文档库 最新最全的文档下载
当前位置:文档库 › 图的矩阵表示及习题-答案汇总

图的矩阵表示及习题-答案汇总

图的矩阵表示及习题-答案汇总
图的矩阵表示及习题-答案汇总

177

图的矩阵表示

图是用三重组定义的,可以用图形表示。此外,还可以用矩阵表示。使用矩阵表示图,有利于用代数的方法研究图的性质,也有利于使用计算机对图进行处理。矩阵是研究图的重要工具之一。本节主要讨论无向图和有向图的邻接矩阵、有向图的可达性矩阵、无向图的连通矩阵、无向图和有向图的完全关联矩阵。

定义9.4.1 设 G =是一个简单图,V =?v 1,v 2,…,v n ? A (G )=(ij a ) n ×n

其中:

1j i v v v v a j i j i ij =???=无边或到有边到

i ,j =1,…,n

称A (G )为G 的邻接矩阵。简记为A 。

例如图9.22的邻接矩阵为:

??????

?

?

?=011110101101

1010)(G A 又如图9.23(a)的邻接矩阵为:

??????

?

?

?=0001101111000010

)(G A 由定义和以上两个例子容易看出邻接矩阵具有以下性质:

①邻接矩阵的元素全是0或1。这样的矩阵叫布尔矩阵。邻接矩阵是布尔矩阵。 ②无向图的邻接矩阵是对称阵,有向图的邻接矩阵不一定是对称阵。

178

③邻接矩阵与结点在图中标定次序有关。例如图9.23(a)的邻接矩阵是A (G ),若将图9.23(a)中的接点v 1和v 2的标定次序调换,得到图9.23(b),图9.23(b)的邻接矩阵是A ′(G )。

??????

?

?

?='001010110001

1100)(G A 考察A (G )和A ′(G )发现,先将A (G )的第一行与第二行对调,再将第一列与第二列对调可

得到A ′(G )。称A ′(G )与A (G )是置换等价的。

一般地说,把n 阶方阵A 的某些行对调,再把相应的列做同样的对调,得到一个新的n 阶方阵A ′,则称A ′与A 是置换等价的。可以证明置换等价是n 阶布尔方阵集合上的等价关系。

虽然,对于同一个图,由于结点的标定次序不同,而得到不同的邻接矩阵,但是这些邻接矩阵是置换等价的。今后略去结点标定次序的任意性,取任意一个邻接矩阵表示该图。

④对有向图来说,邻接矩阵A (G )的第i 行1的个数是v i 的出度, 第j 列1的个数是v j

的入度。

⑤零图的邻接矩阵的元素全为零,叫做零矩阵。反过来,如果一个图的邻接矩阵是零矩阵,则此图一定是零图。

设G =为有向图,V =?v 1,v 2,…,v n ?,邻接矩阵为A =(a ij )n ×n 若a ij =1,由邻接矩阵的定义知,v i 到v j 有一条边,即v i 到v j 有一条长度为1的路;若a ij =0,则v i 到v j 无边,即v i 到v j 无长度为1的路。故a ij 表示从v i 到v j 长度为1的路的条数。

设A 2=AA ,A 2=(2

ij a )n ×n ,按照矩阵乘法的定义,

nj in j i j i ij a a a a a a a +++= 22112

若a ik a kj =1,则a ik =1且a kj =1,v i 到v k 有边且v k 到v j 有边,从而v i 到v j 通过v k 有一条长

度为2的路;若 kj ik a a =0,则a ik =0或a kj =0,v i 到v k 无边或v k 到v j 无边,因而v i 到v j 通过

v k 无长度为2的路,k =1,…,n 。故2

ij a 表示从v i 到v j 长度为2的路的条数。

设A 3=AA 2,A 3=(3

ij a ) n ×n ,按照矩阵乘法的定义, 22222113nj in j i j i ij a a a a a a a +++=

若2kj ik a a ≠0,则ik a =1且2kj a ≠0,v i 到v k 有边且v k 到v j 有路,由于2kj a 是v k 到v j 长度为2

的路的条数,因而2kj ik a a 表示v i 到v j 通过v k 长度为3的路的条数;若2kj ik a a =0,

ik a =0或2kj a =0,

则v i 到v k 无边或v k 到v j 无长度为2的路,所以v i 到v j 通过v k 无路,k =1,…,n 。故3

ij a 表示从v i 到v j 长度为3的路的条数。

……

可以证明,这个结论对无向图也成立。因此有下列定理成立。

定理9.4.1 设A (G )是图G 的邻接矩阵,A (G )k =A (G )A (G )k-1,A (G )k 的第i 行,第j 列元素

k ij a 等于从v i 到v j 长度为k 的路的条数。其中k ii a 为v i 到自身长度为k 的回路数。

推论 设G =是n 阶简单有向图,A 是有向图G 的邻接矩阵,B k =A +A 2+…+A k ,

179

B k =(k ij b )n ×n ,则k ij b 是G 中由v i 到v j 长度小于等于k 的路的条数。∑∑==n i n

j k

ij b 11

是G 中长度小于

等于k 的路的总条数。∑=n

i k

ii

b 1是G 中长度小于等于k 的回路数。 【例9.4】 设G =为简单有向图,图形如图9.24,写出G 的邻接矩阵A ,算出A 2,A 3,A 4且确定v 1到v 2有多少条长度为3的路? v 1到v 3有多少条长度为2的路? v 2到自身长

度为3和长度为4的回路各多少条?

解:邻接矩阵A 和A 2,A 3,A 4如下: ??

?????? ??=01000

1000000010

0010100010A ????????

??=10000010000010100020001

012A ??

?????? ??=01

000

1000000020

00202000203A ???????

?

??=1000

0010000020200040002024A 3

12a =2,所以v 1到v 2长度为3的路有2条,它们分别是:v 1v 2v 1v 2和v 1v 2v 3v 2。 2

13a =1,所以v 1到v 3长度为2的路有1条:v 1v 2v 3。 3

22a =0,v 2到自身无长度为3的回路。 4

22

a =4,v 2到自身有4条长度为4的回路,它们分别是:v 2v 1v 2v 1v 2、v 2v 3v 2v 3v 2、v 2v 3v 2v 1v 2和v 2v 1v 2v 3v 2。

定义9.4.2 设G =是简单有向图,V =?v 1,v 2,…,v n ? P (G )=(p ij )n ×n

其中:p ij

=不可达

到可达到 j i j i

v v v v 0

1???

i ,j =1,…,n

称P (G )为G 的可达性矩阵。简记为P 。

在定义9.3.10中,规定了有向图的任何结点自己和自己可达。所以可达性矩阵P (G )的主对角线元素全为1。

设G =是n 阶简单有向图,V =?v 1,v 2,…,v n ?,由可达性矩阵的定义知,当i ≠j 时,如果v i 到v j 有路,则ij p =1;如果v i 到v j 无路,则ij p =0;又由定理9.2.1知,如果v i 到v j 有路,则必存在长度小于等于n –1的路。依据定理9.4.1的推论,如下计算图G 的可达性矩阵P :

先计算B n –1=A +A 2+…+A n –1,设B n –1=(1-n ij b )n ×n 。若1-n ij b ≠0,则令ij p =1,若1

-n ij b =0,则令p ij =0,i ,j =1,…,n 。

180

再令p ii =1,i =1,…,n 。就得到了图G 的可达性矩阵P 。 令A 0为n 阶单位阵,则上述算法也可以改进为:

计算C n –1= A 0+B n –1=A 0+A +A 2+…+A n -1,设C n –1=(1

-n ij c )n ×n 。

若1-n ij c ≠0,则令ij p =1,若1-n ij c =0,则令ij p =0,i ,j =1,…,n 。 使用上述方法,计算例9.4中图G 的可达性矩阵,

C 4= A 0+A +A 2+A 3+A 4=??

?????? ??310001300000433

00373

00334 P =?

?

?

???

?

?

??110001100000111

0011100111

计算简单有向图图G 的可达性矩阵P ,还可以用下述方法:

设A 是G 的邻接矩阵,令A =(ij a )n ×n ,A (k ) =()

(k ij a )n ×n ,A 0为n 阶单位阵。

A (2) = A A , 其中)2(ij a =(a i 1∧a 1j )∨(a i 2∧a 2j )∧…∧(a in ∧a nj ) i ,j =1,…,n 。 A (3) = A A (2),其中=)3(ij a (a i 1∧)2(1j a )∨(a i 2∧)2(2j a )∧…∧(a in ∧)2(nj a ) i ,j =1,…,n 。

……

P = A 0∨A ∨A (2)∨A (3)∨…∨A (n –1)。 其中,运算∨是矩阵对应元素的析取。

可达性矩阵用来描述有向图的一个结点到另一个结点是否有路,即是否可达。无向图也可以用矩阵描述一个结点到另一个结点是否有路。在无向图中,如果结点之间有路,称这两个结点连通,不叫可达。所以把描述一个结点到另一个结点是否有路的矩阵叫连通矩阵,而不叫可达性矩阵。下面是无向图连通矩阵的定义。

定义9.4.3 设G =是简单无向图,V =?v 1,v 2,…,v n ?

P (G )=( p ij ) n ×n

其中: 01

不连通与连通与 j i j i ij v v v v p ?

?

?= i ,j =1,…,n

称P (G )为G 的连通矩阵。简记为P 。

无向图的邻接矩阵是对称阵,无向图的连通矩阵也是对称阵。求连通矩阵的方法与可达性矩阵类似。

定义9.4.4 设G =是无向图,V =?v 1,v 2,…,v p ?,E =?e 1,e 2,…,e q ?

M (G )=( m ij ) p ×q

其中:

1否则关联与

j i

ij e v m ???=

i =1,…,p ,j =1,…,q

称M (G )为无向图G 的完全关联矩阵。简记为M 。

例如图9.25的完全关联矩阵为:

181

M (G )=??

?

?

?

?

?

?

?100011000011

0111

设G =是无向图,G 的完全关联矩阵M (G )有以下的性质:

①每列元素之和均为2。这说明每条边关联两个结点。

②每行元素之和是对应结点的度数。

③所有元素之和是图中各结点度数的总和,也是边数的2倍。 ④两列相同,则对应的两个边是平行边。

⑤某行元素全为零,则对应结点为孤立点。

定义9.4.5 设G =是有向图,V =?v 1,v 2,…,v p ?,E =?e 1,e 2,…,e q ?

M (G )=( m ij ) p ×q

其中:不关联与的终点是的始点是

j i j i j i ij e v e v e v m ??

?

??-=011

i =1,…,p ,j =1,…,q

称M (G )为有向图G 的完全关联矩阵。简记为M 。 图9.26的完全关联矩阵为:

M (G )=????

??

? ??-----11100110000011100011

设G =是有向图,G 的完全关联矩阵M (G )有以下的性质:

①每列有一个1和一个-1,这说明每条有向边有一个始点和一个终点。

②每行1的个数是对应结点的出度,-1的个数是对应结点的入度。

③所有元素之和是0,这说明所有结点出度的和等于所有结点入度的和。 ④两列相同,则对应的两边是平行边。

习 题 9.4

1.设G =是一个简单有向图,V =?v 1, v 2, v 3, v 4?,邻接矩阵如下:

A (G )=??

?

?

?

?

?

?

?0011101111000010

⑴ 求v 1的出度deg +

(v 1)。

182

⑵ 求v 4的入度deg -

(v 4)。

⑶ 由v 1到v 4长度为2的路有几条? 解:(1)deg +

(v 1)=1;(2)deg -

(v 4)=2;

(3)

????

??

?

?

?=11

10112110221100

2A ,所以由v 1到v 4长度为2的路有1条。 2.有向图G 如图9.27所示。 ⑴ 写出G 的邻接矩阵。

⑵ 根据邻接矩阵求各结点的出度和入度。

⑶ 求G 中长度为3的路的总数,其中有多少条回路。 ⑷ 求G 的可达性矩阵。 ⑸ 求G 的完全关联矩阵。

⑹ 由完全关联矩阵求各结点的出度和入度。

解:(1)??????

? ?

?=00

01010

0001

0110

A ; (2)deg +

(v 1)=2;deg +

(v 2)=1;deg +

(v 3)=2;deg +

(v 4)=0;

deg -

(v 1)=1;deg -

(v 2)=2;deg -

(v 3)=1;deg -

(v 4)=1;

(3)????

??

? ?

?=00

000110

10110111

3

A ,所以G 中长度为3的路的总数是8条,其中有3条回路; (4)+??????? ??+???????

??=++=00

0000

1011010

1100

0010100001

011

3213

A A A B

??????

? ??000

0011

0101101

11= ??????

? ?

?000

0112111221232

183

??????? ??=???????

?

?+=10

012211132123300

0011211122

123203

A C 所以G 的可达性矩阵为??????

?

?

?=10

0011111111

1111

P ; (5)G 的完全关联矩阵为?????

?

? ??-----=1000011100

0101

100111)(G M (6)deg +(v 1)=2;deg +(v 2)=1;deg +(v 3)=2;deg +(v 4)=0;

deg -

(v 1)=1;deg -

(v 2)=2;deg -

(v 3)=1;deg -

(v 4)=1。 3.无向图G 如图9.28所示。 ⑴ 写出G 的邻接矩阵。

⑵ 根据邻接矩阵求各结点的度数。

⑶ 求G 中长度为3的路的总数,其中有多少条回路。 ⑷ 求G 的连通矩阵。 ⑸ 求G 的完全关联矩阵。

⑹ 由完全关联矩阵求各结点的度数。

(1)??????

?

?

?=00

1100111101

1110

A ; (2)deg(v 1)=3;deg(v 2)=3;deg(v 3)=2;deg(v 4)=3;

(3)????

??

? ?

?=22

552255

55455554

3

A ,所以G 中长度为3的路共有66条,有12条回路;

184

(4)+??????? ??+???????

??=++=22

1

12211113211

2300

1100111101

11103213

A A A B

??????

?

??22

5

52255554555

54= ??????

? ?

?447

7447777787787

??????? ?

?=+=54

77457777887788

3

03B A C 所以G 的连通矩阵为???????

?

?=111111111111

1111

P ; (5)G 的完全关联矩阵为??????

?

?

?=010101010011001

00111)(G M (6)deg(v 1)=3;deg(v 2)=3;deg(v 3)=2;deg(v 4)=3。

4.设G =是一个简单有向图,V =?v 1, v 2,…, v n ?, P =(p ij )n ×n 是图G 的可达性矩阵, P T =(ij

p ')n ×n 是P 的转置矩阵。易知, p ij =1表示v i 到v j 是可达的;ij

p '=p ji =1表示v j 到v i 是可达的。因此p ij ∧ij p '=1时,v i 和v j 是互相可达的。由此可求得图G 的强分图。例如图G 的可达性矩阵P 为:

P =???????? ??11

100

11100111001111011101

P T =??

?????? ??1111111111111110001000001 P ∧P T =?

?

?

???

?

?

??111001110011100

0001000001

其中:P ∧P T 定义为,矩阵P 和矩阵P T 的对应元素的合取。 由此可知由?v 1?,?v 2?,?v 3, v 4, v 5?导出的子图是G 的强分图。

185

试用这种办法求图9.27的所有强分图。

解:由第2题的第(4)问知G 的可达性矩阵为??????

? ?

?=10

001111

1111

111

1P ; 故P 的转置矩阵为????

??

? ??=11

1101110111011

1T

P ,从而有 ??????

? ?

?=∧100

0011101110111

T

P P 由此可知由?v 1, v 2, v 3?,?v 4?导出的子图是G 的强分图。

图的矩阵表示及习题-答案讲解

177 图的矩阵表示 图是用三重组定义的,可以用图形表示。此外,还可以用矩阵表示。使用矩阵表示图,有利于用代数的方法研究图的性质,也有利于使用计算机对图进行处理。矩阵是研究图的重要工具之一。本节主要讨论无向图和有向图的邻接矩阵、有向图的可达性矩阵、无向图的连通矩阵、无向图和有向图的完全关联矩阵。 定义9.4.1 设 G =是一个简单图,V =?v 1,v 2,…,v n ? A (G )=(ij a ) n ×n 其中: 1j i v v v v a j i j i ij =???=无边或到有边到 i ,j =1,…,n 称A (G )为G 的邻接矩阵。简记为A 。 例如图9.22的邻接矩阵为: ?????? ? ? ?=011110101101 1010)(G A 又如图9.23(a)的邻接矩阵为: ?????? ? ? ?=0001101111000010 )(G A 由定义和以上两个例子容易看出邻接矩阵具有以下性质: ①邻接矩阵的元素全是0或1。这样的矩阵叫布尔矩阵。邻接矩阵是布尔矩阵。 ②无向图的邻接矩阵是对称阵,有向图的邻接矩阵不一定是对称阵。

178 ③邻接矩阵与结点在图中标定次序有关。例如图9.23(a)的邻接矩阵是A (G ),若将图9.23(a)中的接点v 1和v 2的标定次序调换,得到图9.23(b),图9.23(b)的邻接矩阵是A ′(G )。 ?????? ? ? ?='001010110001 1100)(G A 考察A (G )和A ′(G )发现,先将A (G )的第一行与第二行对调,再将第一列与第二列对调可 得到A ′(G )。称A ′(G )与A (G )是置换等价的。 一般地说,把n 阶方阵A 的某些行对调,再把相应的列做同样的对调,得到一个新的n 阶方阵A ′,则称A ′与A 是置换等价的。可以证明置换等价是n 阶布尔方阵集合上的等价关系。 虽然,对于同一个图,由于结点的标定次序不同,而得到不同的邻接矩阵,但是这些邻接矩阵是置换等价的。今后略去结点标定次序的任意性,取任意一个邻接矩阵表示该图。 ④对有向图来说,邻接矩阵A (G )的第i 行1的个数是v i 的出度, 第j 列1的个数是v j 的入度。 ⑤零图的邻接矩阵的元素全为零,叫做零矩阵。反过来,如果一个图的邻接矩阵是零矩阵,则此图一定是零图。 设G =为有向图,V =?v 1,v 2,…,v n ?,邻接矩阵为A =(a ij )n ×n 若a ij =1,由邻接矩阵的定义知,v i 到v j 有一条边,即v i 到v j 有一条长度为1的路;若a ij =0,则v i 到v j 无边,即v i 到v j 无长度为1的路。故a ij 表示从v i 到v j 长度为1的路的条数。 设A 2=AA ,A 2=(2 ij a )n ×n ,按照矩阵乘法的定义, nj in j i j i ij a a a a a a a +++= 22112 若a ik a kj =1,则a ik =1且a kj =1,v i 到v k 有边且v k 到v j 有边,从而v i 到v j 通过v k 有一条长 度为2的路;若 kj ik a a =0,则a ik =0或a kj =0,v i 到v k 无边或v k 到v j 无边,因而v i 到v j 通过 v k 无长度为2的路,k =1,…,n 。故2 ij a 表示从v i 到v j 长度为2的路的条数。 设A 3=AA 2,A 3=(3 ij a ) n ×n ,按照矩阵乘法的定义, 22222113nj in j i j i ij a a a a a a a +++= 若2kj ik a a ≠0,则ik a =1且2kj a ≠0,v i 到v k 有边且v k 到v j 有路,由于2kj a 是v k 到v j 长度为2 的路的条数,因而2kj ik a a 表示v i 到v j 通过v k 长度为3的路的条数;若2kj ik a a =0, ik a =0或2kj a =0, 则v i 到v k 无边或v k 到v j 无长度为2的路,所以v i 到v j 通过v k 无路,k =1,…,n 。故3 ij a 表示从v i 到v j 长度为3的路的条数。 …… 可以证明,这个结论对无向图也成立。因此有下列定理成立。 定理9.4.1 设A (G )是图G 的邻接矩阵,A (G )k =A (G )A (G )k-1,A (G )k 的第i 行,第j 列元素 k ij a 等于从v i 到v j 长度为k 的路的条数。其中k ii a 为v i 到自身长度为k 的回路数。 推论 设G =是n 阶简单有向图,A 是有向图G 的邻接矩阵,B k =A +A 2+…+A k ,

线性代数第二章矩阵试题及答案

第二章矩阵 一、知识点复习 1、矩阵的定义 由m n个数排列成的一个m行n列的表格,两边界以圆括号或方括号,就成为一个m n型矩阵。例如 2 -1 0 1 1 1 1 1 0 2 2 5 4 -2 9 3 3 3 -1 8 是一个45矩阵. 一个矩阵中的数称为它的元素,位于第i行第j列的数称为(i,j)位元素。 元素全为0的矩阵称为零矩阵,通常就记作0。 两个矩阵A和B相等(记作A=B),是指它的行数相等,列数也相等(即它们的类型相同),并且对应的元素都相等。 2、 n阶矩阵与几个特殊矩阵 行数和列数相等的矩阵称为方阵,行列数都为n的矩阵也常常叫做n阶矩阵。 n阶矩阵的从左上角到右下角的对角线称为主对角线。 下面列出几类常用的n阶矩阵,它们都是考试大纲中要求掌握的. 对角矩阵: 对角线外的的元素都为0的n阶矩阵. 单位矩阵: 对角线上的的元素都为1的对角矩阵,记作E(或I). 数量矩阵: 对角线上的的元素都等于一个常数c的对角矩阵,它就是c E. 上三角矩阵: 对角线下的的元素都为0的n阶矩阵. 下三角矩阵: 对角线上的的元素都为0的n阶矩阵. 对称矩阵: 满足A T=A矩阵,也就是对任何i,j,(i,j)位的元素和(j,i)位的元素总是相等的n阶矩阵. 反对称矩阵:满足A T=-A矩阵.也就是对任何i,j,(i,j)位的元素和(j ,i)位的元素之和总等于0的n阶矩阵.反对称矩阵对角线上的元素一定都是0.) 正交矩阵:若AA T=A T A=E,则称矩阵A是正交矩阵。 (1)A是正交矩阵?A T=A-1 (2)A是正交矩阵?2 A=1 阶梯形矩阵:一个矩阵称为阶梯形矩阵,如果满足: ①如果它有零行,则都出现在下面。 ②如果它有非零行,则每个非零行的第一个非0元素所在的列号自上而下严 格单调递增。 把阶梯形矩阵的每个非零行的第一个非0元素所在的位置称为台角。 每个矩阵都可以用初等行变换化为阶梯形矩阵,这种运算是在线性代数的各类 计算题中频繁运用的基本运算,必须十分熟练。 请注意:一个矩阵用初等行变换化得的阶梯形矩阵并不是唯一的,但是其非零 行数和台角位置是确定的。 3、矩阵的线形运算 (1)加(减)法:两个m n的矩阵A和B可以相加(减),得到的和(差)仍是m n 矩阵,记作A+B (A-B),运算法则为对应元素相加(减). (2)数乘: 一个m n的矩阵A与一个数c可以相乘,乘积仍为m n的矩阵, 记作c A,运算法则为A的每个元素乘c. 这两种运算统称为线性运算,它们满足以下规律: ①加法交换律:A+B=B+A. 2加法结合律:(A+B)+C=A+(B+C). ③加乘分配律:c(A+B)=c A+c B.(c+d)A=c A+d A. ④数乘结合律: c(d)A=(cd)A. ⑤ c A=0 c=0 或A=0. 4、矩阵乘法的定义和性质 (1)当矩阵A的列数和B的行数相等时,则A和B可以相乘,乘积记作AB. AB的行数和A相等,列数和B相等. AB的(i,j)位元素等于A的第i个行向量 和B的第j个列向量(维数相同)对应分量乘积之和.

矩阵分析第3章习题答案

第三章 1、 已知()ij A a =是n 阶正定Hermite 矩阵,在n 维线性空间n C 中向量 1212(,,,),(,, ,)n n x x x y y y αβ==定义内积为(,)H A αβαβ= (1) 证明在上述定义下,n C 是酉空间; (2) 写出n C 中的Canchy-Schwarz 不等式。 2、 已知2111311101A --?? =? ? -?? ,求()N A 的标准正交基。 提示:即求方程0AX =的基础解系再正交化单位化。 3、 已知 308126(1)316,(2)103205114A A --?? ?? ????=-=-?? ?? ????----?? ?? 试求酉矩阵U ,使得H U AU 是上三角矩阵。 提示:参见教材上的例子 4、 试证:在n C 上的任何一个正交投影矩阵P 是半正定的Hermite 矩阵。 5、 验证下列矩阵是正规矩阵,并求酉矩阵U ,使H U AU 为对角矩阵,已知 1 31(1)612A ????? =????????? ? 01(2)10000i A i -????=??????,434621(3)44326962260i i i A i i i i i +--????=----? ???+--?? 11(4)11A -?? =?? ?? 6、 试求正交矩阵Q ,使T Q AQ 为对角矩阵,已知

220(1)212020A -????=--????-?? ,11011110(2)01111011A -?? ??-? ?=?? -??-?? 7、 试求矩阵P ,使H P AP E =(或T P AP E =),已知 11(1)01112i i A i i +????=-????-??,222(2)254245A -?? ??=-?? ??--?? 8、 设n 阶酉矩阵U 的特征根不等于1-,试证:矩阵E U +满秩,且1 ()() H i E U E U -=-+是Hermite 矩阵。反之,若H 是Hermite 矩阵,则E iH +满秩,且1 ()()U E iH E iH -=+-是酉矩阵。 证明:若||0+=E U ,观察0-=E U λ知1-为U 的特征值,矛盾,所以矩阵E U +满 秩。()()1 1()()()--=-+=-+-H H H H H i E U E U i E U E U ,要H H H =,只要 ()()1 1()()()()()()---+-=-+?--+=+-?-=-H H H H H H i E U E U i E U E U E U E U E U E U U U U U 故H H H = 由()0+=--=E iH i iE H 知i 为H 的特征值。由Hermite 矩阵只能有实数特征值可得 0+≠E iH ,即E iH +满秩。 111111()()()()()()()()()()()()------=+-+-=+-+-=++--=H H H U U E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E 9、 若,S T 分别是实对称和实反对称矩阵,且det()0E T iS --≠,试证: 1()()E T iS E T iS -++--是酉矩阵。 证明: 1111 [()()]()()()()()()----++--++--=++--++--H E T iS E T iS E T iS E T iS E T iS E T iS E T iS E T iS 11()()()()--=++++----=E T iS E T iS E T iS E T iS E

《结构力学习题集》(下)-矩阵位移法习题及答案 (2)

第七章 矩阵位移法 一、是非题 1、单元刚度矩阵反映了该单元杆端位移与杆端力之间的关系。 2、单元刚度矩阵均具有对称性和奇异性。 3、局部坐标系与整体坐标系之间的坐标变换矩阵T 是正交矩阵。 4、结构刚度矩阵反映了结构结点位移与荷载之间的关系。 5、用 矩 阵 位 移 法 计 算 连 续 梁 时 无 需 对 单 元 刚 度 矩 阵 作 坐 标 变 换。 6、结 构 刚 度 矩 阵 是 对 称 矩 阵 ,即 有K i j = K j i ,这 可 由 位 移 互 等 定 理 得 到 证 明 。 7、结构刚度方程矩阵形式为:[]{}{}K P ?=,它是整个结构所应满足的变形条件。 ? 8、在直接刚度法的先处理法中,定位向量的物理意义是变形连续条件和位移边界条件。 9、等效结点荷载数值等于汇交于该结点所有固端力的代数和。 10、矩阵位移法中,等效结点荷载的“等效原则”是指与非结点荷载的结点位移相等。 11、矩阵位移法既能计算超静定结构,也能计算静定结构。 二、选择题 1、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号是: (0,1,2) (0,0,0) (0,0,0) (0,1,3) (0,0,0)(1,2,0) (0,0,0)(0,0,3) (1,0,2) (0,0,0) (0,0,0)(1,0,3) (0,0,0) (0,1,2) (0,0,0)(0,3,4) A. B. C. D. 2134123412341234 2、平面杆件结构一般情况下的单元刚度矩阵[]k 66?,就其性质而言,是: A .非对称、奇异矩阵; B .对称、奇异矩阵; C .对称、非奇异矩阵; D .非对称、非奇异矩阵。 — 3、单元i j 在图示两种坐标系中的刚度矩阵相比:

第一章行列式与矩阵计算练习(含答案)

行列式及矩阵的计算(课堂练习) 一、填空 1.已知三阶方阵A 的行列式为3,则 2A -= -24 2. 设12,01A -?? = ???1()32x g x x -= -+,则()g A =0800-?? ??? 3.设,,αβγ为3维列向量,记矩阵(,,),(,,)A B αβγαββγγα==+++,若 3,A B =则=,,,,6αβγ βγα+= 4.行列式1 1 1 11 1 11 ---x 的展开式中,x 的系数是 2 . 5.设???? ??=1201A 则=k A 1021k ?? ??? 。(k 为正整数). 6.设321,,ααα,21,ββ都是四维列向量,且四阶行列式1123,,,m αααβ=, 1232,,,n αααβ=,则12312,,,2αααββ-=16m n + 解:11231232,,,2,,,D αααβαααβ=+- 14412312322,,,(1),,,16m n αααβαααβ=+-=+ 7. 已知四阶行列式D 中第三列元素分别为1,3,-2,2,它们对应的余子式分 别为3,-2,1,1,则行列式D =-3 .

解:D =1×3+3×(-2)+(-2)×1+2×1=-3 二、判断题 1.设A 、B 均为n 阶方阵,则A B A B =. ( × ) 2.设A 、B 均为n 阶方阵,则AB A B =. (√ ) 三、行列式计算 (1)4 3 3 3 34333 343 3334 Λ ΛΛΛΛΛΛ ΛΛ=n D 解: n D n c c c c c c +++13121M 4 3 3 1 334313334133331 3Λ ΛΛΛΛΛΛΛΛ++++n n n n 1 1312r r r r r r n ---M 1 01000 0103 3313Λ ΛΛΛΛΛΛΛΛ+n =13+n (2)11111231 149118271 D --=-- 解:(范得蒙行列式)=(-1-3)(-1+2)(-1-1)(3+2)(3-1)(-2- 1)=-240 五、a 为何值时,线性方程组:??? ??-=++=++=++a ax x x x ax x x x x a 322321 321321有唯一解? 解:2 )1)(2(11111 1det -+==a a a a a A ,2-≠a 且1≠a 时,有唯一解.

矩阵计算习题及答案

1、选择题 1)下列变量中 A 是合法的。 A. Char_1,i,j *y, C. X\y, a1234 D. end, 1bcd 2)下列 C 是合法的常量。 A. 3e10 B. 1e500 C. D. 10-2 3)x=uint8,则x所占的字节是 D 个。 A. 1 B. 2 C. 4 D. 8 4)已知x=0:10,则x有 B 个元素。 A. 9 B. 10 C. 11 D. 12 5)产生对角线元素全为1其余为0的2×3矩阵的命令是 C 。 A. Ones(2,3) B. Ones(3,2) C. Eye(2,3) D. Eye(3,2) 6)a= 123 456 789 ?? ? ? ? ?? ,则a(:,end)是指 C 。 A.所有元素 B. 第一行元素 C. 第三列元素 D. 第三行元素 7) a= 123 456 789 ?? ? ? ? ?? ,则运行a(:,1)=[] 命令后 C 。 变成行向量 B. a数组成2行2列 C. a数组成3行2列 D. a数组没有元素 8)a= 123 456 789 ?? ? ? ? ?? ,则运行命令 mean(a)是 B 。 A. 计算a的平均值 B. 计算a每列的平均值 C. 计算a每行的平均值数组增加一列平均值 9)已知x是一个向量,计算 ln(x)的命令是 B 。 A. ln(x) B. log(x) C. Ln(x) D. lg10(x) 10)当a=时,使用取整函数得到3,则该函数名是 C 。 B. round C. ceil D. floor 11)已知a=0:4,b=1:5,下面的运算表达式出错的是 D 。 A. a+b B. a./b C. a'*b D. a*b 12)已知a=4,b=‘4’,下面说法错误的是 C 。 A. 变量a比变量b占用的空间大 B. 变量a、b可以进行加减乘除运算 C. 变量a、b数据类型相同 D. 变量b可以用eval计算 13)已知s=‘显示“hello”’,则s 元素的个数是 A 。 A. 12 B. 9 C. 7 D. 18 14)运行字符串函数strncmp('s1','s2',2),则结果为 B 。 A. 1 B. 0 C. true D. fales 15)命令day(now)是指 C 。 A. 按日期字符串格式提取当前时间 B. 提取当前时间 C. 提取当前时间的日期 D. 按日期字符串格式提取当前日期

矩阵分析模拟试题及答案

矩阵分析模拟试题及答案 一.填空题(每空3分,共15分) 1. 设A 为3阶方阵, 数2-=λ, 3=A , 则A λ= -24. 2. 设向量组T )4,3,2,1(1=α,T )5,4,3,2(2=α,T )6,5,4,3(3=α,T )7,6,5,4(4=α,则 ),,,(4321ααααR =2. 3. 已知??? ?? ??---=11332 223a A ,B 是3阶非零矩阵,且0=AB ,则=a 1/3. 4.设矩阵????? ??------=12422 421x A 与??? ? ? ??-=Λ40000005y 相似,则y x -=-1. 5. 若二次型()32212 3222132122, ,x ax x x x x x x x x f ++++=是正定二次型,则a 的取值 范围是22< <-a . 二.单项选择题(每小题3分,共15分) 1. 设A 是3阶矩阵,将的第二列加到第一列得矩阵,再交换的第二行与第三行得单位矩阵, 记????? ??=1000110011P ,??? ?? ??=010*******P ,在则=A ( D ) 21)(P P A 211)(P P B - 12)(P P C 112)(-P P D 2. 设A 是4阶矩阵,且A 的行列式0=A ,则A 中( C ) )(A 必有一列元素全为0 )(B 必有两列元素成比例 )(C 必有一列向量是其余列向量的线性组合 )(D 任意列向量是其余列向量的线性组合 3. 设A 与B 均为3阶方阵, 且A 与B 相似, A 的特征值为1, 2, 3, 则1 )2(-B 的特 征值为(B ) )(A 2, 1, 32 )(B 12, 14, 16 )(C 1, 2, 3 )(D 2, 1, 2 3

第二章矩阵及其运算作业及答案

第二部分 矩阵及其运算作业 (一)选择题(15分) 1.设A ,B 均为n 阶矩阵,且22()()A B A B A B +-=-,则必有( ) (A) A B = (B) A E = (C) AB BA = (D) B E = 2.设A ,B 均为n 阶矩阵,且AB O =,则A 和B ( ) (A)至多一个等于零 (B)都不等于零 (C) 只有一个等于零 (D) 都等于零 3.设A ,B 均为n 阶对称矩阵,AB 仍为对称矩阵的充分必要条件是( ) (A) A 可逆 (B)B 可逆 (C) 0AB ≠ (D) AB BA = 4.设A 为n 阶矩阵,A *是A 的伴随矩阵,则A *=( ) (A) 1n A - (B) 2n A - (C) n A (D) A 5.设A ,B 均为n 阶可逆矩阵,则下列公式成立的是( ) (A) ()T T T AB A B = (B) ()T T T A B A B +=+ (C) 111()AB A B ---= (D) 111()A B A B ---+=+ (二)填空题(15分) 1.设A ,B 均为3阶矩阵,且1 ,32A B ==,则2T B A = 。 2.设矩阵1123A -??= ??? , 232B A A E =-+,则1B -= 。 3.设A 为4阶矩阵,A *是A 的伴随矩阵,若2A =-,则A *= 。 4.设A ,B 均为n 阶矩阵,2,3A B ==-,则12A B *-= 。 5.设101020101A ? ? ?= ? ??? ,2n ≥为整数,则12n n A A --= 。 (三)计算题(50分) 1. 设010111101A ?? ?=- ? ?--??,112053B -?? ?= ? ??? ,且X AX B =+,求矩阵X 。

matlab习题及答案

MATLAB 基本运算 1.在MA TLAB 中如何建立矩阵?? ? ???194375,并将其赋予变量a ? >> a=[5 7 3;4 9 1] 2.在进行算术运算时,数组运算和矩阵运算各有什么要求? 进行数组运算的两个数组必须有相同的尺寸。进行矩阵运算的两个矩阵必须满足矩阵运算规则,如矩阵a 与b 相乘(a*b )时必须满足a 的列数等于b 的行数。 3.数组运算和矩阵运算的运算符有什么区别? 在加、减运算时数组运算与矩阵运算的运算符相同,乘、除和乘方运算时,在矩阵运算的运算符前加一个点即为数组运算,如a*b 为矩阵乘,a.*b 为数组乘。 4. 计算矩阵??????????897473535与??? ? ? ?????638976242之和。 >> a=[5 3 5;3 7 4;7 9 8]; >> b=[2 4 2;6 7 9;8 3 6]; >> a+b ans = 7 7 7 9 14 13 15 12 14 5. 计算???? ??=572396a 与?? ? ???=864142b 的数组乘积。 >> a=[6 9 3;2 7 5]; >> b=[2 4 1;4 6 8]; >> a.*b ans = 12 36 3 8 42 40 6.“左除”与“右除”有什么区别? 在通常情况下,左除x=a\b 是a*x=b 的解,右除x=b/a 是x*a=b 的解,一般情况下,a\b ≠b/a 。

7.对于B AX =,如果??????????=753467294A ,???? ? ?????=282637B ,求解X 。 >> A=[4 9 2;7 6 4;3 5 7]; >> B=[37 26 28]’; >> X=A\B X = -0.5118 4.0427 1.3318 8.已知:??? ? ??????=987654321a ,分别计算a 的数组平方和矩阵平方,并观察其结果。 >> a=[1 2 3;4 5 6;7 8 9]; >> a.^2 ans = 1 4 9 16 25 36 49 64 81 >> a^ 2 ans = 30 36 42 66 81 96 102 126 150 9.[]7.0802.05--=a ,在进行逻辑运算时,a 相当于什么样的逻辑量。 相当于a=[1 1 0 1 1]。 10.在sin(x )运算中,x 是角度还是弧度? 在sin(x)运算中,x 是弧度,MA TLAB 规定所有的三角函数运算都是按弧度进行运算。

计算方法练习题与答案

练习题与答案 练习题一 练习题二 练习题三 练习题四 练习题五 练习题六 练习题七 练习题八 练习题答案 练习题一 一、是非题 1.*x=–1 2.0326作为x的近似值一定具有6位有效数字,且其误差限 ≤ 4 10 2 1 - ? 。() 2.对两个不同数的近似数,误差越小,有效数位越多。( ) 3.一个近似数的有效数位愈多,其相对误差限愈小。( ) 4.用 2 1 2 x - 近似表示cos x产生舍入误差。( )

5. 3.14和 3.142作为π的近似值有效数字位数相同。 ( ) 二、填空题 1. 为了使计算 ()()2334912111y x x x =+ -+ ---的乘除法次数尽量少,应将该 表达式改写为 ; 2. * x =–0.003457是x 舍入得到的近似值,它有 位有效数字,误差限 为 ,相对误差限为 ; 3. 误差的来源是 ; 4. 截断误差为 ; 5. 设计算法应遵循的原则是 。 三、选择题 1.* x =–0.026900作为x 的近似值,它的有效数字位数为( ) 。 (A) 7; (B) 3; (C) 不能确定 (D) 5. 2.舍入误差是( )产生的误差。 (A) 只取有限位数 (B) 模型准确值与用数值方法求得的准确值 (C) 观察与测量 (D) 数学模型准确值与实际值 3.用 1+x 近似表示e x 所产生的误差是( )误差。 (A). 模型 (B). 观测 (C). 截断 (D). 舍入 4.用s *=21 g t 2表示自由落体运动距离与时间的关系式 (g 为重力加速度),s t 是在 时间t 内的实际距离,则s t - s *是( )误差。 (A). 舍入 (B). 观测 (C). 模型 (D). 截断 5.1.41300作为2的近似值,有( )位有效数字。 (A) 3; (B) 4; (C) 5; (D) 6。 四、计算题

《结构力学习题集》下矩阵位移法习题及答案 2

第七章 矩阵位移法 一、就是非题 1、单元刚度矩阵反映了该单元杆端位移与杆端力之间的关系。 2、单元刚度矩阵均具有对称性与奇异性。 3、局部坐标系与整体坐标系之间的坐标变换矩阵T 就是正交矩阵。 4、结构刚度矩阵反映了结构结点位移与荷载之间的关系。 5、用 矩 阵 位 移 法 计 算 连 续 梁 时 无 需 对 单 元 刚 度 矩 阵 作 坐 标 变 换。 6、结 构 刚 度 矩 阵 就是 对 称 矩 阵 ,即 有K i j = K j i ,这 可 由 位 移 互 等 定 理 得 到 证 明 。 7、结构刚度方程矩阵形式为:[]{}{}K P ?=,它就是整个结构所应满足的变形条件。 8、在直接刚度法的先处理法中,定位向量的物理意义就是变形连续条件与位移边界条件。 9、等效结点荷载数值等于汇交于该结点所有固端力的代数与。 10、矩阵位移法中,等效结点荷载的“等效原则”就是指与非结点荷载的结点位移相等。 11、矩阵位移法既能计算超静定结构,也能计算静定结构。 二、选择题 1、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号就是: (0,1,2) (0,0,0) (0,0,0) (0,1,3) (0,0,0)(1,2,0) (0,0,0)(0,0,3) (1,0,2) (0,0,0) (0,0,0)(1,0,3) (0,0,0) (0,1,2) (0,0,0)(0,3,4) A. B. C. D. 2134123412341234 2、平面杆件结构一般情况下的单元刚度矩阵[]k 66?,就其性质而言,就是: A.非对称、奇异矩阵; B.对称、奇异矩阵; C.对称、非奇异矩阵; D.非对称、非奇异矩阵。 3、单元i j 在图示两种坐标系中的刚度矩阵相比: A.完全相同; B.第2、3、5、6行(列)等值异号;

上海版教材 矩阵与行列式习题(有答案)

矩阵、行列式和算法(20131224) 姓名 成绩 一、填空题 1.行列式 cos sin 3 6 sin cos 3 6 π π π π 的值是 . 2.行列式 a b c d (,,,{1,1,2}a b c d ∈-)的所有可能值中,最大的是 . 3.将方程组203253x y z x y =?? +=??+=? 写成系数矩阵形式为 . 4.若由命题A :“ 2 2031x x >-”能推出命题B :“x a >”,则a 的取值范围是 . 5.若方程组111 222a x b y c a x b y c +=??+=?的解为2,1==y x ,则方程组 ?? ?=++=++0 3520 352222111c y a x b c y a x b 的解为x = ,y = . 6.方程21 24 1 013 9 x x ≤-的解集为 . 7.把 22111133 33 22 2 4 x y x y x y x y x y x y +- 表示成一个三阶行列式为 . 8.若ABC ?的三个顶点坐标为(1,2),(2,3),(4,5)A B C ----, 其面积为 . 9.在函数()211 1 2 x f x x x x x -=--中3x 的系数是 . 10.若执行如图1所示的框图,输入12341,2,4,8,x x x x ====则输出的数等于 .

图2 11.矩阵的一种运算,???? ??++=???? ??????? ??dy cx by ax y x d c b a 该运算的几何意义为平面上的点),(y x 在矩阵??? ? ??d c b a 的作用下变换成点(,)ax by cx dy ++,若曲线10x y +-=在矩阵??? ? ??11b a 的作用下变换成曲线10x y --=,则a b +的值为 . 12.在集合{}1,2,3,4,5中任取一个偶数a 和奇数b 构成以原点为起点的向量(),a b α=.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形,记所有作成的平行四边形的个数为n ,其中面积不超过...4的平行四边形的个数为m ,则 m n = 二.选择题 13.系数行列式0D =是三元一次方程组无解的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充分必要条件 D. 既非充分也非必要条件 14.下列选项中错误的是( ). A. b d a c d b c a - = B. a b c d d b c a = C. d c d b c a 33++ d c b a = D. d c b a d b c a ----- = 15.若,,a b c 表示ABC ?的三边长, 且满足02 22 =++++++c b a c c c b a b b c b a a a , 则ABC ?是( ). A. 等腰三角形 B. 直角三角形 C. 等腰直角三角形 D. 等边三角形 16. 右边(图2)的程序框图输出结果S =( ) A .20 B. 35 C. 40 D .45

(完整版)计算力学复习题答案

计算力学试题答案 1. 有限单元法和经典Ritz 法的主要区别是什么? 答:经典Ritz 法是在整个区域内假设未知函数,适用于边界几何形状简单的情形;有限单元法是将整个区域离散,分散成若干个单元,在单元上假设未知函数。有限单元法是单元一级的Ritz 法。 2、单元刚度矩阵和整体刚度矩阵各有什么特征?刚度矩阵[K ]奇异有何物理意义?在 求解问题时如何消除奇异性? 答:单元刚度矩阵的特征:⑴对称性⑵奇异性⑶主元恒正⑷平面图形相似、弹性矩阵D 、厚度t 相同的单元,e K 相同⑸e K 的分块子矩阵按结点号排列,每一子矩阵代表一个结点,占两行两列,其位置与结点位置对应。 整体刚度矩阵的特征:⑴对称性⑵奇异性⑶主元恒正⑷稀疏性⑸非零元素呈带状分布。 []K 的物理意义是任意给定结构的结点位移所得到的结构结点力总体上满足力和力矩的平衡。 为消除[]K 的奇异性,需要引入边界条件,至少需给出能限制刚体位移的约束条件。 3. 列式说明乘大数法引入给定位移边界条件的原理? 答:设:j j a a =,则将 jj jj k k α= j jj j P k a α= 即: 修改后的第j 个方程为 112222j j jj j j n n jj j k a k a k a k a k a αα+++++=L L 由于 得 jj j jj j k a k a αα≈ 所以 j j a a ≈ 对于多个给定位移()12,,,l j c c c =L 时,则按序将每个给定位移都作上述修正,得到全部进行修正后的K 和P ,然后解方程即可得到包括给定位移在内的全部结点位移值。 4. 何为等参数单元?为什么要引入等参数单元? 答:等参变换是对单元的几何形状和单元内的场函数采用相同数目的结点参数及相同的插值函数进行变换,采用等参变换的单元称之为等参数单元。 借助于等参数单元可以对于一般的任意几何形状的工程问题和物理问题方便地进行有限元离散,其优点有:对单元形状的适应性强;单元特性矩阵的积分求解方便(积分限标准化);便于编制通用化程序。 5、对于平面4节点(线性)和8节点(二次)矩形单元,为了得到精确的刚度矩阵, 需要多少个Gauss 积分点?说明理由。 111211211 212222222122212222222j n j n j j jj j n j jj j n n nj n n n n k k k k a P k k k k a P k k k k a k a k k k k a P αα???????????????????????????? =?????? ????????????????????????????? ?L L L L M M M M M M L L M M M M M M L L 15 10α≈0 () ij jj k i j k α≈≠ () jj ij k k i j α>>≠

(完整版)《数值计算方法》试题集及答案

《数值计算方法》复习试题 一、填空题: 1、????? ?????----=410141014A ,则A 的LU 分解为 A ??? ?????????=? ?????????? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 2、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:2.367,0.25 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 , 拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差和( 舍入 )误差; 8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b );

9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公式为 ( )] ,(),([2111+++++=n n n n n n y x f y x f h y y ); 10、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精 度为( 5 ); 12、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均 不为零)。 13、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表 达式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式 19992001-改写为 199920012 + 。 14、 用二分法求方程01)(3 =-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间 为 0.5,1 ,进行两步后根的所在区间为 0.5,0.75 。 15、 计算积分?1 5 .0d x x ,取4位有效数字。用梯形公式计算求得的近似值为 0.4268 , 用辛卜生公式计算求得的近似值为 0.4309 ,梯形公式的代数精度为 1 ,辛卜生公式的代数精度为 3 。 16、 求解方程组?? ?=+=+042.01532121x x x x 的高斯—塞德尔迭代格式为 ?????-=-=+++20/3/)51()1(1)1(2)(2)1(1 k k k k x x x x ,该迭 代格式的迭代矩阵的谱半径)(M ρ= 121 。 17、 设46)2(,16)1(,0)0(===f f f ,则=)(1x l )2()(1--=x x x l ,)(x f 的二次牛顿

矩阵分析课后习题解答版

第一章 线性空间与线性变换 (以下题目序号与课后习题序号不一定对应,但题目顺序是一致的,答案为个人整理,不一定正确,仅供参考,另外,此答案未经允许不得擅自上传) (此处注意线性变换的核空间与矩阵核空间的区别) 1.9.利用子空间定义,)(A R 是m C 的非空子集,即验证)(A R 对m C 满足加法和数乘的封闭性。 1.10.证明同1.9。 1.11.rankA n A N rankA A R -==)(dim ,)(dim (解空间的维数) 1.13.提示:设),)(- ?==n j i a A n n ij (,分别令T i X X ),0,0,1,0,0(K K ==(其中1位于i X 的第i 行),代入0=AX X T ,得0=ii a ;令T ij X X )0,0,10,0,1,0,0(K K K ==(其中1位于ij X 的第i 行和第j 行) ,代入0=AX X T ,得0=+++jj ji ij ii a a a a ,由于0==jj ii a a ,则0=+ji ij a a ,故 A A T -=,即A 为反对称阵。若X 是n 维复列向量,同样有0=ii a , 0=+ji ij a a , 再令T ij i X X ),0,1,0,0,,0,0(K K K ='=(其中i 位于ij X 的第i 行,1位于ij X 的第j 行),代入0=AX X H ,得0)(=-++ij ji jj ii a a i a a ,由于 0==jj ii a a ,ij ji a a -=,则0==ji ij a a ,故0=A 1.14.AB 是Hermite 矩阵,则AB BA A B AB H H H ===)( 1.15.存在性:令2 ,2H H A A C A A B -=+=,C B A +=,其中A 为任意复矩阵,可验证C C B B H H -==, 唯一性:假设11C B A +=,1111,C C B B H H -==,且C C B B ≠≠11,,由

数值分析习题集及答案

数值分析习题集 (适合课程《数值方法A》和《数值方法B》) 长沙理工大学 第一章绪论 1.设x>0,x的相对误差为δ,求的误差. 2.设x的相对误差为2%,求的相对误差. 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: 4.利用公式求下列各近似值的误差限: 其中均为第3题所给的数. 5.计算球体积要使相对误差限为1%,问度量半径R时允许的相对误差限是多少? 6.设按递推公式 ( n=1,2,…) 计算到.若取≈(五位有效数字),试问计算将有多大误差? 7.求方程的两个根,使它至少具有四位有效数字(≈. 8.当N充分大时,怎样求? 9.正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝? 10.设假定g是准确的,而对t的测量有±秒的误差,证明当t增加时S的绝对误差增加,而 相对误差却减小. 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大?这个计算过程 稳定吗? 12.计算,取,利用下列等式计算,哪一个得到的结果最好? 13.,求f(30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 计算,求对数时误差有多大? 14.试用消元法解方程组假定只用三位数计算,问结果是否可靠? 15.已知三角形面积其中c为弧度,,且测量a ,b ,c的误差分别为证明面积的误差满足 第二章插值法 1.根据定义的范德蒙行列式,令 证明是n次多项式,它的根是,且 .

2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)的二次插值多项式. 3. 4.给出cos x,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数 字,研究用线性插值求cos x 近似值时的总误差界. 5.设,k=0,1,2,3,求. 6.设为互异节点(j=0,1,…,n),求证: i) ii) 7.设且,求证 8.在上给出的等距节点函数表,若用二次插值求的近似值,要使截断误差不超过,问使用函 数表的步长应取多少? 9.若,求及. 10.如果是次多项式,记,证明的阶差分是次多项式,并且为正整数). 11.证明. 12.证明 13.证明 14.若有个不同实根,证明 15.证明阶均差有下列性质: i)若,则; ii)若,则. 16.,求及. 17.证明两点三次埃尔米特插值余项是 并由此求出分段三次埃尔米特插值的误差限. 18.求一个次数不高于4次的多项式,使它满足并由此求出分段三次埃尔米特插值的误差限. 19.试求出一个最高次数不高于4次的函数多项式,以便使它能够满足以下边界条件,,. 20.设,把分为等分,试构造一个台阶形的零次分段插值函数并证明当时,在上一致收敛到. 21.设,在上取,按等距节点求分段线性插值函数,计算各节点间中点处的与的值,并估计误 差. 22.求在上的分段线性插值函数,并估计误差. 23.求在上的分段埃尔米特插值,并估计误差. i) ii) 25.若,是三次样条函数,证明 i); ii)若,式中为插值节点,且,则. 26.编出计算三次样条函数系数及其在插值节点中点的值的程序框图(可用式的表达式). 第三章函数逼近与计算 1.(a)利用区间变换推出区间为的伯恩斯坦多项式. (b)对在上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误

相关文档