文档库 最新最全的文档下载
当前位置:文档库 › 经典不等式证明—排序不等式—切比雪夫不等式—平均不等式—柯西不等式

经典不等式证明—排序不等式—切比雪夫不等式—平均不等式—柯西不等式

经典不等式证明—排序不等式—切比雪夫不等式—平均不等式—柯西不等式
经典不等式证明—排序不等式—切比雪夫不等式—平均不等式—柯西不等式

(完整版)均值不等式及其证明

1平均值不等式及其证明 平均值不等式是最基本的重要不等式之一,在不等式理论研究和证明中占有重要的位置。平均值不等式的证明有许多种方法,这里,我们选了部分具有代表意义的证明方法,其中用来证明平均值不等式的许多结论,其本身又具有重要的意义,特别是,在许多竞赛的书籍中,都有专门的章节介绍和讨论,如数学归纳法、变量替换、恒等变形和分析综合方法等,这些也是证明不等式的常用方法和技巧。 1.1 平均值不等式 一般地,假设12,,...,n a a a 为n 个非负实数,它们的算术平均值记为 12...,n n a a a A n +++= 几何平均值记为 112(...)n n n G a a a == 算术平均值与几何平均值之间有如下的关系。 12...n a a a n +++≥ 即 n n A G ≥, 当且仅当12...n a a a ===时,等号成立。 上述不等式称为平均值不等式,或简称为均值不等式。 平均值不等式的表达形式简单,容易记住,但它的证明和应用非常灵活、广泛,有多种不同的方法。为使大家理解和掌握,这里我们选择了其中的几种典型的证明方法。供大家参考学习。 1.2 平均值不等式的证明 证法一(归纳法) (1) 当2n =时,已知结论成立。 (2) 假设对n k =(正整数2k ≥)时命题成立,即对 0,1,2,...,,i a i k >=有 1 1212...(...)k k n a a a a a a k +++≥。 那么,当1n k =+时,由于

121 1 (1) k k a a a A k +++++= +,1k G +=, 关于121,,...,k a a a +是对称的,任意对调i a 与j a ()i j ≠,1k A +和1k G +的值不改变,因此不妨设{}1121min ,,...,k a a a a +=,{}1121max ,,...,k k a a a a ++= 显然111k k a A a ++≤≤,以及1111()()0k k k a A a A +++--<可得 111111()k k k k A a a A a a +++++-≥. 所以 1111211 1(1)...k k k k k k kA k A A a a a A A k k k +++++++-+++-= == 2111...()k k k a a a a A k ++++++-=≥即12111...()k k k k k A a a a a A +++≥+- 两边乘以1k A +,得 111211112111...()...()k k k k k k k k k k A a a A a a A a a a a G ++++++++≥+-≥=。 从而,有11k k A G ++≥ 证法二(归纳法) (1) 当2n =时,已知结论成立。 (2) 假设对n k =(正整数2k ≥)时命题成立,即对 0,1,2,...,,i a i k >=有 12...k a a a +++≥ 那么,当1n k =+时,由于

柯西不等式的应用(整理篇)

柯西不等式的证明及相关应用 摘要:柯西不等式是高中数学新课程的一个新增内容,也是高中数学的一个重要知识点,它不仅历史悠久,形式优美,结构巧妙,也是证明命题、研究最值问题的一个强有力的工具。 关键词:柯西不等式 柯西不等式变形式 最值 一、柯西(Cauchy )不等式: ()2 2211n n b a b a b a +++Λ()()2 222122221n n b b b a a a ++++++≤ΛΛ()n i R b a i i Λ2,1,,=∈ 等号当且仅当021====n a a a Λ或i i ka b =时成立(k 为常数,n i Λ2,1=) 现将它的证明介绍如下: 方法1 证明:构造二次函数 ()()()2 2 222 11)(n n b x a b x a b x a x f ++++++=Λ =()()() 2 222122112222212n n n n b b b x b a b a b a x a a a +++++++++++ΛΛΛ 由构造知 ()0≥x f 恒成立 又22120n n a a a +++≥Q L ()()() 0442 2221222212 2211≤++++++-+++=?∴n n n n b b b a a a b a b a b a ΛΛΛ 即()()() 22221222212 2211n n n n b b b a a a b a b a b a ++++++≤+++ΛΛΛ 当且仅当()n i b x a i i Λ2,10==+ 即12 12n n a a a b b b ===L 时等号成立 方法2 证明:数学归纳法 (1) 当1n =时 左式=()211a b 右式=()2 11a b 显然 左式=右式 当2=n 时 右式 ( )()()()2 2 22 22222212 1211222112a a b b a b a b a b a b =++=+++ ()()()2 22 1122121212222a b a b a a b b a b a b ≥++=+=左式 故1,2n =时 不等式成立 (2)假设n k =(),2k k ∈N ≥时,不等式成立 即 ()()() 22 221222212 2211k k k k b b b a a a b a b a b a ++++++≤+++ΛΛΛ 当 i i ma b =,m 为常数,k i Λ2,1= 或120k a a a ====L 时等号成立 设A=22221k a a a +++Λ B=2 2221k b b b +++Λ 1122k k C a b a b a b =+++L 2 C AB ≥∴

切比雪夫不等式例题

关于切比雪夫不等式的题目现有一大批种子,其中良种占1/6,现从中任取6000颗种子,请用切比雪夫不等式计算这6000粒种子中良种所占的比例与1/6之差的绝对值不超过0.01的概率。利用切比雪bai夫不等式回答下面du两个问题均值为zhi3,方差为dao4的随机变量X,利用切比雪夫专不等式确定P(-2 < X < 8)的下界属限.2 .均值为3,方差为4的随机变量X,且X的概率分布以均值3为中心对称,利用切比雪夫不等式确定P(X <= 0)的上界限|EX=9 DX=9,EY=9 DY=4E(X-Y)=9-9=0D(X-Y)=DX+DY- 2ρxy(DX*DY)^bai0.5=9+4-2*0.5*(9*4)^0.5=7P(|X?Y|≤du4)=1-P(|X?Y-E(X-Y)|≥4)而由切比zhi雪夫不等dao式P(|X?Y-E(X-Y)|≥4)≤D(X-Y)/4^2=7/16所以P(|X?Y|≤4)≥1-7/16=9/16切切比雪夫不等式:对于任一随机变量X ,若EX与DX均存在,则对任意ε>0, 恒有 P{|X-EX|>=ε}<=DX/ε^2 或P{|X-EX|<ε}>=1-DX/ε^2 在你这题中,X~N(2,4) 所以EX=2 ε=3 DX=4 所以P{|X-2|>=3}<=4/(3^2)=4/9方法点拨: 设随机变量X的数学期望和方差都存在,有或 .切比雪夫不等式给出了在随机变量X的分布未知,而只知道和的情况下估计概率 的界限。例1已知随机变量的密度函数为偶函数,$D(X)=1$,且用切比雪夫不等式估计得$P\left\{ \left| X

\right|<\varepsilon \right\}\ge 0.96$,则常数$\varepsilon =\_\_\_\_\_.$ 【答案】5 例2设随机变量和的数学期望分别-2和2,方差分别1和4,而相关系数为-0.5,则根据切比雪夫不等式有____ 【答案】^$的均bai值=10000*3/4=7500方差=10000*3/4*(1-3/4)=1625根据切比du雪夫不zhi等式P{0.74< $/10000 <0.76}=( P{|$/10000-0.75 |<0.01}>=1-(1625/10000^dao2)/0.01^2 =0.837519世纪俄国数学家bai切比雪夫研究统计规律中,du论证并用标准差表达zhi了一个不等式,这个不等式具有普遍的dao意义,被称作切比雪夫定理chebyshev's theorem 其大意是:任意一个数据集中,位于其平均数m个标准差范围内的比例(或部分)总是至少为1-1/㎡,其中m 为大于1的任意正数。对于m=2,m=3和m=5有如下结果:所有数据中,至少有3/4(或75%)的数据位于平均数2个标准差范围内。所有数据中,至少有8/9(或88.9%)的数据位于平均数3个标准差范围内。所有数据中,至少有24/25(或96%)的数据位于平均数5个标准差范围内。其计算公式通常表示为:μ为X的均值,sigma为X的标准差。若和则有它是由排序不等式而来。切比雪夫不等式的积分形式如下:若f 和g 是区间[0,1]上的可积的实函数,并且两者都是递增(或递减)的,则有上式可推广到任意区间。

利用切比雪夫不等式证明_切比雪夫不等式证明

利用切比雪夫不等式证明_切比雪夫不等式证明一、 试利用切比雪夫不等式证明:能以大小0.97的概率断言,将一枚均匀硬币连续抛1000次,其出现正面的次数在400到600之间。 分析:将一枚均匀硬币连续抛1000次可看成是1000重贝努利试验,因此 1000次试验中出现正面H的次数服从二项分布. 解:设X表示1000次试验中出现正面H的次数,则X是一个随机变量,且 ~XB1000,1/2.因此 500 2 1 1000=×==npEX, 250 2 答题完毕,祝你开心! 1 1 2 1 10001= ××= =pnpDX, 而所求的概率为 }500600500400{}600400{ << =< }100100{< < =EXXP }100{< =EXXP 975.0 100

1 2 = ≥ DX . 二、 切比雪夫Chebyshev不等式 对于任一随机变量X ,若EX与DX均存在,则对任意ε>0, 恒有P{|X-EX|>=ε}<=DX/ε^2 或P{|X-EX|<ε}>=1-DX/ε^2 切比雪夫不等式说明,DX越小,则 P{|X-EX|>=ε} 越小,P{|X-EX|<ε}越大,也就是说,随机变量X取值基本上集中在EX附近,这进 一步说明了方差的意义。 同时当EX和DX已知时,切比雪夫不等式给出了概率P{|X-EX|>=ε}的一个上界,该 上界并不涉及随机变量X的具体概率分布,而只与其方差DX和ε有关,因此,切比雪夫 不等式在理论和实际中都有相当广泛的应用。需要指出的是,虽然切比雪夫不等式应用广泛,但在一个具体问题中,由它给出的概率上界通常比较保守。 切比雪夫不等式是指在任何数据集中,与平均数超过K倍标准差的数据占的比例至多 是1/K^2。 在概率论中,切比雪夫不等式显示了随机变数的「几乎所有」值都会「接近」平均。 这个不等式以数量化这方式来描述,究竟「几乎所有」是多少,「接近」又有多接近: 与平均相差2个标准差的值,数目不多于1/4 与平均相差3个标准差的值,数目不多于1/9 与平均相差4个标准差的值,数目不多于1/16 …… 与平均相差k个标准差的值,数目不多于1/K^2 举例说,若一班有36个学生,而在一次考试中,平均分是80分,标准差是10分, 我们便可得出结论:少于50分与平均相差3个标准差以上的人,数目不多于4个=36*1/9。

高中数学不等式知识点总结

弹性学制数学讲义 不等式(4课时) ★知识梳理 1、不等式的基本性质 ①(对称性)a b b a >?> ②(传递性),a b b c a c >>?> ③(可加性)a b a c b c >?+>+ (同向可加性)d b c a d c b a +>+?>>, (异向可减性)d b c a d c b a ->-?<>, ④(可积性)bc ac c b a >?>>0, bc ac c b a 0, ⑤(同向正数可乘性)0,0a b c d ac bd >>>>?> (异向正数可除性)0,0a b a b c d c d >>< ⑥(平方法则) 0(,1)n n a b a b n N n >>?>∈>且 ⑦(开方法则)0(,1)n n a b a b n N n >>?>∈>且 ⑧(倒数法则) b a b a b a b a 110;110>?<<> 2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22 .2a b ab +≤ ②(基本不等式) 2a b ab +≥ ()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: 2a b a b +≥ 2 .2a b ab +??≤ ??? 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、

三相等”. ③(三个正数的算术—几何平均不等式) 33a b c abc ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号). ④()222a b c ab bc ca a b R ++≥++∈, (当且仅当a b c ==时取到等号). ⑤ 3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号) 0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>?>?<->当时,或 22. x a x a a x a

不等式知识点详解

考试内容: 不等式.不等式的基本性质.不等式的证明.不等式的解法.含绝对值的不等式. 考试要求: (1)理解不等式的性质及其证明. (2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用. (3)掌握分析法、综合法、比较法证明简单的不等式. (4)掌握简单不等式的解法. (5)理解不等式│a │-│b │≤│a+b │≤│a │+│b │ §06. 不 等 式 知识要点 1. 不等式的基本概念 (1) 不等(等)号的定义:.0;0;0b a b a b a b a b a b a ?>- (2) 不等式的分类:绝对不等式;条件不等式;矛盾不等式. (3) 同向不等式与异向不等式. (4) 同解不等式与不等式的同解变形. 2.不等式的基本性质 (1)a b b a (对称性) (2)c a c b b a >?>>,(传递性) (3)c b c a b a +>+?>(加法单调性) (4)d b c a d c b a +>+?>>,(同向不等式相加) (5)d b c a d c b a ->-?<>,(异向不等式相减) (6)bc ac c b a >?>>0,. (7)bc ac c b a 0,(乘法单调性) (8)bd ac d c b a >?>>>>0,0(同向不等式相乘) (9)0,0a b a b c d c d >><(异向不等式相除) 11(10),0a b ab a b >>? <(倒数关系) (11))1,(0>∈>?>>n Z n b a b a n n 且(平方法则) (12))1,(0>∈>?>>n Z n b a b a n n 且(开方法则) 3.几个重要不等式 (1)0,0||,2≥≥∈a a R a 则若 (2))2||2(2,2222ab ab b a ab b a R b a ≥≥+≥+∈+或则、若(当仅当a=b 时取等号) (3)如果a ,b 都是正数,那么 .2 a b +≤(当仅当a=b 时取等号) 极值定理:若,,,,x y R x y S xy P +∈+==则: ○ 1如果P 是定值, 那么当x=y 时,S 的值最小; ○2如果S 是定值, 那么当x =y 时,P 的值最大. 利用极值定理求最值的必要条件: 一正、二定、三相等.

重要不等式汇总(例题答案)

其他不等式综合问题 例1:(第26届美国数学奥题之一)设a、b、c∈R+,求证: (1) 分析;最初,某刊物给出了一种通分去分母的较为复杂的证法,这里试从分析不等式的结构出发,导出该不等式的编拟过程,同时,揭示证明此类问题的真谛,并探索其推广命题成功的可能性。 思考方向:(1)的左边较为复杂,而右边较为简单,所以,证明的思想应该从左至右进行, 思考方法:(1)从左至右是一个由简单到复杂的逐步放大过程,所以,一个简单的想法就是将各分母设法缩小,但考虑到各分母结构的相似性,故只要对其中之一做恰倒好处的变形,并构造出右边之需要即便大功告成. 实施步骤;联想到高中课本上熟知的不等式: x3+y3≥x2y+xy2=xy(x+y) (x、y∈R+)(*) 知(1)的左端 这一证明是极其简单的,它仅依赖高中数学课本上的基础知识,由此可见,中学课本上的知识也能用来攻克高层次的数学竞赛题,看来,我们要好好守住课本这快阵地。 (1)刻画了3个变量的情形,左端的三个分式分母具有如下特征:三个字母中取两个的三次方与这三个变量的乘积之和,那么,对于更多个变量会有怎样的结论?

以下为行文方便,记(1)的左端为 ,表示对a、b、c轮换求和,以下其它的类似处理,不再赘述, 为了搞清多个变量时(1)的演变,首先从4个变量时的情形入手, 推广1:设a、b、c、d∈R+,求证: 。(2) 分析:注意到上面的(*),要证(2),需要证 x4+y4+z4≥xyz(x+y+z)(**) (**)是(*)的发展,它的由来得益于证明(1)时用到的(*),这是一条有用的思维发展轨道。 事实上,由高中数学课本上熟知的不等 式x2+y2+z2≥xy+yz+zx易知 x4+y4+z4≥x2y2+y2z2+z2x2≥xy·yz+yz·zx+zx·xy=xyz(x+y+z),这样 (**)得证, 从而(2)便可仿(1)不难证明,略, 推广2:设ai∈R+(i=1、2、3,…,n),求证: 。(3) 有了前面的推广1的证明,这里的推广2的证明容易多了,联想(**),只要能证明

二维形式的柯西不等式知识点梳理

课题:二维形式的柯西不等式 备课教师:沈良宏参与教师:郭晓芳、龙新荣审定教师:刘德清 1、教学重点:二维形式柯西不等式的证明思路,二维形式柯西不等式的应用. 2、教学难点:二维形式柯西不等式的应用. 3、学生必须掌握的内容: 1.二维形式的柯西不等式 若a,b,c,d都是实数,则(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc时,等号成立. 2.柯西不等式的向量形式 设α,β是两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k,使α=kβ时,等号成立. 3.二维形式的三角不等式 设x1,y1,x2,y2∈R,那么x21+y21+x22+y22≥(x1-x2)2+(y1-y2)2. 注意: 1.二维柯西不等式的三种形式及其关系 定理1是柯西不等式的代数形式,定理2是柯西不等式的向量形式,定理3是柯西不等式的三角形式. 根据向量的意义及其坐标表示不难发现二维形式的柯西不等式及二维形式的三角不等式均可看作是柯西不等式的向量形式的坐标表示. 2.理解并记忆三种形式取“=”的条件 (1)代数形式中当且仅当ad=bc时取等号. (2)向量形式中当存在实数k,α=kβ或β=0时取等号. (3)三角形式中当P1,P2,O三点共线且P1,P2在原点O两旁时取等号. 3.掌握二维柯西不等式的常用变式 (1) a2+b2·c2+d2≥|ac+bd|. (2) a2+b2·c2+d2≥|ac|+|bd|. (3) a2+b2·c2+d2≥ac+bd. (4)(a+b)(c+d)≥(ac+bd)2. 4.基本不等式与二维柯西不等式的对比 (1)基本不等式是两个正数之间形成的不等关系.二维柯西不等式是四个实数之间形成的不等关系,从这个意义上讲,二维柯西不等式是比基本不等式高一级的不等式. (2)基本不等式具有放缩功能,利用它可以比较大小,证明不等式,当和(或积)为定值时,可求积(或和)的最值,同样二维形式的柯西不等式也有这些功能,利用二维形式的柯西不等式求某些特殊函数的最值非常有效. 4、容易出现的问题: 在二维形式的柯西不等式相关要点中,对式子(a2+b2)(c2+d2)≥(ac+bd)2取等号的条件容易忽略,由于式子过长容易弄错各个数据之间的对应关系,使用公式时容易混淆公式中数据之间的关系,数据位置易出错。 5、解决方法:

不等式选讲知识点归纳及近年高考真题

不等式选讲知识点归纳及近年高考真题 考点一:含绝对值不等式的解法 例1.(2011年高考辽宁卷理科24)已知函数f (x )=|x-2|-|x-5|. (I )证明:-3≤f (x )≤3;(II )求不等式f (x )≥x 2-8x+15的解集. 解:(I )3, 2,()|2||5|27,25,3, 5.x f x x x x x x -≤?? =---=-<+-=a x a x x f (1)当1=a 时,求不等式23)(+≥x x f 的解集;(2)如果不等式0)(≤x f 的解集为{} 1-≤x x ,求a 的值。

基本不等式柯西不等式知识点复习

基本不等式及应用 一、考纲要求: 1.了解基本不等式的证明过程. 2.会用基本不等式解决简单的最大(小)值问题. 3.了解证明不等式的基本方法——综合法. 二、基本不等式 三、常用的几个重要不等式 (1)a 2+b 2 ≥2ab (a ,b ∈R) (2)ab ≤(a +b 2)2(a ,b ∈R) (3)a 2 +b 2 2≥(a +b 2)2(a ,b ∈R) (4)b a +a b ≥2(a ,b 同号且不为零) 上述四个不等式等号成立的条件都是a =b. 四、算术平均数与几何平均数 设a>0,b>0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为:两个正数的 算术平均数不小于它们的几何平均数. 四个“平均数”的大小关系; a , b ∈R+: 当且仅当a =b 时取等号. 五、利用基本不等式求最值:设x ,y 都是正数. (1)如果积xy 是定值P ,那么当x =y 时和x +y 有最小值2P. (2)如果和 x +y 是定值S ,那么当x =y 时积xy 有最大值14 S 2 . 强调:1、 “积定和最小,和定积最大”这两个结论时,应把握三点:“一正、二定、三相等、四最值”.当条件不完全具备时,应创造条件. 正:两项必须都是正数; +≤≤2 a b ≤+2ab a b

定:求两项和的最小值,它们的积应为定值;求两项积的最大值,它们的和应为定值。 等:等号成立的条件必须存在. 2、当利用基本不等式求最大(小)值等号取不到时,如何处理?(若最值取不到可考虑函数的单调性.) 想一想:错在哪里? 3、已知两正数x ,y 满足x +y =1,则z =(x +1x )(y +1 y )的最小值为________. 解一:因为对a>0,恒有a +1a ≥2,从而z =(x +1x )(y +1 y )≥4,所以z 的最小值是4. 解二:z =2+x 2y 2 -2xy xy =(2 xy +xy)-2≥2 2 xy ·xy -2=2(2-1),所以z 的最小值是2(2-1). 【错因分析】 错解一和错解二的错误原因是等号成立的条件不具备,因此使用基本不等式一定要验证等号成立的条件,只有等号成立时,所求出的最值才是正确的. 【正确解答】 z =(x +1x )(y +1y )=xy +1xy +y x +x y =xy +1xy +x +y 2 -2xy xy =2 xy +xy -2, 令t =xy ,则0-+ =x x x x f 33 ()222 23326f x x x x x x x x x =+ ≥? -->?? =?=?-? 解:当且仅当即时,函数 的最小值是23x =+大家把代入看一看,会有 什么发现?用什么方法求该函数的 最小值?

经典不等式证明-柯西不等式-排序不等式-切比雪夫不等式-均值不等式

几个经典不等式的关系 一 几个经典不等式 (1)均值不等式 设12,,0n a a a >L 是实数 其中0,1,2,i a i n >=L .当且仅当12n a a a ===L 时,等号成立. (2)柯西不等式 设1212,,,,,n n a a a b b b L L 是实数,则 当且仅当0(1,2,,)i b i n ==L 或存在实数k ,使得(1,2,,)i i a kb i n ==L 时,等号成立. (3)排序不等式 设12n a a a ≥≥≥L ,12n b b b ≥≥≥L 为两个数组,12n c c c L ,, ,是12n b b b L ,,,的任一排列,则 当且仅当12n a a a ===L 或12n b b b ===L 时,等号成立. (4)切比晓夫不等式 对于两个数组:12n a a a ≥≥≥L ,12n b b b ≥≥≥L ,有 当且仅当12n a a a ===L 或12n b b b ===L 时,等号成立. 二 相关证明 (1)用排序不等式证明切比晓夫不等式 证明:由 而 根据“顺序和≥乱序和”(在1n -个部分同时使用),可得 即得 同理,根据“乱序和≥反序和”,可得 综合即证 (2)用排序不等式证明“几何—算数平均不等式”12n a a a n +++≤ L 证明:构造两个数列: 其中 c =因为两个数列中相应项互为倒数,故无论大小如何,乘积的..........................和:.. 总是两数组的反序和......... .于是由“乱序和≥反序和”,总有 于是 即 即证 (3)用切比晓夫不等式证明“算数—开方平均不等式”: 12n a a a n +++≤ L 证明:不妨设12n a a a ≥≥≥L ,

不等式知识结构及知识点

不等式知识结构及知识点总结 一.知识结构 二.知识点 1、不等式的基本性质 ①(对称性)a b b a >?> ②(传递性),a b b c a c >>?> ③(可加性) a b a c b c >?+>+ (同向可加性)d b c a d c b a +>+?>>, (异向可减性)d b c a d c b a ->-?<>, ④(可积性)bc ac c b a >?>>0, bc ac c b a 0, ⑤(同向正数可乘性)0,0a b c d ac bd >>>>?> (异向正数可除性)0,0a b a b c d c d >>< ⑥(平方法则)0(,1)n n a b a b n N n >>?>∈>且 ⑦(开方法则) 0(,1)n n a b a b n N n >>?>∈>且 ⑧(倒数法则)b a b a b a b a 1 10;110>?<<> 2、几个重要不等式 ①()2 2 2a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22 .2 a b ab +≤

②(基本不等式) 2 a b +≥()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: a b +≥ 2 .2a b ab +??≤ ??? 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”. ③(三个正数的算术—几何平均不等式) 3 () a b c R +∈、、(当且仅当a b c ==时取到等号). ④()2 2 2 a b c ab bc ca a b R ++≥++∈,(当且仅当a b c ==时取到等号). ⑤333 3(0,0,0)a b c abc a b c ++≥>>>(当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号)0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦ b a n b n a m a m b a b <++<<++<1其中(000)a b m n >>>>,,规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>?>?<->当时,或 2 2 .x a x a a x a

不等式的若干证明方法

2016届本科毕业论文(设计) 题目:不等式的若干证明方法 学院:数学科学学院 专业班级:数学与应用数学12-1班 学生姓名:高春 指导教师:马昌秀 答辩日期:2016年5 月3日 新疆师范大学教务处

目录 1.引言 (1) 2.证明不等式的常用方法 (2) 2.1比较法 (2) 2.1.1 作差法 (2) 2.1.2作商法 (2) 2.2 分析法 (3) 2.3 综合法 (3) 2.4 反证法 (4) 2.5 放缩法 (5) 2.6 数学归纳法 (5) 2.7换元法 (6) 2.7.1增量换元法.. (6) 2.7.2三角换元法 (6) 2.7.3 比值换元法 (7) 2.8 标准化法 (7) 2.9 公式法 (8) 2.10 分解法 (8) 2.11 构造法 (9) 2.11.1 构造对偶式模型 (9) 2.11.2 构造函数模型 (9) 2.12 借助几何法 (10) 3.利用函数证明不等式 (10) 3.1 极值法 (10) 4.利用著名不等式 (11) 4.1 均值不等式 (11) 4.2 柯西-施瓦茨不等式 (12) 4.3 拉格朗日中值定理 (12) 4.4 赫尔德不等式 (13) 4.5 詹森不等式 (13) 4.6 闵可夫斯基不等式 (14) 4.7 伯努利不等式 (15)

4.8 切比雪夫不等式 (15) 4.9 琴生不等式 (16) 4.10 艾尔多斯—莫迪尔不等式 (16) 4.11 排序不等式定理 (16) 5.小结 ..................................................... 错误!未定义书签。参考文献 . (18) 谢辞 ..................................................... 错误!未定义书签。

二维形式的柯西不等式知识点梳理(经典系统全面知识点梳理)

课题:二维形式的柯西不等式 学科:数学年级:高三班级: 主备教师:沈良宏参与教师:郭晓芳、龙新荣、刘世杰、刘德清审定教师:刘德清 1、教学重点:二维形式柯西不等式的证明思路,二维形式柯西不等式的应用. 2、教学难点:二维形式柯西不等式的应用. 3、学生必须掌握的内容: 1.二维形式的柯西不等式 若a,b,c,d都是实数,则(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc时,等号成立. 2.柯西不等式的向量形式 设α,β是两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k,使α=kβ时,等号成立. 3.二维形式的三角不等式 设x1,y1,x2,y2∈R,那么x21+y21+x22+y22≥(x1-x2)2+(y1-y2)2. 注意: 1.二维柯西不等式的三种形式及其关系 定理1是柯西不等式的代数形式,定理2是柯西不等式的向量形式,定理3是柯西不等式的三角形式. 根据向量的意义及其坐标表示不难发现二维形式的柯西不等式及二维形式的三角不等式均可看作是柯西不等式的向量形式的坐标表示. 2.理解并记忆三种形式取“=”的条件 (1)代数形式中当且仅当ad=bc时取等号. (2)向量形式中当存在实数k,α=kβ或β=0时取等号. (3)三角形式中当P1,P2,O三点共线且P1,P2在原点O两旁时取等号. 3.掌握二维柯西不等式的常用变式 (1) a2+b2·c2+d2≥|ac+bd|. (2) a2+b2·c2+d2≥|ac|+|bd|. (3) a2+b2·c2+d2≥ac+bd. (4)(a+b)(c+d)≥(ac+bd)2. 4.基本不等式与二维柯西不等式的对比 (1)基本不等式是两个正数之间形成的不等关系.二维柯西不等式是四个实数之间形成的不等关系,从这个意义上讲,二维柯西不等式是比基本不等式高一级的不等式.

(完整word版)高中数学不等式知识点总结

选修 4--5 知识点 1、不等式的基本性质 ①(对称性) a b b a 同向可加性) a b,c ⑧(倒数法则) 2、几个重要不等式 用基本不等式求最值时(积定和最小,和定积最大) 三相等” . a b c 时取到等号) ④ (可积性) a b ,c ac bc a b ,c 0 ac bc ⑤ (同向正数可乘性) a b 0,c d 0 ac bd b 0,0 cd ab (异向正数可除性) cd ⑥ (平方法则) a b n a b n (n N,且n 1) 异向可减性) a b,c d N,且 n b 1) 0 a n a n b(n ③(三个正数的算术—几何平均不等式) abc 3 3 abc (a 、b 、 c R ) (当且仅当 ②(传递性) a b,b c ac ③(可加性) a b acbc ⑦(开方法则) 11 a b ;a 22 ① a 2 b 2 2ab a , ,(当且仅当 b 时取 " " 号) . 变形公式: ②(基本不等式) ab a , 变形公式: a 2 ab ab a b 2 ab ,(当且仅当 a b 时取到等号) a 2 b 2 2 ,要注意满足三个条件“一正、二定、

(a 2 b 2)(c 2 d 2) (ac bd )2 (a,b,c,d R ).当且仅当 ad bc 时,等号 成立 2 ax ⑨绝对值三角不等式 3、几个著名不等式 ②幂平均不等式: ④ 二维形式的柯西不等式: 2 ④ a b 2 2 c ab bc ca a , b R (当且仅当 a b c 时取到等号) . 3 ⑤ a b 3 3 c 3abc(a 0,b 0,c 0) (当且仅当 a b c 时取到等号) . 若ab ⑥ 0,则 ba 2 ab (当仅当 a=b 时取等 号) 若ab b 0,则 a a 2 b ( 当仅当 a=b 时取等号) b b m 1 an bn a ⑦a a m b ,(其中 a b 0, 规律: 小于 1 同加则变大, 大于 1 同加则变小 . ⑧ 当a 0时,x 22 a x a x a 或 x a; m 0, n 0) 1 (a 1 n ③二维形式的三角不等式: 22 a 1 a 2 2 a n a 2 a n ) 2 . 22 x 1 y 1 22 x 2 y 2 (x 1 x 2)2 (y 1 y 2)2 (x 1,y 1,x 2,y 2 R). a. b. ①平均不等式: 2 11 ab ab b a 2 b 2 , (a,b R ,当且仅当 a b 时取 " " 号) . (即调和平均 变形公 几何平均 算术平均 平方平均) . ab a b 22 ab b 2 (a b)2 2

均值不等式的证明

平均值不等式及其证明 平均值不等式是最基本的重要不等式之一,在不等式理论研究和证明中占有重要的位置。平均值不等式的证明有许多方法,这里,我们选了部分具有代表意义的证明方法,其中用来证明平均值不等式的许多结论,其本身又具有重要的意义,特别是,在许多 竞赛的书籍中,都有专门的章节和讨论,如数学归纳法、变量替换、恒等变形和分析 综合方法等,这些也是证明不等式的常用方法和技巧。 1.1平均值不等式 一般地,假设,,,为n个非负实数,他们的算术平均值记为 几何平均值记为 算术平均值和几何平均值之间有如下的关系。 即, 当且仅当时,等号成立。 上述不等式成为平均值不等式,或简称为均值不等式。 平均值不等式的表达形式简单,容易记住,但它的证明和使用非常灵活、广泛,有多 重不同的方法。为使大家理解和掌握,这里我们选择了其中的几种典型的证明方法。 供大家参考学习。 1.2平均值不等式的证明 证法一(归纳法) (1)当n=2时,已知结论成立。 (2)假设对n=k(正整数k)时命题成立,即对 ,,,,有 。 那么,当n=k+1时,由于

, 关于,,,是对称的,任意对调和,和的值不改变,因此不妨设,,,,,,,显然,以及()()可得 () 所以 () () 即()两边乘以,得 从而,有 证法二(归纳法) (1)当n=2时,已知结论成立。 (2)假设对n=k(正整数k)时命题成立,即对,,,,有 。 那么,当n=k+1时,由于 从而,有 证法三(利用排序不等式)

设两个实数组,,,和,,,满足 ;, 则(同序乘积之和) (乱序乘积之和) (反序乘积之和) 其中,,,是,,的一个排列,并且等号同时成立的充分必要条件是或成立。 证明: 切比雪夫不等式(利用排序不等式证明) 杨森不等式(Young)设,,,则对 ,有等号成立的充分必要条件是。 琴生不等式(Jensen) 设,(,)为上凸(或下凸)函数,则对任意,(,,),我们都有 或 其中,, 习题一 1.设,求证:对一切正整数n,有 () 2.设,,,求证 ()()()( 3.设,,为正实数,证明:

经典不等式证明-柯西不等式-排序不等式-切比雪夫不等式-均值不等式

几个经典不等式的关系 一 几个经典不等式 (1)均值不等式 设12,,0n a a a > 是实数 1212111+n n a a a n n a a a +++≤≤≤ ++ 其中0,1,2,i a i n >= .当且仅当12n a a a === 时,等号成立. (2)柯西不等式 设1212,,,,,n n a a a b b b 是实数,则 ()()()2 2222221 2121122n n n n a a a b b b a b a b a b ++++++≥+++ 当且仅当0(1,2,,)i b i n == 或存在实数k ,使得(1,2,,)i i a kb i n == 时,等号成立. (3)排序不等式 设12n a a a ≥≥≥ ,12n b b b ≥≥≥ 为两个数组,12n c c c ,,,是12n b b b ,,,的任一排列,则 112211221211n n n n n n n a b a b a b a c a c a c a b a b a b -+++≥+++≥+++ 当且仅当12n a a a === 或12n b b b === 时,等号成立. (4)切比晓夫不等式 对于两个数组:12n a a a ≥≥≥ ,12n b b b ≥≥≥ ,有 112212121211 n n n n n n n a b a b a b a a a b b b a b a b a b n n n n -++++++++++++????≥≥ ??????? 当且仅当12n a a a === 或12n b b b === 时,等号成立. 二 相关证明 (1)用排序不等式证明切比晓夫不等式 证明:由 ()()()1122121211221212n n n n n n n n a b a b a b a a a b b b n n n n a b a b a b a a a b b b +++++++++???? ≥ ??? ?????+++≥++++++ 而 ()()121211221223113242142531122 1211 n n n n n n n n n n n n n n a a a b b b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b ---++++++=++++++++++++++++++++++++ 根据“顺序和≥乱序和”(在1n -个部分同时使用),可得 ()()()11221212n n n n n a b a b a b a a a b b b +++≥++++++ 即得

相关文档
相关文档 最新文档