文档库 最新最全的文档下载
当前位置:文档库 › 考研高等数学全面复习资料(电子版)

考研高等数学全面复习资料(电子版)

高等数学考研复习资料,最全篇,适合于一遍,二遍复习研究细节,祝你考研数学春风得意马,突破130分大关!

目录

一、函数与极限 (2)

1、集合的概念 (2)

2、常量与变量 (3)

2、函数 (4)

3、函数的简单性态 (4)

4、反函数 (5)

5、复合函数 (6)

6、初等函数 (6)

7、双曲函数及反双曲函数 (7)

8、数列的极限 (8)

9、函数的极限 (9)

10、函数极限的运算规则 (11)

一、函数与极限

1、集合的概念

一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。

我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a∉A。

⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N

⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。

⑶、全体整数组成的集合叫做整数集。记作Z。

⑷、全体有理数组成的集合叫做有理数集。记作Q。

⑸、全体实数组成的集合叫做实数集。记作R。

集合的表示方法

⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合

⑵、描述法:用集合所有元素的共同特征来表示集合。

集合间的基本关系

⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A⊆B(或B⊇A)。。

⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。

⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。

⑷、空集:我们把不含任何元素的集合叫做空集。记作∅,并规定,空集是任何集合的子集。

⑸、由上述集合之间的基本关系,可以得到下面的结论:

①、任何一个集合是它本身的子集。即A⊆A

②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。

③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。

集合的基本运算

⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A ∪B。(在求并集时,它们的公共元素在并集中只能出现一次。)

即A∪B={x|x∈A,或x∈B}。

⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A ∩B。

即A∩B={x|x∈A,且x∈B}。

⑶、补集:

①全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。通常记作U。

②补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U 的补集。简称为集合A的补集,记作C U A。

即C U A={x|x∈U,且x A}。

集合中元素的个数

⑴、有限集:我们把含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。

⑵、用card来表示有限集中元素的个数。例如A={a,b,c},则card(A)=3。

⑶、一般地,对任意两个集合A、B,有

card(A)+card(B)=card(A∪B)+card(A∩B)

我的问题:

1、学校里开运动会,设A={x|x是参加一百米跑的同学},B={x|x是参加二百米跑的同学},C ={x|x是参加四百米跑的同学}。学校规定,每个参加上述比赛的同学最多只能参加两项,请你用集合的运算说明这项规定,并解释以下集合运算的含义。⑴、A∪B;⑵、A∩B。

2、在平面直角坐标系中,集合C={(x,y)|y=x}表示直线y=x,从这个角度看,集合D={(x,y)|方程组:2x-y=1,x+4y=5}表示什么?集合C、D之间有什么关系?请分别用集合语言和几何语言说明这种关系。

3、已知集合A={x|1≤x≤3},B={x|(x-1)(x-a)=0}。试判断B是不是A的子集?是否存在实数a使A =B成立?

4、对于有限集合A、B、C,能不能找出这三个集合中元素个数与交集、并集元素个数之间的关系呢?

5、无限集合A={1,2,3,4,…,n,…},B={2,4,6,8,…,2n,…},你能设计一种比较这两个集合中元素个数多少的方法吗?

2、常量与变量

⑴、变量的定义:我们在观察某一现象的过程时,常常会遇到各种不同的量,其中有的量在过程中不起变化,我们把其称之为常量;有的量在过程中是变化的,也就是可以取不同的数值,我们则把其称之为变量。注:在过程中还有一种量,它虽然是变化的,但是它的变化相对于所研究的对象是极其微小的,我们则把它看作常量。

⑵、变量的表示:如果变量的变化是连续的,则常用区间来表示其变化范围。在数轴上来说,区间是指介于某两点之间的线段上点的全体。

以上我们所述的都是有限区间,除此之外,还有无限区间:

[a,+∞):表示不小于a的实数的全体,也可记为:a≤x<+∞;

(-∞,b):表示小于b的实数的全体,也可记为:-∞<x<b;

(-∞,+∞):表示全体实数,也可记为:-∞<x<+∞

注:其中-∞和+∞,分别读作"负无穷大"和"正无穷大",它们不是数,仅仅是记号。

⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的

δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。

2、函数

⑴、函数的定义:如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。变量x的变化范围叫做这个函数的定义域。通常x叫做自变量,y 叫做函数值(或因变量),变量y的变化范围叫做这个函数的值域。注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。这里我们只讨论单值函数。

⑵、函数相等

由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。

⑶、域函数的表示方法

a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。例:直角坐标系中,半径为r、圆心在原点的圆的方程是:x2+y2=r2

b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。

c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。一般用横坐标表示自变量,纵坐标表示因变量。例:直角坐标系中,半径为r、圆心在原点的圆用图示法表示为:

3、函数的简单性态

⑴、函数的有界性:如果对属于某一区间I的所有x值总有│f(x)│≤M成立,其中M是一个与x无关的常数,那么我们就称f(x)在区间I有界,否则便称无界。

注:一个函数,如果在其整个定义域内有界,则称为有界函数

例题:函数cosx在(-∞,+∞)内是有界的.

⑵、函数的单调性:如果函数在区间(a,b)内随着x增大而增大,即:对于(a,b)内任意两点x1

及x2,当x1<x2时,有,则称函数在区间(a,b)内是单调增加的。如果函数

在区间(a,b)内随着x增大而减小,即:对于(a,b)内任意两点x1及x2,当x1<x2时,有,则称函数在区间(a,b)内是单调减小的。

例题:函数=x2在区间(-∞,0)上是单调减小的,在区间(0,+∞)上是单调增加的。

⑶、函数的奇偶性

如果函数对于定义域内的任意x都满足=,则叫做偶函数;如果函数

对于定义域内的任意x都满足=-,则叫做奇函数。

注:偶函数的图形关于y轴对称,奇函数的图形关于原点对称。

⑷、函数的周期性

对于函数,若存在一个不为零的数l,使得关系式对于定义域内任何x值都

成立,则叫做周期函数,l是的周期。

注:我们说的周期函数的周期是指最小正周期。

例题:函数是以2π为周期的周期函数;函数tgx是以π为周期的周期函数。

4、反函数

⑴、反函数的定义:设有函数,若变量y在函数的值域内任取一值y0时,变量x在函数的定义域内必有一值x0与之对应,即,那末变量x是变量y的函数.这个函数用来表示,称为函数的反函数.

注:由此定义可知,函数也是函数的反函数。

⑵、反函数的存在定理:若在(a,b)上严格增(减),其值域为R,则它的反函数必然在R 上确定,且严格增(减).

注:严格增(减)即是单调增(减)

例题:y=x2,其定义域为(-∞,+∞),值域为[0,+∞).对于y取定的非负值,可求得x=±.若我们不加条件,由y的值就不能唯一确定x的值,也就是在区间(-∞,+∞)上,函数不是严格增(减),故其没有反

函数。如果我们加上条件,要求x≥0,则对y≥0、x=就是y=x2在要求x≥0时的反函数。即是:函数在此要求下严格增(减).

⑶、反函数的性质:在同一坐标平面内,与的图形是关于直线y=x对称的。

例题:函数与函数互为反函数,则它们的图形在同一直角坐标系中是关于直线y=x对称的。如右图所示:

5、复合函数

复合函数的定义:若y是u 的函数:,而u又是x 的函数:,且的函数

值的全部或部分在的定义域内,那末,y通过u的联系也是x

的函数,我们称后一个函数是由函数

及复合而成的函数,简称复合函数,记作,其中u叫做中间变量。注:并不是任意两个函数就能复合;复合函数还可以由更多函数构成。

例题:函数与函数是不能复合成一个函数的。

因为对于的定义域(-∞,+∞)中的任何x值所对应的u值(都大于或等于2

),使

都没有定义。

6、初等函数

⑴、基本初等函数:我们最常用的有五种基本初等函数,分别是:指数函数、对数函数、幂函数、三角函数及反三角函数。下面我们用表格来把它们总结一下:

a为任意实数

(正弦函数)

(反正弦函数)

⑵、初等函数:由基本初等函数与常数经过有限次的有理运算及有限次的函数复合所产生并且能用一个解析式表出的函数称为初等函数.

例题:是初等函数。

7、双曲函数及反双曲函数

⑴、双曲函数:在应用中我们经常遇到的双曲函数是:(用表格来描述)

我们再来看一下双曲函数与三角函数的区别:

双曲函数也有和差公式:

⑵、反双曲函数:双曲函数的反函数称为反双曲函数. a):反双曲正弦函数 其定义域为:(-∞,+∞); b):反双曲余弦函数

其定义域为:[1,+∞);

c):反双曲正切函数 其定义域为:(-1,+1);

8、数列的极限

我们先来回忆一下初等数学中学习的数列的概念。

⑴、数列:若按照一定的法则,有第一个数a 1,第二个数a 2,…,依次排列下去,使得任何一个正整数n 对应着一个确定的数a n ,那末,我们称这列有次序的数a 1,a 2,…,a n ,…为数列.数列中的每一个数叫做数列的项。第n 项a n 叫做数列的一般项或通项.

注:我们也可以把数列a n 看作自变量为正整数n 的函数,即:a n =,它的定义域是全体正整数

⑵、极限:极限的概念是求实际问题的精确解答而产生的。

例:我们可通过作圆的内接正多边形,近似求出圆的面积。

设有一圆,首先作圆内接正六边形,把它的面积记为A1;再作圆的内接正十二边形,其面积记为A2;再作圆的内接正二十四边形,其面积记为A3;依次循下去(一般把内接正6×2n-1边形的面积记为A n)可得一系列内接正多边形的面积:A1,A2,A3,…,An,…,它们就构成一列有序数列。我们可以发现,当内接正多边形的边数无限增加时,An也无限接近某一确定的数值(圆的面积),这个确定的数值在数学上被称为数列A1,A2,A3,…,An,…当n→∞(读作n趋近于无穷大)的极限。

注:上面这个例子就是我国古代数学家刘徽(公元三世纪)的割圆术。

⑶、数列的极限:一般地,对于数列来说,若存在任意给定的正数ε(不论其多么小),总存在正整数N,使得对于n>N时的一切不等式都成立,那末就称常数a是数列

的极限,或者称数列收敛于a .

记作:或

注:此定义中的正数ε只有任意给定,不等式才能表达出与a无限接近的意思。且定义中的正整数N与任意给定的正数ε是有关的,它是随着ε的给定而选定的。

⑷、数列的极限的几何解释:在此我们可能不易理解这个概念,下面我们再给出它的一个几何解释,以使我们能理解它。数列极限为a的一个几何解释:将常数a及数列在数轴上用它们的对应点表示出来,再在数轴上作点a的ε邻域即开区间(a-ε,a+ε),如下图所示:

因不等式与不等式等价,故当n>N时,所有的点都落在开区间(a-ε,a+ε)内,而只有有限个(至多只有N个)在此区间以外。

注:至于如何求数列的极限,我们在以后会学习到,这里我们不作讨论。

⑸、数列的有界性:对于数列,若存在着正数M,使得一切都满足不等式││≤M,则称数列是有界的,若正数M不存在,则可说数列是无界的。

定理:若数列收敛,那末数列一定有界。

注:有界的数列不一定收敛,即:数列有界是数列收敛的必要条件,但不是充分条件。例:数列 1,-1,1,-1,…,(-1)n+1,…是有界的,但它是发散的。

9、函数的极限

前面我们学习了数列的极限,已经知道数列可看作一类特殊的函数,即自变量取1→∞内的正整数,

若自变量不再限于正整数的顺序,而是连续变化的,就成了函数。下面我们来学习函数的极限.

函数的极值有两种情况:a):自变量无限增大;b):自变量无限接近某一定点x0,如果在这时,函数值无限接近于某一常数A,就叫做函数存在极值。我们已知道函数的极值的情况,那么函数的极限如何呢?

下面我们结合着数列的极限来学习一下函数极限的概念!

⑴、函数的极限(分两种情况)

a):自变量趋向无穷大时函数的极限

定义:设函数,若对于任意给定的正数ε(不论其多么小),总存在着正数X,使得对于适

合不等式

的一切x ,所对应的函数值都满足不等式

那末常数A 就叫做函数当x→∞时的极限,记作:下面我们用表格把函数的极限与数列的极限对比一下:

存在数列与常数

的所有都满足<则称数列,当

。存在函数与常数

对于适合的,都满足,函数

从上表我们发现了什么??试思考之

b):自变量趋向有限值时函数的极限。我们先来看一个例子.

例:函数,当x→1时函数值的变化趋势如何?函数在x=1处无定义.我们知道对实数来讲,在数轴上任何一个有限的范围内,都有无穷多个点,为此我们把x→1时函数值的变化趋势用表列出,如下图:

从中我们可以看出x→1时,→2.而且只要x与1有多接近,就与2有多接近.或说:只

要与2只差一个微量ε,就一定可以找到一个δ,当<δ时满足<δ定义:设函数在某点x0的某个去心邻域内有定义,且存在数A,如果对任意给定的ε(不论其多么小),总存在正数δ,当0<<δ时,<ε则称函数当x→x0时存在极限,且极限为A,

记:。

注:在定义中为什么是在去心邻域内呢?这是因为我们只讨论x→x0的过程,与x=x0出的情况无关。此定义的核心问题是:对给出的ε,是否存在正数δ,使其在去心邻域内的x均满足不等式。

有些时候,我们要用此极限的定义来证明函数的极限为 A,其证明方法是怎样的呢?

a):先任取ε>0;

b):写出不等式<ε;

c):解不等式能否得出去心邻域0<<δ,若能;

d):则对于任给的ε>0,总能找出δ,当0<<δ时,<ε成立,因此

10、函数极限的运算规则

前面已经学习了数列极限的运算规则,我们知道数列可作为一类特殊的函数,故函数极限的运算规则与数列极限的运算规则相似。

⑴、函数极限的运算规则

若已知x→x0(或x→∞)时,.

则:

推论:

在求函数的极限时,利用上述规则就可把一个复杂的函数化为若干个简单的函数来求极限。

例题:求

解答:

例题:求

此题如果像上题那样求解,则会发现此函数的极限不存在.我们通过观察可以发现此分式的分子和分母都没有极限,像这种情况怎么办呢?下面我们把它解出来。

解答:

注:通过此例题我们可以发现:当分式的分子和分母都没有极限时就不能运用商的极限的运算规则了,应先把分式的分子分母转化为存在极限的情形,然后运用规则求之。

函数极限的存在准则

学习函数极限的存在准则之前,我们先来学习一下左、右的概念。

我们先来看一个例子:

例:符号函数为

对于这个分段函数,x从左趋于0和从右趋于0时函数极限是不相同的.为此我们定义了左、右极限的概念。

定义:如果x仅从左侧(x<x0)趋近x0时,函数与常量A无限接近,则称A为函数当

时的左极限.记:

如果x仅从右侧(x>x0)趋近x0时,函数与常量A无限接近,则称A为函数当时的右极限.记:

注:只有当x→x0时,函数的左、右极限存在且相等,方称在x→x0时有极限

函数极限的存在准则

准则一:对于点x0的某一邻域内的一切x,x0点本身可以除外(或绝对值大于某一正数的一切x)有

≤≤,且,

那末存在,且等于A

注:此准则也就是夹逼准则.

准则二:单调有界的函数必有极限.

注:有极限的函数不一定单调有界

两个重要的极限

一:

注:其中e为无理数,它的值为:e=2.718281828459045...

二:

注:在此我们对这两个重要极限不加以证明.

注:我们要牢记这两个重要极限,在今后的解题中会经常用到它们.

例题:求

解答:令,则x=-2t,因为x→∞,故t→∞,

注:解此类型的题时,一定要注意代换后的变量的趋向情况,象x→∞时,若用t代换1/x,则t→0.

无穷大量和无穷小量

无穷大量

我们先来看一个例子:

已知函数,当x→0时,可知,我们把这种情况称为趋向无穷大。为

此我们可定义如下:设有函数y=,在x=x0的去心邻域内有定义,对于任意给定的正数N(一个任意大的数),总可找到正数δ,当

时,成立,则称函数当时为无穷大量。

记为:(表示为无穷大量,实际它是没有极限的)

同样我们可以给出当x→∞时,无限趋大的定义:设有函数y=,当x充分大时有定义,对于任意给定的正数N(一个任意大的数),总可以找到正数M,当时,成立,则称函

数当x→∞时是无穷大量,记为:

无穷小量

以零为极限的变量称为无穷小量。

定义:设有函数,对于任意给定的正数ε(不论它多么小),总存在正数δ(或正数M),使得对于适合不等式(或)的一切x,所对应的函数值满足不等式,则称函数当(或x→∞)时为无穷小量.

记作:(或)

注意:无穷大量与无穷小量都是一个变化不定的量,不是常量,只有0可作为无穷小量的唯一常量。无穷大量与无穷小量的区别是:前者无界,后者有界,前者发散,后者收敛于0.无穷大量与无穷小量是互为倒数关系的.

关于无穷小量的两个定理

定理一:如果函数在(或x→∞)时有极限A,则差是当(或x→∞)时的无穷小量,反之亦成立。

定理二:无穷小量的有利运算定理

a):有限个无穷小量的代数和仍是无穷小量; b):有限个无穷小量的积仍是无穷小量;c):常数与无穷小量的积也是无穷小量.

无穷小量的比较

通过前面的学习我们已经知道,两个无穷小量的和、差及乘积仍旧是无穷小.那么两个无穷小量的商会是怎样的呢?好!接下来我们就来解决这个问题,这就是我们要学的两个无穷小量的比较。

定义:设α,β都是时的无穷小量,且β在x0的去心领域内不为零,

a):如果,则称α是β的高阶无穷小或β是α的低阶无穷小;

b):如果,则称α和β是同阶无穷小;

c):如果,则称α和β是等价无穷小,记作:α∽β(α与β等价)

例:因为,所以当x→0时,x与3x是同阶无穷小;

因为,所以当x→0时,x2是3x的高阶无穷小;

因为,所以当x→0时,sinx与x是等价无穷小。

等价无穷小的性质

设,且存在,则.

注:这个性质表明:求两个无穷小之比的极限时,分子及分母都可用等价无穷小来代替,因此我们可以利用这个性质来简化求极限问题。

例题:1.求

解答:当x→0时,sin ax∽ax,tan bx∽bx,故:

例题: 2.求

解答:

注:

注:从这个例题中我们可以发现,作无穷小变换时,要代换式中的某一项,不能只代换某个因子。

函数的一重要性质——连续性

在自然界中有许多现象,如气温的变化,植物的生长等都是连续地变化着的.这种现象在函数关系上的反映,就是函数的连续性

在定义函数的连续性之前我们先来学习一个概念——增量

设变量x从它的一个初值x1变到终值x2,终值与初值的差x2-x1就叫做变量x的增量,记为:△x即:△x=x2-x1增量△x可正可负.

我们再来看一个例子:函数在点x0的邻域内有定义,当自变量x在领域内从x0变到x0+△x 时,函数y相应地从变到,其对应的增量为:

这个关系式的几何解释如下图:

现在我们可对连续性的概念这样描述:如果当△x趋向于零时,函数y对应的增量△y也趋向于零,即:

,那末就称函数在点x0处连续。

函数连续性的定义:

设函数在点x0的某个邻域内有定义,如果有称函数在点x0处连续,且称x0为函数的的连续点.

下面我们结合着函数左、右极限的概念再来学习一下函数左、右连续的概念:设函数在区间(a,b]

内有定义,如果左极限存在且等于,即:=,那末我们就称函数

在点b左连续.设函数在区间[a,b)内有定义,如果右极限存在且等于,即:

=,那末我们就称函数在点a右连续.

一个函数在开区间(a,b)内每点连续,则为在(a,b)连续,若又在a点右连续,b点左连续,则在闭区间[a,b]连续,如果在整个定义域内连续,则称为连续函数。

注:一个函数若在定义域内某一点左、右都连续,则称函数在此点连续,否则在此点不连续.

注:连续函数图形是一条连续而不间断的曲线。

通过上面的学习我们已经知道函数的连续性了,同时我们可以想到若函数在某一点要是不连续会出现什么情形呢?接着我们就来学习这个问题:函数的间断点

函数的间断点

定义:我们把不满足函数连续性的点称之为间断点.

它包括三种情形:a):在x

0无定义;

b):在x→x0时无极限;

c):在x→x0时有极限但不等于;

下面我们通过例题来学习一下间断点的类型:

例1:正切函数在处没有定义,所以点是函数的间断点,因

,我们就称为函数的无穷间断点;

例2:函数在点x=0处没有定义;故当x→0时,函数值在-1与+1之间变动无限多次,我们就称点x=0叫做函数的振荡间断点;

例3:函数当x→0时,左极限,右极限,从这我们可以看出函数左、右极限虽然都存在,但不相等,故函数在点x=0是不存在极限。我们还可以发现在点x=0时,函数值产生跳跃现象,为此我们把这种间断点称为跳跃间断点;我们把上述三种间断点用几何图形表示出来如下:

间断点的分类

我们通常把间断点分成两类:如果x0是函数的间断点,且其左、右极限都存在,我们把x0称为

函数的第一类间断点;不是第一类间断点的任何间断点,称为第二类间断点.

可去间断点

若x0是函数的间断点,但极限存在,那末x0是函数的第一类间断点。此时函

数不连续原因是:不存在或者是存在但≠。我们令,则可使函数在点x0处连续,故这种间断点x0称为可去间断点。

连续函数的性质及初等函数的连续性

连续函数的性质

函数的和、积、商的连续性

我们通过函数在某点连续的定义和极限的四则运算法则,可得出以下结论:

a):有限个在某点连续的函数的和是一个在该点连续的函数;

b):有限个在某点连续的函数的乘积是一个在该点连续的函数;

c):两个在某点连续的函数的商是一个在该点连续的函数(分母在该点不为零);

反函数的连续性

若函数在某区间上单调增(或单调减)且连续,那末它的反函数也在对应的区间上单调增(单调减)且连续

例:函数在闭区间上单调增且连续,故它的反函数在闭区间[-1,1]上也是单调增且连续的。

复合函数的连续性

设函数当x→x0时的极限存在且等于a,即:.而函数在点u=a 连续,那末复合函数当x→x0时的极限也存在且等于.即:

例题:求

解答:

注:函数可看作与复合而成,且函数在点u=e 连续,因此可得出上述结论。

设函数在点x=x0连续,且,而函数在点u=u0连续,那末复合函数

在点x=x0也是连续的

初等函数的连续性

通过前面我们所学的概念和性质,我们可得出以下结论:基本初等函数在它们的定义域内都是连续的;一切初等函数在其定义域内也都是连续的.

闭区间上连续函数的性质

闭区间上的连续函数则是在其连续区间的左端点右连续,右端点左连续.对于闭区间上的连续函数有几条重要的性质,下面我们来学习一下:

最大值最小值定理:在闭区间上连续的函数一定有最大值和最小值。(在此不作证明)

例:函数y=sinx在闭区间[0,2π]上连续,则在点x=π/2处,它的函数值为1,且大于闭区间[0,2π]上其它各点出的函数值;则在点x=3π/2处,它的函数值为-1,且小于闭区间[0,2π]上其它各点出的函

数值。

介值定理在闭区间上连续的函数一定取得介于区间两端点的函数值间的任何值。即:

,μ在α、β之间,则在[a,b]间一定有一个ξ,使

推论:在闭区间连续的函数必取得介于最大值最小值之间的任何值。

二、导数与微分

导数的概念

在学习到数的概念之前,我们先来讨论一下物理学中变速直线运动的瞬时速度的问题。例:设一质点沿x轴运动时,其位置x是时间t的函数,,求质点在t0的瞬时速度?我们知道时间从t0有增

量△t时,质点的位置有增量,这就是质点在时间段△t的位移。因此,在此

段时间内质点的平均速度为:.若质点是匀速运动的则这就是在t0的瞬时速度,若质点是非匀速直线运动,则这还不是质点在t0时的瞬时速度。我们认为当时间段△t无限地接近于0时,此平均速度会无限地接近于质点t0时的瞬时速度,即:质点在t0时的瞬时速度

=为此就产生了导数的定义,如下:

导数的定义:设函数在点x0的某一邻域内有定义,当自变量x在x0处有增量△x(x+△x也在该邻域内)时,相应地函数有增量,若△y与△x之比当△x→0时极限存在,则称这个极限值为在x0处的导数。记为:还可记为:,函数在点x0处存在导数简称函数在点x0处可导,否则不可导。若函数在区间(a,b)

内每一点都可导,就称函数在区间(a,b)内可导。这时函数对于区间(a,b)内的每一个确

定的x值,都对应着一个确定的导数,这就构成一个新的函数,我们就称这个函数为原来函数的导函数。

注:导数也就是差商的极限

左、右导数

前面我们有了左、右极限的概念,导数是差商的极限,因此我们可以给出左、右导数的概念。若极限

存在,我们就称它为函数在x=x0处的左导数。若极限存在,我们就称它为

函数在x=x0处的右导数。

注:函数在x0处的左右导数存在且相等是函数在x0处的可导的充分必要条件函数的和、差求导法则

函数的和差求导法则

法则:两个可导函数的和(差)的导数等于这两个函数的导数的和(差).用公式可写为:

。其中u、v为可导函数。

例题:已知,求

解答:

例题:已知,求

解答:

函数的积商求导法则

常数与函数的积的求导法则

法则:在求一个常数与一个可导函数的乘积的导数时,常数因子可以提到求导记号外面去。用公式可

写成:

例题:已知,求

解答:

函数的积的求导法则

法则:两个可导函数乘积的导数等于第一个因子的导数乘第二个因子,加上第一个因子乘第二个因子的导数。用公式可写成:

例题:已知,求

解答:

注:若是三个函数相乘,则先把其中的两个看成一项。

2023考研数学高等数学每章知识点汇总精品

2023考研数学高等数学每章知识点汇总精品 高等数学基础知识篇一 1、函数、极限与连续 重点考查极限的计算、已知极限确定原式中的未知参数、函数连续性的讨论、间断点类型的判断、无穷小阶的比较、讨论连续函数在给定区间上零点的个数、确定方程在给定区间上有无实根。 2、一元函数积分学 重点考查不定积分的计算、定积分的计算、广义积分的计算及判敛、变上限函数的求导和极限、利用积分中值定理和积分性质的证明、定积分的几何应用和物理应用。 3、一元函数微分学 重点考查导数与微分的定义、函数导数与微分的计算(包括隐函数求导)、利用洛比达法则求不定式极限、函数极值与最值、方程根的个数、函数不等式的证明、与中值定理相关的证明、在物理和经济等方面的实际应用、曲线渐近线的求法。 4、向量代数与空间解析几何(数一) 主要考查向量的运算、平面方程和直线方程及其求法、平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题等,该部分一般不单独考查,主要作为曲线积分和曲面积分的基础。 5、多元函数微分学 重点考查多元函数极限存在、连续性、偏导数存在、可微分及偏导连续等问题、多元函数和隐函数的一阶、二阶偏导数求法、有条件极值和无条件极值。另外,数一还要求掌握方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。 6、多元函数积分学 重点考查二重积分在直角坐标和极坐标下的计算、累次积分、积分换序。此外,数一还要求掌握三重积分的计算、两类曲线积分和两种曲面积分的计算、格林公式、高斯公式及斯托克斯公式。 7、无穷级数(数一、数三) 重点考查正项级数的基本性质和敛散性判别、一般项级数绝对收敛和条件收敛的判别、幂级数收敛半径、收敛域及和函数的求法以及幂级数在特定点的展开问题。 8、常微分方程及差分方程

考研高等数学知识点整理(附思维导图)

考研高等数学知识点整理(附思 维导图) 被考研高数折磨过的小伙伴一定都知道那种痛苦: 泰勒展开、麦克劳林展开、夹逼定理、定积分不定积分、微分多元微分...... 作为成功登陆的一员,我觉得有义务帮对岸的朋友考研一把。下面这张考研高数知识图我之前用过,希望能给你带来好运。我不多说了。 一、函数 先明确一些基本概念,比如函数的定义,函数的性质,什么是复合函数,反函数,隐函数。 理解概念很重要!理解概念很重要!理解概念很重要!重要的事情说三遍~ 很多问题我们不会做。其实不是我们解决问题的能力不好,而是我们连基本概念都没搞清楚,自然无从下手,或者说解决问题的方向是偏了!这是我十几年应试的血泪教训! 熟悉基本初等函数,包括幂函数、指数函数、对称函数、三角函数、反三角函数,要把公式和参数适用范围记住; 常用的函数有绝对值函数、符号函数、整数函数、狄利克雷函数、极大值函数、可变积分上限函数(我认为是最变态的)和双曲函数。 二、极限

同样的,先厘清极限的定义 了解数列极限的基本性质:极限的唯一性,收敛数列的有界性和保号性,收敛数列与子数列间的关系 了解函数极限(区别于数列极限)的基本性质: 极限的唯一性,局部有界性和局部保号性(这是和数列极限很大的不同) 无穷小量和无穷大量 极限的四则运算 极限存在的判别方法:单调有界定律和夹迫定律(也有叫夹逼定理的,说的都是一个意思),这两个定律很常见,注意熟练使用 三、函数的连续性 四、导数与微分 基本初等函数的导数公式都得背下来 五、中值定理 这部分很难(可能只是对我来说,我是个坏学生),也是常规考试的重点。 六、函数单调性与凹凸性 这部分也是重点。 七、渐近线与曲率 八、不定积分

考研资料——高等数学公式总结

一。函数,极限,连续 1. 极限的四则运算规则: lim f(x)=A, lim g(x)=B (x 0x →) lim [f(x)±g(x)]=lim f(x)±lim g(x)=A B ± lim f(x)g(x)=lim f(x)lim g(x)=AB lim f(x)/g(x)=lim f(x)/lim g(x)=A/B (B 0≠) 2. 常用的等价公式 x 0→ sinx x →, arcsinx →x, tanx x →, arctanx x →, ln(1+x)x → e^x-1x →, 1-cosx 2^)2/1(x →, (1+x)^(1/n)-1n x /→ 3.求极限的两个重要公式。 (1)lim sinx/x(x 0→)=1 (2)lim (1+x)^(1/x)[x 0→]=e 4.几个常用的极限 (n →∞)lim n a )0(>a =1 (x ±∞→) lim arctanx=±2/π (x +→0)lim x^x=1 (x ±∞→)lim arccotx=0或π (n ∞→)lim 0)^()^(=÷n n n a (∞→n )lim n!/(ln n )=∞ 二.导数与微分(见精华区《常见公式一》) 补充高阶导数的公式。 ∑=-=---=-+--=+=+=>=n i i n v i u n i c n uv n x n n n x n m x n m m m n m x n kx n k n kx n kx n k n kx a n a x a n x a 0 ) ()(),())(()6()] ^/()!1)[(1()^1())()(ln 5()(^)1)....(1())(^)(4() 2/*cos(^))(cos()3() 2/*sin(^))(sin()2() 0()^(ln ^))(^)(1(莱布尼兹公式:ππ 2.)2/3()^2^'1/(|''|),()(y y k y x x f y +==处的曲率在点曲线 曲率半径k /1=ρ 三.不定积分(见精华区《常见公式二》) 四.定积分及广义积分 1.定积分的性质与定理 ???±=±b a b a b a dx x g dx x f dx x g x f )()()]()([ )()()(为常数k dx x f k dx x kf b a b a ??= ???+=b c c a b a dx x f dx x f dx x f )()()(

高等数学(考研要点复习_中)

第三章:中值定理与导数的应用 §3.1 中值定理 本节将运用微分学的两个基本定理,这些定理是研究函数在区间上整体性质的省力工具,为此,先介绍Rollo 定理:Rollo 定理:若函数f(x) 满足:(i )f(x) 在 [a,b] 上连续;(ii )f(x) 在(a,b )可导,(iii )f(a) =f(b), 则在(a,b )内至少存在一点,使得f '(ξ)=0. 证明:由(i )知f(x)在[a,b]上连续,故f(x)在上必能得最大值M 和最小值m ,此时,又有二种情况: (1) M=m ,即f(x)在[a,b]上得最大值和最小值相等,从而知,此时f(x)为常数:f(x)=M=m ,∴)('x f =0,因此,可知ξ为(a,b )内任一点,都有f '(ξ)=0。 (2) M>m,此时M 和m 之中,必有一个不等于f(a)或f(b),不妨设M ≠f(a)(对m ≠f(a) 同理证明),这时必然在(a,b )内存在一点ξ,使得f(ξ)=M,即f(x)在ξ点得最大值。下面来证明:f '(ξ)=0 首先由(ii )知f '(ξ)是存在的,由定义知: f '(ξ)=ξ ξ ξξ ξ--=--→→x M x f x f x f x x )(lim ) ()(lim …….(*) 因为M 为最大值,?对x ?有 f(x) ≤M ?f(x)-M ≤0, 当x>ξ时,有 ξ ξξ--= --x M x f x f x f )() ()(≤0 当x<ξ时,有 ξ ξ ξ--= --x M x f x f x f )() ()(≥0。 又因为(﹡)的极限存在,知(﹡)极限的左、右极限都存在,且都等于)(ξf ',即 )()()(_ξξξf f f '='='+,然而,又有 0) ()(lim )()(≥--=' ='- →-ξ ξξξξx f x f f f x 和 0) ()(lim )()(≤--=' ='+ →+ξ ξξξξx f x f f f x 0)(='?ξf 。 注 1:定理中的三个条件缺一不可,否则定理不一定成立,即指定理中的条件是充分的,但非必要。 2:定理中的ξ点不一定唯一。事实上,从定理的证明过程中不难看出:若可导函数)(x f 在点ξ处取得最大值或最小值,则有0)(='ξf 。

考研讲义-高等数学

《高等数学复习》教程 第一讲函数、连续与极限 一、理论要求 1.函数概念与性质函数的基本性质(单调、有界、奇偶、周期) 几类常见函数(复合、分段、反、隐、初等函数) 2.极限极限存在性与左右极限之间的关系 夹逼定理和单调有界定理 会用等价无穷小和罗必达法则求极限 3.连续函数连续(左、右连续)与间断 理解并会应用闭区间上连续函数的性质(最值、有界、介值) 二、题型与解法 A.极限的求法(1)用定义求 (2)代入法(对连续函数,可用因式分解或有理化消除零因子) (3)变量替换法 (4)两个重要极限法 (5)用夹逼定理和单调有界定理求 (6)等价无穷小量替换法 (7)洛必达法则与Taylor级数法 (8)其他(微积分性质,数列与级数的性质)

1.6 12arctan lim ) 21ln(arctan lim 3 3 - =-=+->->-x x x x x x x x (等价小量与洛必达) 2.已知2 3 ) (6lim 0) (6sin lim x x f x x xf x x x +=+>->-,求 解:2 3 3' )(6cos 6lim ) (6sin lim x xy x f x x x xf x x x ++=+>->- 72)0(''06 ) 0(''32166 ' ''''36cos 216lim 6' ''26sin 36lim 0 =∴=+-= ++-=++-=>->-y y xy y x x xy y x x x 362 722 ''lim 2'lim ) (6lim 2 == ==+>->->-y x y x x f x x x (洛必达) 3.121 )1 2( lim ->-+x x x x x (重要极限) 4.已知a 、b 为正常数,x x x x b a 3 )2 ( lim +>-求 解:令]2ln )[ln(3ln ,)2 ( 3 -+= +=x x x x x b a x t b a t 2 /300 ) () ln(2 3)ln ln (3lim ln lim ab t ab b b a a b a t x x x x x x =∴= ++=>->-(变量替换) 5.) 1ln(1 2 ) (cos lim x x x +>- 解:令)ln(cos ) 1ln(1ln ,) (cos 2 ) 1ln(1 2 x x t x t x += =+ 2 /10 212tan lim ln lim ->->-=∴- =-=e t x x t x x (变量替换) 6.设)('x f 连续,0)0(',0)0(≠=f f ,求1)()(lim 2 2 =⎰ ⎰ >-x x x dt t f x dt t f (洛必达与微积分性质) 7.已知⎩ ⎨⎧=≠=-0,0 ,)ln(cos )(2x a x x x x f 在x=0连续,求a 解:令2/1/)ln(cos lim 2 -==>-x x a x (连续性的概念)

(word完整版)考研高等数学全面复习资料(电子版)

高等数学考研复习资料,最全篇,适合于一遍,二遍复习研究细节,祝你考研数学春风得意马,突破130分大关! 目录 一、函数与极限 (2) 1、集合的概念 (2) 2、常量与变量 (3) 2、函数 (4) 3、函数的简单性态 (4) 4、反函数 (5) 5、复合函数 (6) 6、初等函数 (6) 7、双曲函数及反双曲函数 (7) 8、数列的极限 (8) 9、函数的极限 (9) 10、函数极限的运算规则 (11)

一、函数与极限 1、集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a?A。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A?B(或B?A)。。 ⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。 ⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作?,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。即A?A ②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。 集合的基本运算 ⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A ∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。 ⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A ∩B。 即A∩B={x|x∈A,且x∈B}。 ⑶、补集: ①全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。通常记作U。 ②补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U 的补集。简称为集合A的补集,记作C U A。

2024版考研数学高等数学辅导讲义

2024版考研数学高等数学辅导讲义 2024年版考研数学高等数学辅导讲义 我们来了解一下高等数学的基本概念。高等数学包括了微积分和数学分析两个部分,其中微积分是高等数学的核心内容。微积分主要研究函数的极限、导数和积分等概念及其相互关系。函数的极限是微积分的基础,通过研究函数在某一点的极限,我们可以得到函数在该点的导数。导数是函数在某一点的变化率,它具有重要的几何和物理意义。积分是导数的逆运算,它可以求得函数的面积、体积等重要的几何量。 在高等数学的学习过程中,我们需要掌握一些重要的解题技巧。首先是函数的性质和图像的分析。通过对函数的性质和图像的分析,我们可以更好地理解函数的行为和特点,从而为解题提供便利。其次是函数的导数和积分的运算法则。掌握了导数和积分的运算法则,我们可以更快地计算函数的导数和积分。另外,我们还需要注意一些常见的函数和定理,如三角函数、指数函数、对数函数以及洛必达法则、泰勒展开等。 除了基本概念和解题技巧,我们还需要了解一些高等数学中的重要定理和公式。例如,微积分中的中值定理、费马定理、罗尔定理等,它们是解题过程中常用的工具。另外,我们还需要掌握一些常见的数列和级数的性质和判别法则,如等比数列、等差数列、收敛级数、

发散级数等。 在高等数学的学习中,我们还需要进行大量的习题训练。通过解题训练,我们可以巩固所学的知识,提高解题能力。在解题过程中,我们要注重思路和方法的灵活运用,遇到难题时要善于思考,多角度思考问题,找到解题的突破口。 总结起来,2024版考研数学高等数学辅导讲义是一本全面系统地介绍了高等数学的基本概念、解题技巧和重要定理的教材。通过学习该讲义,考研学生可以全面掌握高等数学的知识,提高解题能力,为考研数学的复习打下坚实的基础。希望大家能够认真学习,刻苦钻研,取得优异的成绩。

考研数学复习高等数学第一章函数与极限

第一篇 高等数学 第一章 函数与极限 2013考试内容 2013考试要求 1. 理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。 2. 了解函数的有界性、单调性、周期性和奇偶性。 3. 理解复合函数及分段函数的概念,了解反函数及隐函数的概念。 4. 掌握基本初等函数的性质及其图形,了解初等函数的概念。 5. 理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系。 6. 掌握极限的性质及四则运算法则。 7. 掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。 8. 理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。 9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。 10. 了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值 定理、介值定理),并会应用这些性质。 一、函数的类型 1.类 型: 1.1 有界函数,如: ||1y x x =≤,()1lim sin x f x x x →∞=等等; 无界函数,如()1lim cos x f x x x →∞=。注意无界量与无穷大量的区别。 1.2 单调函数(12x x >,12()()f x f x ><或),注意单调函数一般指严格单调函数,注意它与单调不增函数或单调不减函数的区别。 1.3 周期函数,满足:()()f x T f x +=,注意T 一般指最小的正周期。 1.4 复合函数,一般形式为:()()y f g x =,指自变量为函数的函数。

1.4 反函数,, x y 存在一一映射的情况下,二者互为反函数,关于反函数具有下列重要性质: ★ 若()x g y =为()y f x =的反函数,则在某些场合,常把()y f x =的反函数记为()1f x -或 ()g x ,此时已重新把x 视为自变量,在反函数记号的使用中,一定要分清是否需要换变量记号。 ★ 改变记号后,互为反函数的两个函数()y f x =和()()1y g x f x -==的曲线关于直线y x =对称;没有改变记号,互为反函数的两个函数()y f x =和()1x f y -=的曲线重合。 ★()y f x =与反函数()g x 的定义域与值域具有对偶性,即()y f x =的定义域必为()g x 的值域,而()y f x =的值域必为()g x 的定义域,并且 ()()()()g f x f g x x == 1.5 分段函数,如: ()[], 1 1, 12n n x n f x x n n x n ≤<+?==? ++≤<+? ()[][), 01 0, 21, 12x x f x x x x x x ≤? 1.6 隐函数,如2sin y x e =。 1.7 奇偶函数与对称性 ★ 若()y f x =的图形有对称轴x a =, 则有()()()()2a x t f a x f a x f t f a t -=-=+???→=-,且()f a x -为偶函数。 ★ 若()y f x =的图形有对称中心(), 0a , 则有()()()()2a x t f a x f a x f t f a t -=-=-+???→=--,且()f a x -为基函数。

2024考研汤家凤高等数学辅导讲义

2024考研汤家凤高等数学辅导讲义 摘要: 一、引言 二、汤家凤考研高等数学辅导讲义的特点 三、汤家凤考研高等数学辅导讲义的内容 四、使用汤家凤考研高等数学辅导讲义的注意事项 五、总结 正文: 一、引言 随着2024年考研的临近,许多考生已经开始着手准备复习资料。在众多的复习资料中,汤家凤的考研高等数学辅导讲义备受关注。本文将对汤家凤的考研高等数学辅导讲义进行详细介绍,帮助考生更好地了解该资料并合理使用。 二、汤家凤考研高等数学辅导讲义的特点 1.注重基础:汤家凤考研高等数学辅导讲义从基础知识入手,帮助考生打牢基础,为后续的提高和解题技巧学习做好准备。 2.系统性强:讲义内容涵盖了考研数学一、数学二、数学三的全部知识点,形成一个完整的知识体系,有助于考生系统地学习和掌握。 3.实用性强:讲义中的例题和习题紧扣考试大纲,针对性强,有助于考生熟悉考试题型,提高应试能力。 4.讲解清晰:汤家凤老师具有丰富的教学经验,讲解通俗易懂,深入浅

出,易于考生理解和掌握。 三、汤家凤考研高等数学辅导讲义的内容 1.高等数学基本概念与运算:包括函数、极限、连续、导数、积分等基础知识。 2.高等数学重要定理与公式:包括导数与微分、积分、级数等部分的重要定理和公式。 3.高等数学典型题型与解题技巧:包括选择题、填空题、解答题等题型的解题方法和技巧。 4.高等数学历年真题及解析:精选历年真题,并提供详细的解析过程,帮助考生了解考试趋势,提高应试能力。 四、使用汤家凤考研高等数学辅导讲义的注意事项 1.结合自身情况制定学习计划:考生应根据自身的基础和进度制定合理的学习计划,合理安排时间,避免盲目跟从他人。 2.注重基础知识的学习:基础知识是解题的基础,考生应确保对基础知识的理解和掌握,再进行解题技巧的学习。 3.及时复习与总结:学习过程中,考生应及时对所学知识进行复习和总结,加深对知识的理解和记忆。 4.多做练习题和真题:考生应多做练习题和真题,提高解题能力,了解考试趋势。 五、总结 汤家凤考研高等数学辅导讲义是一份针对性强、实用性高、讲解清晰的辅导资料,对考生的复习备考具有很好的指导作用。

2021考研数学:高等数学每章知识点汇总

2021考研数学:高等数学每章知识点汇总第一章:函数与极限 1.理解函数的概念,掌握函数的表示方法。 2.会建立简单应用问题中的函数关系式。 3.了解函数的奇偶性、单调性、周期性、和有界性。 4.掌握基本初等函数的性质及图形。 5.理解复合函数及分段函数的相关概念,了解反函数及隐函数的概念。 6.理解函数连续性的概念(含左连续和右连续)会判别函数间断点的类型。 7.理解极限的概念,理解函数左极限与右极限的概念,以及极限存有与左右极限间的关系。 8.掌握极限存有的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。 9.掌握极限性质及四则运算法则。 10.理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。 第二章:导数与微分 1.理解导数与微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描写一些物理量,理解函数的可导性与连续性之间的关系。

2.掌握导数的四则运算法则和复合函数的求导法则,掌握初等函 数的求导公式,了解微分的四则运算法则和一阶微分形式的不变性, 会求初等函数的微分。 3.会求隐函数和参数方程所确定的函数以及反函数的导数。 4.会求分段函数的导数,了解高阶导数的概念,会求简单函数的 高阶导数。 第三章:微分中值定理与导数的应用 1.熟练使用微分中值定理证明简单命题。 2.熟练使用罗比达法则和泰勒公式求极限和证明命题。 3.了解函数图形的作图步骤。了解方程求近似解的两种方法:二 分法、切线法。 4.会求函数单调区间、凸凹区间、极值、拐点以及渐进线、曲率。 第四章:不定积分 1.理解原函数和不定积分的概念,掌握不定积分的基本公式和性质。 2.会求有理函数、三角函数、有理式和简单无理函数的不定积分 3.掌握不定积分的分步积分法。 4.掌握不定积分的换元积分法。 第六章:定积分的应用 1.掌握用定积分计算一些物理量(功、引力、压力)。 2.掌握用定积分表达和计算一些几何量(平面图形的面积、平面曲 线的弧长、旋转体的体积和侧面积、平行截面面积为已知的立体体积) 及函数的平均值。

高等数学复习资料大全

高等数学复习资料大全 高等数学复习资料大全 一、函数的极限 1、函数极限的定义:当函数f(x)在x趋近于某一值时,函数值无限接近于某一确定的数值A,则称A为函数f(x)在x趋近于这一值时的极限。 2、函数极限的性质:(1)唯一性:若极限存在,则唯一。(2)局部有界性:在极限附近的函数值有界。(3)局部保号性:在极限附近,函数值的符号保持不变。(4)归结原则:若在某一区间内,f(x)恒等于A,则A为f(x)在该区间内的极限。 3、极限的四则运算:设、存在,则、也存在,且、、、。 4、复合函数的极限:设、存在,且g(x)在u=a处连续,则、存在,且、。 5、无穷小与无穷大:(1)无穷小:若当x趋近于某一值时,函数f(x)的极限为0,则称f(x)为当x趋近于这一值时的无穷小。(2)无穷大:若当x趋近于某一值时,函数f(x)的绝对值无限增大,则称f(x)为当x趋近于这一值时的无穷大。 6、两个重要极限:(1)sin x / x = 1 (x趋近于0);(2)(1+k)

^ x / kx = e^k (k为常数且k趋近于0)。 二、导数与微分 1、导数的定义:设y=f(x),若增量 / 趋于0时,之间的比值也趋于0,则称f(x)在处可导,称此比值为f(x)在处的导数。 2、导数的几何意义:函数在某一点处的导数就是曲线在该点处的切线的斜率。 3、微分的定义:设y=f(x),若函数的增量可以表示为,其中A不依赖于,则称在处可微分,为f(x)在处的微分。 4、导数与微分的关系:若函数在某一点处可导,则在该点处必可微分;反之,若函数在某一点处可微分,则在该点处不一定可导。 5、导数的计算方法:(1)四则运算导数公式;(2)复合函数的导数;(3)隐函数求导法;(4)对数求导法;(5)高阶导数。 三、不定积分 1、不定积分的定义:设f(x)是一个函数,是一个常数,则对f(x) 进行积分所得的结果称为f(x)的不定积分,记为或。 2、不定积分的性质:(1)线性性质:和都存在,且;(2)恒等性质:都存在,且。

(完整版)考研高等数学知识点总结

高等数学知识点总结 导数公式: 基本积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x += =+-=+=, , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(2 2 = '='⋅-='⋅='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '⎰ ⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222⎰ ⎰⎰⎰⎰++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 ππ

最新全国考研数学高等数学总结4打印版.doc

高等数学部分 定积分理论 一、定积分的产生背景 1、曲边梯形的面积问题 2、变速运动路程问题 二、定积分的定义—设)(x f 为],[b a 上的有界函数,若i n i i x f ∆∑=→)(lim 1 ξλ存在,称)(x f 在] ,[b a 上可积,极限称为)(x f 在],[b a 上的定积分,记⎰ b a dx x f )(,即⎰b a dx x f )(i n i i x f ∆=∑=→)(lim 1 ξλ。 【注解】 (1)极限与区间的划分及i ξ的取法无关。 (2)∞→⇒→n 0λ,反之不对。 (3)若一个函数可积,则∑⎰ =∞→-+-=n i n b a a b n i a f n a b dx x f 1)]([lim )(。 三、定积分基本理论 定理 1 设],[)(b a C x f ∈,令⎰=Φx a dt t f x )()(,则)(x Φ为)(x f 的一个原函数,即 )()(x f x =Φ'。 【注解】 (1)连续函数一定存在原函数。 (2) )()]([)() (x x f dt t f dx d x a ϕϕϕ'=⎰。 (3))()]([)()]([)(112 2) ()(21x x f x x f dt t f dx d x x ϕϕϕϕϕϕ'-'=⎰。 【例题1】设)(x f 连续,且⎰ -= x dt t f t x x 0 )()()(ϕ,求)(x ϕ''。 【例题2】设)(x f 为连续函数,且⎰-= x dt t x tf x F 0 22 )()(,求)(x F '。 定理2 (牛顿—莱布尼兹公式)设],[)(b a C x f ∈,且)(x F 为)(x f 的一个原函数,则 )()()(a F b F dx x f b a -=⎰ 。 四、积分法

2021考研数学复习指导:高数要点总结

2021考研数学复习指导:高数要点总结 时间过得很快,转眼已经是9月底了,距离2021考研还有90多天了,最后冲刺复习已经开始,考研数学分为高等数学,概率论与数理统计和线性代数三个科目,高等数学不拖后腿,以下高数备考精华不可不看。几个易混概念:连续,可导,存在原函数,可积,可微,偏导数存在他们之间的关系式怎么样的?存在极限,导函数连续,左连续,右连续,左极限,右极限,左导数,右导数,导函数的左极限,导函数的右极限。 罗尔定理:设函数f(x)在闭区间[a,b]上连续(其中a不等于b),在开区间(a,b)上可导,且 f(a)=f(b),那么至少存在一点ξ∈(a、b),使得 f'(ξ)=0。罗尔定理是以法国数学家罗尔的名字命名的。罗尔定理的三个已知条件的意义,①f(x)在[a,b]上连续表明曲线连同端点在内是无缝隙的曲线;②f(x)在内(a,b)可导表明曲线y=f(x)在每一点处有切线存在;③f(a)=f(b)表明曲线的割线(直线AB) 平行于x轴;罗尔定理的结论的直几何意义是:在(a,b)内至少能找到一点ξ,使f'(ξ)=0,表明曲线上至少有一点的切线斜率为0,从而切线平行于割线AB,与x轴平行。 泰勒公式展开的应用专题:我以前,以及我所有的同学,看到泰勒公式就哆嗦,因为咋一看很长很恐怖,瞬间大脑空白,身体失重的感觉。其实在我搞明白一下几点后,原来的症状就没有了。第一:什

么情况下要进行泰勒展开;第二:以哪一点为中心进行展开;第三:把谁展开; 第四:展开到几阶? 应用多次中值定理的专题:大部分的考研题,一般要考察你应用多次中值定理,最重要的就是要培养自己对这种题目的敏感度,要很快反映老师出这题考哪几个中值定理,我的敏感性是靠自己多练习综合题培养出来的。我会经常会去复习,那样我对中值定理的题目早已没有那种刚学高数时的害怕之极。要想对微分中值定理这块的题目有条理的掌握,看我这个总结定会事半功倍的。 对称性,轮换性,奇偶性在积分(重积分,线,面积分)中的综合应用:这几乎每年必考,要么小题中考,要么大题中要用,这是必须掌握的知识,但是往往不是那么容易就靠做3,4个题目就能了解这知识点的应用到底有多广泛。我们做积分题,尤其多重积分和线面积分,死算也许能算出结果,但是要是能用以上性质,那可真是三下五除二搞定,这方面的感觉相信大家有过,可是或许仅仅是昙花一现,因为你做出来了以为以后就一定会在相似的题目中用,其实不然,因为仅仅靠几道题目很大程度上不能给你留下太深刻的印象,下次轮到的时候或许就是考场上了,你可能顿时苦思冥想,最终还是选择了最傻的办法,浪费了宝贵时间。说这些其实就是说明,考场上的正常或超常发挥是建立在平时踏实做,见识广,严要求的基础上。 任何知识的积累都是长期努力的结果,都是需要我们踏踏实实来努力的,切勿投机。考研数学学科考试内容多、知识面广、综合性强,提醒大家在复习期间掌握好适合自己的方法,并持之以恒、坚持到底,

内蒙古自治区考研数学复习资料高等数学重点知识点回顾

内蒙古自治区考研数学复习资料高等数学重 点知识点回顾 高等数学是考研数学中的一门重要课程,是考研数学的基础和核心。掌握高等数学的重点知识点对于考研数学的复习备考非常关键。本文 将回顾内蒙古自治区考研数学复习资料中的高等数学重点知识点,帮 助考生更好地备考。 一、微积分部分 1. 一元函数微分学 在一元函数微分学中,重点掌握函数的基本概念、导数和微分的定 义与性质,以及相关的求导法则和高阶导数的计算方法。需要特别注 意的是常见的特殊函数的导数计算,如指数函数、对数函数、三角函 数等。 2. 一元函数积分学 一元函数积分学中的重点知识点包括不定积分的基本概念、常见函 数的积分公式、定积分的性质和计算方法,以及应用题的解题思路。 在解决定积分问题时,需要注意常用的换元积分法和分部积分法。 3. 多元函数微分学 多元函数微分学是高等数学的重要内容之一。重点知识点包括多元 函数的偏导数、全微分和方向导数,二元函数的极值与最值,以及二

次型的矩阵表示和规范形式等。熟练掌握多元函数的偏导数计算和方 向导数的求解方法是解决多元函数问题的关键。 4. 多元函数积分学 多元函数积分学是求解空间曲线和曲面面积,以及质量、质心和转 动惯量等物理问题的基础。重点掌握二重积分和三重积分的基本概念、计算方法,以及应用于几何和物理的问题求解。 二、线性代数部分 1. 行列式 行列式是线性代数中的重要内容。重点掌握行列式的基本概念、性 质和计算方法,特别是三阶行列式的计算和计算规则。行列式在线性 方程组和矩阵求逆等问题中起着重要的作用。 2. 矩阵与线性方程组 矩阵与线性方程组是线性代数的核心内容。重点掌握矩阵的基本概念、运算规则和性质,矩阵的特征值和特征向量,以及线性方程组的 解法和解的存在唯一性条件。熟练运用矩阵的运算和线性方程组的求 解方法是解决线性代数问题的关键。 3. 向量空间 向量空间是线性代数的一个重要分支。重点掌握向量空间的基本概念、线性相关和线性无关,线性组合和生成子空间,向量空间的维数 和基,以及线性变换和矩阵的相似性等内容。

高数复习资料全

《高等数学》课程复习资料 一、填空题: 1.设2 )(x x a a x f -+=,则函数的图形关于对称。 2.若2sin x x y x x <<=+≤<⎧⎨⎩-20102 ,则=)2(π y . 3.极限lim sin sin x x x x →=0 21 。 4.已知22 lim 2 22=--++→x x b ax x x ,则=a ,=b 。 5.已知0→x 时,1)1(3 12 -+ax 与1cos -x 是等价无穷小,则常数a = 6.设)(2 2 y z y z x ϕ=+,其中ϕ可微,则 y z ∂∂=。 7.设2e yz u x =,其中),(y x z z =由0=+++xyz z y x 确定的隐函数,则 =∂∂) 1,0(x u 。 8.设ϕϕ,),()(1 f y x y xy f x z ++=具有二阶连续导数,则=∂∂∂y x z 2。 9.函数y x xy xy y x f 2 2 ),(--=的可能极值点为和。 10.设||)1(sin ),(2 2xy x y x y x f -+=则'y f =(1,0)。 11.=⎰ xdx x 2sin 2 12.[0,]cos ,sin y x y x π==在区间上曲线之间所围图形的面积为。 13.若 2 1 d e 0 = ⎰ ∞ +-x kx ,则k = 。 14.设D:2 2 1x y +≤,则由估值不等式得⎰⎰≤++≤ D dxdy y x )14(22 15.设D 由2 2 ,,,y x y x y y ====212围成〔0x ≥,则 (),D f x y d σ⎰⎰在直角坐标系下的两种积分次序 为和 。 16.设D 为01,01y x x ≤≤-≤≤, 则 D f dxdy ⎰⎰的极坐标形式的二次积分为。

高等数学(考研要点复习_上)

第一章 函数与极限 函数和极限都是高等数学中最重要、最基本的概念,极值方法是最基本的方法,一切内容都将从这二者开始。 §1、 函 数 一、集合、常量与变量 1、集合:集合是具有某种特定性质的事物所组成的全体。通常用大写字母A 、B 、C ……等来表示,组成集合的各个事物称为该集合的元素。若事物a 是集合M 的一个元素,就记a ∈M (读a 属于M );若事物a 不是集合M 的一个元素,就记a ∉M 或a ∈M (读a 不属于M );集合有时也简称为集。 注 1:若一集合只有有限个元素,就称为有限集;否则称为无限集。 2:集合的表示方法: ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧===+++======等。 中在点;为我校的学生;须有此性质。如: 中的元素必中,且,即:有此性质的必在所具有的某种性质合可表示为: ,那么该集若知其元素有某种性质不到元素规律的集合,、列不出全体元素或找为全体偶数集;,,,然数集,为全体自,,,写出,如:元素的规律,也可类似、对无限集,若知道其 ;鸡一只猫,一只狗,一只 的方法来表示,如:可用列举出其全体元素、若集合为有限集,就枚举法}),(),{(}{}0375{}{)(}642{}321{)(}{},10,,3,2,1{)(23D y x y x C x x B x x x x A A A x x A iii B A ii B A i 3:全体自然数集记为N,全体整数的集合记为Z,全体有理数的集合记为Q,全体实数的集合记为R 。以后不特别说明的情况下考虑的集合均为数集。 4:集合间的基本关系:若集合A 的元素都是集合B 的元素,即若有A x ∈,必有B x ∈,就称A 为B 的子集,记为B A ⊂,或A B ⊃(读B 包含A)。 显然:R Q Z N ⊂⊂⊂. 若B A ⊂,同时A B ⊂,就称A 、B 相等,记为A=B 。 5:当集合中的元素重复时,重复的元素只算一次.如:{1,2,2,3}={1,2,3}。 6:不含任何元素的集称为空集,记为Φ,如:{R x x x ∈=+,012}=Φ,{12:-=x x }=Φ,空集是任何集合的子集,即A ⊂Φ。 7:区间:所有大于a 、小于b a (<)b 的实数组成一个集合,称之为开区间,记为(a,b),即(a,b)=}{b x a x 。 同理:[a,b]=}{b x a x ≤≤为闭区间,[)}{,b x a x b a ≤=和(]}{,b x a x b a ≤= 分别称为左闭右开、左开右闭的区间,统称为半开区间。 以上均成为有限区间,a 、b 分别称为左、右端点。 对无穷区间有:(]R x x x a x a b x x b =+∞∞-=+∞-∞=+∞≤=∞-}{),(},{),(},{, ,

相关文档
相关文档 最新文档