文档库 最新最全的文档下载
当前位置:文档库 › 物理化学2.3拉乌尔定律和亨利定律

物理化学2.3拉乌尔定律和亨利定律

物理化学热力学第三定律练习题及答案知识讲解

第二章 热力学第二定律练习题 一、单选题: 1.T H S ?=? 适合于下列过程中的哪一个? (A) 恒压过程 ; (B) 绝热过程 ; (C) 恒温过程 ; (D) 可逆相变过程 。 2.可逆热机的效率最高,因此由可逆热机带动的火车: (A) 跑的最快 ; (B) 跑的最慢 ; (C) 夏天跑的快 ; (D) 冬天跑的快 。 3.在一定速度下发生变化的孤立体系,其总熵的变化是什么? (A) 不变 ; (B) 可能增大或减小 ; (C) 总是增大 ; (D) 总是减小 。 4.对于克劳修斯不等式 环T Q dS δ≥,判断不正确的是: (A) 环T Q dS δ=必为可逆过程或处于平衡状态 ; ; ; 。 5.1mol 双原子理想气体的C p,m 是: (A) 1.5R ; (B) 2.5R ; (C) 3.5R ; (D) 2R 。 6.2mol 理想气体B ,在300K 时等温膨胀,W = 0时体积增加一倍,则其 ?S (J·K -1)为: (A) -5.76 ; (B) 331 ; (C) 5.76 ; (D) 11.52 。 7.下列过程中?S 为负值的是哪一个: (A) 液态溴蒸发成气态溴 ; (B) SnO 2(s) + 2H 2(g) = Sn(s) + 2H 2O(l) ; (C) 电解水生成H 2和O 2 ; (D) 公路上撤盐使冰融化 。 8.熵是混乱度(热力学微观状态数或热力学几率)的量度,下列结论中不正确的是: (A) 同一种物质的S (g) > S (l) > S (s); (B) 同种物质温度越高熵值越大 ; (C) 分子内含原子数越多熵值越大 ; (D) 0K 时任何纯物质的熵值都等于零 。 9.25℃时,将11.2升O 2与11.2升N 2混合成11.2升的混合气体,该过程: (A) ?S > 0,?G < 0 ; (B) ?S < 0,?G < 0 ; (C) ?S = 0,?G = 0 ; (D) ?S = 0,?G < 0 。 10.有一个化学反应,在低温下可自发进行,随温度的升高,自发倾向降低,这反应是: (A) ?S > 0,?H > 0 ; (B) ?S > 0,?H < 0 ; (C) ?S < 0,?H > 0 ; (D) ?S < 0,?H < 0 。 11.等温等压下进行的化学反应,其方向由?r H m 和?r S m 共同决定,自发进行的反应应满 足下列哪个关系式: (A) ?r S m = ?r H m /T ; (B) ?r S m > ?r H m /T ; (C) ?r S m ≥ ?r H m /T ; (D) ?r S m ≤ ?r H m /T 。 12.吉布斯自由能的含义应该是: (A) 是体系能对外做非体积功的能量 ;

【物理】物理牛顿运动定律练习题及答案及解析

【物理】物理牛顿运动定律练习题及答案及解析 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,在倾角为θ = 37°的足够长斜面上放置一质量M = 2kg 、长度L = 1.5m 的极薄平板 AB ,在薄平板的上端A 处放一质量m =1kg 的小滑块(视为质点),将小滑块和薄平板同时无初速释放。已知小滑块与薄平板之间的动摩擦因数为μ1=0.25、薄平板与斜面之间的动摩擦因数为μ2=0.5,sin37°=0.6,cos37°=0.8,取g=10m/s 2。求: (1)释放后,小滑块的加速度a l 和薄平板的加速度a 2; (2)从释放到小滑块滑离薄平板经历的时间t 。 【答案】(1)24m/s ,21m/s ;(2)1s t = 【解析】 【详解】 (1)设释放后,滑块会相对于平板向下滑动, 对滑块m :由牛顿第二定律有:0 11sin 37mg f ma -= 其中0 1cos37N F mg =,111N f F μ= 解得:002 11sin 37cos374/a g g m s μ=-= 对薄平板M ,由牛顿第二定律有:0 122sin 37Mg f f Ma +-= 其中00 2cos37cos37N F mg Mg =+,222N f F μ= 解得:2 21m/s a = 12a a >,假设成立,即滑块会相对于平板向下滑动。 设滑块滑离时间为t ,由运动学公式,有:21112x a t =,2221 2 x a t =,12x x L -= 解得:1s t = 2.固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环,小环在沿杆方向的推力F 作用下向上运动,推力F 与小环速度v 随时间变化规律如图所示,取重力加速度g =10m/s 2.求: (1)小环的质量m ;

化学三大守恒定律

化学三大守恒定律 This manuscript was revised on November 28, 2020

对于溶液中微粒浓度(或数目)的比较,要遵循两条: 一是电荷守恒,即溶液中阳离子所带正电荷总数等于阴离子所带总数; 二是物料守恒,即溶液中某一组分的原始浓度应该等于它在溶液中各种存在形式的浓度之和。(物料守恒实际属于个数守恒和。) ★电荷守恒 1.化合物中元素正负代数和为零 2.溶液呈电中性:所有阳离子所带正电荷总数等于阴离子所带负电荷总数 3.除六大,四大外都,部分水解。产物中有部分水解时产物 4.这个离子所带的电荷数是多少,离子前写几。 例如:NaHCO 3:c(Na + )+c(H + )=c(OH -)+c(HCO 3-)+2c(CO 32- ) ★物料守恒 物料守恒可以理解为原子守恒的另一种说法,即“任一化学反应前后原子种类(指原子核中相等的原子,就是)和数量分别保持不变”。 ⒈含特定元素的微粒(离子或分子)守恒 ⒉不同元素间形成的特定微粒比守恒 ⒊特定微粒的来源关系守恒 【例1】在0.1mol/LNa3PO4溶液中: 根据P 元素形成微粒总量守恒有: c[PO 4 3-]+c[HPO 42-]+c[H 2PO 4-]+c[H 3PO 4]=0.1mol/L 根据Na 与P 形成微粒的关系有: c[Na + ]=3c[PO 43-]+3c[HPO 42-]+3c[H 2PO 4- ]+3c[H 3PO 4] 根据H2O 电离出的H+与OH-守恒有:c[OH -]=c[HPO 42-]+2c[H 2PO 4-]+3c[H 3PO 4]+c[H + ] 【例2】以NaHCO 3溶液为例 若HCO 3-没有和水解,则c (Na +)=c (HCO 3- ) 现在HCO 3-会水解成为H 2CO 3,电离为CO 32-(都是1:1反应,也就是消耗一个HCO 3- ,就产生一个H 2CO 3或者CO 32-),那么守恒式中把Na + 浓度和HCO 3- 及其产物的浓度和画 等号(或直接看作钠与碳的守恒): 即c(Na + )==c(HCO 3-)+c(CO 32- )+c(H 2CO 3) 【例3】在0.1mol/L 的H 2S 溶液中存在如下过程:(均为) H 2S=(H + )+(HS -) (HS -)=(H + )+(S 2-) H 2O=(H + )+(OH -) 可得物料守恒式c(S 2-)+c(HS - )+c(H 2S)==0.1mol/L,(在这里物料守恒就是S--描述出有S 元素的和分子即可) 【例4】Na 2CO 3溶液的电荷守恒、物料守恒、质子守恒 ·电荷守恒 c(Na+)+c(H+)=2c(CO 32-)+c(HCO 3-)+c(OH-) 上式中,阴阳总要相等,由于1mol 电荷量是2mol 负电荷,所以碳酸根所带电荷量是其的2倍。 ·物料守恒 c(Na+)是离子物质的量的2倍,电离水解后,碳酸根以三种形式存在所以 c(Na+)=2[c(CO 32-)+c(HCO 3-)+c(H 2CO 3)] ·质子守恒 水电离出的c(H+)=c(OH-)

第五版物理化学第三章习题答案

第五版物理化学第三章 习题答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第三章热力学第二定律 3.1 卡诺热机在的高温热源和的低温热源间工作。求 (1)热机效率; (2)当向环境作功时,系统从高温热源吸收的热及向低温热源放出的热。 解:卡诺热机的效率为 根据定义 3.2 卡诺热机在的高温热源和的低温热源间工作,求: (1)热机效率; (2)当从高温热源吸热时,系统对环境作的功及向低温热源放出的热 解:(1) 由卡诺循环的热机效率得出 (2) 3.3 卡诺热机在的高温热源和的低温热源间工作,求(1)热机效率; (2)当向低温热源放热时,系统从高温热源吸热及对环境所作的功。 解:(1)

(2) 3.4 试说明:在高温热源和低温热源间工作的不可逆热机与卡诺机联合操作时,若令卡诺热机得到的功r W 等于不可逆热机作出的功-W 。假设不可逆热机的热机效率大于卡诺热机效率,其结果必然是有热量从低温热源流向高温热源,而违反势热力学第二定律的克 劳修斯说法。 证: (反证法) 设 r ir ηη> 不可逆热机从高温热源吸热,向低温热源 放热 ,对环境作功 则 逆向卡诺热机从环境得功 从低温热源吸热 向高温热源放热 则 若使逆向卡诺热机向高温热源放出的热 不可逆热机从高温热源吸收的热 相等,即 总的结果是:得自单一低温热源的热 ,变成了环境作功 ,违背了热 力学第二定律的开尔文说法,同样也就违背了克劳修斯说法。

3.5 高温热源温度,低温热源温度,今有120KJ的热直接从高温热源传给低温热源,求此过程。 解:将热源看作无限大,因此,传热过程对热源来说是可逆过程 3.6 不同的热机中作于的高温热源及的低温热源之间。求下列三种情况下,当热机从高温热源吸热时,两热源的总熵变。 (1)可逆热机效率。 (2)不可逆热机效率。 (3)不可逆热机效率。 解:设热机向低温热源放热,根据热机效率的定义 因此,上面三种过程的总熵变分别为。 3.7 已知水的比定压热容。今有1 kg,10℃的水经下列三种不同过程加热成100 ℃的水,求过程的。 (1)系统与100℃的热源接触。 (2)系统先与55℃的热源接触至热平衡,再与100℃的热源接触。 (3)系统先与40℃,70℃的热源接触至热平衡,再与100℃的热源接触。 解:熵为状态函数,在三种情况下系统的熵变相同 在过程中系统所得到的热为热源所放出的热,因此

高中物理牛顿运动定律题20套(带答案)

高中物理牛顿运动定律题20套(带答案) 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,质量M=0.4kg 的长木板静止在光滑水平面上,其右侧与固定竖直挡板问的距离L=0.5m ,某时刻另一质量m=0.1kg 的小滑块(可视为质点)以v 0=2m /s 的速度向右滑上长木板,一段时间后长木板与竖直挡板发生碰撞,碰撞过程无机械能损失。已知小滑块与长木板间的动摩擦因数μ=0.2,重力加速度g=10m /s 2,小滑块始终未脱离长木板。求: (1)自小滑块刚滑上长木板开始,经多长时间长木板与竖直挡板相碰; (2)长木板碰撞竖直挡板后,小滑块和长木板相对静止时,小滑块距长木板左端的距离。 【答案】(1)1.65m (2)0.928m 【解析】 【详解】 解:(1)小滑块刚滑上长木板后,小滑块和长木板水平方向动量守恒: 解得: 对长木板: 得长木板的加速度: 自小滑块刚滑上长木板至两者达相同速度: 解得: 长木板位移: 解得: 两者达相同速度时长木板还没有碰竖直挡板 解得: (2)长木板碰竖直挡板后,小滑块和长木板水平方向动量守恒: 最终两者的共同速度: 小滑块和长木板相对静止时,小滑块距长木板左端的距离: 2.地震发生后,需要向灾区运送大量救灾物资,在物资转运过程中大量使用了如图所示的传送带.已知某传送带与水平面成37θ=o 角,皮带的AB 部分长 5.8L m =,皮带以恒定的速率4/v m s =按图示方向传送,若在B 端无初速度地放置一个质量50m kg =的救灾物资

(P 可视为质点),P 与皮带之间的动摩擦因数0.5(μ=取210/g m s =,sin370.6)=o , 求: ()1物资P 从B 端开始运动时的加速度. ()2物资P 到达A 端时的动能. 【答案】()1物资P 从B 端开始运动时的加速度是()2 10/.2m s 物资P 到达A 端时的动能 是900J . 【解析】 【分析】 (1)选取物体P 为研究的对象,对P 进行受力分析,求得合外力,然后根据牛顿第三定律即可求出加速度; (2)物体p 从B 到A 的过程中,重力和摩擦力做功,可以使用动能定律求得物资P 到达A 端时的动能,也可以使用运动学的公式求出速度,然后求动能. 【详解】 (1)P 刚放上B 点时,受到沿传送带向下的滑动摩擦力的作用,sin mg F ma θ+=; cos N F mg θ=N F F μ=其加速度为:21sin cos 10/a g g m s θμθ=+= (2)解法一:P 达到与传送带有相同速度的位移2 1 0.82v s m a == 以后物资P 受到沿传送带向上的滑动摩擦力作用 根据动能定理:()()2211sin 22 A mg F L s mv mv θ--=- 到A 端时的动能2 19002 kA A E mv J = = 解法二:P 达到与传送带有相同速度的位移2 1 0.82v s m a == 以后物资P 受到沿传送带向上的滑动摩擦力作用, P 的加速度2 2sin cos 2/a g g m s θμθ=-= 后段运动有:2 22212 L s vt a t -=+, 解得:21t s =, 到达A 端的速度226/A v v a t m s =+=

物理化学重点超强总结归纳

第一章热力学第一定律 1、热力学三大系统: (1)敞开系统:有物质和能量交换; (2)密闭系统:无物质交换,有能量交换; (3)隔绝系统(孤立系统):无物质和能量交换。 2、状态性质(状态函数): (1)容量性质(广度性质):如体积,质量,热容量。 数值与物质的量成正比;具有加和性。 (2)强度性质:如压力,温度,粘度,密度。 数值与物质的量无关;不具有加和性,整个系统的强度性质的数值与各部分的相同。 特征:往往两个容量性质之比成为系统的强度性质。 3、热力学四大平衡: (1)热平衡:没有热隔壁,系统各部分没有温度差。 (2)机械平衡:没有刚壁,系统各部分没有不平衡的力存在,即压力相同 (3)化学平衡:没有化学变化的阻力因素存在,系统组成不随时间而变化。 (4)相平衡:在系统中各个相(包括气、液、固)的数量和组成不随时间而变化。 4、热力学第一定律的数学表达式: ?U = Q + W Q为吸收的热(+),W为得到的功(+)。

12、在通常温度下,对理想气体来说,定容摩尔热容为: 单原子分子系统 ,V m C =32 R 双原子分子(或线型分子)系统 ,V m C =52R 多原子分子(非线型)系统 ,V m C 6 32 R R == 定压摩尔热容: 单原子分子系统 ,52 p m C R = 双原子分子(或线型分子)系统 ,,p m V m C C R -=,72 p m C R = 多原子分子(非线型)系统 ,4p m C R = 可以看出: ,,p m V m C C R -= 13、,p m C 的两种经验公式:,2p m C a bT cT =++ (T 是热力学温度,a,b,c,c ’ 是经 ,2' p m c C a bT T =++ 验常数,与物质和温度范围有关) 14、在发生一绝热过程时,由于0Q δ=,于是dU W δ= 理想气体的绝热可逆过程,有:,V m nC dT pdV =- ? 22 ,11 ln ln V m T V C R T V =- 21,12ln ,ln V m p V C Cp m p V ?= ,,p m V m C pV C γγ=常数 =>1. 15、-焦耳汤姆逊系数:J T T =( )H p μ??- J T μ->0 经节流膨胀后,气体温度降低; J T μ-<0 经节流膨胀后,气体温度升高; J T μ-=0 经节流膨胀后,气体温度不变。 16、气体的节流膨胀为一定焓过程,即0H ?=。 17、化学反应热效应:在定压或定容条件下,当产物的温度与反应物的温度相同而在反应过程中只做体积功不做其他功时,化学反应所 吸收或放出的热,称为此过程的热效应,或“反应热”。 18、化学反应进度:()()() n B n B B ξ ν-= 末初 (对于产物v 取正值,反应物取负值) 1ξ=时,r r m U U ξ ??= ,r r m H H ξ ??= 19、(1)标准摩尔生成焓(0 r m H ?):在标准压力和指定温度下,由最稳定的单质生成单位物质的量某物质的定压反应热,为该物质的 标准摩尔生成焓。 (2)标准摩尔燃烧焓(0 c m H ?):在标准压力和指定温度下,单位物质的量的某种物质被氧完全氧化时的反应焓,为该物质的标 准摩尔燃烧焓。 任意一反应的反应焓0 r m H ?等于反应物燃烧焓之和减去产物燃烧焓之和。 20、反应焓与温度的关系-------基尔霍夫方程

牛顿三大定律

-牛顿三大定律

————————————————————————————————作者: ————————————————————————————————日期: ?

老师 姓名 杨海超学生姓名叶帝烽教材版本粤教 _版 学科名称物理年级高一上课时间 1月22 日 09:00—10: 30 课题 名称 牛顿三大定律 教学 目标 正确理解和区分三大定律的内含。教学 重难 点 牛二 教学过程 一、知识整理 1、牛顿第一定律____________________________________________ (1)运动是物体的一种属性,物体的运动________力来维持; (2)它定性地揭示了运动与力的关系,即___________________的原因,是使______________ 的原因; (3)定律说明了任何物体都有一个极其重要的属性——____; (4)不受力的物体是不存在的,牛顿第一定律________用实验直接验证,但是建立在大量实验现 象的基础之上,通过思维的逻辑推理而发现的。它告诉了人们研究物理问题的另一种方法,即通过大 量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律; (5)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例, 牛顿第一定律定性地给出了________的关系,牛顿第二定律定量地给出_______的关系。 2、牛顿第二定律:___________________________________________________ _____。公式F=ma. (1)牛顿第二定律定量揭示了__________的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的________;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计 运动,控制运动提供了理论基础; (2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是______对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是________而不是速度; (3)牛顿第二定律是矢量关系,加速度的方向总是和_______________相同的,可以用分量式表牛 顿 运 动 定 律 牛顿第 牛顿第 牛顿第 力是改变物体运动状态的原因 意义:反映了力和加速度的关系 表达式: m F a 加速度方向和物体所受合外力方向 作用力

初三化学质量守恒定律知识点习题及答案

初三化学质量守恒定律知识点及习题及答案 第五单元:质量守恒定律 一、质量守恒定律: 1总和。 说明:①质量守恒定律只适用于化学变化,不适用于物理变化; ②不参加反应的物质质量及不是生成物的物质质量不能计入“总和”中;③要考虑空气中的物质是否参加反应或物质(如气体)有无遗漏。2、微观解释:在化学反应前后,原子的种类、数目、质量均保持不变(原子的“三不变”)。 3、化学反应前后 (1)一定不变宏观:反应物、生成物总质量不变;元素种类不变微观:原子的种类、数目、质量不变 (2)一定改变宏观:物质的种类一定变微观:分子种类一定变(3)可能改变:分子总数可能变二、化学方程式 1、遵循原则:①以客观事实为依据② 遵守质量守恒定律 2、书写:(注意:一写、二配、三标、四等) 3、含义:以为例 ①宏观意义:表明反应物、生成物、反应条件氢气和氧气在点燃的条件下生成水 ②微观意义:表示反应物和生成物之间分子个氢分子与1个氧分子化合生成2个个水分子(对气体而言,分子个数比等于体积之比)③各物质间质量比(系数×相对分子质量之比) 每4份质量的氢气与32份质量的氧气完全化合生成36份质量的水 4、化学方程式提供的信息包括 ①哪些物质参加反应(反应物);②通过什么条件反应:③反应生成了哪些物质(生成物);④参加反应的各粒子的相对数量;⑤反应前后质量守恒等等。 5、利用化学方程式的计算 三、化学反应类型 1、四种基本反应类型 ①化合反应:由两种或两种以上物质生成另一种物质的反应②分解反应:由一种反应物生成两种或两种以上其他物质的反应 ③置换反应:一种单质和一种化合物反应,生成另一种单质和另一种化合物的反应

第五版物理化学第三章习题答案

第三章热力学第二定律 3.1 卡诺热机在的高温热源和的低温热源间工作。求 (1)热机效率; (2)当向环境作功时,系统从高温热源吸收的热及向低温热源放出的热。 解:卡诺热机的效率为 根据定义 3.2 卡诺热机在的高温热源和的低温热源间工作,求: (1)热机效率; (2)当从高温热源吸热时,系统对环境作的功及向低温热源放出的热 解:(1) 由卡诺循环的热机效率得出 (2) 3.3 卡诺热机在的高温热源和的低温热源间工作,求 (1)热机效率; (2)当向低温热源放热时,系统从高温热源吸热及对环境所作的功。 解:(1)

(2) 3.4 试说明:在高温热源和低温热源间工作的不可逆热机与卡诺机联合操作时,若令卡诺热机得到的功r W 等于不可逆热机作出的功-W 。假设不可逆热机的热机效率大于卡诺热机效率,其结果必然是有热量从低温热源流向高温热源,而违反势热力学第二定律的克 劳修斯说法。 证: (反证法) 设 r ir ηη> 不可逆热机从高温热源吸热,向低温热源 放热 ,对环境作功 则 逆向卡诺热机从环境得功 从低温热源 吸热 向高温热源 放热 则 若使逆向卡诺热机向高温热源放出的热 不可逆热机从高温热源吸收的热 相等,即 总的结果是:得自单一低温热源的热 ,变成了环境作功 ,违背了热 力学第二定律的开尔文说法,同样也就违背了克劳修斯说法。

3.5 高温热源温度,低温热源温度,今有120KJ的热直接从高温热源传给低温热源,求此过程。 解:将热源看作无限大,因此,传热过程对热源来说是可逆过程 3.6 不同的热机中作于的高温热源及的低温热源之间。求下列三种情况下,当热机从高温热源吸热时,两热源的总熵变。 (1)可逆热机效率。 (2)不可逆热机效率。 (3)不可逆热机效率。 解:设热机向低温热源放热,根据热机效率的定义 因此,上面三种过程的总熵变分别为。 3.7 已知水的比定压热容。今有1 kg,10℃的水经下列三种不同过程加热成100 ℃的水,求过程的。 (1)系统与100℃的热源接触。 (2)系统先与55℃的热源接触至热平衡,再与100℃的热源接触。 (3)系统先与40℃,70℃的热源接触至热平衡,再与100℃的热源接触。 解:熵为状态函数,在三种情况下系统的熵变相同 在过程中系统所得到的热为热源所放出的热,因此

高考物理牛顿运动定律真题汇编(含答案)

高考物理牛顿运动定律真题汇编(含答案) 一、高中物理精讲专题测试牛顿运动定律 1.如图,有一水平传送带以8m/s 的速度匀速运动,现将一小物块(可视为质点)轻轻放在传送带的左端上,若物体与传送带间的动摩擦因数为0.4,已知传送带左、右端间的距离为4m ,g 取10m/s 2.求: (1)刚放上传送带时物块的加速度; (2)传送带将该物体传送到传送带的右端所需时间. 【答案】(1)24/a g m s μ==(2)1t s = 【解析】 【分析】 先分析物体的运动情况:物体水平方向先受到滑动摩擦力,做匀加速直线运动;若传送带足够长,当物体速度与传送带相同时,物体做匀速直线运动.根据牛顿第二定律求出匀加速运动的加速度,由运动学公式求出物体速度与传送带相同时所经历的时间和位移,判断以后物体做什么运动,若匀速直线运动,再由位移公式求出时间. 【详解】 (1)物块置于传动带左端时,先做加速直线运动,受力分析,由牛顿第二定律得: mg ma μ= 代入数据得:2 4/a g m s μ== (2)设物体加速到与传送带共速时运动的位移为0s 根据运动学公式可得:2 02as v = 运动的位移: 2 0842v s m a ==> 则物块从传送带左端到右端全程做匀加速直线运动,设经历时间为t ,则有 212 l at = 解得 1t s = 【点睛】 物体在传送带运动问题,关键是分析物体的受力情况,来确定物体的运动情况,有利于培养学生分析问题和解决问题的能力. 2.四旋翼无人机是一种能够垂直起降的小型遥控飞行器,目前正得到越来越广泛的应用.一架质量m =2 kg 的无人机,其动力系统所能提供的最大升力F =36 N ,运动过程中所受空气阻力大小恒为f =4 N .(g 取10 m /s 2)

化学 三大守恒定律

对于溶液中微粒浓度(或数目)的比较,要遵循两 条 原 则 : 一是电荷守恒,即溶液中阳离子所带正电荷总数等于阴离子所带负电荷总数; 二是物料守恒,即溶液中某一组分的原始浓度应该等于它在溶液中各种存在形式的浓度之和。(物料守恒实际属于原子个数守恒和质量守恒。) ★电荷守恒 1. 化合物中元素正负化合价代数和为零 2.溶液呈电中性:所有阳离子所带正电荷总数等于阴离子所带负电荷总数 3.除六大强酸,四大强碱外都水解,多元弱酸部分水解。产物中有部分水解时产物 4.这个离子所带的电荷数是多少,离子前写几。 例 如 :NaHCO 3: c(Na + )+c(H + )=c(OH - )+c(HCO 3-)+2c(CO 32-) ★物料守恒 物料守恒可以理解为原子守恒的另一种说法,即“任一化学反应前后原子种类(指原子核中质子数相等的原子,就是元素守恒)和数量分别保持不变”。 ⒈ 含特定元素的微粒(离子或分子)守恒 ⒉ 不同元素间形成的特定微粒比守恒 ⒊ 特定微粒的来源关系守恒 【例1】在0.1mol/LNa3PO4溶液中: 根据P 元素形成微粒总量守恒有: c[PO 43-]+c[HPO 42-]+c[H 2PO 4- ]+c[H 3PO 4]=0.1mol /L 根据Na 与P 形成微粒的关系有: c[Na +]=3c[PO 43-]+3c[HPO 42-]+3c[H 2PO 4- ]+3c[H 3PO 4] 根据H2O 电离出的H+与OH-守恒有: c[OH -]=c[HPO 42-]+2c[H 2PO 4-]+3c[H 3PO 4]+c[H + ] 【例2】以NaHCO 3溶液为例 若HCO 3-没有电离和水解,则c (Na + )=c (HCO 3- ) 现在HCO 3-会水解成为H 2CO 3,电离为CO 32-(都是1:1反应,也就是消耗一个HCO 3-,就产生一个H 2CO 3或者CO 32-),那么守恒式中把Na +浓度和HCO 3-及其产物的浓度和画等号(或直接看作钠与碳的守恒): 即c(Na + ) == c(HCO 3-) + c(CO 32-) + c(H 2CO 3) 【例3】在0.1mol/L 的H 2S 溶液中存在如下电离过程:(均为可逆反应) H 2S=(H + ) +(HS -) (HS -)=(H + )+(S 2-) H 2O=(H + )+(OH -) 可 得 物料守恒式 c(S 2-)+c(HS - )+c(H 2S)==0.1mol/L, (在这里物料守恒就是S 元素守恒--描述出有S 元素的离子和分子即可) 【例4】Na 2CO 3溶液的电荷守恒、物料守恒、质子守恒 ·电荷守恒 c(Na+)+c(H+)=2c(CO 32-)+c(HCO 3-)+c(OH-) 上式中,阴阳离子总电荷量要相等,由于1mol 碳酸根电荷量是2mol 负电荷,所以碳酸根所带电

高中物理牛顿运动定律的应用专题训练答案及解析

高中物理牛顿运动定律的应用专题训练答案及解析 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图,质量为m =lkg 的滑块,在水平力作用下静止在倾角为θ=37°的光滑斜面上,离斜面末端B 的高度h =0. 2m ,滑块经过B 位置滑上皮带时无机械能损失,传送带的运行速度为v 0=3m/s ,长为L =1m .今将水平力撤去,当滑块滑 到传送带右端C 时,恰好与传送带速度相同.g 取l0m/s 2.求: (1)水平作用力F 的大小;(已知sin37°=0.6 cos37°=0.8) (2)滑块滑到B 点的速度v 和传送带的动摩擦因数μ; (3)滑块在传送带上滑行的整个过程中产生的热量. 【答案】(1)7.5N (2)0.25(3)0.5J 【解析】 【分析】 【详解】 (1)滑块受到水平推力F . 重力mg 和支持力F N 而处于平衡状态,由平衡条件可知,水平推力F=mg tan θ, 代入数据得: F =7.5N. (2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒, 故有: mgh = 212 mv 解得 v 2gh ; 滑块滑上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动; 根据动能定理有: μmgL = 2201122 mv mv 代入数据得: μ=0.25 (3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移为: x=v 0t 对物体有: v 0=v ?at

ma=μmg 滑块相对传送带滑动的位移为: △x=L?x 相对滑动产生的热量为: Q=μmg△x 代值解得: Q=0.5J 【点睛】 对滑块受力分析,由共点力的平衡条件可得出水平作用力的大小;根据机械能守恒可求滑块滑上传送带上时的速度;由动能定理可求得动摩擦因数;热量与滑块和传送带间的相对位移成正比,即Q=fs,由运动学公式求得传送带通过的位移,即可求得相对位移. 2.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m,质量M=0.5kg的薄木板,木板的最右端叠放质量为m=0.3kg的小木块.对木板施加一沿传送带向上的恒力F,同时让传送 带逆时针转动,运行速度v=1.0m/s。已知木板与物块间动摩擦因数μ1= 3 2 ,木板与传送 带间的动摩擦因数μ2=3 ,取g=10m/s2,最大静摩擦力等于滑动摩擦力。 (1)若在恒力F作用下,薄木板保持静止不动,通过计算判定小木块所处的状态; (2)若小木块和薄木板相对静止,一起沿传送带向上滑动,求所施恒力的最大值F m; (3)若F=10N,木板与物块经过多长时间分离?分离前的这段时间内,木板、木块、传送带组成系统产生的热量Q。 【答案】(1)木块处于静止状态;(2)9.0N(3)1s 12J 【解析】 【详解】 (1)对小木块受力分析如图甲:

化学 三大守恒定律

对于溶液中微粒浓度(或数目)的比较,要遵循两条原则: 一是电荷守恒,即溶液中阳离子所带正电荷总数等于阴离子所带负电荷总数; 二是物料守恒,即溶液中某一组分的原始浓度应该等于它在溶液中各种存在形式的浓度之和。(物料守恒实际属于原子个数守恒和质量守恒。) ★电荷守恒 1. 化合物中元素正负化合价代数和为零 2.溶液呈电中性:所有阳离子所带正电荷总数等于阴离子所带负电荷总数 3.除六大强酸,四大强碱外都水解,多元弱酸部分水解。产物中有部分水解时产物 4.这个离子所带的电荷数是多少,离子前写几。 例如:NaHCO 3:c(Na + )+c(H + )=c(OH -)+c(HCO 3-)+2c(CO 32-) ★物料守恒 物料守恒可以理解为原子守恒的另一种说法,即“任一化学反应前后原子种类(指原子核中质子数相等的原子,就是元素守恒)和数量分别保持不变”。 ⒈ 含特定元素的微粒(离子或分子)守恒 ⒉ 不同元素间形成的特定微粒比守恒 ⒊ 特定微粒的来源关系守恒 【例1】在0.1mol/LNa3PO4溶液中: 根据P 元素形成微粒总量守恒有: c[PO 43-]+c[HPO 42-]+c[H 2PO 4- ]+c[H 3PO 4]=0.1mol/L 根据Na 与P 形成微粒的关系有: c[Na + ]=3c[PO 43-]+3c[HPO 42-]+3c[H 2PO 4-]+3c[H 3PO 4] 根据H2O 电离出的H+与OH-守恒有:c[OH -]=c[HPO 42-]+2c[H 2PO 4-]+3c[H 3PO 4]+c[H + ] 【例2】以NaHCO 3溶液为例 若HCO 3 -没有电离和水解,则c (Na +)=c (HCO 3- ) 现在HCO 3-会水解成为H 2CO 3,电离为CO 32-(都是1:1反应,也就是消耗一个HCO 3- ,就产生一个H 2CO 3或者CO 32-),那么守恒式中把Na + 浓度和HCO 3- 及其产物的浓度和画等号(或直接看作钠与碳的守恒): 即c(Na + ) == c(HCO 3-) + c(CO 32-) + c(H 2CO 3) 【例3】在0.1mol/L 的H 2S 溶液中存在如下电离过程:(均为可逆反应) H 2S=(H + ) +(HS -) (HS -)=(H + )+(S 2-) H 2O=(H + )+(OH -) 可得物料守恒式c(S 2-)+c(HS -)+c(H 2S)==0.1mol/L, (在这里物料守恒就是S 元素守恒--描述出有S 元素的离子和分子即可) 【例4】Na 2CO 3溶液的电荷守恒、物料守恒、质子守恒 ·电荷守恒 c(Na+)+c(H+)=2c(CO 32-)+c(HCO 3-)+c(OH-) 上式中,阴阳离子总电荷量要相等,由于1mol 碳酸根电荷量是2mol 负电荷,所以碳酸根所带电荷量是其物质的量的2倍。 ·物料守恒 c(Na+)是碳酸根离子物质的量的2倍,电离水解后,碳酸根以三种形式存在所以 c(Na+)=2[c(CO 32-)+c(HCO 3-)+c(H 2CO 3)] ·质子守恒 水电离出的c(H+)=c(OH-) 在碳酸钠水溶液中水电离出的氢离子以(H+,HCO 3-,H 2CO 3)三种形式存在,其中1mol

道尔顿分压定律及亨利定律

道尔顿分压定律(也称道尔顿定律)描述的是理想气体的特性。这一经验定律是在1 801年由约翰·道尔顿所观察得到的。在任何容器内的气体混合物中,如果各组分之间不发生化学反应,则每一种气体都均匀地分布在整个容器内,它所产生的压强和它单独占有整个容器时所产生的压强相同[1]。也就是说,一定量的气体在一定容积的容器中的压强仅与温度有关。例如,零摄氏度时,1mol 氧气在22.4L 体积内的压强是101.3kPa 。如果向容器内加入1mol 氮气并保持容器体积不变,则氧气的压强还是101.3kPa,但容器内的总压强增大一倍。可见,1mol 氮气在这种状态下产生的压强也是101.3kPa 。 道尔顿[2](Dalton)总结了这些实验事实,得出下列结论:某一气体在气体混合物中产生的分压等于在相同温度下它单独占有整个容器时所产生的压力;而气体混合物的总压强等于其中各气体分压之和,这就是气体分压定律(law of partial pressu re)。 需要注意的是,实际气体并不严格遵从道尔顿分压定律,在高压情况下尤其如此。 当压力很高时,分子所占的体积和分子之间的空隙具有可比性;同时,更短的分子间 距离使得分子间作用力增强,从而会改变各组分的分压力。这两点在道尔顿定律中并 没有体现。 §3.3 拉乌尔定律和亨利定律--溶液的蒸气压力我们知道,液体可以蒸发成气体,气体也可以凝结为液体。在一定的温度下,二者可以达成平衡,即液体的蒸发速度等于蒸气的凝结速度。达到这种平衡时,蒸气有一定的压力,这个压力就叫做此液体的饱和蒸气压(简称蒸气压)。蒸气压与温度有关,温度越高,分子具有的动能越大,蒸发速度越快,因而蒸气压越大。 溶液的蒸气压除与温度有关外,还与浓度有关。拉乌尔定律和亨利定律所描述的就是溶液蒸气压和浓度之间的关系。 3.3.1 拉乌尔定律 1887年法国物理学家拉乌尔(Raoult)在溶液蒸气压实验中总结出著名的拉乌尔定律。拉乌尔定律指出:如果溶质是不挥发性的,即它的蒸气压极小,与溶剂相比可以忽略不计,则在一定的温度下,稀溶液的蒸气压等于纯溶剂的蒸气压与其克分子分数的乘积。即 式中 --溶剂的蒸气压,溶质是不挥发性时,即为溶液的蒸气压; p 1

高中物理牛顿运动定律基础练习题

牛顿运动定律 第一课时牛顿运动定律 一、基础知识回顾: 1、牛顿第一定律 一切物体总保持,直到有外力迫使它改变这种状态为止。 注意:(1)牛顿第一定律进一步揭示了力不是维持物体运动(物体速度)的原因,而是物体运动状态(物体速度)的原因,换言之,力是产生的原因。(2)牛顿第一定律不是实验定律,它是以伽利略的“理想实验“为基础,经过科学抽象,归纳推理而总结出来的。 2、惯性 物体保持原来的匀速直线运动状态或静止状态的性质叫惯性。 3、对牛顿第一运动定律的理解 (1)运动是物体的一种属性,物体的运动不需要力来维持。 (2)它定性地揭示了运动与力的关系,力是改变物体运动状态的原因,是使物体产生加速度的原因。 (3)定律说明了任何物体都有一个极其重要的性质——惯性。 (4)牛顿第一定律揭示了静止状态和匀速直线运动状态的等价性。 4、对物体的惯性的理解 (1)惯性是物体总有保持自己原来状态(速度)的本性,是物体的固有属性,不能克服和避免。 (2)惯性只与物体本身有关而与物体是否运动,是否受力无关。任何物体无论它运动还是静止,无论运动状态是改变还是不改变,物体都有惯性,且物体质量不变惯性不变。质量是物体惯性的唯一量度。 (3)物体惯性的大小是描述物体保持原来运动状态的本领强弱。物体惯性(质量)大,保持原来的运动状态的本领强,物体的运动状态难改变,反之物体的运动状态易改变。(4)惯性不是力。 5、牛顿第二定律的内容和公式 物体的加速度跟成正比,跟成反比,加速度的方向跟合外力方向相同。公式是:a=F合/ m 或F合 =ma 6、对牛顿第二定律的理解 (1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律得出物体的运动规律。反过来,知道运动规律可以根据牛顿第二运动定律得出物体的受力情况,在牛顿第二运动定律的数学表达式F合=ma中,F合是力,ma是力的作用效果,特别要注意不能把ma看作是力。 (2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度。(3)牛顿第二定律公式:F合=ma是矢量式,F、a都是矢量且方向相同。 (4)牛顿第二定律F合=ma定义了力的单位:“牛顿”。 7、牛顿第三定律的内容 两个物体之间的作用力与反作用力总是大小相等、方向相反,作用在同一条直线上 8、对牛顿第三定律的理解 (1)作用力和反作用力的同时性。它们是同时产生同时变化,同时消失,不是先有作

初中化学质量守恒定律

初中化学质量守恒定律2019年4月20日 (考试总分:116 分考试时长: 120 分钟) 一、填空题(本题共计 4 小题,共计 16 分) 1、(4分)按要求回答下列问题: (1)“化学使天更蓝,水更清”汽车尾气处理装置能使某些有毒气体转化为无毒气体:反应的化学方程式:的化学式______. (2)“物质的性质与其用途密切相关”例如:铜用于制作导线是因为其具有良好的延展性和______性;一氧化碳的性质决定了一氧化碳在钢铁冶炼中的作用,请你用化学方程式表示高炉炼铁的原理__________________________。 (3)目前人类以化石燃料为主要能源,常见的化石燃料包括煤、石油和______;为减少污染,提高煤的利用率,可将其转化为可燃性气体,此过程可认为是碳和水的反应,其微观示意图如下所示: 该反应的基本类型为______反应,生成物C和D的分子个数比为_____。 2、(4分)向含有碳酸钠和氢氧化钠的混合物溶液中逐滴加稀盐酸,充分反应后,产生气体的体积与加入稀盐酸的体积关系如图所示,请根据图像回答下列问题: (1)ob段发生反应的基本类型是____________。 (2)bd段反应的化学方程式为____________。 (3)a、b、c、d、e五点对应的溶液中,含有两种溶质的有______________。 A.a B.b C.c D. d E.e 3、(4分)烟道气中含有大量CO2,经“捕捉”可用于生产甲醇等产品。 (1) “捕捉”CO2:在高压时将烟道气中的CO2溶解于甲醇,得到CO2的甲醇溶液。所得溶液中溶质是__ ______。

(2)用“捕捉”的CO 2生产甲醇,反应的微观示意图如下: 该反应的化学方程式为__________________________________。 4、(4分)根据下列反应事实写出相应的化学方程式,并按要求填空。 (1)在高温的汽车引擎中,氮气和氧气结合生成一氧化氮:________________________, (2)锌和硝酸银溶液反应,生成硝酸锌溶液和另一种金属:________________________, (3)少量硫酸铁溶液滴入氢氧化钾稀溶液中生成红褐色沉淀和另一种盐溶液:______,该反应属于_____反应。(请填写基本反应类型) (4)实验室用加热熟石灰和氯化铵固体混合物的方法来制取氨气:_____,生成的氨气可以用_______试纸检验。 二、 单选题 (本题共计 20 小题,共计 100 分) 5、(5分)下列反应中,属于吸热反应的是( ) A. 生石灰与水反应 B. 红磷燃烧 C. 镁与稀盐酸反应 D. 碳与二氧化碳反应 6、(5分)下列应用和相应的原理(用化学方程式表示)及基本反应类型都正确的是( ) A. 工业用一氧化碳还原氧化铁:232Fe O 3CO 2Fe 3CO ++高温 置换反应 B. 硫酸和氢氧化钡反应制钡餐:()24422H SO Ba OH BaSO H O +==+ 复分解反应 C. 认识水的组成的开始:2222H O 2H O +点燃 化合反应 D. 工业用碳酸钙制二氧化碳:32CaCO CaO CO +↑高温 分解反应 7、(5分)下列有关实验的描述,正确的是 A .镁在空气燃烧,火星四射,生成黑色固体 B .配制一定质量分数的氯化钠溶液,一般步骤为:计算、称量、量取、溶解、装瓶贴标签 C .将固体氢氧化钠溶于水中,溶液的温度明显降低 D .将酚酞滴入某溶液后不变色,此溶液一定呈酸性

拉乌尔定律和亨利定律

第五节 拉乌尔定律和亨利定律 一、亨利定律 在一定的温度下,稀溶液中挥发性溶质在气相中的平衡分压与其在溶液中的摩尔分数成正比。 p B =k x x B 亨利定律适用于稀溶液中挥发性溶质,是单元操作“吸收”的理论基础。 应用亨利定律应注意以下几点: ① 亨利定律只适用于溶质在气相中和液相中分子形式相同的物质; ② 气体混合物溶于同一种溶剂时,亨利定律对各种气体分别适用。其压力为该种气体 的分压; ③亨利定律除了用摩尔分数表示外,还可以用物质的量浓度c B 、质量摩尔浓度b B 或质量分数w B 等表示,此时,亨利定律的表达式相应为: p B =k c c B p B =k m b B p B =k w w B ④亨利定律适用于稀溶液中挥发性溶质,溶液越稀,定律越准确。 二、亨利定律的应用 亨利定律是化工单元操作----气体吸收的理论基础,气体吸收是利用混合气体中各种气体在溶剂中溶解度的差异,有选择性地将溶解度大的气体吸收,使之从混合气体中分离出来。若以相同的分压进行比较,则x k 越小,B x 越大,因此,x k 可作为吸收气体所用溶剂的选择依据。 三、二组分液体混合 二组分系统F = C -Φ+2。其中K =2。故F = 2-Φ+2=4-Φ。即二组分的最多 能以四相平衡共存,最大自由度为3(温度、压力和组成)。需要用比较复杂的三维坐标系。但为了讨论的方便,可固定一个自由度(常是温度或压力)。此时二组分系统的自由度f = 2-Φ+1= 3-Φ。最大自由度为2,便可以用平面坐标描述。 1. 拉乌尔定律 在一定温度下,溶入了非电解质溶质的稀溶液,其溶剂的饱和蒸气压与溶剂的摩尔分数成正比,比例系数为该溶剂在此温度下的饱和蒸气压。表达式为

相关文档
相关文档 最新文档