文档库 最新最全的文档下载
当前位置:文档库 › 热工基础教案1

热工基础教案1

热工基础教案1
热工基础教案1

a—'a过冷水的定压预热阶0

在这个阶段吸收的热量称为预热热

'

a—"a饱和水的定压汽化阶段

专业级课程名称热工基础

第 6 次课 课题:对流换热(2学时) 一、本课的基本要求 1.掌握对流换热系数的单位、物理意义、影响因素。 2.了解对流换热系数的确定方法。 3.掌握热边界层概念及对流换热机理。 4.会计算流体流过平板时的对流换热量。 二、本课的重点、难点 重点:对流换热系数的单位、物理意义、影响因素,热边界层概念及对流换热机理。 难点:对流换热简化模型的理解。 三、作业 习题P 195 11-8 11-9 四、教参及教具 《动量、热量、质量传输原理》 高家锐主编 重庆大学出版社 图11-3 第11章 对流换热 对流换热又称对流传热、对流给热,是指流体流过表面时的热量传输过程。 研究目的:求对流换热量。 13.1 对流换热的基本概念 1.对流换热系数 对流换热量计算采用牛顿冷却公式: ()A t t h w f -=φ W 或 ()w f t t h q -= W/m 2 式中 w f t t —流体及表面温度,℃;A —传热面积,m 2 ;h —对流换热系数 (1)单位:?2/m W ℃ (2)物理意义:单位时间、通过单位面积、在单位温差下的对流换热量,表征流体对流换热作用。 (3)影响因素:影响对流换热作用的因素如流体流动的起因、流动的性质、流体的物性、表面几何特性等。 研究对流换热的关键:确定不同条件下的对流换热系数h 。确定方法: (1)精确解法 F-K 方程、N-S 方程、连续性方程、边界换热微分方程联立求解。适用简单问题。 (2)近似积分法 取控制体建立能量积分方程,求得温度场的近似关系后,求解积分方程。适用简单问题。 (3)相似理论-模型实验法 是应用最广,最实用的方法。适用复杂的实际问题。 (4)类比法 热量传输与动量传输的类似性。在一定程度上有效。 2.热边界层及对流换热机理 热边界层的定义:流体流过表面并与之发生对流换热时,靠近表面形成的具有温度梯度的

新人教版六年级英语下册第四单元教案

课题:《Unit4 Then and now》 课时:总6课时分第1课时主备人:集体备课组:六年级英语备课组 【教学目标】1.能听、说、朗读句型:There was/were ...in.../Now,there is/are...in...。 2. 能听、说、读单词,star,easy,Internet。 3. 能听懂、会说、会表演Let's talk的内容, 【教学重点】能够在实际语境中交流运用重点句型:There was/were ...in.../Now,there is/are...in...。。 【教学难点】能够用所学句型描述事物过去与现在的变化。 【教具准备】1.本课 Let's talk/A 部分的教学课件。 2.本课时教学配套的录音带,以及单词卡片,挂图。 【学法指导】夸大口型,了解发音方法;彼此倾听发音,纠正发音,从而感悟英语的语音、语调的知识 【习惯培养】学会倾听,做到“四个到”。逐步提高理解语篇的能力。 【教学过程】 一、复习热身(3-5分钟) 1.师生交谈,引入单元话题。 教师利用There be句型讨论我们教室的陈设。 二、新课呈现(5-8分钟)、 1.Let's try。 学生审题后,教师播放Let's try的录音,后师生纠正答案。 2.教师出示Let's talk图片,对图片中的情景进行简单介绍。 3.引导学生学习本课的生词star,easy,Internet,look up。 4.快速抢答刚刚学过的生词和词组。 5.演示 Let's talk/A 的内容,听录音,使学生进一步理解对话。并判断教师的问题。 There was a library in my old school? There was a big building on a hill? There were no computer or Internet in my time? 6.学生小组讨论,得出答案并展示。 7.听本课时 Let's talk/A 教学配套的录音带,学生跟读并模仿发音。 8.小组内分角色朗读对话。 三、趣味操练(10-15分钟)

热工基础教学大纲

课程编号:241123 总学分:2 热工基础 (Basis of Heat Energy Engineering) 课程性质:专业基础课/选修 适用专业:车辆工程 学时分配:课程总学时:32 学时,其中:理论课学时:32 学时 先行、后续课程情况:先行课:高等数学、大学物理;后续课:发动机原理。 教材:傅秦生,何雅玲,赵小明. 热工基础与应用,机械工业出版社,2003. 参考书目:1. 童钧耕主编. 工程热力学(4版),北京:高等教育出版社,2007. 2. 姚仲鹏、王瑞君编. 传热学(2版),北京:北京理工大学出版社,200 3. 一、课程的目的与任务 学习本课程可使学生认识到在能源危机日趋严重的情况下节能工作的重要性,了解并掌握有关能量转换和热量传递规律方面的知识,探索提高各种热工设备热效率的技术措施,使学生能在各自以后的工作岗位上有效地开展节能技术改造工作,这是培养复合型工程技术人才科学素质的一个不可缺少的环节。 二、课程的基本要求 通过本课程的学习,要求学生: (1)熟练掌握热能转换和热量传递的基本概念和基本定律,并能应用于实际的分析计算; (2)掌握热能传递与转换的一般规律以及热能在工程上有效合理利用的基本知识; (3)掌握各种工作介质的热力性质,了解各种热工设备的工作原理、工作过程。 三、课程教学内容 第一章:绪论 1.该章的基本要求与基本知识点: 能源及其利用,热能及其利用,热工学的研究对象及主要内容,学习本课程的意义;工程热力学的发展,工程热力学的研究方法;传热学的发展及研究方法,热量传递的三种基本方式,传热过程,热阻。 2.要求学生掌握的基本概念、理论、原理 无 3.教学重点与难点 无 第二章:热能转换的基本概念 1.该章的基本要求与基本知识点: 热力系统,热力状态及状态参数,基本状态参数,热力平衡状态及状态参数坐标图,热力过程,功,热量与熵,热力循环。 2.要求学生掌握的基本概念、理论、原理 功,热量与熵,热力循环 3.教学重点与难点 准静态过程的特点和实际意义,可逆过程的特点和实现条件,熵的引出和定义。 第三章:热力学第一定律 1.该章的基本要求与基本知识点: 热力学第一定律,闭口系统能量方程,稳定流动系统的能量方程,稳定流动系统能量方

热工基础复习题计算题答案教学教材

四、计算题 1、某容器被一刚性壁分成两部分,在容器的不同部位安装有压力表,如图1所示。压力表B 上的读数为75kPa, 压力表C上的读数为0.11MPa。如果大气压力为97kPa,试确定压力表A上的读数及容器两部分内空气的绝对压力。 解:A、B、C的读数均为表压,分别记为、PgA、 PgB、PgC 容器1和2的绝对压力记为P1和P2,大气压力Pa 依题意:PgB=75k Pa PgC =0.11M Pa=110 k Pa Pa=97 k Pa 根据压力表的位置可知: P1= PgC+Pa P1= PgB+P2 P2= PgA+Pa 将PgB 、PgC和 Pa的数值代入上式得: P1=207 k Pa P2=132 kPa PgA =35k Pa 图1 2、如图2所示。气缸内充以空气,活塞及负载重100kg,气缸壁充分导热,取走60kg负载,其系统完全平衡后,试求: (1)活塞上升的高度ΔL; (2)热力学内的变化ΔU; (3)气体在过程中所做的功。(已知{u}kJ/kg=0.72{T}K) 图2 1)由力平衡:p1=p b+F1/A=771*133.32+100*98100/100=2.009×105Pa V1=A*L=100*10*10-6=10-3m3 p2=p b+F2/A=771*133.32+40*98100/100=1.420×105Pa T2=T1 V2=A*(L+ΔL)=100*(10+ΔL )*10-6=(10+ΔL )*10-4m3 过程中质量不变: m1= p1 V1/(R g T1)= m2= p2 V2/(R g T2) C B A 1 2

热工基础习题集-传热学部分解析

第一章 1-1试列举生活中热传导、对流传热核辐射传热的事例。 1-2 冬天,上午晒被子,晚上睡觉为什么还感到暖和? 答:被子散热可是为无限大平面导热。晒被子使被子变得蓬松,含有更多的空气,而空气热导率较小,使被子的表现电导率变小。另外,被子晒后厚度增加。总之,被子晒后,其导热热阻δ/λA变大,人体热量不易向外散失,睡在被子里感到暖和(被子蓄热不必考虑:①被子蓄热不多; ②上午晒被子,晚上蓄热早已散光)。 1-3通过实验测定夹层中流体的热导率时,应采用图1-6种哪个装置?为什么? 答:左边一种。这种装置热面在上,冷面在下,使流体对流传热减少到零,由这种装置测得的热导率不受对流传热的影响。如果采用右边一种装置,由于对流传热的影响而测得的热导率偏大。1-4在思考题1-3中,流体为空气时热导率可用式(1-1)计算,式中Δt为热、冷面的温度差,δ为空气夹层的厚度,Φ为通过空气夹层的热流量,A为空气夹层的导热面积。实践证明,Δt 不能太大,否则测得的热导率比真实热导率大。试分析其原因。 答:热面和冷面的传热热流量Φ=Φc+Φd+Φr=λΔtA/δ。由思考题1-3可见,左边一种装置虽然减少了对流传热的影响,但如Δt较大,辐射传热量Φr对测量气体热导率的影响却不能忽略,会影响热导率λ测定的准确性。这时,热传导率实质上是以导热和辐射传热两种方式传递热量形式的表现热导率λe。显然,λe>λ(其中λ为气体的真实热导率)。由于辐射传热量Φr正比于热面和冷面温度的四次方之差(T14-T24),只有在热面和冷面温度之差(t1-t2)较小时,辐射传热的影响才可忽略,Φ≈Φd=λΔtA/δ。 1-5从传热的角度出发,采暖散热器和冷风机应放在什么高度最合适? 答:采暖器和冷风机主要通过对流传热的方式使周围空气变热和变冷,使人生活在合适的温度范围中,空气对流实在密度差的推动下流动,如采暖器放得太高,房间里上部空气被加热,但无法产生自然对流使下部空气也变热,这样人仍然生活在冷空气中。为使房间下部空气变热,使人感到舒适,应将采暖器放在下面,同样的道理,冷风机应放在略比人高的地方,天热时,人才能完全生活在冷空气中。 1-6从表1-1对流传热系数的大致范围,你可以得出哪些规律性的结论? 答:从表1-1可看出如下规律:①空气的对流传热系数小于水的对流传热系数;②同一种流体,强迫对流传热系数大于自然对流传热系数;③同一种流体有变相时的对流传热系数大于无变相识的对流传热系数;④水变相时的对流传热系数大于有机介质相变对流传热系数。 1-7 多层热绝热有铝箱和玻璃纤维纸、玻璃布、尼龙网等依次包扎而成,并且整个系统处在高真空下。在20~300K的温度下它的热导率可抵达(0.1~0.6)×10-4W/(m·K),试分析其原因。答:由于系统处于高真空,导热和对流传热的作用减少到很小,多层铝箱间用热导率很小的玻璃纤维纸、玻璃布、尼龙网隔开,导热作用较小;铝箱的玻璃作用使辐射传热也很小(详见第八章)。这样,这个系统使三种传热方式传递的热流量都大大减少,所以其表现热导率就很小。 1-8在晴朗无风的夜晚,草地会披上一身白霜,可是气象台的天气报告却说清晨最低温度为2℃。试解释这种现象。但在阴天或有风的夜晚(其它条件不变),草地却不会披上白霜,为什么?答:深秋草已枯萎,其热导率很小,草与地面可近似认为绝热。草接受空气的对流传热量,又以辐射的方式向天空传递热量,其热阻串联情况见右图。所以,草表面温度t gr介于大气温度t f和天空温度t sk接近,t gr较低,披上“白霜”。如有风,hc增加,对流传热热阻R1减小,使t gr向t f靠近,即t gr升高,无霜。阴天,天空有云层,由于云层的遮热作用,使草对天空的辐射热阻R2增加,t gr向t f靠近,无霜(或阴天,草直接对云层辐射,由于天空温度低可低达-40℃),而云层温度较高可达10℃左右,即t sk在阴天较高,t gr上升,不会结霜)。 1-9在一有空调的房间内,夏天和冬天的室温均控制在20℃,但冬天得穿毛线衣,而夏天只需穿衬衫。这是为什么?(提示:参考图1-8,先画出夏天和冬天墙壁传热的温度分布曲线,在解

热工基础课后题答案第二版第四章-第五章

第四章 思考题 1. 循环的热效率公式 121q q t - =η 和 121T T t -=η 有何区别?各适用什么场合? 答:前式适用于各种可逆和不可逆的循环,后式只适用于可逆的卡诺循环。 2. 循环输出净功愈大,则热效率愈高;可逆循环的热效率都相等;不可逆循环的热效率一 定小于可逆循环的热效率,这些说法是否正确?为什么? 答: 不正确,热效率为输出净功和吸热量的比,因此在相同吸热量的条件下,循环输出的出净功愈大,则热效率愈高。不是所有的可逆循环的热效率都相等,必须保证相同的条件下。在相同的初态和终态下,不可逆循环的热效率一定小于可逆循环的热效率。 3. 热力学第二定律可否表述为“机械能可以全部变为热能,而热能不可能全部变为机械 能”? 答: 不对, 必须保证过程结束后对系统和外界没有造成任何影响这一条件。否则热能可以全部变为机械能,比如理想气体的定温膨胀过程,系统把从外界吸收的热量全部转化为机械能,外界虽然没有任何任何变化,但是系统的体积发生改变了。 4. 下列说法是否正确?为什么? ⑴ 熵增大的过程为不可逆过程; ⑵ 不可逆过程的熵变S ?无法计算; ⑶ 若工质从某一初态经可逆与不可逆途径到达同一终态,则不可逆途径的S ?必大于 可逆途径的S ?; ⑷ 工质经历不可逆循环后0>?S ; ⑸ 自然界的过程都是朝着熵增的方向进行的,因此熵减小的过程不可能实现; ⑹ 工质被加热熵一定增大,工质放热熵一定减小。 答: (1)不正确,只有孤立系统才可以这样说; (2)不正确,S 为状态参数,和过程无关,知道初态和终态就可以计算; (3)不对,S 为状态参数,和过程无关,S ?相等; (4)不对,工质经历可逆和不可逆循环后都回到初态,所以熵变为零。 (5)不对,比如系统的理想气体的可逆定温压缩过程,系统对外放热,熵减小。 (6)工质被加热熵一定增大,但是系统放热,熵不一定减小。如果是可逆过程,熵

工程热力学课程教案完整版

工程热力学课程教案 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

《工程热力学》课程教案 *** 本课程教材及主要参考书目 教材: 沈维道、蒋智敏、童钧耕编,工程热力学(第三版),高等教育出版社,2001.6手册: 严家騄、余晓福着,水和水蒸气热力性质图表,高等教育出版社,1995.5 实验指导书: 华北电力大学动力系编,热力实验指导书,2001 参考书: 曾丹苓、敖越、张新铭、刘朝编,工程热力学(第三版),高等教育出版社,2002.12 王加璇等编着,工程热力学,华北电力大学,1992年。 朱明善、刘颖、林兆庄、彭晓峰合编,工程热力学,清华大学出版,1995年。 曾丹苓等编着,工程热力学(第一版),高教出版社,2002年 全美经典学习指导系列,[美]M.C. 波特尔、C.W. 萨默顿着郭航、孙嗣莹等 译,工程热力学,科学出版社,2002年。 何雅玲编,工程热力学精要分析及典型题精解,西安交通大学出版社,2000.4 概论(2学时) 1. 教学目标及基本要求 从人类用能的历史和能量转换装置的实例中认识理解:热能利用的广泛性和特殊性;工程热力学的研究内容和研究方法;本课程在专业学习中的地位;本课程与后续专业课程乃至专业培养目标的关系。 2. 各节教学内容及学时分配 0-1 热能及其利用(0.5学时) 0-2 热力学及其发展简史(0.5学时) 0-3 能量转换装置的工作过程(0.2学时) 0-4 工程热力学研究的对象及主要内容(0.8学时) 3. 重点难点 工程热力学的主要研究内容;研究内容与本课程四大部分(特别是前三大部分)之联系;工程热力学的研究方法 4. 教学内容的深化和拓宽 热力学基本定律的建立;热力学各分支;本课程与传热学、流体力学等课程各自的任务及联系;有关工程热力学及其应用的网上资源。 5. 教学方式 讲授,讨论,视频片段 6. 教学过程中应注意的问题

人教版小学六年级数学上册第四单元电子教案

授课教师课 题 比的意义 课 时 教学 时间 教学目标 理解比的意义,学会比的读法和写法,认识比的各部分名称。 通过小组合作学习,激发合作意识,培养学生分析、概括和自主学习的能力。并能运用新知识解决生活中的实际问题。 养成课前预习、课后复习、独立思考和大胆质疑的良好习惯。 教学重难点教学重点:理解比的意义及比与除法、分数的联系。教学难点:理解比的意义及比与除法、分数的联系。 课前 准备 多媒体 教学过程一、复习铺垫。 1、填空。速度=( )÷( ) 单价=( )÷( ) 工作效率=( )÷( ) 2、除不尽的用分数表示。 3÷4=( ) 5÷9=( ) 10.2÷21=( ) 5÷13=( ) 二、情境导入。(出示第一张幻灯片) 出示课件: 同学们,在2008年9月25这天,我国第三次载人航天飞船“神州七号”顺利升空,这是继中国成功举办北京奥运会后又一盛事。看这是宇航员杨利伟手舞国旗在太空行走的照片。 出示课件:(出示第二张幻灯片) 这面国旗长15厘米,宽10厘米,想想回答下面问题: (1)长是宽的几倍?(2)宽是长的几分之几? 《比的意 长15厘米 宽 10 厘 米

6、运用新知,解决问题。。 ⑴课件出示例1(1):“神州”五号搭载了两面联合国旗,一面长15cm,宽10cm,另一面长180cm,宽120cm(见右图)。这两面联合国旗长和宽的最简单的整数比分别是多少? ⑵生读题,然后写出一大一小两面旗联合国旗长和宽的比: 15:10 180:120 师问:这两个比,数据大小悬殊,很难看出它们之间有什么关系。 问:这两个比,是不是最简单的整数比呢?如何才能把它们化成最简整数比呢?生自己尝试化简。 ⑶观察这两个比的结果,两面旗的长宽不同,化简结果相同,说明了什么?生:交流,体会两面旗的大小不同,形状相同。从中进一步了解化简比的必要性。 ⑷课件出示例1(2): 把下面各比化成最简单的整数比。 0.75:2 1 6 : 2 9 师:如何把它们化成最简单的整数比呢? 生:讨论交流,先化成整数比,再化成最简单的整数比。 尝试独立完成,指名板演。 7、小结:化简比的方法。 三、拓展练习 1、看谁的眼睛看得准?(根据比的基本性质判断下面各题)(1)4:15=(4×3):(15÷3)=12:5……(×) (2)1 3 : 1 2 =( 1 3 ×6):( 1 2 ×6)=2:3……(√) (3)10:15=(10÷5):(15÷3)……………(×) 2、把下面各比化成最简单的整数比。 (1)14:21 (2)2 3: 6 7(3)1.25:2 四、总结 通过今天的学习,你又学习了哪些知识?什么是比的基本性质?应用比的基本性质如何把整数比、分数比、小数比化成最简单的整数比?

“热工基础”课程教学大纲

“热工基础”课程教学大纲 英文名称:Fundamental of Thermodynamics and Heat Transfer 课程编号:ENPO330103 学时:48 (理论学时:44 实验学时:4 课外学时:58)学分:2.5 适用对象:机械工程与自动化、材料科学与工程、航空航天和工程力学等专业本科生 先修课程:高等数学,大学物理 使用教材及参考书: 教材 [1] 傅秦生赵小明唐桂华.热工基础(第3版).北京:机械工业出 版社,2015 参考教材 [1] 杨世铭陶文铨.传热学(第4版)北京:高等教育出版社2006 [2] 沈维道童钧耕工程热力学(第4版)北京:高等教育出版社2007 一、课程性质和目的(100字左右) 性质:基础理论 目的:通过本课程学习,使学生掌握包括热能与机械能相互转换基本理论和热量传递规律两方面的热工理论知识,获得有 关热科学的基本分析计算训练和解决有关热工工程问题的 基本能力。同时还应为学生对热学科的建模和问题的处理 奠定基础。

二、课程内容简介(200字左右) 热工基础是研究热现象的一门技术基础课程,主要讲授热能与机械能相互转换基本理论和热量传递规律,以提高热能利用完善程度的一门技术基础课,是机械学科、材料学科、航空航天和建筑等学科相关专业的一门必修课程。本课程为学生学习有关专业课程和将来解决热工领域的工程技术问题奠定坚实的基础。 三、教学基本要求 1.掌握热能和机械能相互转换的基本规律(第一、第二定律),以解决工程实际中有关热能和机械能相互转换的能量分析计算和不可逆分析计算; 2.掌握包括理想气体、蒸气和湿空气在内的常用工质的物性特点,能熟练应用常用工质的物性公式和图表进行物性计算; 3.掌握不同工质热力过程和循环的基本分析方法,能对工质的热力过程和循环进行计算,具有解决实际工程中有关热能转换的能量分析和计算能力; 4.掌握包括导热、对流换热、辐射换热三种热量传递方式的机理,进而掌握热量传递的基本规律和基本理论; 5.能对较简单的工程传热问题进行分析和计算,具有解决较简单的传热问题,尤其解决是与力学分析有关的传热问题的能力。四、教学内容及安排 0绪论(能源概述) 1、内容:能源和热能利用的基本知识:本学科研究对象,主要研究

五年级语文下册第四单元电子教案

第四单元教材内容概说 一、单元教材分析 本组教材共有4篇课文,这些课文讲述了一些感人至深的故事。这4篇课文有散文、有小说,内容生动、人物鲜明,表达了作者丰富美好的情感;课文在表达方法上各具特色。比如,《再见了,亲人》将抒情叙事相互交织,感情真挚强烈;《金色的鱼钩》先倒叙,再按照事情发展的顺序写清楚了鱼钩的来历,并通过具体的事例,赞美了老班长的高尚品质,抒发了作者对革命前辈的怀念之情;《桥》在环境的描写上、语言的使用上(精练、干脆)以及文章的结尾都极具特色,这其中蕴含着作者丰富、强烈的感情。“口语交际·习作”安排交流令自己深受感动的、触动自己心灵的事情,“回顾·拓展”安排了“交流平台”“日积月累”“成语故事”等教学内容,并教会学生运用词语的过程中加深对词语的理解,巩固记忆。 二、单元教学目标 1、能正确认读32个生字,会写26个生字。 2、正确、流利、有感情地朗读课文,背诵自己喜欢的段落,摘录使自己感动的语句。 3、引导学生在阅读这些生动感人的故事的同时,思想受到感染熏陶,情感得到陶冶升华,感受到人物心灵的美好和品质的高尚。 3.要引导学生懂得在阅读的时候既要抓住文章的主要内容,体会文章的思想感情,又要注意领悟作者的一些表达方法。 4.要引导学生课外搜集一些感人的故事,为口语交际和习作的教学做一些准备。 三、单元教学重、难点 1、要引导学生懂得在阅读的时候既要抓住文章的主要内容,体会文章的思想感情,又要注意领悟作者的一些表达方法。 2、引导学生潜心读书,感受人物的精神品质。 四、单元课时安排 《再见了,亲人》 2课时《金色的鱼钩》 1课时 《桥》 2课时《梦想的力量》 1课时 口语交际·习作四 4课时回顾·拓展 1课时五、教学措施及手段 1.要引导学生潜心读书,感受人物的精神品质。 2.体会作者的情感脉络和表达方法。 3.继续培养学生的速读能力。

热工基础 期末总复习 重点(张学学)

热工基础总复习 第一章 1.系统:在工程热力学中,通常选取一定的工质或空间作为研究的对象,称之为热力系统,简称系统。 2.系统内部各处的宏观性质均匀一致、不随时间而变化的状态称为平衡状态。 3.状态参数:用于描述系统平衡状态的物理量称为状态参数,如温度、压力、比体积等。工程热力学中常用的状态参数有压力、温度、比体积、比热力学能、比焓、比熵等,其中可以直接测量的状态参数有压力、温度、比体积,称为基本状态参数。 4.可逆过程:如果系统完成了某一过程之后可以沿原路逆行回复到原来的状态,并且不给外界留下任何变化,这样的过程为可逆过程。 准平衡过程:所经历的每一个状态都无限地接近平衡状态的过程。 可逆过程的条件:准平衡过程+无耗散效应。 5.绝对压力p、大气压力p b、表压力p e、真空度p v 只有绝对压力p 才是状态参数 第二章 1.热力学能:不涉及化学变化和核反应时的物质分子热运动动能和分子之间的位能之和(热能)。热力学能符号:U,单位:J 或kJ 。 热力系统储存能=宏观动能、宏观位能+热力学能 储存能:E,单位为J或kJ 2.热力学第一定律实质就是热力过程中的能量守恒和转换定律,可表述为: a.在热能与其它形式能的互相转换过程中,能的总量始终不变。 b.不花费能量就可以产生功的第一类永动机是不可能制造成功的。 c.进入系统的能量-离开系统的能量= 系统储存能量的变化 3.闭口系统:与外界无物质交换的系统。系统的质量始终保持恒定,也称为控制质量系统 闭口系统的热力学第一定律表达式 对于微元过程 对于可逆过程 对于单位质量工质 对于单位质量工质的可逆过程

4.开口系统稳定流动实现条件 1)系统和外界交换的能量(功量和热量)与质量不随时间而变; 2)进、出口截面的状态参数不随时间而变。 开口系统的稳定流动能量方程 对于单位质量工质: 对于微元过程 5.技术功:在工程热力学中,将工程技术上可以直接利用的动能差、位能差及轴 功三项之和称为技术功,用W t 表示 对于单位质量工质 6.节流:流体在管道内流动,遇到突然变窄的断面,由于存在阻力使流体的压力降低的现象称为节流。工程上由于气体经过阀门等流阻元件时,流速大时间短, 来不及与外界进行热交换,可近似地作为绝热过程来处理,称为绝热节流。 注意:绝热节流过程不是定焓过程 第三章 1.理想气体是一种经过科学抽象的假想气体,它具有以下3个特征: (1)理想气体分子的体积忽略不计; (2)理想气体分子之间无作用力; (3)理想气体分子之间以及分子与容器壁的碰撞都是弹性碰撞。 理想气体状态方程式 R g为气体常数,单位为J/(kg·K) 质量为m 的理想气体

热工基础 (3次)

第一次: 三、主观题(共9道小题) 54. 55. ab ac △s ab 与△s ac 谁大? 参考答案:答:△u ab =△u ac ; △s ab <△s ac 56. 有一循环发动机工作于热源T 1=1000K 和冷源T 2=400K 之间,若该热机从热源吸热1360 kJ ,对外作功833 kJ 。问该热机循环是可逆的?不可逆的?还是 根本不能实现的? 参考答案:

ηt>ηtc违背了卡诺定理 结论:该循环根本不可能实现。 (也可用克劳修斯积分不等式或孤立系熵增原理求解) 57.气球直径为0.4 m,球内充有压力为150 kPa的空气,由于太阳辐射加热,气球直径增大到0.45 m,若球内气体压力正比于气球的直径,试求过程中气体对外的做功量W。 参考答案: 解:已知D1 = 0.4 m时,p1=150 kPa,且气球内压力正比于气球直径, 即p = kD,可求得:k =375 kPa/m 答:过程中气体对外作功量为2.27 kJ 58.水在绝热混合器中与水蒸汽混合而被加热,水流入的压力为200kPa,温度为20℃,比焓为84kJ/kg,质量流量为100kg/min;水蒸汽流入的压力为20 0kPa,温度为300℃,比焓为3072kJ/kg,混合物流出的压力为200kPa,温度为100℃,比焓为419kJ/kg。问每分钟需要多少水蒸汽。 参考答案: 解:此绝热混合器所围空间为一稳流系,根据能量方程:

59. 有5g 氩气,经历一热力学能不变的状态变化过程,初始状态p 1=6.0×105 P a ,T 1=600K ,膨胀终了的容积V 2=3V 1,氩气可作为理想气体。已知氩气的Rg=0.208 kJ/(kg·K),c p =0.523 kJ/(kg·K),求:(1)终了状态的温度T 2、压力p 2;(2)过程中系统热力学能、焓和熵的变化量。 参考答案: 解:由题意:△U = 0 → T 2 = T 1 = 600 K 由理想气体气体状态方程, 有: 60. 试求在定压过程中加给理想气体的热量中有多少用来作功?有多少用来改变工质的热力学能(比热容取定值)? 参考答案: 解:∵ 定压过程总加热量为: q =c p △T 其中用来改变热力学能的部分为:△u= c V △T 而 c p = c V +R g ∴ 定压过程用来作功的部分为:w =R g △T 61. 2kg 某种理想气体按n =1.2可逆多变过程膨胀到原有体积的3倍,稳定地 从300℃降低到

部编版四下道法第四单元电子教案

部编版四下道法第四 单元

人教部编版四年级道德与法治下册第四单元测试卷 (满分100分,时间30分钟) 1、填空题(每空2分,共20分) 1. 每个地方都有独特的_-,这些_和我们的生活密切相关。 2. 生肖也称“属相”。中国风俗一共有“生肖”;我的生肖是_。 3. 民间文学、民间音乐、等都是的重要 组成部分。 4. 随着社会的发展,以及和冲击,许多独具特色的民间艺术 形式正面临着衰落的困境。 二、判断题(每题2分,共16分) 1. 出生“报喜”、满月“剃胎发”都是地方风俗。() 2. 风俗不能变革,更不能淘汰。() 3. 四川变脸和苏州刺绣不属于民间艺术。() 4. “天津泥人张”是著名文学家张明山开创的流派。() 5. 对民间艺术的保护跟小学生无关,都是大人们的事。() 6. 如果家乡在发展时出现了问题,我们面对问题不能回避。()

7. 放鞭炮的习俗不应该保留,应该在全国范围全面禁止。() 8. 国家鼓励好支持公民展示和传承非物质文化遗产代表性项目。() 三、选择题(每题4分,共24分) 1. 吃寿面的风俗主要寄托了()的祝贺 A. 长辈对晚辈 B. 晚辈对长辈 C. 小孩对小孩 2. 一般认为,端午节是为纪念()而产生的。 A. 孔子 B. 屈原 C. 宋玉 3. 重阳节又称为“老人节”,日期是() A. 农历八月九日 B. 农历九月九日 C. 农历十月九日 4. “二人转”是()的民间艺术形式,很受老百姓欢迎。 A. 西北 B. 东北 C. 南方 5. “那达慕”是()的传统节日。 A. 壮族 B. 回族 C. 蒙古族 6. 关于“春联”的表述,下列说法不正确的是() A. “春联”是我国书法艺术的体现 B. “春联”被冷落的原因有:不少年轻人觉得土气;写毛笔字的人越来越少。 C. 既然“春联”日渐衰落,就让它自然消失,没必要继承它。 四、填表题(每空1分,共10分)

硅酸盐工业热工基础知识课后复习标准答案

硅酸盐工业热工基础作业答案2-1解:胸墙属于稳定无内热源的单层无限大平壁 单值条件tw1=1300C tw2=300Cδ=450mm F=10 m 2 胸墙的平均温度Tav=(Tw1+TW2)/2=(1300+300)/2=800C 根据平均温度算出导热系数的平均值 λav=0.92+0.7x0.001 x800=1。48w/m.c Q=λF(Tw1-Tw2)/δ=1.48X10X(1300-300)/0.48=3.29X104 W 2-2解:窑墙属于稳定无内热源的多层平行无限大平壁 由Q=t?/R或q=t?/Rt知,若要使通过胸墙的热量相同,要使单位导热面上的热阻相同才 行 单值条件δ1=40mm δ2=250mm λ1=0.13W/m.C λ2=0.39W/m. 硅藻土与红砖共存时,单位导热面热阻(三层) Rt1=δ1/λ1+δ2/λ2+ δ3/λ3=0.04/0.13+0.25/0.39+δ3/λ3 若仅有红砖(两层)Rt2=δ/λ2+δ3/λ3=δ/0.39+δ3/λ3 Rt1=Rt2?0.04/0.13+0.25/0.39=δ/0.39 得δ=370mm,即仅有红砖时厚度应为370mm。 2—3 解:窑顶属于稳定无内热源的单层圆筒壁 单值条件δ=230mm R1=0.85m Tw1=700C Tw2=100C 粘土砖的平均导热系数 λav=0.835X0.58X103- X(Tw1+Tw2)/2=0.835+0.58X400X10 3- =1.067W/m.C R2=R1+δ=1.08m 当L=1时,Q=2λ∏( Tw1-Tw2)/4Ln21d d=2X3.14X1.067X1X600/4Ln1.08 0.85 =4200W/m 因为R2/R1≤2,可近似把圆筒壁当作平壁处理,厚度δ=R2-R1,导热面积可以根据平均半径Rav=(R1+R2)/2求出。做法与2-1同。 2-4解:本题属于稳定无内热源的多层圆筒壁 单值条件λ1=50W/m。C λ2=0.1 W/m。C δ1=5mm δ2=95 mm Tw1=300C Tw2=50C d1=175mm d2=185mm d3=375mm 若考虑二者的热阻,每单位长度传热量 Q=( Tw1-Tw2)X2π/(1213 1122 d d Ln Ln d d λλ +)= 2502 222.27 11851375 501750.1185 X W Ln Ln π = + 若仅考虑石棉的热阻,则

热工基础与应用课后习题答案(全)第二版

山东大学 热工基础课后习题解答 第一章 思考题 1.平衡状态与稳定状态有何区别?热力学中为什幺要引入平衡态的概念? 答:平衡状态是在不受外界影响的条件下,系统的状态参数不随时间而变化的状态。而稳定状态则是不论有无外界影响,系统的状态参数不随时间而变化的状态。可见平衡必稳定,而稳定未必平衡。热力学中引入平衡态的概念,是为了能对系统的宏观性质用状态参数来进行描述。 表压力或真空度能否作为状态参数进行热力计算?若工质的压力不变,问测量其压力的压力表或真空计的读数是否可能变化? 答:不能,因为表压力或真空度只是一个相对压力。若工质的压力不变,测量其压力的压力表或真空计的读数可能变化,因为测量所处的环境压力可能发生变化。 3.当真空表指示数值愈大时,表明被测对象的实际压力愈大还是愈小? 答:真空表指示数值愈大时,表明被测对象的实际压力愈小。 4. 准平衡过程与可逆过程有何区别? 答:无耗散的准平衡过程才是可逆过程,所以可逆过程一定是准平衡过程,而准平衡过程不一定是可逆过程。 5. 不可逆过程是无法回复到初态的过程,这种说法是否正确? 答:不正确。不可逆过程是指不论用任何曲折复杂的方法都不能在外界不遗留任何变化的情况下使系统回复到初态,并不是不能回复到初态。 6. 没有盛满水的热水瓶,其瓶塞有时被自动顶开,有时被自动吸紧,这是什幺原因? 答:水温较高时,水对热水瓶中的空气进行加热,空气压力升高,大于环境压力,瓶塞被自动顶开。而水温较低时,热水瓶中的空气受冷,压力降低,小于环境压力,瓶塞被自动吸紧。 7. 用U形管压力表测定工质的压力时,压力表液柱直径的大小对读数有无影响?

答:严格说来,是有影响的,因为U 型管越粗,就有越多的被测工质进入U 型管中,这部分工质越多,它对读数的准确性影响越大。 习 题 1-1 解: kPa bar p b 100.61.00610133.37555==??=- 1. kPa p p p g b 6.137********.100=+=+= 2. kPa bar p p p b g 4.149494.1006.15.2==-=-= 3. kPa mmHg p p p v b 3315.755700755==-=-= 4. kPa bar p p p b v 6.50506.0 5.000 6.1==-==- 1-2 图1-8表示常用的斜管式微压计的工作原理。由于有引风机的抽吸,锅炉 设 备的烟道中的压力将略低于大气压力。如果微压机的斜管倾斜角?=30α, 管内水 解:根据微压计原理,烟道中的压力应等于环境压力和水柱压力之差 mmHg Pa gh p 35.79805.0102008.91000sin 3==????=-αρ=水柱 mmHg p p p b 65.74835.7756=-=-=水柱 1-3 解: bar p p p a b 07.210.197.01=+=+= bar p p p b 32.005.107.212=-=-= bar p p p b C 65.032.097.02=-=-= 1-4 解: kPa H p p p b 2g mm 15745760==-==汞柱真空室- kPa p p p a 36236021=+=+=真空室 kPa p p p b 19217036212=-=-=

x2160541热工基础课程教学大纲

x2160541热工基础课程教学大纲 课程名称:热工基础 英文名称:Fundamental of Thermodynamics and Heat Transfer 课程编码:x2160541 学时数:40 其中实践学时数:0 课外学时数:0 学分数:2.5 适用专业:机械设计制造及其自动化、机械工程 一、课程简介 《热工基础》是一门专业基础课程。本课程包括工程热力学和传热学两部分内容。工程热力学部分主要介绍工程热力学的基本概念和基本定律、常用工质的热物理性质、基本热力过程与典型热力循环;传热学部分主要介绍导热、对流换热、辐射换热的基本规律、求解方法以及控制热量传递过程的技术措施,换热器的热计算方法。 通过《热工基础》课程的学习,使学生理解工程热力学和传热学的基本概念、基本原理和基本定律;使学生了解工程热力学、传热学常用的分析方法,培养学生对简单热学问题的分析和求解能力;掌握能量转换规律和有效利用能量的基本知识,培养学生综合运用所学知识去分析和解决实际问题的能力。 二、课程目标与毕业要求关系表

三、课程教学内容、基本要求、重点和难点 (零)绪论 1. 能量与能源:了解能量能源的概念、分类,与国民经济和人民生活关系; 2. 热工基础的研究内容:掌握热工基础的研究内容与方法。 (一)基本概念 1. 热力系统:理解工质、热力系的定义,掌握热力系的分类;(重点) 2. 平衡状态与状态参数:理解热力状态和状态参数的定义,掌握平衡状态的物理意义及实现条件; 3. 状态方程与状态参数坐标图:了解状态方程式及参数坐标图的物理意义及作用; 4. 准平衡过程与可逆过程:理解热力过程、准平衡过程和可逆过程的物理意义与联系;(难点) 5. 功量与热量:掌握功量与热量的概念和计算。 (二)热力学第一定律 1. 热力系统的储存能:掌握能量、热力系统储存能、热力学能的概念; 2. 热力学第一定律的实质:理解热力学第一定律的实质; 3. 闭口系统的热力学第一定律表达式:掌握封闭热力系的能量方程并熟练应用;(重点) 4. 开口系统的稳定流动能量方程式:掌握开口热力系稳定流动能量方程并熟练应用,掌握体积变化功、轴功、流动功和技术功的概念,理解焓的定义式及物理意义;(难点) 5. 稳定流动能量方程式的应用:了解常用热工设备主要交换的能量及稳定流动能量方程的简化式。 (三)理想气体的性质与热力过程 1. 理想气体状态方程式:理解理想气体的含义,熟练掌握并应用理想气体的状态方程;(重点) 2. 理想气体的热容、热力学能、焓和熵:理解比热容的物理意义,掌握理想气体热力学能和焓变化量的计算;(难点) 3. 理想混合气体:理解理想混合气体的概念,理解理想混合气体的基本定律,理解混合气体的成分; 4. 理想气体的热力过程:掌握理想气体基本热力过程方程式和基本状态参数变化的关系式; 5. 气体在喷管中的流动:理解喷管中的稳定流动基本方程式和喷管截面的变化规律。 (四)热力学第二定律 1. 自发过程的方向性与热力学第二定律的表述:理解热力学第二定律的实质和表述,掌握热力学第二定律在判断热力过程方向上的重要作用; 2. 卡诺循环与卡诺定理:了解热力循环、正向循环、逆向循环的概念,掌握评价循环经济性的指标:热效率、制冷系数、制热系数,掌握卡诺循环、卡诺定理及对工程实际的指导意义;(重点) 3. 熵:了解熵的概念,掌握孤立系统熵增原理;(难点) 4. ?:了解?的定义及?平衡方程式。 (五)水蒸气与湿空气 1. 水蒸气的产生过程:掌握水蒸气定压发生过程;(重点)

哈工大工程热力学教案

绪论 (2学时) 一、基本知识点 基本要求 理解和掌握工程热力学的研究对象、主要研究内容和研究方法 ·理解热能利用的两种主要方式及其特点 ·了解常用的热能动力转换装置的工作过程 1.什么是工程热力学 从工程技术观点出发,研究物质的热力学性质,热能转换为机械能的规律和方法,以及有效、合理地利用热能的途径。 电能一一机械能 锅炉一一烟气一一水一一水蒸气一一(直接利用) 供热 锅炉一一烟气一一水一一水蒸气一一汽轮机一一 (间接利用)发电 冰箱一一-(耗能) 制冷 2.能源的地位与作用及我国能源面临的主要问题 3. 热能及其利用 (1).热能:能量的一种形式 (2).来源:一次能源:以自然形式存在,可利用的能源。

如风能,水力能,太阳能、地热能、化学能和核能等。 二次能源:由一次能源转换而来的能源,如机械能、机械能等。 (3).利用形式: 直接利用:将热能利用来直接加热物体。如烘干、采暖、熔炼(能源消耗比例大) 间接利用:各种热能动力装置,将热能转换成机械能或者再转换成电能, 4..热能动力转换装置的工作过程 5.热能利用的方向性及能量的两种属性 过程的方向性:如:由高温传向低温 能量属性:数量属性、,质量属性 (即做功能力) 注意: 数量守衡、质量不守衡 提高热能利用率:能源消耗量与国民生产总值成正比。 6.本课程的研究对象及主要内容 研究对象:与热现象有关的能量利用与转换规律的科学。 研究内容: (1).研究能量转换的客观规律,即热力学第一与第二定律。

(2).研究工质的基本热力性质。 (3).研究各种热工设备中的工作过程。 (4).研究与热工设备工作过程直接有关的一些化学和物理化学问题。 7..热力学的研究方法与主要特点 (1)宏观方法:唯现象、总结规律,称经典热力学。 优点:简单、明确、可靠、普遍。 缺点:不能解决热现象的本质。 (2)微观方法:从物质的微观结构与微观运动出发,统计的方法总结规律,称统计热力学。 优点:可解决热现象的本质。缺点:复杂,不直观。 主要特点:三多一广,内容多、概念多、公式多。 联系工程实际面广。条理清楚,推理严格。 二、重点、难点 重点:热能利用的方向性及能量的两种属性 难点:使学生认识到学习本课程的重要性,激发学生的学习兴趣和学习积极性,教会学生掌握专业基础课的学习方法。 四、德育点

热工基础(2.1.3)--第三章习题及答案

热工基础第三章作业题及答案 3-3 体积为0.03m 3的某刚性储气瓶内盛有700kPa 、20℃的氮气。瓶上装有一排气阀,压力达到880kPa 时阀门开启,压力降到850kPa 时关闭。若由于外界加热的原因造成阀门开启,问: (1)阀开启时瓶内气体温度为多少? (2)因加热,阀门开闭一次期间瓶内气体失去多少?设瓶内氮气温度在排气过程中保持不变。 答案:(1)t 2=93.3℃; (2)?m =0.0097kg 3-4 氧气瓶的容积V =0.30m 3,瓶中氧气的表压力p gl =1.4MPa ,温度t 1=30℃。问瓶中盛有多少氧气?若气焊时用去一半氧气,温度降为t 2=20℃,试问此时氧气瓶的表压力为多少?(当地大气压力p b =0. 098MPa) 答案: m =5.72kg; p g2=0.625MPa. 3-6 某理想气体等熵指数κ=1.4,定压比热容c p =1.042kJ/(kg.K),求该气体的摩尔质量M 。 答案:M =27.93 g/mol 3-8 摩尔质量为0.03kg/mol 的某理想气体,在定容下由275℃加热到845 ℃,若比热力学能变化为400kJ/kg ,问焓变化了多少? 热求其热力学能、焓和熵的变化。 答案:??=557.9kJ/kg 3-11 在体积V =1.5m 3的刚性容器内装有氮气。初态表压力p gl =2.0MPa ,温度t =230℃,问应加入多少热量才可使氮气的温度上升到750℃?其焓值变化是多少?大气压力为0.1MPa 。 (1)按定值比热容计算; (2) 按平均比热容的直线关系式计算; (3)按平均比热容表计算; (4) 按真实比热容的多项式表达式计算。 答案:(1) Q =8137 kJ, ΔH =11410 kJ (2) Q =9005 kJ, ΔH =12260 kJ (3) Q =8962 kJ, ΔH =1200 kJ (4) Q =9025 kJ, ΔH =12280 kJ 3-15 由氧气、氮气和二氧化碳组成的混合气体,各组元的摩尔数为 2O 0.08mol n =,2N 0.65mol n =,2CO 0.3mol n = 试求混合气体的体积分数,质量分数和在p = 400kPa 、t =27℃时的比体积。 答案:x O2=0.078, x N2=0.631, x CO2=0.291 w O2=0.076, w N2=0.536, w CO2=0.388 R g,eq =0.252 kJ/(kg.K), v =0.0189 m 3/kg. 3-19 某理想气体初温T 1=470K ,质量为2.5kg ,经可逆定容过程,其热力学能变化为△U =295. 4kJ ,求过程功、过程热量以及熵的变化。设该气体R g =0.4 kJ/( k g .K),κ=1.35,并假定比热容为定值。 答案:W =0, Q =295.4 kJ, ΔS=0.568 kJ/K 3-22试将满足以下要求的理想气体多变过程在p -v 图和T -s 图上表示出来(先画出四个基本热力过程): (1) 气体受压缩,升温和放热; (2) 气体的多变指数n =0.8,膨胀; (3) 气体受压缩,降温又降压;

相关文档