文档库 最新最全的文档下载
当前位置:文档库 › 出砂基础知识

出砂基础知识

出砂基础知识
出砂基础知识

第一节概述

石油工业中,油井生产出砂(sand production)是个普遍性问题,而且油井生产出砂问题的研究十分困难,原因是:

①无法直接观测出砂过程。油田开发在地层深处进行,在地面无法直接观测;

②岩石力学性质(rock mechanical properties)复杂。地层岩石的力学性质可能在较大范围内变化,地层深部取心不但花费昂贵,而且也有一定的偶然性、局限性,如地层深部的含水率、温度和压力条件在地面上难以保持,而这些因素对地层岩石的力学性质有很大影响;

③储层条件复杂。随着生产的进行和各种增产措施的实施,使储层变得十分复杂,这也给研究出砂机理带来困难。

④油井出砂影响因素多。油井出砂受许多复杂因素的影响,如;地质条件、岩石力学性质、生产参数等;

在一口井最终完成之前以及在其生产过程中,准确地预测其是否出砂是至关重要的,因为无论采取何种防砂(sand control)措施费用都会很高,所以不必要的采取防砂措施,不仅使生产费用增加,而且污染油气层,降低生产效率。

但是对那些因出砂而被放弃或不能继续开发的井,采取防砂措施又是使油井成为有开采价值的唯一方法。

第二节油井出砂的过程及危害

一、油井出砂的基本过程

地层砂可分为两种:充填(松散)砂和骨架砂(framework sand)。

当流体的流速达到一定值时,首先使得充填于油层孔道中的未胶结的砂粒发生移动,油井开始出砂,这类充填砂的流出是不可避免的,而且起到疏通地层孔隙通道的作用;反之,如果这些充填砂留在地层中,有可能堵塞地层孔隙,造成渗透率下降,产量降低。因此充填砂不是防治的对象。

当流速和生产压差达到某一数值时,岩石所受的应力达到或超过它的强度,造成岩石结构损坏,使骨架砂变成松散砂,被流体带走,引起油井大量出砂。防砂的主要对象就是骨架砂,上述情况是在生产过程中应尽量避免的。

根据以上情况可以把油井出砂过程分为两个阶段:

第一阶段是由骨架砂变成自由砂,这是导致出砂的必要条件;

对于出砂的该阶段来说,应力因素:如井眼压力(borehole pressure)、原地应力状态(in site stresses state)及岩石强度(rock strength)等是影响出砂的主要因素。

第二阶段是自由砂的运移。

要运移由于剪切破坏而形成的松散砂,液力因素是主要影响因素:如流速、渗透率(permeability)、粘度以及两相或三相流动的相对渗透率等的作用等。

生产过程中,只要满足以上两方面条件,油井就会出砂。

因此,对于具有一定胶结强度(cementation strength)的地层而言,要实现有效的防砂(sand control),首先要防止地层发生破坏,即不让出砂的必要条件得到满足,这主要通过控制应力因素:如保持储层压力、减小生产压差(draw-down)等来实现。

但是,随着生产的进行,储层压力衰减,岩石强度降低都是必然要发生的,那么,岩石不可避免要发生破坏。这样,过程就由出砂的第一阶段过渡到第二阶段,这时主要通过控制流速来阻止自由砂的运移达到防砂(sand control)的目的,即控制产量(流速)。

同样,对于弱胶结和未胶结储层而言,出砂第一阶段的条件很容易满足,这样防砂(sand control)的关键在于不让出砂第二阶段所需要的条件得到满足,即可通过控制流速和生产压差来达到防砂的目的。

二、出砂的危害

油、气井出砂是石油开采遇到的重要问题之一。每年要花费大量人力物力进行防治和防砂(sand control)研究。出砂给生产带来的危害可概括为以下三类:

(1)井下、井口采油设备的磨损和腐蚀

产液中带砂使各种采油泵、管线受到磨损,大大缩短了它们的寿命。对于输油管线由于砂粒磨损加快了腐蚀速度;

(2)井眼稳定(borehole stability)问题

由于出砂使井眼失稳而导致套管挤毁、油井报废。通过对胜利油田某疏松砂岩区块资料分析发现:随着出砂的加剧和原地层压力的降低,套损井逐年增加,疏松砂岩储层油井套管(casing)损坏严重,总数已占10%以上,个别区块已达30%以上。

(3)出砂会导致减产或停产作业

油井出砂磨损泵筒与柱塞,降低泵效,甚至损坏采油泵,造成油井减产或停产。

三、油井出砂的影响因素

影响油井出砂的因素很多,概括起来可分为三大类:

①地质力学因素,包括:原地应力状态(垂直地应力与原始水平地应力)、孔隙压力、原地温度、地质构造等;

②砂岩储层的综合性质:井深、砂岩的强度和变形特征、孔隙度、渗透率、泄流半径、流体的组成(油、气、水的含量及分布等)、粘土含量、岩石组成、颗粒尺寸和形状及压实情况等;

③工程因素,包括完井类型、井身结构参数(井深.井斜、方位、井径)、完井液的性能、增产措施(压裂、酸化等)、生产工艺参数(流速、生产压差及流量)、油层损害(表皮系数增大)、放油或关井方案、人工举升技术、油藏衰竭、累计出砂量等。

这些因素和参数相互作用、相互影响、使研究出砂问题变得十分复杂,对某一油田,只凭现场经验很难决定哪些因素是地层出砂的主要因素。

四、井下出砂的防治

若井眼出砂,就要采取防砂措施,针对出砂的危害,人们采取了多种防砂方法。可以把这些措施概括为两大类:

第一类方法是自然完井法防砂。利用生产参数如压差、生产速率等来控制油井出砂。

第二类方法是主动防砂法。包括砾石充填(gravel packing)、绕丝筛管、化学固结(consolidation)和地层预强化(stimulation)等方法。砾石充填是比较重要的一种方法。

砾石充填有两种方法:

一是套管内砾石充填。

在下入套管并射孔(perforation)的井中如有出砂,可在出砂井段下筛管,在筛管与油层套管之间的环空中充填砾石。

二是裸眼砾石充填

裸眼砾石充填是在钻开产层之前下套管封固,再钻开产层,在产层段扩大井眼,下入筛管,在井眼与筛管之间的环形空间中充填砾石。砾石和筛管对地层的出砂起阻挡作用。

机械防砂

在我国,机械防砂方法从上世纪七十年代开展以来,得到了快速的发展和广泛的应用。目前可分为管柱滤砂和机械充填滤砂两大类。

管柱滤砂是在生产管柱上或井筒内封隔管柱上采取防砂滤砂措施,一般采取防砂泵防砂或滤砂管防砂。管柱滤砂的优点是施工简便、成本低,缺点是无法阻止地层砂进入井筒,短期内减少了卡泵和砂对设备的破坏,但仍会堵塞地层,砂埋管柱,而且只适于中粗砂岩地层(砂粒径大于0.1mm),防砂管柱的缝隙或孔隙易被进入井筒的地层细砂所堵塞。

防砂泵防砂的优点是成本低,施工方便,适于中粗砂地层;缺点是只能减少泵的砂卡,

不能解决井筒出砂问题。老式的防砂泵只是简单地在柱塞上做出防砂槽;而新式防砂泵一般采用双泵套带沉砂尾管的方式减少进入泵筒的砂粒。

滤砂管防砂有两种用法:一是在泵抽管柱中当筛管,二是用于套管内充填防砂。常用滤砂管有:绕丝筛管、割缝筛管、金属粉末或树脂砂粒滤砂管、多孔陶瓷滤砂管、金属棉纤维滤砂管、双层预充填滤砂管等。目前市场上出现了一种HSG化学材料防砂管,结合机械防砂和化学防砂的优点,强度高、耐高温、易打捞,是一种优秀的防砂技术。

机械防砂的第二种用法是充填滤砂。下入防砂管柱(绕丝筛管或其他滤砂管)后将充填材料充填于筛管和井壁之间的环空并将部分砾石挤入近井周围地层内,阻挡砂粒运移。充填材料多种多样,最常用的是砾石,还可用果壳、果核、塑料颗粒、玻璃球或陶粒等。这种防砂方法能有效地把地层砂限制在地层内,并能使地层保持稳定的力学结构,防砂效果好,寿命长。目前这种方法的应用有:管内砾石充填、多层砾石充填、裸眼砾石充填、高温注气井砾石充填、定向井或水平井砾石充填。

相对来说,机械防砂对地层的适应能力强,无论产层厚薄、渗透率高低、夹层多少都能有效地实施;在老井作业中,还可起到恢复地层应力的作用,从而延长生产周期,使出砂井能得到充分的利用。加上机械防砂成功率高,相对成本较低等优点,目前应用十分广泛。但是,机械防砂不适用于细粉砂地层和高压地层。

化学固结(consolidation)是把一种化学物质注入井眼附近,使其强度增大以防止出砂。

稳定砂拱法(stable arch sand control)是用水力封隔器将井眼附近地层机械压实的方法。其目的是改善地层颗粒之间的桥堵能力。

砂拱防砂是一种自然防砂法,是指油、气井射空完井后不再下入任何机械防砂装置或充填物,也不注入任何化学药剂的防砂方法。

砂拱防砂的机理如同拱桥承载一样,砂粒在炮眼口处形成砂拱,具有一定的承载能力,挡住地层砂随液产出。砂拱防砂成败的关键在于砂拱的稳定性。要想保持砂拱的稳定性必须考虑两个关键问题:一是降低并稳定地层流体产出速度;二是保持或提高井筒周围地层的径向应力。

一般来说,套管完井砂拱防砂要求小孔径和高孔密的炮眼。小孔径有利于形成砂桥和提高砂桥的稳定性。高孔密可以增大过流面积,降低地层流体的流速,使其控制在一定的临界值之内而不致冲垮砂桥。

但是,由于地层流体的速度并不稳定,随着抽油机冲程和冲数的改变,流速在不断变化,特别是使用大泵量无杆泵抽油,在炮眼里会造成十分严重的紊流,更易使砂拱垮塌。因此,这种单纯的套管射孔砂拱防砂方法的实际应用受到限制。

热力焦化防砂

此法的原理是向油层提供热能,促使原油在砂粒表面焦化,形成具有胶结力的焦化薄层。主要有热空气固砂和短期火烧油层固砂两种,目前应用较少。

无论哪一种防砂方法,都应该能够有效地阻止地层中承载骨架砂随地层流体进入井筒。承载骨架砂是指那些组成地层力学结构的固体颗粒物质。游离于承载骨架砂孔隙之中的“非承载砂”最好能够随着地层流体产出,起到疏通地层空隙通道的作用;反之,如果这些游离砂留在地层中,再杂以各种完井液、修井液中的固相伤害物,就有可能堵塞地层孔隙,造成渗透率下降,产量降低。

所以,最为有效的“防砂”手段应该是将地层砂粒粒径小于40微米的粉砂随油流产出地面,否则,这些粉砂颗粒将堵塞井下安装的防砂系统,并导致油井产量降低。这一点已被理论和时间所证实(SPE14813论文)。而不造成防砂管缝隙堵塞的技术关键是设计合理的缝隙开口尺寸,以满足允许防砂系统将一定粒径范围内的小粒粉砂产出地面的要求。因而,世

界防砂界权威人士认为,目前最值得提倡的防砂完井方式是在裸眼井中下入高强度的绕丝防砂筛管。

主动防砂法的共同点:

一是价格昂贵;

二是会降低油层的渗透率,从而降低油井的生产能力。

第三节出砂机理研究

油井出砂机理作为防砂和出砂预测的理论基础,它已越来越受到人们的重视。油井出砂机理的研究主要有两种方法,即实验研究和理论研究。

大规模的出砂模拟实验,小规模出砂模拟实验,出砂的理论研究是将井眼周围的岩石假设成一定的物理模型,然后根据材料的本构关系、受力情况和一定的破坏准则判断岩石是否发生破坏

一、实验研究

实验研究是观察控制条件下的出砂行为,来认识出砂机理及各类生产工艺参数对出砂的影响规律。同时,出砂模拟实验可以验证理论模型。

实验研究方法主要有两种:

一种是进行大规模的出砂模拟实验,其优点是能比较真实地模拟实际出砂现象,缺点是设备庞大,试验成本高,而且不具有可重复性;如下图的出砂模拟实验。

图10-1出砂模拟试验

出砂模拟实验是研究有限模拟井底条件下的出砂影响因素。在模拟实验研究的基础上,Cook等人研究了应力、流动速率等对出砂的影响。

研究发现:对于高渗透性岩石,流体向孔道中径向流动时产生的应力对出砂有很小的影响,而沿射孔孔道的轴向流起着决定性的作用。他们认为出砂问题可以分成应力问题和流动问题。应力问题是确定低胶结强度岩石在具体应力状态下是否发生破坏;而流动问题主要是确定射孔孔道最高能承受多大流速而不会剥落孔道壁上的岩石,使破坏不能进一步进行。

Kooijman等也进行了大规模的室内出砂实验,他们得出的结论是:有效应力增加和压降都能导致不稳定(瞬态)出砂;而水侵导致大量出砂但又很快消失,表明了两相流动是影响出砂的主要因素。

Tronvoll等采用室内实验和数值分析相结合的方法,研究了射孔孔道的稳定性,他们认为射孔孔道开始破坏主要是由地层强度和应力状态(原始地应力、孔隙压力和生产压差等)控制的。

D.Antheuris等对影响气井出砂的因素进行了实验研究,研究发现,射孔孔道的稳定性主要取决于有效应力水平,对于所研究的弱胶结砂岩,气流的冲蚀对孔道破坏的影响很小,而对那些比较硬的砂岩几乎没有影响。

Vrizen等研究了气体流入和通过孔道时的冲蚀作用对孔道稳定性的重要性。结果表明:对于给定硬度的砂岩,孔道的稳定性主要是由有效应力确定的,冲蚀作用对射孔孔道的稳定性并不重要。因此他们推论认为:射孔孔道的稳定性基本上是由射孔周围区域结构稳定性确定的。

综上所述,对出砂影响最大的两个因素:一是应力因素,如井眼压力、原地应力状态、岩石强度;二是液力因素,如流速、渗透率、粘度以及两相或三相流动的相对渗透率等。

从现场观察到的现象来看,有的出砂主要受液力的影响,而有的主要受应力的影响。

另一种实验研究方法就是小规模出砂模拟实验。其特点是模拟控制出砂的几个因素,试验灵活简便、具有可重复性,缺点在于与实际出砂情况差别较大。如砂拱稳定性实验。

图10-2砂拱稳定性试验示意图

拱是一种能跨过孔道的自支持结构,它很早以前就被人们用于建筑结构中。

在弱胶结砂岩中进行采油时,砂拱就会在原射孔孔道中形成。

Terzaghi首先对拱的形成与稳定机理进行了分析,他使用了一个装满砂子的箱子,箱子的底面有个活动门,当将活动门移开时,他发现施加在活动门上的载荷能转移到其周围。

Hall和Harrisberger在研究砂拱的稳定性及最大无砂采油速率的影响因素时,重新做了Terzaghi的实验,他们发现在低应力水平下拱对流动速率很敏感,而在高应力水平下,它与流动速率无关,他们没有给出在流动速率敏感区内砂拱的破坏速率。

Stein与其同事认为砂拱能承受的最大流动速率是与砂岩的剪切模量成比例的。

Hall等在1972年研究了形成稳定圆拱结构的条件,他们认为松散砂不能形成稳定的砂拱.形成稳定砂拱必需具备的两个条件是膨胀性和内聚性。

Yim等研究了出口尺寸、拖曳力和粒度分布对砂拱的影响,他们发现:流体的拖曳力对成拱有不稳定作用。

通过砂拱的稳定性实验,人们还发现有楞角的砂粒在较低的载荷作用下无法形成砂拱,载荷提高后才能形成稳定的砂拱,随着载荷进一步增大,砂粒楞角破坏,砂拱失去稳定性。而球形砂粒在无粒间粘结力作用时,无法形成稳定砂拱。

砂拱随围压的增加而减小,而稳定性随围压和粘结力增加而增大。

流速对砂拱的稳定性影响主要是由于压降和流体拖曳力作用,砂拱越小,泄流面积越

小,流速越大,压降和流体拖曳力就越大,小砂拱就会变成大砂拱使泄流面积增大。

二、理论研究

出砂的理论研究是将井眼周围的岩石假设成一定的物理模型,然后根据材料的本构关系、受力情况和一定的破坏准则判断岩石是否发生破坏。众所周知,深埋地下的油层,受到上覆岩层压力、水平地应力及地层孔隙压力的作用,在井眼钻开前,地下岩层处于平衡状态。但是油、气井在生产过程中,岩石中的应力状态要发生变化,可能导致岩石破坏。

岩石的破坏形式主要有两种:

剪切破坏和拉伸破坏。

通常认为剪切破坏是大多数现场出砂的基本机理。

若油层发生剪切破坏,便产生了破裂面,同时由于产液流动的拖曳力,将破裂面上的砂子携带出来。

拉伸破坏是岩石出砂的另一个机理。

该破坏机理认为由于产液流速过大,引起的径向拉应力超过岩石的抗拉强度时,就会导致拉伸破坏。

实际上两种机理同时起作用并相互影响。

从微观上看,出砂是由于地层流体对岩石颗粒的冲蚀而引起的。流体流经砂体的小孔隙时,产生摩擦和压降。当压力降很大且砂粒的胶结物少或缺少胶结物时,单个砂粒开始移动并进入井筒。

第四节油井出砂预测技术

为了有效地预防油井出砂问题,有必要了解油井出砂预测技术。概括来讲,目前存在下列出砂预测模型:

1、单参数模型

此模型的形式最简单,只有一个参数,如极限井深准则,只有在该深度以下才会出砂;此外还有声波传递时间准则,利用声波在地层中的传播时间△T 来进行预测。当△T>295us/m 时,该地层应采取防砂措施。

单参数模型简单易用,但偏于保守。

2、双参数模型

双参数模型考虑油藏压力衰减(reservoir depletion)及生产压差(draw-down)的影响。

3、多参数模型

在出砂因素中考虑深度、声波传播时间、生产速率、生产压差、生产指数、泥质含量、含水量等因素。Ghalambor 等人首先提出了水侵后的气井出砂预测问题,并且利用现场气井数据和通过测井资料获得的储集层特性参数,用统计的方法建立了水侵后的气藏出砂预测模式:

4

.151********.06.236551.1303629912.2000557.097.115318457.0+ψ+-ψ+-+-=?G G C V P GV V P P t b wc e M

wc ah ws

由于多参数模型需要大量的数据,而长期记录和监测出砂数据是十分困难的,因此使用较少。

4、工程预测模型

在实际工程中,已开发油田的出砂预测是基于经验关系及历史数据的拟合,而对于新开发区,尤其是海上油田,完井设计必须考虑到出砂预测,然而又没有可参考的相似井,由于许多因素影响到油井出砂,优化开发方案应准确判别地质、岩石力学、测井、生产工艺及油藏工程等要求与特性。

K.W.Weissenburger根据岩心分析与测井数据,以油井不出砂为准则,油藏管理及生产工艺为约束条件,建立了完井方法与参数设计的综合系统方法,如下面的图表所示:

完井方法与参数设计的综合方法

5、溶解气对出砂预测模型的影响

上述所有模型都未考虑气侵对油井出砂的影响,而有人通过实验研究发现:从液流中逸出的气体对出砂量有极大的影响,当气液比等于6.7时,出砂量增加约为60倍;当气液比等于9.4时,出砂量增加约为2000倍。

在油田生产过程中,往往伴有溶解气,因此在出砂预测模型中还应体现溶解气的影响。

国外许多学者对油井出砂问题进行了大量的理论与实验研究,而国内主要致力于防砂工艺和防砂工具的研究,对于出砂机理研究甚少,因此工具的研制和工艺的应用带有很大的盲目性,研制工具后进行大规模的工业性试验,不能从根本上解决问题,有时还可能导致人力物力的浪费。因此对于出砂机理研究具有十分重要的意义。

建筑地基基础处理方案

一、编制依据 (2) 二、工程说明 (2) 三、自然条件与地理概况 (2) 四、施工方案 (4) 五、土方开挖施工 (8) 六、灰土挤密桩施工 (11) 七、灰土地基 (15) 八、雨期施工 (18) 九、质量保证措施 (20) 十、环保、安全措施 (21)

一、编制依据 二、工程说明 本工程为工程,建设地点在内。本工程主要工程量包括总图、建筑、结构、装饰、给排水、暖通、电力、消防、通信等。 本工程有配液车间、发液栈桥、水罐及泵房、库房、主门卫及次门卫五个单体结构。压裂液配液站工程厂区占地面积为12650m2,其中建构筑物占地面积为3742.5m2,占总面积的29.6%,道路面积及广场铺砌面积4461 m2,绿化占地面积3500 m2,占总面积的27.7%。主要工程量包括配液车间、发液栈桥、水泵房、库房、1台1000m2水罐及门卫房。建筑结构类型:配液车间、发液栈桥、泵房为钢结构,门卫为砖混结构。抗震设防烈度为7度,建筑耐火等级为二级,设计使用年限为25年。防水等级:屋面防水等级为Ⅲ级。 三、自然条件与地理概况

1. 自然条件 甘肃省庆阳市镇原县位于大陆腹地,气候受季风影响明显,为北温带半干旱大陆性季风气候。由于地势较平缓,加之夏季季风的影响,气候要素反应也较平缓。因季风强弱和进退迟早不同,降雨量年、月分布不稳定,一般七、八、九月降水偏多,春旱较频繁。无霜期限较长,日照充裕,降雨量不足。 2. 地理位置与地形地貌 甘肃省庆阳市镇原县位于甘肃省庆阳市西部、六盘山东麓。东接西峰区、庆城县,南邻平凉市崆峒区、泾川县,西与宁夏彭阳县相邻。属陇东黄土高原沟壑区,黄土层厚度150—220米。地势自西北向东南倾斜,地貌梁、峁、沟交错,河、川、塬相间,地形西高东低,沟壑纵横、地形复杂。 3. 规模及标准 1) 规模 本次根据北京冶金研究院所出优化方案施工。 a) 压裂液配液站配液车间和库房按照湿陷性黄土建筑物分类 的甲乙类建筑考虑,维持现有桩基础方案。 b) 压裂液配液站水泵房按丙类建筑考虑,原桩基础取消,改 为混凝土扩展基础,基础底部地基采用3:7灰土换填4m 厚,水罐地基按照灰土挤密桩进行地基处理。

各类材料取样标准

各类材料取样标准 1:通用硅酸盐水泥: (1)散装水泥:①对同一水泥厂生产同期出厂的同品种、同强度等级、同一出厂编号的水泥为一验收批,单一验收批的总量不得超过500t。②:随机从不少于3个车罐中各取等量水泥,经混拌均匀后,再从中称取不少于12kg的水泥作为试样。 (2)袋装水泥:①:对同一水泥厂生产同期出厂的同品种、同强度等级、同一出厂编号的水泥为一验收批,但一验收批的总量不得超过200t。②:随机从不少于20袋中各取等量水泥,经混拌均匀后,再从中称取不少于12kg的水泥作为试样。 2:建筑用砂取样方法与数量 在料堆上取样时,取样部位应均匀分布。取样前先将取样部位表层铲除,然后从不同部位随机抽取大致等量的砂8份,组成一组样品。 从皮带运输机上取样时,应用与皮带宽度的接料器在皮带运输机机头出料处全断面定时随机抽取大致等量的砂4份,组成一组样品。 从火车、汽车、货船上取样时,从不同部位和深度随机抽取大致等量的砂8份,组成一组样品。 取样数量:根据本所建筑用砂试验所检参数指标取样数量最少取20kg。 3:建筑用碎石、卵石取样方法与数量 在料堆上取样时,取样部位应均匀分布。取样前先将取样部位表层铲除,然后从不同部位随机抽取大致等量的石子15份(在料堆的顶部、中部和底部均匀分布的15个不同部位取得)组成一组样品。 从皮带运输机上取样时,应用与皮带宽度的接料器在皮带运输机机头出料处全断面定时随机抽取大致等量的石子8份,组成一组样品。 从火车、汽车、货船上取样时,从不同部位和深度随机抽取大致等量的石子16份,组成一组样品。 取样数量:根据本所建筑用碎石、卵石试验所检参数指标取样数量应按表1取样。 每批取样为12匹、/组,烧结普通砖配砖为24匹/组。 5:钢筋焊接:闪光对焊:每300个接头为一个批次。取样试件:6根为一组(3根做拉伸试验,3根做弯曲试验。3根长(55cm-60cm)3根短(35cm-40cm)短的每一个焊接表面必须打磨一个平面)双面/单面搭接电弧焊、窄间隙电弧焊、电渣压力焊、双面/单面帮条电弧焊、每300个接头为一个批次。取样试件:3根为一组(55cm-60cm)。 6:机械连接:(1)工艺检验:在正式施工前,按同批钢筋、同种机械连接形式的接头试件不少于3根,同时对应截取接头试件的母材不少于3根,进行抗拉强度试验。(2)现场检验:接头的现场检验按验收批进行。同一施工条件下采用同一批材料的同等级、同形式、同规格的接头每500个为一验收批。不足500个接头也按一批计。每一验收批必须在工程结构中随机截取3个试件做单向拉伸试验。 7:钢筋原材料:①同一厂家、同一炉罐号、同一规格,每60t为一验收批,不足60t的也按一批计。②每一验收批取一组试件(拉伸5根(55cm-60cm)弯曲2根(35cm-40cm),抽样时应抽取有标识的部分。 8:钢板及型钢取样方法 一定要有代表性,取样时应防止过热,加工硬化而影响力学性能,须留有足够的加工余量。型钢,钢板取样规定GB/T2975-1998 《钢及钢产品力学性能试验取样位置及试样制备》型钢,钢板取样长度50-60cm,宽度2 cm或者3cm

对流沙管涌的预防措施修订稿

对流沙管涌的预防措施集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

对流砂、管涌的预防措施 在深基础施工中,对基坑的降水要求通常是基础施工方案中的一个重要部分,对一般工程而言,采取必要的人工降水(如、降水)或抗渗围护等措施均能满足施工要求。但是当遇到地下水文、地质情况较为复杂时(如各土层之间的渗透系数差值过大、土层夹有渗透系数很大的粉砂层、地下存在不透水土层和承压含水土层以及基坑附近有人工水管漏水等),会给施工带来很大的不利。因此在深基础施工时,对基坑降水和预防流砂、管涌的措施应特别重视。文中根据多个工程的施工经验与教训,收集了一些有关资料,就深基础施工时出现流砂、管涌现象的防治方法作一粗浅的总结。 1 流砂、管涌成因的分析 流砂的成因 土体在受水浸泡饱和时,土粒中亲水胶体颗粒吸水膨胀使土粒的密度减小,当在动水压力的作用下,动水压力超过土粒的重力时,土粒产生悬浮流动,即形成流砂。动水压力是产生流砂的一个重要因素。 管涌的成因 当深基坑距离河塘较近或基坑底下土层中存在承压含水层时,在水位差的作用下,基坑土体中存在渗透水流,由于土体的不均匀性,土体中某一部位的土颗粒在渗透水流的作用下会发生运动,使填充在土体骨架空隙中的细颗粒被渗水带走而形成涌水通道,即形成管涌(又称翻砂鼓水、泡泉)。当主渗漏涌水通道上的细颗粒被基本带走后,在较强的水流冲刷下,主通道两侧的细颗粒进入涌水主通道,使涌水主通道逐渐变宽,管涌持续时间越长,通道的宽度越宽,继而发生大量涌水和塌方事故。 2 对流砂、管涌的预防措施 施工方案的设计与论证

1)为保证深基础施工时基坑不积水,在深基础施工之前,首先应根据地质钻探资料和工程实际情况,设计深基础施工的降水方案。通常采用的基坑降水方法有人工降水、抗渗围护等,无论采用什么方案,方案中应对坑中待挖土中的地下水位变化情况进行必要的验算,使降水措施满足地下水位浸润线低于开挖底标高以下500 mm的施工条件。 2)凡在深基坑开挖施工中,如发现有地下承压水,应事先探明承压水头、不透水层的标高和厚度,并对坑底土体进行抗浮托能力验算。 3)对工程所在地的类似深基础施工情况进行必要的调研,吸取其他工程在深基础施工中的经验与教训。 深基础施工实施过程的措施 2.2.1 预防和处理流砂、管涌的原则 预防和处理流砂、管涌的原则是“减少或平衡动水压力”。 2.2.2 预防流砂、管涌的基本方法 1)井点降水法:a.当出现流砂时,应立即停止开挖,并回填深坑将流砂埋没或在深坑中注水,以平衡渗流的动水压力。然后在深坑周围立即补下二级(或三级)井点,待二级(三级)井点降水使地下水浸润线低于开挖范围以下500 mm后,再继续开挖施工。 b.当深坑接近承压水层时或经计算坑底土体的抗浮不能满足稳定要求时,可采用井点管穿过不透水层直接抽取不透水层下的承压水,以降低承压水头,从而避免因承压水头过大而形成管涌。 由于地下承压水流量大,不宜采用轻型井点,应采用出水量较大的喷射井点或管井降水。深井的布置量、布置深度应根据承压含水层的承压水头H,承压水土层渗透系数K,单井出水能力q和要求降低水头量S经计算确定。

地基处理工程施工设计方案

五、施工组织设计 1. 投标人编制施工组织设计的要求:编制时应针对第二章评标办法中施工组织设计的评审标准,可采用文字并结合图表形式说明施工方法;拟投入本标段的主要施工设备情况、拟配备本标段的试验和检测仪器设备情况、劳动力计划等;结合工程特点提出切实可行的工程质量、安全生产、文明施工、工程进度、技术组织措施,同时应对关键工序、复杂环节重点提出相应技术措施,如冬雨季施工技术、减少噪音、降低环境污染、地下管线及其他地上地下设施的保护加固措施等。 2. 施工组织设计除采用文字表述外可附下列图表,图表及格式要求附后。 附表一拟投入本标段的主要施工设备表 附表二拟配备本标段的试验和检测仪器设备表 附表三劳动力计划表 附表四计划开、竣工日期和施工进度网络图 附表五施工总平面图 附表六临时用地表

目录第一部分施工组织设计

第一章编制依据 第二章工程概况 第三章施工总部署 第四章平面布置 第五章施工准备 第六章试验施工方案 第七章主要工程施工方案 第八章质量保证措施 第九章安全、环保、文明施工保证措施第十章工期保证措施 第十一章防风、防雨、防雷施工措施第十二章降低成本措施 第二部分附表

第一部分施工组织设计 第一章编制依据 一、编制依据 本施工组织设计根据建设单位提供的招标文件、设计图纸技术要求,结合我单位类似工程施工经验进行编制。结合以下规、标准、法规和管理制度作为编制依据。 1.《建筑地基处理技术规》JGJ79-2002 2.《湿陷性黄土地区建筑规》GB50025-2004 3.《建筑地基工程施工质量验收规》GB50202-2002等规 4.《建筑机械使用安全技术规程》JGJ33-86 5.《土工试验方法》GB/T50123-99 6.我公司按照GB/T 19001-2000 idt ISO9001-2000、 GB/T24001-2004 idt ISO14001-2004、GB/T 28001-2001标准制定的《管理手册》、《质量、环境、职业健康安全程序文件》。 7.现行国家、行业及地方的有关法律、法规和规定 8.我单位现有可投入该工程的施工技术力量、机械设备和类似的施工经验。 二、编制原则 1.认真贯彻执行国家对工程建设的各项方针和政策,严格执行建设

建筑工程各类材料送检取样规范(员)

建筑工程材料送检\复检要求汇总 一、钢筋混凝土结构用钢 (一)钢筋混凝土用热轧光圆钢筋 1.执行标准:GB 1499.1-2008 2.验收批次:每批由同一牌号、同一炉罐号、同一规格的钢筋组成,每批重量不大于60t。每批取钢筋样数量为4根,其中2根做拉伸试验,2根做弯曲试验。超过60 t的部分,每增加40t,增加一个拉伸试验试样和一个弯曲试验试样。 3.检验项目:拉伸;弯曲;原材重量偏差; (二)钢筋混凝土用热轧带肋钢筋 1.执行标准:GB 1499.2-2007/XG1-2009 2.验收批次:每批由同一牌号、同一炉罐号、同一规格的钢筋组成,每批重量不大于60t。每批取钢筋样数量为4根,其中2根做拉伸试验,2根做冷弯试验。超过60 t 的部分,每增加40t,增加一个拉伸试验试样和一个弯曲试验试样。 3.检验项目:拉伸;弯曲;原材重量偏差;注明抗震性能 (三)余热处理钢筋 1.执行标准:GB 13014-1991 2.验收批次:余热处理钢筋每批由重量不大于60t的同一牌号、同一炉罐号、同一规格、同一交货状态的钢筋组成。用《碳素结构钢》(GB/T 700--2006)验收的直条钢筋每批应做1个拉伸试验、1个弯曲试验。 3.检验项目:拉伸;弯曲;原材重量偏差;注明抗震性能 (四)冷轧带肋钢筋 1.执行标准:GB 13788-2008 2.验收批次:冷轧带肋钢筋每批由同一牌号、同一外形、同一规格、同一生产工艺和同一交货状态的钢筋组成,每批不大于60t。逐盘或逐捆做1个拉伸试验,牌号CRB550 每批做2个弯曲试验,牌号CRB650 及其以上每批做2 个反复弯曲试验。 3.检验项目:拉伸;弯曲;原材重量偏差;注明抗震性能 (五)低碳钢热轧圆盘条 1.执行标准:GB/T 701-2008 2.验收批次:每批由同一牌号、同一炉罐号、同一规格的钢筋组成,每批重量不大于60t。每批盘条钢筋应做1 个拉伸试验、2 个弯曲试验。超过60 t 的部分,每增加40t,增加一个拉伸试验试样和一个弯曲试验试样。 3.检验项目:拉伸;弯曲;原材重量偏差。 (六)冷轧扭钢筋 1.执行标准:JG 190-2006 2.验收批次:检验批应由同一型号、同一强度等级、同一规格、同一台(套)轧机生产的钢筋组成。每批应不大于20t,不足20t 应按一批计。。 3.检验项目:拉伸;弯曲;原材重量偏差;注明抗震性能 (七)冷拔低碳钢丝 1.执行标准:JGJ 19-2010 2.验收批次:取样批量:冷拔低碳钢丝应成批进行检查和验收,每批冷拔低碳钢丝应由同一钢厂、同一钢号、同一总压缩率、同一直径组成,甲级冷拔低碳钢丝每批质量不大于30t,乙级冷拔低碳钢丝每批质量不大于50t。 a) 甲级钢丝按盘编号,逐盘取样,截去端头50cm 后取2 个试样,分别做拉力和180°反复弯曲试验。拉力

流砂处理方案

流砂处理方案 一、编制依据: 1.1大寺新家园128地块项目岩土工程勘察报告 1.2大寺新家园佳和华庭(128-B地块)项目施工图 1.3建筑工程施工质量验收统一标准(GBJ50300-2013) 1.4工程测量规(GBJ50026-2007) 1.5建筑地基基础工程施工质量验收规(GB50202-2002) 1.6岩土工程验收和质量评定标准(YB9010) 1.7混凝土结构工程施工质量验收规(GB50204-2002) 1.8混凝土质量控制标准(GB50164-2011) 1.9建筑机械使用安全技术规(JGJ33-2012)(J119-2012) 1.10建筑施工安全检查标准(JGJ59-2011) 1.11《建筑地基处理技术规》(JGJ79-2012) 1.12《施工现场临时用电安全技术规程》(JGJ46-2005) 1.13《建筑施工安全检查标准》(JGJ59-2011)

二、工程地质条件 2.1地形地貌: 本场区地貌属海积~冲积平原地貌单元,地势低平,地形平坦。拟建场地为村落居住区及鱼塘分布区,场地西北地段分布有两处较大面积鱼塘及多处水塘和沟渠,杂草茂盛;东侧分布有大面积掘土坑,坑底最大深度约4.5m(高程约-2.0m)左右,地形起伏较大;北侧村庄以东一带多为生活垃圾堆场。 2.2地层土质概述: 埋深0~1.0m为人工填土[Qml]形成的①1杂填土及①2素填土层,该人工填土层由于勘察期间的场地平整和填埋施工,造成分布厚度和围变化较大。 埋深 1.0~3.5m为河床~河漫滩相沉积[Q43al]形成的④粘土层。土层分布较稳定,属高压缩性土。 埋深3.5~15.0m为浅海相沉积[Q42m]形成的第Ⅰ海相层⑥1粉质粘土、⑥11淤泥质粘土、⑥2粉质粘土、⑥21粉土及⑥3粉质粘土层。本层以厚层⑥11淤泥质粘土及⑥21粉土层分布不稳定。该层⑥11淤泥质粘土及⑥21粉土层为本工程建筑基础与基坑开挖施工的主要影响土层。 2.3地下水情况:地下水位年平均变幅为0.60~0.80m左右。 三、现场概况: 基坑底标高为-7.35m(相对±0.000),开槽挖深为4.9m,楼座电梯井位置集水坑基底-9.75米(挖深7.3米),处于地基土⑥11淤泥

地基处理工程施工设计方案

本施工方案编制依据: 1、?建筑工程手册?一九七四年 2、?地基处理设计规范?(GBJ-93) 3、?广州新白云国际机场飞行区详细勘察工程物探报告? 广州地质勘察基础工程公司 4、?广州白云国际机场迁建工程场道项目地基工程设计? 第二部分民航中南机场设计研究院 5、?粉煤灰利用手册?中国电力出版社1997.07

第一章工程概况 广州白云国际机场迁建工程为广州市重点工程,已于2000年3月全面开工,经由广州地质勘察基础工程公司作的飞行区详细勘察工程物探报告中获知:场区上覆为第四系地层主要为粘性土,广泛分布中上碳统壶天群和下石炭石蹬子段灰岩,土洞、溶洞颇为发育,属极强溶岩区。 1、经钻孔揭露的溶洞14个,其中最大溶洞洞高7.2m。 2、经钻孔揭露的土洞53个,其中洞高大于5.0m的22个,最大土洞洞高23.5m,顶板埋深仅9.6m。场区发现的土洞、溶洞的密集区共67个,土洞溶洞密集区内土洞、溶洞极为发育,其中的土洞、溶洞个体的顶底横宽各不一致。 经民航中南机场设计研究院对此土洞、溶洞进行综合评估:飞行区土洞发育较多,且稳定性较差,在场道工程建设中是一个不可忽视的不良地质现象。因此,应在进行机场地基设计施工时针对不同情况采取必要的技术措施。 针对此情况,我公司专业技术人员汇同建设单位现场负责人,于2000年6月上旬对飞行区进行了详尽的现场勘察,同时对设计院提出的土洞、溶洞地基处理方案进行了充分研究,并结合我公司多年的地基处理施工经验,拟对新建白云机场飞行区地下的土洞、溶洞采取钻孔压注水泥砂浆工艺进行处理,充填土洞、溶洞空隙,并达到一定密实度和承载力,同时对洞内不良土质进行加固以保证飞行区地基基

建筑工程材料检测取样标准(2012版)

建筑工程材料检测取样标准(2012版) 一、砂: 1、执行标准:JGJ52-2006、GB/T14684-2001 2、检验批次:应以在施工现场堆放的同产地,同规格分批验收,以400立方米或600吨为一验收批,小型工具(如拖拉机)以200m3或300t 为一检验批,不足上述数量者以一批计。对于一次进场数量较少,且随进随用者,当质量比较稳定时,可以一个月为一周期以400立方米或600吨为一检验批,不足者亦为一个批次进行抽检。每次从8个不同部位,取样40kg。 二、卵石(碎石): 1、执行标准:JGJ53-2006、GB/T14685-2001 2、检验批次:应以在施工现场堆放的同产地,同规格分批验收,以400立方米或600吨为 一验收批,不足上述数量者以一批计。对于一次进场数量较少,且随进随用者,当质量比较 稳定时,可以一个月为一周期以400立方米或600吨为一检验批,不足者亦为一个批次进行 抽检。每次从16个不同部位,取样60kg。 三、混凝土试块: 1、执行标准:

GB/T50107-2001、GB/T50081-2002 2、检验批次: (1)砼试样应在硅浇筑地点随机取样 a、每拌制100盘但不超过100立方米的同配合比砼,其取样不少于一次 b、每工作班拌制的同配合比砼,不足100盘和100m3时取样不少于一次。 c、当一次连续浇筑的同配合比砼超过1000m3时,每200m3取样不应少于一次。 (2)对于现浇砼: a、每一班浇楼层同配合比砼其取样不少于一次 b、同一单位工程每一验收项目中同配合比砼其取样不少于一次,每组为3块 四、砂浆试块: 1、执行标准:JGJ/T70-2009 2、检验批次:每一楼层或每250立方米砌体中各种强度等级的砂浆,取样不少于一次;每 台搅拌机搅拌的砂浆取样不少于一次;每一工作班取样不少于一次;当砂浆强度等级或配合 比有变更时,还应另作试块。每次取样标养试块至少留置一组,同条件养护试块由施工情况

基础砂石垫层换填施工方案

亚龙年产150套煤粉燃烧装置建设项目2# 3#楼 基础砂石换填施工方案 (03) 编制人:____________________ 审核人:____________________ 批准人:____________________ 南阳市住宅建筑工程有限公司 二零一六年十二月十九日 基础砂石垫层换填施工方案 1、工程概况: 根据设计图纸及设计、勘察等有关单位共同验槽后形成会议纪要,地下车库及2#楼筏板基础砼垫层下采用人工级配砂石换填,其厚度最薄处大于等于2米,局部软弱层深挖部位最厚处约4米。 2、技术要求: 2.1砂、石垫层级配根据设计为:20~ 50mm青石:中粗砂=3:7由验室根据级配做试验,提供最大干密度。 2.2分层碾压,分层厚度200?300mm压实系数大于等于0.94。 2.3垫层顶面每边超出基础底边不小于300mm 2.4压实后垫层的承载力特征值按180Kpa控制。 3、施工机械: 18t压路机1台,厦工50型装载机2台,10t自卸车4台。蛙式打夯机2台 4、操作方法:

预先设好料场铲车按照比例调配均匀,然后用铲车将砂石铺200?300mm厚,整个基础按由西向东先深后浅的顺序回填。先静压1?2遍,再振动压实,机械碾压速度及每层压实遍数暂定为50m/min,遍数8?10 遍,纵横碾压。最后以静压一遍完成每层的碾压。 施工顺序为:砂石拌合一现场取样送检符合设计要求一分层回填一分层碾压一分层检验一整体验收。 5、施工工艺方法要点: 5.1严格控制填料级配:人工级配砂石料配比直接影响垫层质量。为此,在回填前要进行填料的抽样送检,在检验结果满足设计要求后,方能进行回填施工,回填过程中配比的抽检按每500立方米抽检一次。 5.2铺设垫层前应验槽,将基底表面浮土、杂物清除干净,局部低于坑底的坑洼处,先人工开挖成规则的矩形。然后沙石回填,人工分层夯实。 5.3基坑中间局部软弱层深挖处土面要挖呈阶梯状,并按先深后浅的顺序施工,搭接处应夯压密实。分层铺设时,接头应做成斜坡或阶梯形搭接,每层错开0.5?1.0m,并并注意充分压实。 5.4垫层应分层铺设,分层压实,坑边四周要抄上控制桩,中间厚度可以两边桩上拉线检验,确保每层施工均在监控之中。 5.5振动碾压过程中可先按长度方向行驶,然后补压短边压不到的地方,或辅以蛙式打夯机补振。保证地基均获得规定遍数的压实功能,并保证边缘部位的压实质量。碾压时,轮迹应相互搭接1/3?1/2。 5.6垫层的质量检验必须分层进行。每压实一层,应检验每层的平均压实系数。当压实系数达不到设计要求时,应继续碾压直到压实系数符合设计要求,才能铺垫上层。 5.7垫层铺设完毕,应即进行下道工序施工,严禁小车及人在垫层上 面行走。

1地基处理设计方案

1 工程概况 (1)工程名称:中外运天竺空港物流中心改扩建项目 (2)工程位置:北京天竺空港经济开发区A区12号,北侧为天纬三街,东侧为天柱东路。 (3)工程描述:本工程勘察单位为建设综合勘察研究设计院有限公司。本工程±0.0=29.677m,勘察时假定高程50m(北侧传达室台阶上)=28.277m(相对标高-1.4m)。 拟建建筑物结构特征及复合地基技术要求见下表: 拟建建筑物结构特征及复合地基技术要求表1 2 岩土工程条件 根据建设综合勘察研究设计院有限公司提供的《中外运天竺空港物流中心改扩建项目岩土工程详细勘察报告》(2013YT1148),拟建场地工程地质条件分述如下。 2.1拟建场地地质背景及地形地貌 北京市市区处于华北台地北缘,市区西、北及东北三面环山,东、东南为广阔的华北平原,第四纪以来受构造运动的影响,山区部分不断抬升,平原不断下降,并接受巨厚的河流相沉积物。自西北部的山前地带向东南部平原区河流相沉积物逐渐增厚,地貌单元由冲洪积扇过渡为冲积平原,地层岩性由以卵石类土、砂类土为主渐变为以粉土、粘性土为主的交互地层。 拟建场地地处北京市区东北部,主要受温榆河冲积扇影响,沉积土层为互层状粘性土、粉土和细砂。根据有关资料,场区第四系覆盖层厚度约300m。本次勘察范围内钻孔孔口处地面标高在49.86m~50.58m之间,现场地开阔,地形基本平坦,局部存在混凝土基础及地下管沟。 2.2场区气象条件 北京市平原区属暖温带半湿润、半干旱大陆性季风气候,年平均气温11~12℃。1 月份气温最低,月平均气温-4~-5℃;7 月份气温最高,月平均气温25~26℃。标准冻深为0.8m,年平均降水量550~660mm,且集中在雨季7~9 月份,年平均风速2~3m/s,最大风速可超过20m/s。 2.3场地地层构成 拟建场地钻孔揭露25m 深度范围内,表层为人工填土层,其下为新近沉积 层和一般第四纪沉积地层。现从上至下分别描述如下: 填土层 ①粘质粉土素填土:黄褐色,湿,以粘质粉土为主,局部为粉质粘土,夹少量砖渣、灰渣等杂质,无层理,结构松散。夹①1 杂填土。本层揭露的厚度为2.00~3.80m,层底标高为46.17~48.58m。①1 杂填土:杂色,稍湿,主要为混凝土块,含少量灰渣、砖块等,部分为混凝土和钢筋混凝土面层,夹少量粘质粉土,结构松散,无层理。本层揭露的最大厚度为2.40m。 新近沉积地层 ②粘质粉土、砂质粉土:褐黄~黄褐色;湿~很湿;中密~密实;中高压缩性,含云母、氧化铁;土质不均,局部夹粉质粘土薄层,本层揭露的厚度为0.40~2.30m,层底标高为45.03~47.08m。 一般第四纪地层 ③粉、细砂:褐黄~黄褐色;湿~饱和;中密;含云母、石英,砂质不均,局部夹砂质粉土、粉质粘土薄层或透镜体。本层揭露的厚度为3.00~7.00m,层底标高为39.59~42.68m。 ④细砂:褐灰~浅灰色,饱和,中密~密实,含云母、石英及少量有机质等,砂质不均,夹粘质粉土、粘土薄层或透镜体,夹④1 重粉质粘土、粘土。本层揭露的厚度为1.50~13.00m,层底标高为 29.58~39.87m。 ④1 重粉质粘土、粘土:灰色;很湿;可塑;含云母、氧化铁和少量有机质;土质不均,局部夹粉质粘土薄层,中~中高压缩性。本层分布不均,在场地东北部的厚度较厚,揭露的最大厚度为4.40m。 ⑤重粉质粘土、粘土:褐灰~灰色;很湿;可塑;含云母、氧化铁和少量有机质;土质不均,局部夹粉质粘土薄层或透镜体,中~中高压缩性。夹⑤1 粘质粉土、砂质粉土,部分钻孔未揭穿该层,揭露的厚度为0.50~3.30m,层底标高为26.54~29.95m。 ⑤1 粘质粉土、砂质粉土:褐灰色;含云母、氧化铁及少量有机质;湿;密实;中~中低压缩性。土质不均,局部夹粉细砂薄层。本层揭露的最大厚度为3.20m。 ⑥细砂:褐灰~黄灰色,饱和,密实,含云母、石英及氧化铁等,本层未揭穿,揭露的最大厚度为3.30m。 地层结构详见工程地质剖面图。

流沙施工方案

四川省宜宾川绿酒业有限公司技改项目 双龙井养生庄园城墙A区及2号窖池工程人工挖孔桩流沙处理方案 编制单位:重庆三峡城市建筑工程有限公司编制日期:2016.5.4

专项方案审批表

关于挖孔桩流砂处理的方法、措施和有关注意事项 一、工程情况 据地堪报告反映,本工程没有大面积的1米以上的含水量较高的沙夹石,但在实际开挖过程中,部分井开挖到一定标高后出现大量沙夹石,并伴随大量的地下水,这就给挖孔桩施工带来了很大的不便。 二、施工方法及措施 1、施工前的准备 (1)在挖孔桩开挖以前,施工所用的工具及材料如铁铲、胶桶、铁制护壁模板、钢筋、稻草、水泵、C20砼、铁皮提升架等都应准备检查完毕,据地质报告反映该段位于开挖后1M以下,在开挖前应将该段以上部分开挖到位并且浇筑好护壁,将轴线和标高引入壁上,用红油漆标注并钉上水泥钉以便查找。 (2)开工前所有工人必须经过安全、技术教育,由项目部发放胸卡后才可进行施工现场进行操作。 2、钢筋的预插 (1)本工程护壁钢筋的规格为立筋Φ14@100,水平筋Φ8@200。 (2)钢筋立筋制作长度为1M,为100mm,水平筋采用搭接,搭接长度为250mm,每隔200 mm设一道。 (3)在开挖前就将钢筋按规定插入砂夹石内,主要是为了抵抗四周砂夹石的压力。 3、土方开挖 (1)开挖前应先把稻草准备完毕并将水泵调试好。 (2)开挖时采用两人操作,一上一下。扁井采用二人上,二人下,井下操作人员应该是具备一定专业技术、头脑灵活之人。 (3)开挖砂夹石用铁铲铲入胶桶内,经提升架提到地面并运往指定地点。

(4)开挖时随着深度的加深,用稻草编入事先预留的钢筋处,使其砂夹石中的水分透过稻草流入井内,并用抽水泵及时将水抽离井底,每次开挖深度为500 mm。 (5)该工序应特别注重一个快字,使其所挖孔洞较快的形成。 4、支护壁模板 (1)在孔洞形成后对其护壁钢筋进行调整和清理后就可以支模。 (2)先把准备好的模板吊入井底后,组装成圆。底部应用稻草或木板等垫牢模板,然后用一“十”字架放到井顶轴线位置,架中吊一线锤以桩半径为半径,校核模板尺寸。 (3)模板校核完毕后迅速用木枋将其四周固定。 (4)下一护壁与上一护壁应搭接50 mm。 5、护壁砼浇筑 (1)砼应严格按照配合比用砼搅拌机拌制而成,用塔吊吊运到操作地点。 (2)浇筑时用胶桶将高于原设计一个等级砼浇入护壁内,并边下料边振搅,砼必须密实。 6、拆护壁模板 (1)护壁模板必须在砼达到一定强度后方可以拆除,以现在气温应在一天以后才能拆除。 (2)拆除时应先将四围固定部分拆除,然后拆除模板连接件,最后才拆除模板,在拆模时严禁用铁撬强行撬打,以防撬伤砼。 (3)拆除完毕后应把所有物件清理干净后才能进行下一段的施工。 三、质量保证措施 1、项目部应建立项目经理为首的施工管理体系,对工程实行专业管理,控制施工质量,按优良工程的目标组织管理。 2、建议严格的“三检”制度,做好自检、互检、交接检。

基础渗水处理方案

施工组织设计(施工方案)报审表工程名称:广西藤县中医院新院区住院楼编号: 注:1、本表由承包单位填报,一式三份,经监理单位审批后,建设单位、监理单位、承包单位各存一份。 2、本表应在承包方内部审核签认完善后予以报送。 3、必要时可增设业主意见栏。

中医院新院区住院楼 防 水 堵 漏 ︵ 渗 ︶ 专 项 方 案 编制单位: 广西恒辉建设集团有限公司 编制人: 审核人: 编制日期:

目录 一、工程概况 二、方案编制依据 三、基础渗漏治理方案 四、主要防水堵漏材料性能介绍 五、主要防水堵漏设备 六、防水堵漏材料参考用量 七、施工组织及人员配备 八、安全措施 九、堵漏工程质量标准 十、防水堵漏施工注意事项

基础防水堵(渗)专项施工方案 一、工程概况 藤县中医院新院区拟建藤县滕州镇杉木冲开发区,北流河西岸,距县城中心2公里,紧邻旧区。本栋住院楼地上12层,带一层地下室,主体结构为框架剪力墙结构,楼、屋盖整体现浇。建筑物高度(室外地面至主要屋面板的板顶)为49、050米,属A类高层建筑。基础采用独立基础及混凝土筏板基础。高程控制点,±0、000相当于绝对高程 60、95米。基坑开挖尺寸:长95、00米,宽35米,深5、00米,因未做降水处理导致产生大量渗水使下一步施工无法进行因此必须尽快采取快速有效的防水堵渗措施使地下室基础达到滴水不漏的施工要求以满足下一步施工与使用的要求。 二、方案编制依据 1、国家标准GBJ108-87《地下工程防水技术规范》 2、国家标准GBJ208-83《地下工程防水施工及验收规范》 3、防水堵漏工程费用计算 4、《防水工程图集》 5、现行全国防水工程定额汇编 6、中国工程建设标准化协会标准CECS117:2000《贮液物构筑物变形缝设计规程》 7、国家建材行业标准JC483-92《聚硫密封膏》 8、甲方有关技术质量及施工要求 三、基础渗漏治理方案 基础渗漏治理方法 1、堵漏法用无机堵漏材料直接堵塞。遇到孔洞较小或孔洞较大但水压不大的慢渗漏 水情况时可采用无机防水堵漏材料直接堵塞。 操作程序为根据渗漏水情况查出漏水点以渗漏点为圆心凿洞(直径为1~3cm深 为2~5cm)孔洞壁尽量与基面垂直并用清水冲洗干净用堵漏材料捻成与孔洞形状相近 的锥团形待其开始凝固时迅速压入洞内并向孔洞壁四周挤压密实使堵漏材料与孔洞 壁紧密结合堵漏完毕经检查无渗水现象时即可用聚合物水泥砂浆抹压至与板或墙面平齐。 2、下管法适用于孔洞水压较大的急流或涌水的渗漏水处理。具体作法为清除漏水

(完整word版)砂石基础技术交底.docx

施工技术交底记录 2011 年 2 月 22 日工程名称分部工程雨污水管道工程 分项工程名称砂石基础施工技术交底 交底内容: 管道沟槽验收合格后,应及时进行砂石基础的施工。 一、施工工艺 1、确定检查井的井位和砂石基础施工的段落。 首先应根据设计要求确定各检查井尺寸,根据实际管材长度,以横穿主干管 的过路管处的检查井为固定井位,计算沿线各井实际位置。检查井内管头内壁应 与检查井内抹面平齐,所求的井位与设计井位偏差值不宜大于1/2管长,否则应增减两井间管材根数进行调整。 然后,对计算井位进行实地放样,井位确定后,应自井中心向管线方向各量 取一定长度作为施工的起点,该长度应取以下长度的较大值: ⑴1/2(管线方向的井基长度)+50cm; ⑵承口端在井内时;井中心至承口的计算长度(圆形井:D600管为 45cm;D500管为 38cm;D400管为 43cm)+承口长 +50cm。 井中心放样的同时,应量测出各管的承口位置,砂石基础在管承口处应断开, 断开长度为: 50cm+承口长 +50cm。 2、施工前的准备 首先应按下式确定基础宽度:B=D+2t+2a式中B为基础宽;D为管径;t为 实际管壁厚; a 为管肩宽, a 值执行标准图集,基础厚度为 C1值,垫层顶高程 =管内底高程—实际管壁厚。 交底单位接收单位 交底人接收人

2011 年 2 月 22 日工程名称分部工程雨污水管道工程分项工程名称砂石基础施工技术交底 交底内容: 首先应恢复管道中心线,放出砂石基础的标高,后由质检组和监理工程师对轴线、标高等进行检查验收,合格后方施工。 3、砂石的铺设 投料时质检员和试验员要检查原材料质量。 天然级配砂石 ,其最大粒径不宜大于 25mm; 级配碎石和石屑 ,其最大粒径不宜大于 25mm; 中沙和粗沙。 4、压实 将砂石按设计标高整平(可考虑松铺),压实工具采用蛙式夯,夯实6--8遍,砂石基础压实度不小于 90%,抱角压实度不小于 95%。 5、接口工作坑 开挖接口工作坑,工作坑宽度为管径 D+实际管壁厚 2t+40cm,长度为承口前20cm+承口长度 +20cm,接口处承口下亦应铺设与 C1 层等厚的砂石基础层。 砂石基础宽度采用标准图集04S516/9、10、11、16、17、19,具体见附表一:单位(毫米) 二、安全生产措施 1、施工前要经常检查沟壁稳定性,迅速及时的排除安全隐患后,再行施工。 2、要作好沟槽防水、排水工作,在沟边作业时立足要稳,以防滑入槽内,槽 边要有足够的工作面(不少于0.8m),并要 平稳无障碍物。 3、机械下料时,槽底工人要注意远离沟槽,防止砸伤。 交底单位接收单位 交底人接收人

基础流砂降水方案

惠民县何坊街道小郭村、五里曹村等棚户区改造项目一标段 集水坑降水及级配砂石回填施工方案 编制人:马守忠 审核人:王鸿雁 审批人:赵均超 2019年5月23日

第一章编制依据 编制依据: 1. 惠民县何坊街道小郭村、五里曹村等棚户区改造项目标段一1#2#3#4#5#8#10#13#楼高层住宅及相关地库施工蓝图; 2. 现行国家建筑施工及验收规范、规程 《惠民县何坊街道小郭村,五里曹村等棚户区改造项目岩土工程勘察报告》《建筑基坑支护技术规程》(GB50011-2012) 《工程测量规范》(GB50026-2008) 《地基与基础工程施工质量验收规范》 GB50202-2018 《建筑工程施工质量验收统一标准》(GB50300-2013); 《建筑工程施工现场供用电安全规范》(JGJ46-2005); 《建筑施工安全检查标准》(JGJ59-2011); 《建筑工程技术规范》(GB50330-2002); 3.国家及山东省滨州市有关安全、文明施工规范、规定 4.业主对本工程的工期、质量等要求 5.本公司以往施工同类工程的经验 6.本公司编制的技术标准、工法及管理体系文件 第二章工程概况 1.工程特征 本工程为惠民县何坊街道小郭村、五里曹村棚户区改造项目标段一,位于惠民县经济开发区乐胡路以西,幸福河路以东,文安路以北,本工程为二类高层,建筑构件的耐火极限为二级,-0.12米以下的构建的耐火等级为一级。工程本标段总规划用地面积4.10h㎡,本工程总建筑面积13.05万㎡,其中地库及设备间建筑面积3.04万㎡,住宅建筑面积约9.35万㎡,一标段施工施工1#楼3#楼4#楼8#楼均为14471.12㎡,2#楼9856.42㎡,5#楼为12099.84㎡,10#楼11281.84㎡,13#楼13435.92以上各号楼均为高层住宅,仅13#楼17层,其余均为18层。18层的主体高度为52.4米17层的主体高度为49.5米,高层住宅基础形式为桩承台地梁加筏板基础,二层地下室。地下车库基础为筏板基础。

新旧基础处理方案讨论

新旧基础处理方案讨论 补充一点:原基础建成约1年时间,新建基础开挖时为减少对原有基础的影响,计划只挖至其基础外15cm左右。这样距离原基础边缘约20cm。原结构柱下最大荷载为85.36kN.图中所示支撑柱基础施工时在原地进行基坑开挖,约距离原建筑独立基础边缘1.5m以外(主要考虑在靠挖过程中尽量减少影响)。原有基础下土层均为粉至粘土,ES从上到下为5.7~11.5。本方案也考虑过采用钢板桩,但工作面是个问题,只怕桩机无法操作,但本人未见过钢板桩的施工过程,不只考虑是否正确。 说明:白色部分为一原有单层钢结构建筑基础,维护结构为玻璃。红色部分为一分新建框架结构基础(独立基础和条形基础),新建基础基底标高为-5.85M,原有建筑基底标高为-2.3M,由于两基础距离很近,新基础开挖时必然会影响到原有基础,为控制原有基础的沉降,计划在原有基础下设一两跨梁对原有基础进行支撑(如蓝色部分所示),具体是新设梁为上翻梁,将原有建筑独立基础按梁宽进行凿除,然后同梁一块整浇,梁的支撑点为柱,柱子基础为独立基础,底标高同新建基础底标高。待支撑梁柱做好并达到强度后,在进行新建基坑开挖。支撑梁柱施工时,可在柱子基础范围内进行局部开挖,梁以其下土作底模。 个人感觉这个两跨梁不能仅仅考虑支撑的问题,还要有基础托换的作用。基坑开挖以后,周边土体势必软化,原建筑物的基础不能满足要求了。 楼主说的问题主要是如何控制变形的问题。我的想法是:先假设基坑已经开挖,然后对老基础按临空面进行稳定性计算,若不稳定,计算出变形量的大小,然后再考虑选择合适的支挡结构来阻止老基础的变形。具体施工,则与计算的过程相反,先施工支挡结构,再开挖基坑。支挡结构的选择应该作重考虑施工的可行性。楼主所说的方法很新颖,但用支撑梁柱平衡基坑开挖后土体卸载的应力,不知支撑梁柱基础的入土嵌固深度能否满足要求。不知楼主所说的情况,能否按基坑支护的方法进行考虑?希望大家接着发言。 不知楼上所说“支撑梁柱基础的入土嵌固深度能否满足要求”是指什么要求,是受新基础影响的要求吗?我是这样考虑的:为减小新建基础对支撑柱基础的变形影响,可采用对支撑柱基础预加荷载加速其沉降变形的方法,以期达到变形较小的目的。楼上所说的一般支护我感觉用在这里不太合适,因为一般的支护很难保证土体不发生较大的水平向变形,除非是钢板桩

对流沙、管涌的预防措施

对流砂、管涌的预防措施 在深基础施工中,对基坑的降水要求通常是基础施工方案中的一个重要部分,对一般工程而言,采取必要的人工降水(如轻型井点降水、深井降水)或抗渗围护等措施均能满足施工要求。但是当遇到地下水文、地质情况较为复杂时(如各土层之间的渗透系数差值过大、土层夹有渗透系数很大的粉砂层、地下存在不透水土层和承压含水土层以及基坑附近有人工水管漏水等),会给施工带来很大的不利。因此在深基础施工时,对基坑降水和预防流砂、管涌的措施应特别重视。文中根据多个工程的施工经验与教训,收集了一些有关资料,就深基础施工时出现流砂、管涌现象的防治方法作一粗浅的总结。 1 流砂、管涌成因的分析 1.1 流砂的成因 土体在受水浸泡饱和时,土粒中亲水胶体颗粒吸水膨胀使土粒的密度减小,当在动水压力的作用下,动水压力超过土粒的重力时,土粒产生悬浮流动,即形成流砂。动水压力是产生流砂的一个重要因素。 1.2 管涌的成因 当深基坑距离河塘较近或基坑底下土层中存在承压含水层时,在水位差的作用下,基坑土体中存在渗透水流,由于土体的不均匀性,土体中某一部位的土颗粒在渗透水流的作用下会发生运动,使填充在土体骨架空隙中的细颗粒被渗水带走而形成涌水通道,即形成管涌(又称翻砂鼓水、泡泉)。当主渗漏涌水通道上的细颗粒被基本带走后,在较强的水流冲刷下,主通道两侧的细颗粒进入涌水主通道,使涌水主通道逐渐变宽,管涌持续时间越长,通道的宽度越宽,继而发生大量涌水和塌方事故。 2 对流砂、管涌的预防措施

2.1 施工方案的设计与论证 1)为保证深基础施工时基坑不积水,在深基础施工之前,首先应根据地质钻探资料和工程实际情况,设计深基础施工的降水方案。通常采用的基坑降水方法有人工降水、抗渗围护等,无论采用什么方案,方案中应对坑中待挖土中的地下水位变化情况进行必要的验算,使降水措施满足地下水位浸润线低于开挖底标高以下500 mm的施工条件。 2)凡在深基坑开挖施工中,如发现有地下承压水,应事先探明承压水头、不透水层的标高和厚度,并对坑底土体进行抗浮托能力验算。 3)对工程所在地的类似深基础施工情况进行必要的调研,吸取其他工程在深基础施工中的经验与教训。 2.2 深基础施工实施过程的措施 2.2.1 预防和处理流砂、管涌的原则 预防和处理流砂、管涌的原则是“减少或平衡动水压力”。 2.2.2 预防流砂、管涌的基本方法 1)井点降水法:a.当出现流砂时,应立即停止开挖,并回填深坑将流砂埋没或在深坑中注水,以平衡渗流的动水压力。然后在深坑周围立即补下二级(或三级)井点,待二级(三级)井点降水使地下水浸润线低于开挖范围以下500 mm后,再继续开挖施工。 b.当深坑接近承压水层时或经计算坑底土体的抗浮不能满足稳定要求时,可采用井点管穿过不透水层直接抽取不透水层下的承压水,以降低承压水头,从而避免因承压水头过大而形成管涌。

常用建筑材料试验取样规则大全

常用建筑材料试验取样规则(2006.5版) A.1水泥取样规则 A.1.1取样执行标准:GB 175-2007 GB12573-90 GB50204-2002 A.1.2取样工具:手工取样器 A.1.3取样单位:水泥抽样检验应按批进行: a) 混凝土结构中水泥检查数量:按同一生产厂家、同一等级、同一品种、同一批号且连续进场的水泥,袋装不超过200t为一批,散装不超过500t为一批,每批抽样不少于一次。 b) 砌筑砂浆水泥检查数量:检验批应以同一生产厂家、同一编号为一批。 A.1.4 取样部位: a) 袋装水泥堆场; b) 散装水泥卸料处或输送水泥运输机具上。 A.1.5 取样方法:取样应有代表性,可连续取,亦可随机选择20个以上不同部位取等量样品。 A.1.6取样数量:总量20kg以上,缩分成试验样和封存样二等份。 A.1.7样品标志:建设单位、施工单位、工程名称、水泥厂家、品种等级、包装日期、出厂编号以及水泥批量。 A.1.8包装及送样:水泥样品要妥为包装,特别注意防潮。取样后应及时送试验室,并填写好与样品标志相符的委托单,交试验人员。 A.1.9其它:水泥进场后应立即取样试验。当在使用中对水泥质量有怀疑或水泥出厂超过三个月(快硬硅酸盐水泥超过一个月)时,应进行复验,并按复验结果使用。钢筋混凝土结构、预应力混凝土结构中,严禁使用含氯化物的水泥。砌筑砂浆中不同品种的水泥,不得混合使用。 A1.10进场复验检测项目:混凝土及地面工程进行强度检测、水泥安定性检测、凝结时间检测,抹灰工程只需对水泥的凝结时间和安定性进行检验即可。(对试验不合格产品应双倍取样检测)A.2 钢混凝土用钢筋取样规则 A.2.1 常用钢筋的种类及其质量标准 a)热轧带肋钢筋GB/1499.2-2007 b)热轧光圆钢筋GB1499.1-2008 c)余热处理钢筋GB13014-91 A.2.2取样批量:应按批进行检查和验收,每批重量不大于60吨。 A.2.3热轧带肋钢筋、热轧光圆钢筋、余热处理钢筋的取样 热轧带肋钢筋:每批应由同一牌号、同一炉罐号、同一规格的钢筋组成。允许由同一牌号、同a).一冶炼方法、同一浇注方法的不同炉罐号组成混合批,但各炉罐号含碳量之差不大于0.02%,含锰量之 。差不大于0.15%。60t同一尺寸的钢筋组成。每批重量不大于]热轧光圆钢筋:每批应由同一牌号,同一炉罐号、b),增加一个拉伸试验试样和一个弯曲试验试样。允许的余数)(或不足

相关文档
相关文档 最新文档