函数可以用来表示光瞳为________________的非相干成像系统的光学 传递函数。 A 、矩形 B 、圆孔 C 、其它形状 2.Sinc 函数常用来描述________________的夫琅和费衍射图样 A 、圆孔 B 、矩形和狭缝 C 、其它形状 3.高斯函数)](exp[22y x +-π常用来描述激光器发出的________________ A 、平行光束 B 、高斯光束 C 、其它光束 4.圆域函数Circ(r)常用来表示________________的透过率 A 、圆孔 B 、矩孔 C 、方孔 5.卷积运算是描述线性空间不变系统________________的基本运算 A 、输出-输入关系 B 、输入-输出关系 C 、其它关系 6.相关(包括自相关和互相关)常用来比较两个物理信号的________________ A 、相似程度 B 、不同程度 C 、其它关系 7.卷积运算有两种效应,一种是展宽,还有一种就是被卷函数经过卷积运算,其细微结构在一定程度上被消除,函数本身的起伏振荡变得平缓圆滑,这种效应是________________ A 、锐化 B 、平滑化 C 、其它 8互相关是两个信号之间存在多少相似性的量度。两个完全不同的,毫无关系 的信号,对所有位置,它们互相关的结果应该为________________ A 、0 B 、无穷大 C 、其它 9.周期函数随着其周期逐渐增大,频率(即谱线间隔)________________。 当函数周期变为无穷大,实质上变为非周期函数,基频趋于零 A .愈来愈小 B 、愈来愈大 C 、不变 10.圆对称函数的傅立叶变换式本身也是圆对称的,它可通过一维计算求出, 我们称这种变换的特殊形式为________________。这种变换只不过是二维傅立叶变换用于圆对称函数的一个特殊情况

物理光学梁铨廷版习题答案

第一章光的电磁理论 1.1在真空中传播的平面电磁波,其电场表示为Ex=0,Ey=0,Ez= ,(各量均用国际单位),求电磁波的频率、波长、周期和初相位。解:由Ex=0,Ey=0,Ez= ,则频率υ= ==0.5×1014Hz, 周期T=1/υ=2×10-14s,初相位φ0=+π/2(z=0,t=0),振幅A=100V/m, 波长λ=cT=3×108×2×10-14=6×10-6m。 1.2.一个平面电磁波可以表 示为Ex=0,Ey= ,Ez=0,求:(1)该电磁波的振幅,频率,波长和原点的初相位是多少?(2)波的传播和电矢量的振动取哪个方向?(3)与电场相联系的磁场B的表达式如何写? 解:(1)振幅A=2V/m,频率υ=Hz,波长λ== ,原点的初相位φ0=+π/2;(2)传播沿z轴,振动方向沿y轴;(3)由B=,可得By=Bz=0,Bx= 1.3.一个线偏振光在玻璃中传播时可以表示为Ey=0,Ez=0,Ex=

,试求:(1)光的频率;(2)波长;(3)玻璃的折射率。 解:(1)υ===5×1014Hz; (2)λ= ; (3)相速度v=0.65c,所以折射率n= 1.4写出:(1)在yoz平面内沿与y轴成θ角的方 向传播的平面波的复振幅;(2)发散球面波和汇聚球面波的复振幅。 解:(1)由,可得 ; (2)同理:发散球面波, , 汇聚球面波, 。 1.5一平面简谐电磁波在真空中沿正x方向传播。其频率为Hz,电场振幅为14.14V/m,如果该电磁波的振动面与xy平面呈45o,试写出E,B表达式。解:,其中 = = =

, 同理: 。 ,其中 =。 1.6一个沿k方向传播的平 面波表示为 E= ,试求k 方向的单位矢。 解: , 又, ∴=。 1.9证明当入射角=45o时,光波在任何两种介质分界面上的反射都有。 证明: = = == 1.10证明光束在布儒斯特角下入射到平行平面玻璃片的上表面时,下表面的入射角也是布儒斯特角。 证明:由布儒斯特角定义,θ+i=90o, 设空气和玻璃的折射率分别为和,先由空气入射到玻璃中则有 ,再由玻璃出射到空气中,有,

傅里叶变换光学系统

傅里叶变换光学系统 组号 4 09光信 王宏磊 (合作人: 刘浩明 杨纯川) 一、实验目的和内容 1、了解透镜对入射波前的相位调制原理。 2、加深对透镜复振幅、传递函数、透过率等参量的物理意义的认识。 3、观察透镜的傅氏变换(FT )图像,观察4f 系统的反傅氏变换(IFT )图像,并进行比较。 4、在4f 系统的变换平面(T )插入各种空间滤波器,观察各种试件相应的频谱处理图像。 二、实验原理 1、透镜的FT 性质及常用函数与图形的关学频谱分析 力。图1 在该点的厚度。设原复振幅分布为(,)L U x y 其复振幅分布受到透镜的位相调制,附加了一个位相因(,)x y ?后变为(,)L U x y ': 图1 (,)(,)exp[(,)]L L U x y U x y j x y ?'= (1) 若对于任意一点(x ,y )透镜的厚度为(,)D x y ,透镜的中心厚度为0D 。光线由该点通过透镜时在透镜中的距离为(,)D x y ,空气空的距离为0D -(,)D x y ,透镜折射率为n ,则该点的总的位相差为: 00(,)[(,)](,)(1)(,)x y k D D x y knD x y kD k n D x y ?=-+=+- (2) (2)中的k =2π/λ,为入射光波波数。 用位相延迟因子(,)t x y 来表示即为: 0(,)exp()exp[(1)(,)]t x y jkD jk n D x y =- (3) 由此可见只要知道透镜的厚度函数(,)D x y 就可得出其相位调制。在球面镜傍轴区域,用抛物面近似球面,可以得到球面透镜的厚度函数为:

22012 111(,)()()2D x y D x y R R =-+- (4) 其中1R 、2R 是构成透镜的两个球面的曲率半径。公式(4)对双凹、双凸、或凹凸透镜都成立。引入焦距f ,其定义为: 12 111(1)()n f R R =-- (5) 代入(3)得: 220(,)exp()exp[()]2k t x y jknD j x y f =-+ (6) 式(6)即是透镜位相调制的表达式,它表明复振幅(,)L U x y 通过透镜时,透镜各点都发生位相延迟。 从式(6)容易看出第一项位相因子0exp()jknD 仅表示入射光波的常量位相延迟,不影响位相的空间分布,即波面形状,所以在运算过程中可以略去。第二项22exp[()]2k j x y f -+是具有调制作用的因子,它表明光波通过透镜的位相延迟与该点到透镜中心的距离的平方成正比。而且与透镜的焦距有关。当考虑透镜孔径后,有: 22(,)exp[()](,)2k t x y j x y p x y f =-+ (7) 其中的(,)p x y 为透镜的光瞳函数,表达式为: 1(,)0p x y ?=?? 孔径内 其 它 (8) 2、透镜的傅里叶变换性质 在单色平面波垂直照射下,夫琅和斐衍射光场的复振幅分布正比于衍射屏透射系数的傅里叶变换。衍射图像的强度分布正比于衍射屏的功率谱分布。一般情况下,我们是将夫朗和斐衍射图像成像到透镜的像方焦平面出,这就是说,作为成像元件的透镜,就相当于傅里叶变换器。 如图2所示,设单位振幅的单色平面光垂直照射一透射系数为(,)t x y 的衍射屏,与衍射屏相距Z 处放置一焦距为f 的薄透镜L ,先观察其像方平面L 的光场分布。为了讨论方便,这里我们忽略透镜材料的吸收、散射、透镜表面的反射以及透镜孔径大小等因素的影响。

傅里叶光学实验

傅里叶光学的空间频谱与空间滤波实验11系09级姓名张世杰日期2011年3月30日学号PB09210044 实验目的: 1.了解傅里叶光学中基本概念,如空间频率,空间频谱,空间滤波和卷积 2.理解透镜成像的物理过程 3.通过阿贝尔成像原理,了解透镜孔径对分辨率的影响 实验原理: 一、基本概念 频谱面:透镜的后焦面 空间函数:实质即光波照明图形时从图形反射或透射出来的光波可用空间两维复变函数 空间频谱:一个复变函数f(x,y)的傅立叶变换为 ??+ ) exp[ , F)] ( ( (π , u ) { , ( )} v =dxdy vy ? = f ux - y x 2i f x y F(u,v)叫作f(x,y)的变换函数或频谱函数 空间滤波:在频谱面上放一些光栅以提取某些频段的物信息的过程 滤波器:频谱面上的光阑 二、阿贝尔成像原理 本质就是经过两次傅里叶变换,先是使单色平行光照在光栅上,经衍射分解成不同方向的很多束平行光,经过透镜分别在后焦面上形成点阵,然后代表不同空间频率的光束又在向面上复合而成像。 需要提及的是,由于透镜的大小有限,总有一部分衍射角度大的高频成分不 能进入到透镜而被丢弃了,因此像平面上总是可能会丢失一些高频的信息,即在 透镜的后焦平面上得到的不是物函数的严格的傅立叶变换(频谱),不过只有一 个位相因子的差别,对于一般情况的滤波处理可以不考虑。这个光路的优点是光 路简单,而且可以得到很大的像以便于观察。

三、空间滤波器 在频谱面上放置特殊的光阑,以滤去特定的光信号(1)单透镜系统 (2)双透镜系统 (3)三透镜系统

四、空间滤波器的种类 a .低通滤波:在频谱面上放如图2.4-3(1)所示的光阑,只允许位于频谱面中心及附近的低频分量通过,可以滤掉高频噪音。 b .高通滤波:在频谱面上放如图2.4-3(2)所示的光阑,它阻挡低频分量而让高频分量通过,可以实现图像的衬度反转或边缘增强。 c . 带通滤波:在频谱面上放如图2.4-3(3)所示的光阑,它只允许特定区域的频谱通过,可以去除随机噪音。 d .方向滤波:在频谱面上放如图2.4-3(4)或(5)所示的光阑,它阻挡或允许特定方向上的频谱分量通过,可以突出图像的方向特征。 以上滤波光阑因透光部分是完全透光,不透光部分是将光全 部挡掉,所以称作“二元振幅滤波器”。还有各种其它形式的滤波器,如:“振幅 滤波器”、“相位滤波器”和“复数滤波器”等。 e .相幅滤波器:是将位相转变为振幅的滤波器,它的重要应用就是把”位相物体”显现出来,所谓位相物体是指那些只有空间的位相结构而透明度却一样的透明物体。如生物切片、油膜、热塑等,它们只改变入射光的位相而不影响其振幅。所以人眼不能直接看到透明体中的位相分布也就是它们的形状和结构,利用相幅转换技术就能使人眼看到透明体的形状和结构,从而扩展了人眼的视觉功能。 图 3 图2.4-3 各种形式的空间滤波器

信息光学参考答案

名词解释 单色平面波 波函数E 取余弦或正弦形式,对应的光波等相面为平面,且等相面上个点的扰动大小时刻相等的光波称为单色平面波。 光学全息 利用光的干涉原理将物体发出的特定光波以干涉条纹形式记录下来,使物光波前的全部信息都贮存在记录介质中形成全息图,当用适当光波照射全息图时,由于光的衍射原理能重现原始物光波,从而形成与原物相同的三维像的过程称为光学全息。 色模糊 由于波长不同而产生的像的扩展的现象叫做像的色模糊。 范西泰特—策尼克定理 指研究一种由准单色(空间)非相干光源照明而产生的光场的互强度,特别指研究干涉条纹可冗度。 11222(,) exp()2(,;,)(,)exp ()()j J x y x y I j x y d d z z ψπαβαβαβλλ+∞-∞?? = -?+??????? 其中 22 2222221121[()()]()x y x y z z ππψρρλλ= +--=- 12ρρ分别是点11(,)x y 和点22(,)x y 离光轴的距离 基元全息图 指单一物点发出的光波与参考光波干涉所形成的全息图。 彩虹全息 只利用纪录时在光路的适当位置加一个夹缝,使再现的同时再现狭缝像,观察再现像将受到狭缝再现像的调制,当用白光照明再现时,对不同颜色的光波,狭缝和物体的再现像位于不同颜色的像,犹如彩虹一样的全息图。 判断 1.衍射受限系统是一个低通滤波器。 2.物 000(,)x y μ通过衍射受限系统后的像分布(,)i i i x y μ是000(,)x y μ的理想像和点扩散 (,)i i h x y 的卷积。 3.我们把(,)H ξη称为衍射受限系统的想干传递函数。 4.定义:()()f x h x 为一维函数,则无穷积分 ()()()()() g x f h x d f x h x ααα+∞ -∞ =-=*? 5.二维卷积 (,) (,)(,)(,)(,)(,) g x y f h x y d d f x y h x y αβαβαβ+∞-∞= --=*?? 6.1,()()() ,x x x x x a rect rect a a a a a o ?-≤?*==Λ???其他 7.透镜作用 成像;傅里叶变换;相位因子。

傅里叶变换光学

中山大学光信息专业实验报告:傅里叶光学变换系统 一、实验目的和内容 1、了解透镜对入射波前的相位调制原理。 2、加深对透镜复振幅、传递函数、透过率等参量的物理意义的认识。 3、观察透镜的傅氏变换(FT )图像,观察4f 系统的反傅氏变换(IFT )图像,并进行比较。 4、在4f 系统的变换平面(T )插入各种空间滤波器,观察各种试件相应的频谱处理图像。 二、实验原理 1、透镜的FT 性质及常用函数与图形的关学频谱分析 透镜由于本身厚度的不同,使得入射光在通过透镜时, 图1 点的厚度。设原复振幅分布为(,)L U x y 的光通过透镜后,幅分布受到透镜的位相调制,附加了一个位相因子(,)x y ?为(,)L U x y ': 图1 (,)(,)exp[(,)]L L U x y U x y j x y ?'= (1) 若对于任意一点(x ,y )透镜的厚度为(,)D x y ,透镜的中心厚度为0D 。光线由该点通过透镜时在透镜中的距离为(,)D x y ,空气空的距离为0D -(,)D x y ,透镜折射率为n ,则该点的总的位相差为: 00(,)[(,)](,)(1)(,)x y k D D x y knD x y kD k n D x y ?=-+=+- (2) (2)中的k =2π/λ,为入射光波波数。 用位相延迟因子(,)t x y 来表示即为: 0(,)exp()exp[(1)(,)]t x y jkD jk n D x y =- (3) 由此可见只要知道透镜的厚度函数(,)D x y 就可得出其相位调制。在球面镜傍轴区域,用抛物面近似球面,可以得到球面透镜的厚度函数为:

傅里叶光学实验报告

实验原理:(略) 实验仪器: 光具座、氦氖激光器、白色像屏、作为物的一维、二维光栅、白色像屏、傅立叶透镜、 小透镜 实验内容与数据分析 1测小透镜的焦距f i (付里叶透镜f 2=45.0CM ) 光路:激光器T 望远镜(倒置) (出射应是平行光)7小透镜T 屏 操作及测量方法:打开氦氖激光器, 在光具座上依次放上扩束镜, 小透镜和光屏,调节 各光学元件的相对位置是激光沿其主轴方向射入, 将小透镜固定,调节光屏的前后位置, 观 察光斑的会聚情况,当屏上亮斑达到最小时,即屏处于小透镜的焦点位置, 测量出此时屏与 小透镜的距离,即为小透镜的焦距。 1 2 3 x 1 / cm 87.41 89.21 86.50 x 2 / cm 75.22 76.01 74.83 f 1 /cm 什1 =% -X2) 12.19 13.20 11.67 (f j _f )2/(3 _1)=0.7780cm t p ^A =tp -1.32 . - 0.5929 cm P = 0.68 t p’B 二 k p B =1 应二 0.0067cm P =0.68 p p C 3 "二.(t p%)2 (t p%)2 =0.59cm P =0.68 t =(12.35 _0.59)cm P = 0.68 2 ?利用弗朗和费衍射测光栅的的光栅常数 光路:激光器T 光栅T 屏(此光路满足远场近似) 12.19 13.20 11.67 3 =12.353cm

在屏上会观察到间距相等的 k 级衍射图样,用锥子扎孔或用笔描点,测出衍射图样的间距, 再根据dsin v 测出光栅常数d (1 )利用夫琅和费衍射测一维光栅常数; 衍射图样见原始数据; , k & Lk 丸 d = sin 0 | x I 取第一组数据进行分析: 4 .°° 乜 87 3 ?95 4?19 10冷=4.0025 10订 -d =1.36 10“m 忽略b 类不确定度: 4 =tp % 二 t p H =1.20 1.36 10 "八3 =9.4 10^m 则 d = (400.2 -9.4) 10 m d i 43 .09 10‘ 1 6328 10」° =4.00 10 讣 6.8 10" d 2 4 3.09 宀 6严 10 」。“87 10冷 14.1 10 d 3 43.09 10 「6328 10」0= 3.95 10讣 6.9 10’ d 4 4 3.09 E 2 6328 E 0 r.19 10 冷 13.0 10*

傅里叶变换光学

中山大学光信息专业实验报告:傅里叶光学变换系统 一、实验目的和内容 1、了解透镜对入射波前的相位调制原理。 2、加深对透镜复振幅、传递函数、透过率等参量的物理意义的认识。 3、观察透镜的傅氏变换(FT )图像,观察4f 系统的反傅氏变换(IFT )图像,并进行比较。 4、在4f 系统的变换平面(T )插入各种空间滤波器,观察各种试件相应的频谱处理图像。 二、实验原理 1、透镜的FT 性质及常用函数与图形的关学频谱分析 力。图1 在该点的厚度。设原复振幅分布为(,)L U x y 其复振幅分布受到透镜的位相调制,附加了一个位相因(,)x y ?后变为(,)L U x y ': 图1 (,)(,)exp[(,)]L L U x y U x y j x y ?'= (1) 若对于任意一点(x ,y )透镜的厚度为(,)D x y ,透镜的中心厚度为0D 。光线由该点通过透镜时在透镜中的距离为(,)D x y ,空气空的距离为0D -(,)D x y ,透镜折射率为n ,则该点的总的位相差为: 00(,)[(,)](,)(1)(,)x y k D D x y knD x y kD k n D x y ?=-+=+- (2) (2)中的k =2π/λ,为入射光波波数。 用位相延迟因子(,)t x y 来表示即为: 0(,)exp()exp[(1)(,)]t x y jkD jk n D x y =- (3) 由此可见只要知道透镜的厚度函数(,)D x y 就可得出其相位调制。在球面镜傍轴区域,用抛物面近似球面,可以得到球面透镜的厚度函数为:

22012 111(,)()()2D x y D x y R R =-+- (4) 其中1R 、2R 是构成透镜的两个球面的曲率半径。公式(4)对双凹、双凸、或凹凸透镜都成立。引入焦距f ,其定义为: 12 111(1)()n f R R =-- (5) 代入(3)得: 220(,)exp()exp[()]2k t x y jknD j x y f =-+ (6) 式(6)即是透镜位相调制的表达式,它表明复振幅(,)L U x y 通过透镜时,透镜各点都发生位相延迟。 从式(6)容易看出第一项位相因子0exp()jknD 仅表示入射光波的常量位相延迟,不影响位相的空间分布,即波面形状,所以在运算过程中可以略去。第二项22exp[()]2k j x y f -+是具有调制作用的因子,它表明光波通过透镜的位相延迟与该点到透镜中心的距离的平方成正比。而且与透镜的焦距有关。当考虑透镜孔径后,有: 22(,)exp[()](,)2k t x y j x y p x y f =-+ (7) 其中的(,)p x y 为透镜的光瞳函数,表达式为: 1(,)0p x y ?=?? 孔径内 其 它 (8) 2、透镜的傅里叶变换性质 在单色平面波垂直照射下,夫琅和斐衍射光场的复振幅分布正比于衍射屏透射系数的傅里叶变换。衍射图像的强度分布正比于衍射屏的功率谱分布。一般情况下,我们是将夫朗和斐衍射图像成像到透镜的像方焦平面出,这就是说,作为成像元件的透镜,就相当于傅里叶变换器。 如图2所示,设单位振幅的单色平面光垂直照射一透射系数为(,)t x y 的衍射屏,与衍射屏相距Z 处放置一焦距为f 的薄透镜L ,先观察其像方平面L 的光场分布。为了讨论方便,这里我们忽略透镜材料的吸收、散射、透镜表面的反射以及透镜孔径大小等因素的影响。

中山大学信息光学习题课后答案--习题4 5 6作业

习 题 4 尺寸为a b ?的不透明矩形屏被单位振幅的单色平面波垂直照明,求出紧靠零后的平面上透射 光场的角谱。 采用单位振幅的单色平面波垂直照明具有下述透过率函数的孔径,求菲涅耳衍射图样在孔径 轴上的强度分布: (1) 00(,)t x y = (2) 001,(,)0,a t x y ??≤=???其它 余弦型振幅光栅的复振幅透过率为: 00()cos(2/)t x a b x d π=+ 式中,d 为光栅的周期,0a b >>。观察平面与光栅相距z 。当z 分别取下述值时,确定 单色平面波垂直照明光栅,在观察平面上产生的强度分布。 (1) 2 2r d z z λ== (2) 22r z d z λ== (3) 2 42r z d z λ== 式中:r z 为泰伯距离。 参看下图,用向P 点会聚的单色球面波照明孔径∑。P 点位于孔径后面距离为z 的观察平面 上,坐标为(0,)b 。假定观察平面相对孔径的位置是在菲涅耳区内,证明观察平面上强度分布是以P 点为中心的孔径的夫琅禾费衍射图样。 方向余弦为cos ,cos αβ,振幅为A 的倾斜单色平面波照明一个半径为a 的圆孔。观察平面位 于夫琅禾费区,与孔径相距为z 。求衍射图样的强度分布。 环形孔径的外径为2a ,内径为2a ε(01)ε<<。其透射率可以表示为: 001,()0,a r a t r ε≤≤?=??其他 用单位振幅的单色平面波垂直照明孔径,求距离为z 的观察屏上夫琅禾费衍射图样的强 度分布。 下图所示孔径由两个相同的圆孔构成。它们的半径都为a ,中心距离为d ()d a >>。采用单 位振幅的单色平面波垂直照明孔径,求出相距孔径为z 的观察平面上夫琅禾费衍射图样的强度分布并画出沿y 方向截面图。

傅里叶变换光学系统-实验报告

实验10 傅里叶变换光学系统 实验时间:2014年3月20日 星期四 一、 实验目的 1. 了解透镜对入射波前的相位调制原理。 2. 加深对透镜复振幅、传递函数、透过率等参量的物理意义的认识。 3. 观察透镜的傅氏变换力图像,观察4f 系统的反傅氏变换的图像,并进行比较。 4. 在4f 系统的变换平面插入各种空间滤波器,观察各种试件相应的频谱处理图像。 二、 实验原理 1. 透镜的FT 性质及常用函数与图形的关学频谱分析 透镜由于本身厚度的不同,使得入射光在通过透镜时,各处走过的光程差不同,即所受时间延迟不同,因而具有相位调制能力。假设任意点入射光线在透镜中的传播距离等于改点沿光轴方向透镜的厚度,并忽略光强损失,即通过透镜的光波振幅分布不变,仅产生位相的变化,且其大小正比于透镜在该点的厚度。设原复振幅分布为(,)L U x y 的光通过透镜后,其复振幅分布受到透镜的位相调制后变为(,)L U x y ': (,)(,)exp[(,)]L L U x y U x y j x y ?'= (1) 若对于任意一点(x ,y )透镜的厚度为(,)D x y ,透镜的中心厚度为0D 。光线由该点通过透镜时在透镜中的距离为(,)D x y ,空气空的距离为0(,)D D x y -,透镜折射率为n ,则该点的位相延迟因子(,)t x y 为: 0(,)exp()exp[(1)(,)]t x y jkD jk n D x y =- (2) 由此可见只要知道透镜的厚度函数(,)D x y 就可得出其相位调制。在球面镜傍轴区域,用抛物面近似球面,并引入焦距f ,有: 22012 111(,)()()2D x y D x y R R =-+- (3) 12 111(1)()n f R R =-- (4) 220(,)exp()exp[()]2k t x y jknD j x y f =-+ (5) 第一项位相因子0exp()jknD 仅表示入射光波的常量位相延迟,不影响位相的空间分布,即波面形状,所以在运算过程中可以略去。当考虑透镜孔径后,有: 22(,)exp[()](,)2k t x y j x y p x y f =-+ (6)

中山大学信息光学习题课后答案--习题234章作业

习题2 把下列函数表示成指数傅里叶级数,并画出频谱。 (1) ()rect(2)n f x x n ∞=-∞ = -∑ (2) ()tri(2)n g x x n ∞ =-∞ =-∑ 证明下列傅里叶变换关系式: (1) {rect()rect()}sinc()sinc()F x y ξη=; (2) 2 2 {()()}sinc ()sinc ()F x y ξηΛΛ=; (3) {1}(,)F δξη=; (4) 11{sgn()sgn()}i πi πF x y ξη???? = ??????? ; (5) {(sin )}F n nx δ; (6) { }222 π()/e x y a F -+。 求x 和(2)xf x 的傅里叶变换。 求下列函数的傅里叶逆变换,画出函数及其逆变换式的图形。 ()tri(1)tri(1)H ξξξ=+-- ()rect(/3)rect()G ξξξ=- 证明下列傅里叶变换定理: (1) 在所在(,)f x y 连续的点上1 1 {(,)}{(,)}(,)FF f x y F F f x y f x y --==--; (2) {(,)(,){(,)}*((,)}F f x y h x y F f x y F g x y =。 证明下列傅里叶-贝塞尔变换关系式: (1) 若0()()r f r r r δ=-,则000{()}2πJ (2π)r B f r r r ρ=; (2) 若1a r ≤≤时()1r f r =,而在其他地方为零,则11J (2π)J (2π) {()}r a a B f r ρρρ -= ; (3) 若{()}()r B f r F ρ=,则21{()}r B f r a a ρ??= ??? ; (4) 2 2 ππ{e }e r B ρ--= 设(,)g r θ在极坐标中可分离变量。证明若i (,)()e m r f r f r θ θ=,则: i {(,)}(i)e H {()}m m m r F f r f r φ θ=- 其中H {}m 为m 阶汉克尔变换:0 {()}2π ()J (2π)d m r r m H f r rf r r r ρ∞ =? 。而(,)ρφ空间频率中的极坐 标。(提示:i sin i e J ()e a x kx k k a ∞ =-∞=∑)

中山大学信息光学习题课后答案--习题4-5-6作业

习 题 4 4.1 尺寸为a b ?的不透明矩形屏被单位振幅的单色平面波垂直照明,求出紧靠零后的平面上 透射光场的角谱。 4.2 采用单位振幅的单色平面波垂直照明具有下述透过率函数的孔径,求菲涅耳衍射图样在 孔径轴上的强度分布: (1) 220000 (,)circ()t x y x y =+ (2) 2200001,1(,)0,a x y t x y ??≤+≤=???其它 4.3 余弦型振幅光栅的复振幅透过率为: 00()cos(2/)t x a b x d π=+ 式中,d 为光栅的周期,0a b >>。观察平面与光栅相距z 。当z 分别取下述值时,确定 单色平面波垂直照明光栅,在观察平面上产生的强度分布。 (1) 2 2r d z z λ== (2) 22r z d z λ== (3) 2 42r z d z λ== 式中:r z 为泰伯距离。 4.4 参看下图,用向P 点会聚的单色球面波照明孔径∑。P 点位于孔径后面距离为z 的观察 平面上,坐标为(0,)b 。假定观察平面相对孔径的位置是在菲涅耳区,证明观察平面上强度分布是以P 点为中心的孔径的夫琅禾费衍射图样。 4.5 方向余弦为cos ,cos αβ,振幅为A 的倾斜单色平面波照明一个半径为a 的圆孔。观察平 面位于夫琅禾费区,与孔径相距为z 。求衍射图样的强度分布。 4.6 环形孔径的外径为2a ,径为2a ε(01)ε<<。其透射率可以表示为: 001,()0,a r a t r ε≤≤?=??其他

度分布。 4.7 下图所示孔径由两个相同的圆孔构成。它们的半径都为a ,中心距离为d ()d a >>。采用 单位振幅的单色平面波垂直照明孔径,求出相距孔径为z 的观察平面上夫琅禾费衍射图样的强度分布并画出沿y 方向截面图。 4.8 参看下图,边长为2a 的正方形孔径再放置一个边长为a 的正方形掩模,其中心落在(,) x y ''点。采用单位振幅的单色平面波垂直照射,求出与它相距为z 的观察平面上夫琅禾费射图样的光场分布。画出0x y ''==时,孔径频谱在x 方向上的截面图。 4.9 下图所示孔径由两个相同的矩孔构成,它们的宽度为a ,长度为b ,中心相距d 。采用单 位振幅的单色平面波垂直照明,求相距为z 的观察平面上夫琅禾费衍射图样的强度分布。假定4b a =及 1.5d a =,画出沿x 和y 方向上强度分布的截面图。 4.10 下图所示半无穷不透明屏的复振幅透过率可以用阶跃函数表示,即: 00()step()t x x =

傅里叶变换光学系统

傅里叶变换光学系统 组号4 09 光信王宏磊09327004 (合作人:刘浩明杨纯川)、实验目的和内容 1、了解透镜对入射波前的相位调制原理。 2、加深对透镜复振幅、传递函数、透过率等参量的物理意义的认识。 3、观察透镜的傅氏变换(FT)图像,观察4f系统的反傅氏变换(IFT )图像,并进行比较。 4、在4f系统的变换平面(T)插入各种空间滤波器,观察各种试件相应的频谱处理图像。 二、实验原理 1、透镜的FT性质及常用函数与图形的关学频谱分析透镜由于本身厚度的不同,使得入射光在通过透镜时,各处走过的光程差不同,即所受时间延迟不同,因而具有相位调制能力。图1为简化分析,假设任意点入射光线在透镜中的传播距离等于改点沿光轴方向透镜的厚度,并忽略光强损失,即通过透镜的光波振幅分布不变,仅产生位相的变化,且其大小正比于透镜在该点的厚度。设原复振幅分布为 U L(x, y)的光通过透镜后, 其复振幅分布受到透镜的位相调制,附加了一个位相因子 (x, y)后变为U L (x, y): U L(X, y) U L(X, y)exp[j (x,y)] 若对于任意一点(x, y)透镜的厚度为D(x,y),透镜的中心厚度为D0。光线由该点 通过透镜时在透镜中的距离为D(x, y),空气空的距离为D0—D(x, y),透镜折射率为n, 则该点的总的位相差为: (x, y) k[D°D(x, y)] knD (x, y) kD°k(n 1)D(x, y) (2) (2)中的k = 2 n /入,为入射光波波数。 用位相延迟因子t(x, y)来表示即为: D(x,y) Q i i 1 Q2 D o

信息光学试题--答案

信息光学试题 1. 解释概念 光谱:复色光经过色散系统(如棱镜、光栅)分光后,按波长(或频率)的大小依次排列的图案。 干涉图:在一定光程差下,探测器接收到的信号强度的变化,叫干涉图。 2. 傅里叶光谱学的基本原理是干涉图与光谱图之间的关系,是分别用复数形式 和实数表示之。 复数形式方程: 实数形式方程: 3. 何谓Jacquinot 优点?干涉光谱仪的通量理论上约为光栅光谱仪通量的多少 倍? Jacquinot 优点是:高通量。 对相同面积、相同准直镜焦距、相同分辨率,干涉仪与光栅光谱仪通量之比 为 对好的光栅光谱仪来说,由于 则 即干涉仪的通量为最好光栅干涉仪的190倍。 4. 何谓Fellgett 优点?证明干涉光谱仪与色散型光谱仪的信噪比之比为 2/1)/()/(M N S N S G I =,M 为光谱元数。 Fellgett 优点:多重性。 设在一扩展的光谱带1σ —2σ间,其光谱分辨率为δσ,则光谱元数为 δσσδσσσ?=-=21M 2()() (0)1[]2i R R B I I e d πσδσδδ∞ --∞=-?()0()(0)1(tan ){[]cos(2)}2R R B cons t I I d σδπσδδ∞=-? '2() M G E f l E π≈'30f l ≥

对光栅或棱镜色散型光谱仪,设T 为从1σ —2σ的扫描总时间,则每一小节观测时间为T/M ,如果噪音是随机的、不依赖于信号水平,则信噪比正比于 21)(M T 即21 )()(M T N S G ∝。 对干涉仪,它在所有时间内探测在 1σ —2σ间所有分辨率为δσ的小带,所 以探测每一个小带的时间正比于T ,即21 )()(T N S I ∝ 因此21)()(M N S N S G I = 5. 单色光的干涉图和光谱表达式是什么?在实际仪器使用中,若最大光程差为 L ,试写出其光谱表达式——仪器线性函数(ILS )。 单色光干涉图表达式: )2cos(2)]0(2 1)([1δπσδ=-R R I I 其中1σ为单色光的波数,δ为 光程差。 光谱的表达式: })(2])(2sin[)(2])(2sin[{2)(1111L L L L L B σσπσσπσσπσσπσ--+++= 仪器线性函数:])(2[sin 2)(1L c L B σσπσ-= 6. 何谓切趾?试对上题ILS 进行三角切趾,并说明其结果的重要意义。 切趾: 函数])(2[sin 1L c σσπ-是我们对单色光源所得到得一个近似,其次级极大或者说“脚“是伸到零值以下的22%处,它稍稍有点大。我们可以把一个有限宽度的中央峰值认为一个无限窄带宽的一个近似,但是这个”脚“会使在这些波长附近出现一个错误的来源。为了减小这个误差,我们通过截趾的方法来减小这个”脚“的大小,这就叫切趾。 三角切趾后的仪器函数: 21])([sin )(L c L B σσπσ-= 重要意义:

大学物理仿真实验傅里叶光学

大学物理仿真实验 ——傅里叶光学实验 实 验 报 告 姓名: 班级: 学号:

实验名称傅里叶光学实验 一、实验目的 1.学会利用光学元件观察傅立叶光学现象。 2.掌握傅立叶光学变换的原理,加深对傅立叶光学中的一些基本概念和基本理论的理解,如空间频率、空间频谱、空间滤波和卷积等。 二、实验所用仪器及使用方法 防震实验台,He-Ne激光器,扩束系统(包括显微物镜,针孔(30μm),水平移动调整器),全反射镜,透镜及架(f=+150mm,f=+100mm),50线/mm光栅滤波器,白屏 三、实验原理 平面波Ee(x,y)入射到p平面(透过率为)在p平面后Z=0处的光场分布为:E(x,y)= Ee(x,y) 图根据惠更斯原理(Huygens’ Principle),在p平面后任意一个平面p’处光场的分布可看成p平面上每一个点发出的球面波的组合,也就是基尔霍夫衍射积分(Kirchhoff’s diffraction integral)。 (1) 这里:=球面波波长; n=p平面(x,y)的法线矢量;

K=(波数) 是位相和振幅因子; cos(n,r)是倾斜因子; 在一般的观察成像系统中,cos(n,r)1。 r=Z+,分母项中r z;(1)式可用菲涅尔衍射积分表示:(菲涅尔近似 Fresnel approximation) (2) 当z更大时,即z>>时,公式(2)进一步简化为夫琅和费衍射积分:(Fraunhofer Approximation) 这里: 位相弯曲因子。 如果用空间频率做为新的坐标有: , 若傅立叶变换为 (4)

(3)式的傅立叶变换表示如下: E(x’,y’,z)=F[E(x,y)]=c 图2 空间频率和光线衍射角的关系 tg==,tg== =,= 可见空间频率越高对应的衍射角也越大,当z越大时,衍射频谱也展的越宽; 由于感光片和人眼等都只能记录光的强度(也叫做功率谱),所以位相弯曲因子 (5) 理论上可以证明,如果在焦距为f的汇聚透镜的前焦面上放一振幅透过率为g(x,y)的图象作为物,并用波长为的单色平面波垂直照明图象,则在透镜后焦面上的复振幅分布就是g(x,y)的傅立叶变换,其中空间频率,与坐标, 的关系为:,。故面称为频谱面(或傅氏面,由此可见,复杂的二维傅立叶变换可以用一透镜来实现,称为光学傅立叶变换,频谱面上的光强分布,也就是物的夫琅禾费衍射图。 四、实验结果

《傅里叶光学》试题A

一、选择题(每题2分) 1、《信息光学》即《付里叶光学》课程采用的主要数学分析手段是________________。 A 、光线的光路计算 B 、光的电磁场理论 C 、空间函数的付里叶变换 2、高斯函数)](exp[22y x +-π的付里叶变换为________________。 A 、1 B 、),(y x f f δ C 、)](exp[22y x f f +-π 3、1的付里叶变换为_________________。 A 、),(y x f f δ B 、)sgn()sgn(y x C 、)()(y x f Comb f Comb 4、余弦函数x f 02cos π的付里叶变换为_________________。 A 、)]()([21 00f f f f x x ++-δδ B 、)sin()sin(y x f f C 、1 5、圆函数Circ(r)的付里叶变换为_________________ A 、ρπρ) 2(1J B 、1 C 、),(y x f f δ 6、在付里叶光学中,通常是以_________________理论为基础去分析各种光学问题的。 A 、非线性系统 B 、线性系统 7、_________________是从空间域内描述相干光学系统传递特性的重要光学参量。 A 、脉冲响应 B 、相干传递函数 8、_________________是从空间频域内描述相干光学系统传递特性的重要光学参量。 A 、脉冲响应 B 、相干传递函数 9、_________________是从空间域内描述非相干光学系统传递特性的重要光学参量。 A 、点扩散函数 B 、非相干传递函数(光学传递函数) 10、_______________是从空间频域内描述非相干光学系统传递特性的重要光学参量。 A 、点扩散函数 B 、非相干传递函数(光学传递函数) 11、某平面波的复振幅分布为)](2exp[),(y f x f i A U y x y x +=π那么其在不同方向的空间频率为_________________,它也是复振幅分布的空间频谱。 A 、λα cos =x f λβc o s =x f B 、αλ cos =x f βλ c o s =y f 12、在衍射现象中,当衍射孔越小,中央亮斑就_________________。 A 、越大 B 、越小 C 、不变 13、物体放在透镜_________________位置上时,透镜的像方焦面上才能得到物体准确的付里叶频谱(付里叶变换)。 A 、之前 B 、之后 C 、透镜前表面 D 、透镜的前焦面

中山大学信息光学习题课后答案--习题234章作业

习题2 2.1 把下列函数表示成指数傅里叶级数,并画出频谱。 (1) ()rect(2)n f x x n ∞ =-∞ = -∑ (2) ()tri(2)n g x x n ∞ =-∞ = -∑ 2.2 证明下列傅里叶变换关系式: (1) {rect()rect()}sinc()sinc()F x y ξη=; (2) 22{()()}sinc ()sinc ()F x y ξηΛΛ=; (3) {1}(,)F δξη=; (4) 11{sgn()sgn()}i πi πF x y ξη???? = ? ????? ; (5) {(sin )}F n nx δ; (6) { }222 π()/e x y a F -+。 2.3 求x 和(2)xf x 的傅里叶变换。 2.4 求下列函数的傅里叶逆变换,画出函数及其逆变换式的图形。 ()t r i (1) t r i (H ξξξ=+ -- ()r e c t (/3)r e c G ξξξ=- 2.5 证明下列傅里叶变换定理: (1) 在所在(,)f x y 连续的点上11{(,)}{(,)}(,)FF f x y F F f x y f x y --==--; (2) {(,)(,){(,)}*((,)}F f x y h x y F f x y F g x y =。 2.6 证明下列傅里叶-贝塞尔变换关系式: (1) 若0()()r f r r r δ=-,则000{()}2πJ (2π)r B f r r r ρ=; (2) 若1a r ≤≤时()1r f r =,而在其他地方为零,则11J (2π)J (2π) {()}r a a B f r ρρρ -= ; (3) 若{()}()r B f r F ρ=,则21{()}r B f r a a ρ??= ??? ; (4) 2 2 ππ{e }e r B ρ --= 2.7 设(,)g r θ在极坐标中可分离变量。证明若i (,)()e m r f r f r θ θ=,则: i {(,)}(i )e H {()}m m m r F f r f r φ θ=- 其中H {}m 为m 阶汉克尔变换:0 {()}2π()J (2π)d m r r m H f r rf r r r ρ∞ =?。而(,)ρφ空间频率中的极坐 标。(提示:i sin i e J ()e a x kx k k a ∞ =-∞= ∑ )

傅里叶变换的性质以及光学中一些函数的F.T.变换式

Ch2:二维线性系统分析 一:二维傅立叶分析
傅立叶变换 傅立叶变换的性质和定理 可分离的函数 圆对称函数 Fourier-Bessel变换 一些常用的函数(光学模型(元件))的数学 公式表达和傅立叶变换式

Joseph Fourier
约瑟夫·傅立叶 (1768~1830) 法国数学家

Lord Kelvin on Fourier’s theorem
Fourier’s theorem is not only one of the most beautiful results of modern analysis, but it may be said to furnish an indispensable instrument in the treatment of nearly every recondite question in modern physics. Lord Kelvin

The Fourier Transform and its Inverse
F (ω) =
?∞



f (t ) exp(?iω t ) dt
1 f (t) = 2π
?∞

F(ω) exp(iω t) dω

Fourier decomposing functions
we write a square wave as a sum of sine waves.
1 0.8 0.6 0.4 0.2
0级频透
1 2 3 4
1
0.8
0.6
0.4
0,±1
1 2 3 4
0.2
1
0.8
0.6
0.4
0.2
0,±1, ±2
1 2 3 4
0.6
0.4
0.2
1 -0.2
2
3
4
-0.4
±1, ±2
-0.6

相关文档