文档库 最新最全的文档下载
当前位置:文档库 › 运算放大器

运算放大器

运算放大器
运算放大器

运算放大器

绪论

运算放大器是电压控制型电压源模型,其增益(放大倍数)非常大。运算放大器有5个端子、4个端口的有源器件。其符号和内部结构如图1所示:

图1 运算放大器模型和内部结构图

图中电压VCC和VEE是由外部电源提供,通常决定运算放大器的输出电压等级。符号“+”和“—”分别表示同相和反相。输入电压Vp和Vn以及输出电压Vo都是对地电压。

运算放大器的五个接线端构成了一个广义节点,如果电流按照图1所示定义,根据KCL (基尔霍夫电流定律)有如下公式:

因此,为了保持电流平衡,我们必须将所有电流都包括进来,这是根据有源器件的定义得出的。如果我们仅仅考虑输入和输出电流来列出KCL,则等式不成立,即:

运算放大器的等效电路模型如图2所示。电压Vi是输入电压Vp和Vn的差值即Vi=Vp -Vn。Ri是放大器的输入电阻,Ro是输出电阻。放大参数A称为开环增益。

运算放大器的开环结构定义为:运算放大器的结构中不包括将输入和输出端连接起来的回路。

图2 运算放大器的等效电路模型

如果输出端不接任何负载,输出电压为:

该公式说明,输出电压Vo是与输入电压Vp和Vn之差的函数。因此可以说该运算放大器是差值放大器。

大多数实际的运算放大器的开环放大倍数是非常大的。例如,比较常用的741型运算放大器,它的放大倍数为200000Vo/Vi,甚至一些运算放大器的放大倍数达到108 Vo/Vi。

反映输入电压和输出电压关系的曲线称为电压传输特性,而且该曲线是放大器电路设计和分析的基础。运算放大器的电压传输曲线如图3所示:

图3 电压传输特性曲线

注意:该曲线有2个变化区域,一个为在Vi=0V附近时,输出电压和输入电压成正比例放大,称之为线性区域;另一个为Vo随Vi改变而不变的区域,称之为饱和区(或非线性区)。

可以通过设计让运算放大电路工作在上述的2个区域。在线性区域Vo和Vi直线的斜率是非常大的,实际上,它与开环放大倍数A相等。例如,741运算放大器正负电源电压为VCC=+10V,VEE=-10V,Vo的饱和值(最大输出电压)一般在±10 V,而当A=200000 Vo/Vi 时,可以算出输入的电压非常小:10/200,000 = 50μV。

理想运算放大器的模型

从实际应用的观点看,理想的运算放大器应该是一种理想的的电压控制电压源。根据图2可以知运算放大器应该具有如下特性:

1. 当输入引脚没有电流输入时,运算放大器的输入电阻为Ri=∞。在实际应用中,这意味着运算放大器输入电流为0A。

2. 当输出电阻为0时(Ro=0),输出电压与输出端所接的负载无关。

另外,理想运算放大器的开环增益趋于无穷大时(A→∞),理想运算放大器的示意图模型如图4所示:

图4 理想运算放大器模型

总的来说,理想运算放大器的条件是:

I p=I n=0 没有电流输入

Ri→∞输入电阻趋于无穷大(1.4)

Ro=0 零输出电阻

A→∞开环增益无穷大

尽管实际应用的运算放大器偏离了这些理想条件,但这些原则是非常有用的,特别是在电路的设计和分析时应用非常广泛。接下来,我们将介绍如何使用这些原则以及与这些原则有关的典型错误。

注意:在使用理想运算放大器这些原则时,必须考虑他们是有一定限制的,因此我们在进行分析时必须考虑这些条件。例如:如果我们分析下面的方程

从上式可知当A→∞时,输入电压Vi→0,但是在实际应用中,不能得到输出电压Vo →0。当Vi→0,A →∞时,它们的乘积A Vi=Vo≠0。

负反馈基本运算放大电路

将运算放大器的输出端和反相输入端相连,就构成了负反馈结构,如图5所示。运算放大器的电源电压VCC和VEE是固定的,因而在后面的电路中将不再给出,运算放大器工作在线性区域(如图3)。

图5 基本负反馈结构

运算放大器的闭环增益为:

在该负反馈中,输出电压Vo通过反馈回路返回到反相输入端。

负反馈运算放大器的方框图如图6所示。反馈电路图中给出了运算放大电路的基本参数即开环增益A和反馈系数β。

图6 理想负反馈运算放大电路的方框图

输出信号的一部分,βVo被反馈回输入端,输入源信号Vs减去βVo得到Vi,Vi为差值信号,它作为运算放大器产生输出电压的净输入电压,即Vo=A Vi。反馈信号和信号源输入信号的差值构成了反馈。

带反馈的反相运算放大器的增益Vo/Vs可以通过下式给出:

反馈增益或者闭环增益是由运算放大器的开环增益A和反馈系数β决定的。反馈系数β仅仅由反馈电路的特性决定。在实际应用中,运算放大器的开环增益A是非常大的。因此,当A趋于无穷大即A→∞时,上式(1.7)可以变为:

上式说明增益G独立于A,而且它仅仅是β的函数。所以β的数值和“质量”是由反馈电路以及电路元件的“质量”决定的。因此反馈放大器的设计者可以通过改变电路参数来控制运算放大器。

搭建负反馈放大电路

使用两个电阻我们能够组成负反馈基本电路。输出信号的正负由输入电压所接到的输入端决定,要得到与输入信号相位相反的输出电压,应将输入电压接在反相输入端,如图7(a);要得到与输入信号相位相同的输出信号,将输入信号接在同相输入端如图7(b)。

(a)反相放大器(b)同相放大器

图7 反馈放大器的基本结构(a)反相(b)同相

下面我们在两种情况下,即开环放大增益有限(A是有限值)和无穷大值(A→∞)这两种情况进行分析。

反相放大器

反相放大器的基本结构如图8所示。输入电压Vin接在反相输入端,反馈电路由R1和R2组成。

图8 反相放大器电路图

接下来我们分析上面的电路。我们假定输入端的电阻无穷大,输出端的输出电阻为0,开环增益A为有限值,那么输出电压Vo为输入电压Vin的函数。该模型的等效电路图如图9所示。

图9 反相放大器电路图模型

因为该电路图中的运算放大器工作在线性区域,所以结点1的电压可以根据理想运算放大器的基本原则得出。

图中电压Vn是图10中电压Vn o和Vn in的叠加。

Vn o和Vn in分别为输出电压Vo和输入电压Vin单独作用时产生的。

图10 工作在线性区域的反相运算放大器等效电路图

因此Vn可以由下式给出:

式中VoR1/(R1+R2)项是与输出电压相关的,是通过电路的反馈电阻反馈到反相输入端的电压。

我们又知道Vo=A(Vp-Vn),又因为Vp=0,Vn=-Vo/A。上式(1.9)变为

通过变化上式(1.10),我们可以获得反相运算放大器的电压增益:

考虑理性运算放大器的开环增益A是无穷大的,我们在A→∞时求上式的极限,得到该反向运算放大器的“理想”增益:

通过比较(1.12)和(1.8)式,我们可以得到该运算放大器电路的反馈系数β=R1/R2。

注意:该理想增益仅仅由电阻R1和R2的比值决定,这是一个非常好的结论。我们可以简单的通过选择合适的电阻比R1和R2来设计出所需增益的运算放大电路。但要求运算放大器的开环增益A的值非常大。在实际中,这并不是一个非常难完成的要求。现在,运算放大器已经进入大规模生产并获得广泛的设计应用,其价格非常低,其A值也已经非常大。

增益的负号说明输出电压Vo的方向和输入电压Vin的方向相反。例如,如果输入电压是相角为0度的正弦信号,那么输出电压同样是正弦曲线,但是它的相角为180度。图11给出了R2/R1=2的反相运算放大器的输入电压Vin和输出电压Vo曲线。

图11 增益为2的反相运算放大器的输入输出曲线

研究由(1.12)式描述的理想模型和(1.11)式描述的有限开环增益模型之间的差异是非常有益的。下面我们分析一下R1=10千欧、R2=100千欧的反相运算放大器,这时通过(1.12)式求出的理想电压增益是-10。我们改变A从1,000V/V到10,000,000V/V的值通过(1.11)式求出实际的增益值和与理想增益偏差的百分比,如表I所示:

表I 运算放大器的增益A为有限值时的影响

应用非常广泛的741型运算放大器增益的典型值为200,000V/V。如果在该反相运算放大器中使用它,实际增益和理想增益值的误差小于0.0055%(55ppm),这在实际应用中是非常小的。

(1.14) 故所得的理想反相放大器的增益为:

21

O ideal in V R

G V R {

(1.15)

可以注意到方程式(1.15)得到的增益与方程式(1.11)中当 A →∞时的一般情况下得到的增益是一样的。

为了更直观的得到这个电路运行过程,我们假设关于的两种情况: in V

1、 如果,电流0in V !1I 如图12所示。由于n I =0,2I 也必将如图所示方向流动。为了做到

这一点,电压必须比的电势低,但是由于=0,故只有在o V n V n V 0o V 的情况下才能满足条件。

2、 如果,电流的将反方向流动,同理分析可得结果应是。 0in V 0o V !

同相放大器

图13

为基本的同相放大器结构。负反馈被保留且输入信号被接到同相端。

图13. 同相放大器

等效电路中的同相放大电路有限的开环增益如图14所示。 这里我们假设运算放大器的输入电阻无穷大,输出电阻为零.

图14 同相放大器有限的开环增益的等效电路

由于,令0n p I I 12I I ,则有:

122111n n o

o n V V V V V 2R R R R R §· ¨?1

?n (1.16)

由于有,输出电压为:

i p n in V V V V V

o in V A V V n (1.17)

结合方程(1.16)和(1.17),可得闭环增益:o

in

V G V {

可化为:

2

1

21111o in R V R G V R R A

{ §·

¨?

?

1

(1.18)

与反相放大器不同,这里所得的增益是正的,输出电压与输入电压的相位一致,并且所得的增益总是大于1。

o V in V

由方程式(1.18)可以知道,当A →∞时,闭环增益为:

2

1

1A R R G

of

(1.19)

运算放大器的开环增益A 是一个变化比较大的参数。它取决于运算放大器内部各元件(晶体管,电阻器,电容器, 二极管)的特性,因此它受到外界环境(温度、湿度)以及具体制造过程的影响。由于A 的变化是由某个分数dA A 决定的,其闭环增益G 也是由数dG G

所决定。由方程(1.18)求导化简可得

212

1111R R dG dA dA G A R G A A A R A

a

o

???

?

§·?? ¨????1 ?? ????

(1.20)

从式(1.20)可知G 随A 改变而改变,可以通过

G

A

来调整。

举个例子,我们假设一个开环增益为200V/mV 的741运算放大器,接在闭环增益为10的同相放大器结构中。如果开环增益A 变化20%,则闭环增益的变化如方程(14)所示为:

51020%0.001%2.010dG G §·

¨?u ?1

(1.21)

这个A 取很大值的运算放大器的优点是很明显的。当然这里的“大”值指的是开环增益远远大于闭环增益()。

用一个增益大但具有不确定特性的器件,可以构成一个高性能的器件。但是这个只能在开环增益A 很大的情况下才可能。现在的集成电路技术的能够很方便地做到这一点。

同相放大器:理想模型

根据图13,理想模型中节点1和2的电压是相等的:n i V V n 。并且,由于没有电流流入运算放大器的接线端,节点1的KCL 方程为:

12

111

22in in in o in o I I V V V I R R V V I R ?°

°°2V

R ?°° °

?

(1.22)

求解增益(o

in

V V ),可以得到:

21

1o ideal

in V R G V R {

(1.23)

注意到方程(23)与方程(19)是相同的,都是当A →∞得到的。

电压跟随器,缓冲器

令,,方程(1.23)中令1R o f 20R 1o

in

V G V

。图15

给出了所构成的电路。

图15.电压跟随器运算放大电路

这个结构的电压增益为1,输出电压跟随着输入电压。那么这个运算放大器电路的功能是什么呢?

我们来看看该电路的输入和输出的电阻。正如我们已讨论过,运算放大器的输入电阻非常大。实际上,在理想模型中,我们所取的电阻值为无穷大。从信号看去负载阻抗非常大,因此可以忽略信号源的内阻。 同样,由于运算放大器的输出阻抗是非常小(理想的为零),因此可以忽略接在输出端的负载。实际上这是一种阻抗变换装置。

in V

为了弄清该缓冲电路的重要性,我们假设一下情况,输入信号内阻为s R ,且接了一个L R 的阻抗。在图16(a)中该信号源直接与负载L R 相连。

图16.(a)电源和负载直接连接 (b)电源和负载由一个电压跟随器连接

从图16(a)可以看到,由s R 和L R 组成分压器,负载两端电压为,其值为的一部分,即:

L V in V L

L in

L s

R V V R R (1.24)

例,假设1L R K :,10S R K :in V ,则0.1L V |,从中可以看出信号产生了相当大

的衰减(负载)。

如图16(b)所示,如果我们把信号源和负载通过一个缓冲放大器与负载相连,由于放大器的输入阻抗是非常大的(没有电流流向接线端),同相端的电压将等于。此外,由于运算放大器的输出电阻为零,经过负载电阻的电压p V in V L o i V V V n 。由于它经过了运算放大电路“缓冲”,因此电路对对信号源及其内阻就没有任何要求了。

例:同相放大器的设计

设计一个增益为20db 的放大器,用标准公差为5%的电阻,输入信号范围在-1V 到+1V 之间。这种放大器是用来驱动阻性负载。这种设计可能会用到运算放大器中能够提供最大电流100mA 的电流的这个特性。

公差5%电阻的标称值从10:到10M :之间。其具体标称值见下表。

表1. 5%标准电阻标称值

例如,假设倍率为11的5%电阻对应的电阻值可能为11:,110:,1.1K :,11K ,110K ,1.1M 。对于其他倍率,其值可以参照此例得到。 :::解决方案:

同相放大器的电路为:

图17. 放大器电路

从对dB 的定义可以得到:

2020log

10out in V dB V 则10out in

V

V 。

闭环增益可以有方程式(1.23)得到,则该例中有

2

1

101R R

(1.25)

我们的任务是确定1R 和2R 的数值以满足设计的要求。这需要比率为9的两个电阻(

2

1

9R R )

。从5%表中所列举的值我们可以有一些选择。其中一部分为 2R =1.8K ,:1R =0.2K :

2R =18K ,:1R =2K :2R =180K :,1R =20K : 2R =1.8M :,1R =200K

:

由功率束缚可以帮助我们确定1R 和2R 的实际值。若输入电压为+1V ,输出电压为

,则运算放大器所输送的电流必须小于100mA 。

10o V V

若电流经过电阻L R 则L R 的值必须限制在1K :左右。

除了流经L R ,电流也可能通过1R 和2R 流向地。由于没有电流流过放大器的接线端,经过1R 和的部分电流为:

2R 12212t L R R I I R R R §· ¨ ?1

? (1.26)

注意,如果L R 的电阻值与12R R 的相当,则由运算放大器传送的电流有很大一部分流

入反馈环路。

因此为了满足运算放大器电流的约束条件,必须考虑流入反馈环路的电流量。以下表格列出了众多可能设计方法中的一部分:

表2 可能的设计

如果考虑5%电阻公差,可以得出以下几组电阻值:

运算放大器的工作原理

运算放大器的工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

运算放大器的工作原理 放大器的作用: 1、能把输入讯号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成。用在通讯、广播、雷达、电视、自动控制等各种装置中。原理:高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出在“低频电子线路”课程中已知,放大器可以按照电流导通角的不同, 运算放大器原理 运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等于零的输出阻抗、无限大的开回路增益、无限大的共模排斥比的部分、无限大的频宽。最基本的运算放大器如图1-1。一个运算放大器模组一般包括 一个正输入端(OP_P)、一个负输入端(OP_N)和一个输出端(OP_O)。 图1-1 通常使用运算放大器时,会将其输出端与其反相输入端(inverting input node)连接,形成一负反馈(negative feedback)组态。原因是运算放大器的电压增益非常大,范围从数百至数万倍不等,使用负反馈方可保证电路的稳定运作。但是这并不代表运算放大器不能连接成正回

运算放大器的典型应用

Op Amp Circuit Collection AN-31

Practical Differentiator f c e 1 2q R2C1 f h e 1 2q R1C1 e 1 2q R2C2 f c m f h m f unity gain TL H 7057–9 Integrator V OUT e b 1 R1C1 t2 t1 V IN dt f c e 1 2q R1C1 R1e R2 For minimum offset error due to input bias current TL H 7057–10 Fast Integrator TL H 7057–11Current to Voltage Converter V OUT e l IN R1 For minimum error due to bias current R2e R1 TL H 7057–12 Circuit for Operating the LM101 without a Negative Supply TL H 7057–13Circuit for Generating the Second Positive Voltage TL H 7057–14

Neutralizing Input Capacitance to Optimize Response Time C N s R1 R2 C S TL H 7057–15 Integrator with Bias Current Compensation Adjust for zero integrator drift Current drift typically0 1 n A C over b55 C to125 C temperature range TL H 7057–16 Voltage Comparator for Driving DTL or TTL Integrated Circuits TL H 7057–17 Threshold Detector for Photodiodes TL H 7057–18 Double-Ended Limit Detector V OUT e4 6V for V LT s V IN s V UT V OUT e0V for V IN k V LT or V IN l V UT TL H 7057–19 Multiple Aperture Window Discriminator TL H 7057–20

运算放大器组成的各种实用电路

运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。在分析它的工作原理时倘没有抓住核心,往往令人头大。为此本人特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位从事电路板维修的同行,看完后有所斩获。 遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。 今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。 虚短和虚断的概念 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。而运放的输出电压是有限的,一般在 10 V~14 V。因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。 “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。 由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。 在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。 好了,让我们抓过两把“板斧”------“虚短”和“虚断”,开始“庖丁解牛”了。 (原文件名:1.jpg)

10种运算放大器

10种运算放大器

各种不同类型的运算放大器介绍 董婷 076112班 一.uA741M ,uA741I ,uA741C (单运放)高增益运算放大器 用于军事,工业和商业应用.这类单片硅集成电路器件提供输出短路保护和闭锁自由运作。 这些类型还具有广泛的共同模式,差模信号范围和低失调电压调零能力与使用适当的电位。目前价格1元/个。 Package 封装 Part Number 零件型号 Temperature Range 工作温 度范围 N D UA741C 0℃ - +70℃ ? ? UA741I -40℃ - +105℃ ? ? UA741M -55℃ - +125℃ ? ? 例如 : UA741CN uA741主要参数 ABSOLUTE MAXIMUM RATINGS 最大额定值 Symbo l 符号 Parameter 参数 UA741M UA741I UA741C Uni t 单位 VCC Supply voltage 电源电压 ±22 V Vid Differential Input Voltage 差分输入电压 ±30 V Vi Input Voltage 输入电压 ±15 V Ptot Power Dissipation 功耗 500 mW Toper Output Short-circuit Duration 输出 短路持续时间 Infinite 无限制 Operating Free-air Temperature Range 工作温度 -55 to +125 -40 to +105 0 to +70 ℃ Tstg Storage Temperature Range 储存温度范围 -65 to +150

常用运算放大器型号及功能

常用运算放大器型号及功能 型号(规格) 功能简介 兼容型号 CA3130 高输入阻抗运算放大器 CA3140 高输入阻抗运算放大器 CD4573 四可编程运算放大器 MC14573 ICL7650 斩波稳零放大器 LF347 带宽四运算放大器 KA347 LF351 BI-FET 单运算放大器 LF353 BI-FET 双运算放大器 LF356 BI-FET 单运算放大器 LF357 BI-FET 单运算放大器 LF398 采样保持放大器 LF411 BI-FET 单运算放大器 LF412 BI-FET 双运放大器 LM124 低功耗四运算放大器(军用档) LM1458 双运算放大器 LM148 四运算放大器 LM224J 低功耗四运算放大器(工业档) LM2902 四运算放大器 LM2904 双运放大器 LM301 运算放大器 LM308 运算放大器 LM308H 运算放大器(金属封装) LM318 高速运算放大器 LM324 四运算放大器 HA17324,/LM324N LM348 四运算放大器 LM358 通用型双运算放大器 HA17358/LM358P LM380 音频功率放大器 LM386-1 音频放大器 NJM386D,UTC386 LM386-3 音频放大器 LM386-4 音频放大器 LM3886 音频大功率放大器 LM3900 四运算放大器 LM725 高精度运算放大器

229 LM733 带宽运算放大器 LM741 通用型运算放大器 HA17741 MC34119 小功率音频放大器 NE5532 高速低噪声双运算放大器 NE5534 高速低噪声单运算放大器 NE592 视频放大器 OP07-CP 精密运算放大器 OP07-DP 精密运算放大器 TBA820M 小功率音频放大器 TL061 BI-FET 单运算放大器 TL062 BI-FET 双运算放大器 TL064 BI-FET 四运算放大器 TL072 BI-FET 双运算放大器 TL074 BI-FET 四运算放大器 TL081 BI-FET 单运算放大器 TL082 BI-FET 双运算放大器 TL084 BI-FET 四运算放大器

新型拓扑结构跨导反馈放大器

新型拓扑结构跨导反馈放大器 摘要:本文将提出一种新的拓扑结构的跨导反馈放大器(TFA)。这种拓扑结构提供的优点在于,它能够实现负的是标准的反相增益表达式。也就是,增益形式为:。我们也将表明,它可以实现标准的反相和同相增益,而同时在每个配置保持接近恒定带宽增益变化。第一个特征是使人们希望的拓扑结构滤波器有广泛的应用,因为TFA可以充当一个积分环节,从而使该放大器实现正面和负面的无损集成。不像以前的TFA配置,这种放大器还可以产生在第一和第四象限内的对数输入。通过实验证实这种放大器具有配置不同的增益,集成和对数的能力,设计的这种芯片采用台积电0.18umCMOS工艺的1.8 V单端电源。该芯片占用面积752.6um*581.2um的新的拓扑结构跨导反馈放大器和常规TFA作组成。这种新型TFA在单位增益配置是有15 MHz的频率带宽。 索引项:电流反馈放大器(CFA),运算放大器,跨导反馈放大器(TFA) 1、引言 在最近已经提出了跨导反馈放大器(TFA)是一个有吸引力的恒定带宽类放大器,如电流反馈放大器(CFAS)[1] - [6]。威尔逊的研究[1],[2]TFA可以认为由一个高增益环节,一个跨导环节和在两者间施加反馈回路组成。跨导级的输出端处的电压缓冲很像一个CFA,如图1(a)所示。需要注意的是有这种缓冲的存在,要确保有分压器作为负载的跨导元件,它产生的反馈电压成正比于跨导元件的输出电流。通过对电流反馈放大器(CFA)的非常规设计证明,即使不采用缓冲结构[7],[8],也等解决在CFA中的低电压问题。练习的重点是证明CFA不能通过常规设计实现。然而,在TFA和CFA之间存在若干不同之处。CFA结构如图1(b)所示。首先,在CFA的恒定带宽的设定是通过调节R2到某个优值实现的,而TFA的恒定带宽是通过调整R1实现的。在这两种情况下,改变R1和R2,TFA和CFA 的增益会分别变化。这两种放大器如图1,配置同相增益。其次,在CFA的闭环增益(LG)定义为[10],而在TFA中,闭环增益定义为[1],其中,,拓扑结构图如图1(a)所示。在图1(b)中,Z是由高输出阻抗的电流控制电流源和节点寄生电

运算放大器构造及原理

万联芯城销售TI,ADI,ST等原装品牌运算放大器IC。全现货库存,提供一站式配套服务,万联芯城,三十年电子元器件销售经验,是您的BOM配单专家,为您节省采购成本。点击进入万联芯城 点击进入万联芯城

运算放大器的工作原理 放大器的作用: 1、能把输入讯号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成。用在通讯、广播、雷达、电视、自动控制等各种装置中。原理:高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出在“低频电子线路”课程中已知,放大器可以按照电流导通角的不同,运算放大器原理 运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等

基于跨导运算放大器的基本网络综合方法

基于跨导运算放大器的基本网络综合方法 以常规电压运算放大器作为有源器件的有源RC滤波器存在以下缺点:工作频率不高,包含大量的无源RC网络,难以单片形成;性能参数一旦确定,不能再利用外部电信号进行调节。采用跨导运算放大器作为有源器件的滤波器则电路简单,可以不含电阻,只包含跨导运算放大器和电容,便于单片集成,高频性能好,可以工作在数十兆至百兆级领域;滤波器参数和跨导运算放大器的增益成线性关系,可以通过外部电信号进行调节。 一跨导运放的基本概念及应用原理 1.1 概述 从网络角度看,电子放大器是一种线性受控源,按照控制量、被控制量是电压还是电流进行划分,存在四种受控源,即人们熟知的电压控制电压源(VCVS),电压控制电流源(VCCS)、电流控制电流源(CCCS)和电流控制电压源(CCVS),与之对应的电子放大器也应该有四种类型,即电压型、跨导型、电流型和跨阻型。这四种放大器的关系是各有所长,各有所用,互相补充,形成一个完整的电子放大器家族。 跨导运算放大器(Operational Transconductance Amplifier,简称OTA)是一种电压输入、电流输出的电子放大器,增益称为跨导(gm)。其符号如图1所示。其中VI+、VI-分别为同向与反向输入电压,输入级的MOS晶体管工作在饱和区,为偏置输入电压,为输出电流: 其中。 图1

为跨导运算放大器跨导增益因子,其值由运算放大器的电路结构、CMOS管的几何尺寸和工艺参数决定。理想跨导放大器的条件是输入和输出电阻无穷大。现在已经有跨导放大器的产品,例如CA3060和 LM13600等等。由于跨导放大器内部只有电压-电流变换级和电流传输级,没有电压增益级,因此没有大幅度电压信号和米勒电容增倍效应,高频性能好,大信号下的转换速率也高,同时电路结构简单,电源电压和功率都比较低,这些高性能特点表明,在跨导放大器的电路中,电流模式部分起关键的作用。 跨导运算放大器的本质是线性电压控制电流源,具有下列特点:(1)输入电压控制输出电流,开环增益是跨导,输入级采 用外偏置方式,改变外偏置电流可以实现增益连续调 节。 (2)外偏置端如果加入数字信号可以起选通作用,实现对 主信号通道的开、关状态。 (3)电路结构简单、频率宽、高频性能好,而且可以灵活 的设计多端输入、多端输出电路。这种元件特别适合 于实现全集成连续时间滤波器。 跨导运算放大器分为双极型和MOS型两种,相对于双极型跨导运算放大器而言,CMOS跨导运算放大器的增益值较低,增益可调范围较小,但它的输入阻抗高、功耗低,容易与其他电路结合实现全CMOS集成系统。 跨导运算放大器的应用非常广泛,主要用途可以分为两方面:一方面,在多种线性和非线性模拟电路和系统中进行信号运算和处理;另一方面,在电压信号变量和电流模式信号处理系统之间作为接口电路,将待处理的电压信号变换为电流信号,再送入电流模式系统进行处理。 1.2 CMOS跨导运算放大器 (一)基本型CMOS跨导运算放大器 图2为基本CMOS跨导运算放大器。其中,M1,M2组成基本源耦差分跨导输入级,完成电压-电流变换;M3、M4是基本的电流镜,传输比为1,将外加偏置电流输送到差动输入级作尾电流,并控制其增益值;M5和M6、M7和M8、M9和M10组成3个基本电流镜,对输入级的差动输出电流移位和导向,以便提供推挽式单端输出电流。

运算放大器组成的比较器

1. 功能及应用:主要用来判断输入信号电位之间的相对大小,它至少有两个输入端及一个输出端,通常用一个输入端接被比较信号U i,另一个则接基准电压V R定门限电压(或称阀值)的U T。输出通常仅且仅有二种可能即高、低二电平的矩形波,应用于模-数转换,波形产生及变换,及越限警等。 2. 运放的工作状态:开环和正反馈应用:运放在线性运用时,由于开环增益一般在105以上,所以其对应的输入的线性范围很小,U i数量级,为了拓宽其线性范围就必须引入负反馈,降低其开环增益。而比较器则希望其输入的线性范围越小越好(即比较灵敏度越高)采用开环或使开环增益更高的正反馈应用。在这儿有必要重复展现运放开环电压传输特性。见图8.2.1,请注意横、纵坐标标度的不同 (1) 从途中可化称 (2) 若U i发出变化,使Uo从负波饱和值突变到正饱和值,只在经过极窄的线性区 时,才遵循在线性工作时才特有的“虚短”,其它时刻“虚短”不复存在。 (3) 若横坐标采用与纵坐标相同的标尺,则线性部分特性与纵轴合拢。 (4) 若用正反馈使Aod↑,则可缩短状态的转换时间。 3. 分类: (1) 单限比较器

(2) 迟滞比较器(Schmitt) (3) 双限比较器(窗口比较器) 二. 单限比较器 1. U i与U R分别接运放两输入端的开环串接比较器,见图8. 2.2 ΔU i>U R Uo=+Uom ΔU i

运算放大器的工作原理

运算放大s得工作原理 放大器得作用:仁能把输入讯号得电压或功率放人得装置,由电了管或晶体管■电源变压器与其她电器元件组成。用在通讯、广播.需达、电视、自动控制等各种装置中。原理:高频功率放人器用于发射机得末级,作用就是将高频已调波信号进行功率放大,以满足发送功率得炎求,然后经过天线将其辐射到空间,保证在?定区域内得接收机可以接收到满意得信号 电平,并且不干扰相邻信道得通信。高频功率放大器就是通信系统中发送装置得重要组件。 按其工作频带得宽窄划分为窄带简频功率放人器与宽带高频功率放人器两种,窄带周频功率放人器通常以具有选频滤波作用得选频电路作为输出回路,故又称为调谐功率放人器或谐振功率放人器:宽带简频功率放人器得输出电路则就是传输线变圧器或其她宽带匹配电路,W此又称为非调谐功率放大器?高频功率放人能就是?种能量转换器件,它将电源供给得直流能量转换成为高频交流输出在“低频电r 线路噪程中己知倣人器可以按照电流导通角得不同, 运算放人器原理 运算放人器(Op e r atio n a 1 AmpI i Pier-简称OP、OPA、OPAMP)就是?种直 流耦合,差模(差动模式)输入、通常为单端输出(D 1 ffere ntial—in, sing 1 e—ended o utput)得高增益(gain)电压放人器阴为刚开始主耍用于加法,乘法等运算电路中? W而得名??个理想得运算放大器必须具备下列特性:无限人得输入阻抗.等于零得输出阻抗、无限人得开回路 增益、无限大得共模計#斥比得部分.无限人得频宽。最基本得运算放人器如图1-1- 一个运算放人器模组?般包括?个正输入端(OP_P〉、?个负输入端(OP_N〉与?个输出端(0 P_0)。 图1?1 通常使用运算放大器时,会将其输出端与其反相输入端(inverting input node )连接,形成一负反馈(negative feedback)组态。原因就是运算放人器得电压増益非常大,范 圉从数百至数万倍不等,使用负反馈方可保证电路得稳定运作。但就是这并不代衣运算放人器不能连接成正回馈(positive f e edbac k ),相反地,在很多需要产生震荡讯号得系统中,正回馈组态得运算放大器就是很常见得组成元件。 开环回路

运算放大器

运算放大器 绪论 运算放大器是电压控制型电压源模型,其增益(放大倍数)非常大。运算放大器有5个端子、4个端口的有源器件。其符号和内部结构如图1所示: 图1 运算放大器模型和内部结构图 图中电压VCC和VEE是由外部电源提供,通常决定运算放大器的输出电压等级。符号“+”和“—”分别表示同相和反相。输入电压Vp和Vn以及输出电压Vo都是对地电压。 运算放大器的五个接线端构成了一个广义节点,如果电流按照图1所示定义,根据KCL (基尔霍夫电流定律)有如下公式: 因此,为了保持电流平衡,我们必须将所有电流都包括进来,这是根据有源器件的定义得出的。如果我们仅仅考虑输入和输出电流来列出KCL,则等式不成立,即: 运算放大器的等效电路模型如图2所示。电压Vi是输入电压Vp和Vn的差值即Vi=Vp -Vn。Ri是放大器的输入电阻,Ro是输出电阻。放大参数A称为开环增益。

运算放大器的开环结构定义为:运算放大器的结构中不包括将输入和输出端连接起来的回路。 图2 运算放大器的等效电路模型 如果输出端不接任何负载,输出电压为: 该公式说明,输出电压Vo是与输入电压Vp和Vn之差的函数。因此可以说该运算放大器是差值放大器。 大多数实际的运算放大器的开环放大倍数是非常大的。例如,比较常用的741型运算放大器,它的放大倍数为200000Vo/Vi,甚至一些运算放大器的放大倍数达到108 Vo/Vi。 反映输入电压和输出电压关系的曲线称为电压传输特性,而且该曲线是放大器电路设计和分析的基础。运算放大器的电压传输曲线如图3所示: 图3 电压传输特性曲线

注意:该曲线有2个变化区域,一个为在Vi=0V附近时,输出电压和输入电压成正比例放大,称之为线性区域;另一个为Vo随Vi改变而不变的区域,称之为饱和区(或非线性区)。 可以通过设计让运算放大电路工作在上述的2个区域。在线性区域Vo和Vi直线的斜率是非常大的,实际上,它与开环放大倍数A相等。例如,741运算放大器正负电源电压为VCC=+10V,VEE=-10V,Vo的饱和值(最大输出电压)一般在±10 V,而当A=200000 Vo/Vi 时,可以算出输入的电压非常小:10/200,000 = 50μV。

第5章运算放大电路答案

习题答案 5.1 在题图5.1所示的电路中,已知晶体管V 1、V 2的特性相同,V U on BE 7.0,20)(==β。求 1CQ I 、1CEQ U 、2CQ I 和2CEQ U 。 解:由图5.1可知: BQ CQ BQ )on (BE CC I I R R I U U 213 1 1+=--即 11CQ11.01.4 2.7k 20I -7V .0-V 10CQ CQ I I k +=Ω Ω ? 由上式可解得1CQ I mA 2≈ 2CQ I mA I CQ 21== 而 1CEQ U =0.98V 4.1V 0.2)(2-V 1031=?+=+-R )I I (U BQ CQ CC 2CEQ U =5V 2.5V 2-V 1042=?=-R I U CQ CC 5.2 电路如题图5.2所示,试求各支路电流值。设各晶体管701.U ,)on (BE =>>βV 。 U CC (10V) V 1 R 3 题图5.1

解:图5.2是具有基极补偿的多电流源电路。先求参考电流R I , ()815 17 0266..I R =+?---=(mA ) 则 8.15==R I I (mA ) 9.0105 3== R I I (mA ) 5.425 4==R I I (mA ) 5.3 差放电路如题图5.3所示。设各管特性一致,V U on BE 7.0)(=。试问当R 为何值时,可满足图中所要求的电流关系? 解: 53010 7 0643..I I C C =-==(mA ) 则 I 56V 题图 5.2 R U o 题图5.3

2702 1 476521.I I I I I I C C C C C C == ==== mA 即 2707 065.R .I C =-= (mA ) 所以 61927 07 06...R =-= (k Ω) 5.4 对称差动放大电路如题图5.1所示。已知晶体管1T 和2T 的50=β,并设 U BE (on )=0.7V,r bb ’=0,r ce =。 (1)求V 1和V 2的静态集电极电流I CQ 、U CQ 和晶体管的输入电阻r b’e 。 (2)求双端输出时的差模电压增益A ud ,差模输入电阻R id 和差模输出电阻R od 。 (3)若R L 接V 2集电极的一端改接地时,求差模电压增益A ud (单),共模电压增益A uc 和共模抑制比K CMR ,任一输入端输入的共模输入电阻R ic ,任一输出端呈现的共模输出电阻R oc 。 (4) 确定电路最大输入共模电压围。 解:(1)因为电路对称,所以 mA ...R R .U I I I B E EE EE Q C Q C 52050 21527 062270221=+?-=+?-== = + V 1 V 2 + U CC u i1 u i2R C 5.1k ΩR L U o 5.1kΩ R C 5.1k Ω R E 5.1k Ω -6V R B 2k Ω 题图5.1 R B 2k Ω + - R L /2 + 2U od /2 + U id /2 R C R B V 1 (b) + U ic R C R B V 1 (c) 2R EE + U

折叠式共源-共栅运算跨导放大器的设计

《IC课程设计》报告 折叠式共源-共栅运算跨导放大器的设计 姓名:王志伟 学号:U200713959 班级:0707 院系:控制系 专业:自动化 同组人姓名:田绍宇胡月

目录 1设计目标 (1) 2相关背景知识 (2) 3设计过程 (2) 3.1 电路结构设计 (2) 3.2 主要电路参数的手工推导 (2) 3.2.1直流工作点分析 (2) 3.2.2带宽分析及原件参数计算 (3) 3.2.3直流增益的小信号模型分析 (4) 3.3 计算参数验证 (5) 4电路仿真 (5) 4.1交流特性仿真 (7) 4.2最大输出摆幅仿真 (9) 4.3共模输出的仿真验证 (11) 5讨论 (12) 6收获和建议 (13) 7参考文献 (14)

摘要:折叠式共源共栅结构的运算放大器不仅能提高增益、增加电源电压噪声抑制比、而且在输出端允许自补偿。 1设计目标 设计一款折叠式共源-共栅跨导运算放大器(Design a Folded Cascode OTA),其设计指标见表1,参考电路原理图如下图所示,用0.35um coms工艺。 图:折叠式共源-共栅跨导运算放大器 设计步骤与要点: 1.直流工作点的分析与设计(DC operation point design and analysis) 1) 假设所有的MOS管均工作在饱和区,VGS-VT=200mV,VDD=3V, VSS= 0V,计算OTA的最大输出摆幅。 2) 基于0.35 um CMOS工艺,计算和设计MOS管的尺寸,使OTA电路满 足最大输出摆幅的要求。 3) 以下数据可供设计参考 L1,2,3,4 = Lmin; Lmin= 1μm。 2.在HSpice电路仿真软件,对所设计的电路进行模拟仿真与设计

运算放大器工作原理、分类及特点介绍

运算放大器工作原理、分类及特点介绍 1.模拟运放的分类及特点 模拟运算放大器从诞生至今,已有40多年的历史了。最早的工艺是采用硅NPN工艺,后来改进为硅NPN-PNP工艺(后面称为标准硅工艺)。在结型场效应管技术成熟后,又进一步的加入了结型场效应管工艺。当MOS管技术成熟后,特别是CMOS技术成熟后,模拟运算放大器有了质的飞跃,一方面解决了低功耗的问题,另一方面通过混合模拟与数字电路技术,解决了直流小信号直接处理的难题。 经过多年的发展,模拟运算放大器技术已经很成熟,性能曰臻完善,品种极多。这使得初学者选用时不知如何是好。为了便于初学者选用,本文对集成模拟运算放大器采用工艺分类法和功能/性能分类分类法等两种分类方法,便于读者理解,可能与通常的分类方法有所不同。 1.1.根据制造工艺分类 根据制造工艺,目前在使用中的集成模拟运算放大器可以分为标准硅工艺运算放大器、在标准硅工艺中加入了结型场效应管工艺的运算放大器、在标准硅工艺中加入了MOS工艺的运算放大器。按照工艺分类,是为了便于初学者了解加工工艺对集成模拟运算放大器性能的影响,快速掌握运放的特点。 标准硅工艺的集成模拟运算放大器的特点是开环输入阻抗低,输入噪声低、增益稍低、成本低,精度不太高,功耗较高。这是由于标准硅工艺的集成模拟运算放大器内部全部采用NPN-PNP管,它们是电流型器件,输入阻抗低,输入噪声低、增益低、功耗高的特点,即使输入级采用多种技术改进,在兼顾起啊挺能的前提下仍然无法摆脱输入阻抗低的问题,典型开环输入阻抗在1M欧姆数量级。为了顾及频率特性,中间增益级不能过多,使得总增益偏小,一般在80~110dB之间。标准硅工艺可以结合激光修正技术,使集成模拟运算放大器的精度大大提高,温度漂移指标目前可以达到0.15ppm。通过变更标准硅工艺,可以设计出通用运放和高速运放。典型代表是LM324。 在标准硅工艺中加入了结型场效应管工艺的运算放大器主要是将标准硅工艺的集成模拟运算放大器的输入级改进为结型场效应管,大大提高运放的开环输入阻抗,顺带提高通用运放的转换速度,其它与标准硅工艺的集成模拟运算放大器类似。典型开环输入阻抗在1000M欧姆数量级。典型代表是TL084。 在标准硅工艺中加入了MOS场效应管工艺的运算放大器分为三类,一类是是将标准硅工艺的集成模拟运算放大器的输入级改进为MOS场效应管,比结型场效应管大大提高运放的开环输入阻抗,顺带提高通用运放的转换速度,其它与标准硅工艺的集成模拟运算放大器类似。典型开环输入阻抗在10^12欧姆数量级。典型代表是CA3140。 第二类是采用全MOS场效应管工艺的模拟运算放大器,它大大降低了功耗,但是电源电压降低,功耗大大降低,它的典型开环输入阻抗在10^12欧姆数量级。 第三类是采用全MOS场效应管工艺的模拟数字混合运算放大器,采用所谓斩波稳零技术,主要用于改善直流信号的处理精度,输入失调电压可以达到0.01uV,温度漂移指标目前可以达到0.02ppm。在处理直流信号方面接近理想运放特性。它的典型开环输入阻抗在10^12欧姆数量级。典型产品是ICL7650。1.2.按照功能/性能分类 按照功能/性能分类,模拟运算放大器一般可分为通用运放、低功耗运放、精密运放、高输入阻抗运放、高速运放、宽带运放、高压运放,另外还有一些特殊运放,例如程控运放、电流运放、电压跟随器等等。实际上由于为了满足应用需要,运放种类极多。本文以上述简单分类法为准。 需要说明的是,随着技术的进步,上述分类的门槛一直在变化。例如以前的LM108最初是归入精密

通用四运放的原理LM324

通用四运放的原理与应用(LM324为例) 本文就高性能集成四运放LM324的参数,进行实用电路设计,论述电路原理。 LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。它的内部包含四组形式完全相同的运算放大器, 除电源共用外,四组运放相互独立。每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。LM324的引脚排列见图2 由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。下面介绍其应用实例。 LM324作反相交流放大器 电路见附图。此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。电路无需调试。放大器采用单电源供电, 由R1、R2组成1/2V+偏置,C1是消振电容。 放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。负号表示输出信号与输入信号相位相反。按图中所给数值, Av=-10。此电路输入电阻为Ri。一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf。Co和Ci为耦合电容。 LM324作同相交流放大器

见附图。同相交流放大器的特点是输入阻抗高。其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。R4的阻值范围为几千欧姆到几十千欧姆。 LM324作交流信号三分配放大器 此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。而对信号源的影响极小。因运放Ai输入电阻高,运放A1-A4均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0的情况,故各放大器电压放大倍数均为1,与分立元件组成的射极跟随器作用相同。 R1、R2组成1/2V+偏置,静态时A1输出端电压为1/2V+,故运放A2-A4输出端亦为1/2V+,通过输入输出电容的隔直作用,取出交流信号,形成三路分配输出。 LM324作有源带通滤波器 许多音响装置的频谱分析器均使用此电路作为带通滤波器,以选出各个不同频段的信号,在显示上利用发光二极管点亮的 多少来指示出信号幅度的大小。这种有源带通滤波器的中心频率,在中心频率fo处的电压增益Ao=B3/2B1,品质因数,3dB带宽B=1/(п*R3*C)也可根据设计确定的Q、fo、Ao值,去求出带通滤波器的各元件参数值。R1=Q/(2пfoAoC),R2=Q/((2Q2-Ao)*2пfoC),R3=2Q/(2пfoC)。上式中,当fo=1KHz时,C取0.01Uf。此电路亦可用于一般的选频放大。

常用运算放大器电路 (全集)

常用运算放大器电路(全集) 下面是[常用运算放大器电路(全集)]的电路图 常用OP电路类型如下: 1. Inverter Amp. 反相位放大电路: 放大倍数为Av = R2 / R1但是需考虑规格之Gain-Bandwidth数值。R3 = R4 提供1 / 2 电源偏压 C3 为电源去耦合滤波 C1, C2 输入及输出端隔直流 此时输出端信号相位与输入端相反 2. Non-inverter Amp. 同相位放大电路: 放大倍数为Av=R2 / R1 R3 = R4提供1 / 2电源偏压 C1, C2, C3 为隔直流

此时输出端信号相位与输入端相同 3. Voltage follower 缓冲放大电路: O/P输出端电位与I/P输入端电位相同 单双电源皆可工作 4. Comparator比较器电路: I/P 电压高于Ref时O/P输出端为Logic低电位 I/P 电压低于Ref时O/P输出端为Logic高电位 R2 = 100 * R1 用以消除Hysteresis状态, 即为强化O/P输出端, Logic高低电位差距,以提高比较器的灵敏度. (R1=10 K, R2=1 M) 单双电源皆可工作 5. Square-wave oscillator 方块波震荡电路: R2 = R3 = R4 = 100 K R1 = 100 K, C1 = 0.01 uF

Freq = 1 /(2π* R1 * C1) 6. Pulse generator脉波产生器电路: R2 = R3 = R4 = 100 K R1 = 30 K, C1 = 0.01 uF, R5 = 150 K O/P输出端On Cycle = 1 /(2π* R5 * C1) O/P输出端Off Cycle =1 /(2π* R1 * C1) 7. Active low-pass filter 主动低通滤波器电路: R1 = R2 = 16 K R3 = R4 = 100 K C1 = C2 = 0.01 uF 放大倍数Av = R4 / (R3+R4) Freq = 1 KHz 8. Active band-pass filter 主动带通滤波器电路:

跨导运算放大器及其Spice电路模型的构建

2.1 CMOS模拟集成电路基本单元 2.1.1 MOS场效应管的基本结构 绝缘栅场效应管又叫作MOS场效应管,意为金属-氧化物-半导体场效应管。图2.1为MOS场效应管的结构和电路符号。图中的N型硅衬底是杂质浓度低的N型硅薄片。在它上面再制作两个相距很近的P区,分别引为漏极和源极,而由金属铝构成的栅极则是通过二氧化硅绝缘层与N型衬底及P型区隔离。这也是绝缘栅MOS场效应管名称的由来。因为栅极与其它电极隔离,所以栅极是利用感应电荷的多少来改变导电沟道去控制漏源电流的。MOS场效应管的导电沟道由半导体表面场效应形成。栅极加有负电压,而N型衬底加有正电压。由于铝栅极和N型衬底间电场的作用,使绝缘层下面的N型衬底表面的电子被排斥,而带正电的空穴被吸引到表面上来。于是在N型衬底的表面薄层形成空穴型号的P型层,称为反型层,它把漏源两极的P区连接起来,构成漏源间的导电沟道。沟道的宽窄由电场强弱控制。MOS场效应管的栅极与源极绝缘,基本不存在栅极电流,输入电阻非常高。[20,21] 图2.1MOS场效应管的结构和电路符号 Fig.2.1 Structure and circuit symbol that MOS Field-Effect Transistor 场效应管有P型和N型之分。这里的P型或N型,指的是导电沟道是P型还是N 型,即导电沟道中是空穴导电还是电子导电。因为场效应管中只有一种载流子参加导电,所以又常称为“单极型晶体管”。P型沟道和N型沟道的MOS场效应管又各分为“耗尽型”和“增强型”两种。耗尽型指栅极电压为零时,就存在导电沟道,漏源中间有一定电流。增强型MOS场效应管,则只有在栅极电压大于零的情况下,才存在导电沟道。 2.1.2 MOS场效应管的模型化 MOS管的大信号(直流)特性可以用它的电流方程来描述。以N沟道增强型MOS

运算放大器应用电路的设计与制作

运算放大器应用电路的设计与制作 运算放大器 1.原理 运算放大器是目前应用最广泛的一种器件,当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 运算放大器一般由4个部分组成,偏置电路,输入级,中间级,输出级。 图1运算放大器的特性曲线 图2运算放大器输入输出端图示 图1是运算放大器的特性曲线,一般用到的只是曲线中的线性部分。如图2所示。U -对应的端子为“-”,当输入U -单独加于该端子时,输出电压与输入电压U -反相,故称它为反相输入端。U +对应的端子为“+”,当输入U +单独由该端加入时,输出电压与U +同相,故称它为同相输入端。 输出:U 0= A(U +-U -) ; A 称为运算放大器的开环增益(开环电压放大倍数)。 在实际运用经常将运放理想化,这是由于一般说来,运放的输入电阻很大,开环增益也很大,输出电阻很小,可以将之视为理想化的,这样就能得到:开环电压增益A ud =∞;输入阻抗r i =∞;输出阻抗r o =0;带宽f BW =∞;失调与漂移均为零等理想化参数。 理想运放在线性应用时的两个重要特性 输出电压U O 与输入电压之间满足关系式:U O =A ud (U +-U -),由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。即U +≈U -,称为“虚短”。 由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”,这说明运放对其前级吸取电流极小。

上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 运算放大器的应用 (1)比例电路 所谓的比例电路就是将输入信号按比例放大的电路,比例电路又分为反向比例电路、同相比例电路、差动比例电路。 (a) 反向比例电路 反向比例电路如图3所示,输入信号加入反相输入端: 图3反向比例电路电路图 对于理想运放,该电路的输出电压与输入电压之间的关系为: 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻 R ’=R 1 // R F 。 输出电压U 0与输入电压U i 称比例关系,方向相反,改变比例系数,即改变两个电阻的阻值就可以改变输出电压的值。反向比例电路对于输入信号的负载能力有一定的要求。 (b) 同向比例电路 同向比例电路如图4所示,跟反向比例电路本质上差不多,除了同向接地的一段是反向输入端: 图4 同相比例电路电路图 i 1 f O U R R U -=

相关文档