文档库 最新最全的文档下载
当前位置:文档库 › 光镊技术在原子物理和生命科学中的应用与发展

光镊技术在原子物理和生命科学中的应用与发展

光镊技术在原子物理和生命科学中的应用与发展
光镊技术在原子物理和生命科学中的应用与发展

光镊技术在原子物理和生命科学中的应用与发展

信息工程系 王 坚

[摘要] 激光陷阱和控制、操作中性微小粒子的光镊技术是以光的辐射压原理为基础的,利用光与物质间动量的传递的力学效应形成三维梯度光学陷阱。光压的实际应用在20世纪激光诞生后才得以实现。由于激光突出的高方向性、高相干性、高亮度产生的辐射压高于一般的光,所以使得基于光压原理的光镊能够被发现并运用。光镊能够捕获和操纵微米尺度粒子成为捕获操纵粒子独特且有效的手段,并且这种方法在物理和生物科学等领域掀起了一场技术革命。本文简要回顾了早期光镊技术在原子物理和生命科学中的应用与发展,以及当代光镊技术研究的最新成就。

[关键词] 激光陷阱,光镊,激光

1. 引言

光镊是基于光的力学效应的一种新的物理工具,它如同一把无形的机械镊子,可实现对活细胞及细胞器的无损伤的捕获与操作。光镊的发明正适应了生命科学深入到细胞、亚细胞层次的研究趋势,也为生物工程技术提供了一种新的手段。仅仅20年光镊的应用已展示其在物理和生命科学领域中无限美好的应用前景。

2. 光镊技术原理

2.1光压原理

光镊技术是基于光压原理的,光压原理在牛顿和开普勒时期就已经提出来了但是一直都没有什么应用。光的压力原理早期只有在天文学中有些应用,德国的天文学家开普勒,在17世纪初提出彗尾之所以背向太阳的原因是,其受到了太阳辐射光压的作用力。因为只有在天文学研究中当光的强度和距离都非常大的时候,光压对物质的影响才会明显的表现出来。1873年Maxwell 从光的波动理论角度根据电磁理论推导出了光压的存在(电磁辐射压)并且给出了垂直入射到部分反射吸收体表面的光束的光压为:

()R c

E p +=1 其中,E 为每秒钟垂直入射到12m 上的能量,c 为光速,R 为物体对光的反射系数。

由计算式可以粗略的看出光压与光的动量有关。从量子理论角度分析,我们

可以认为光是由光子组成的,每个光子的能量为γh ,动量为c

h γ,我们只能认为光压是光子将它的能量、动量传递给物体的吸收面或者反射的结果。实际上当光与物质发生作用的时候,能量的交换引起热效应,使物质产生热膨胀、组织蒸发等现象,一般也伴随一些续发的压力效应,这是次生性的所以我们一般不考虑,也就是说我们认为光压是由光与物质之间的动量的传递而引起的。如果有单色光

正入射到颗粒上,设有N 个光子,则它们的能量和动量分别为c

h N Nh γγ和,N 个光子传递给吸收壁的动量为γNh ,传给反射的动量为c

h N γ2(??? ??--c h N c h N γγ设入射方向为正方向),这样我们假定物质的反射系数为R,于是有N 个光子传

的动量为: ()()()R c

E N R c h N c h RN c h N R +=+=+-1121γγγ,显然这与Maxwell 的电磁推导结论一致。

人们在日常的生活中也能体会到光压的存在,比如有些人在晚上睡觉的时候如果有灯开着的话,他们的眼睛会感到有种无形的压力,使得他们很难入睡。但是这个力非常的小,人们很难对其进行有效的研究和利用。由上面推导的理论可以估算当太阳垂直照射大地,若完全被吸收时,所产生的光压仅约为0.6达因/2m ,所以一般的照明灯的光压就更小了。直到20世纪60年代激光出现后,人们能够利用它强大的光压实现激光陷阱,利用激光陷阱可以加速、减速、改变、操纵甚至可以稳定的俘获粒子。

2.2光镊技术

早在1968年,源于对原子操作的需要,苏联光谱学家Letokhov 首先提出利用光场梯度力来限制原子的思想,但他并没有研究出什么实质性成果。后来美国bell 实验室的A.Ashkin1969年开始关于光与粒子相互作用的研究[]1, 并于1978年A.Ashkin 提出了首个单光束梯度力陷阱的方案。在此之前早期的光学陷阱要么是由多光束会聚在一点实现,要么就是由与激光传播方向相反的力与激光共同作用实现的。1986年A.Ashkin 将单束激光引入高数值孔径物镜形成了三维光学势阱就此发明了激光光镊术。用几何光学模型(R-O 模型)近似,光阱中微粒受到梯度力、散射力和合力用下面的关系式表示: g g Q c p n F ?=

1 , s s Q c p n F ?=1 , t t Q c p n F ?=1

其中1n 为有效折射率,无量纲因子t s g Q Q Q ,,表示各力随光功率变化的比例系数,与微粒的几何外形和微粒在光阱中的位置有关。要提高光阱的利用率就要提高g Q ,降低s Q ,从而提高t Q 。

激光光镊术(optical tweezers 或laser traps)早期也叫激光捕获术,即利用聚焦的激光束镊操纵细胞、细菌或原子等大约尺度在几纳米到几十微米之间的微小粒子的一项全新的物理技术。激光光镊技术可运用的粒子非常的多,有:原子、大的分子、10纳米—10微米的小电介质球、甚至还有像病毒、单细胞和细胞内的器官等生命组成的小粒子。而且激光操纵技术在很多微小粒子的研究领域、微机械领域发挥了极其重要的作用,尤其是生命科学研究中发挥着不可替代的作用。

早期光镊技术运用于生命科学研究时,经常发现有很严重的损伤生命活体情况。人们分别从物质微粒所处的介质,光的波长,波面的光强分布,以及光的脉冲长短等角度出发解决了这个问题,使得激光陷阱更加的安全、稳定、高效。

随着研究和利用的深入使得人们对光压原理有了更深的理解,人们逐步认识到光对物质的力学作用,是光与物质相互作用过程中动量传递的结果。光作用到物质上,物质会对光产生折射、反射和吸收。当把具有一定模式和能量的激光会聚到微米量级的光斑作用在物质上,人们研究得到光线光学理论[]3.2:若忽略物质微粒对光的反射和吸收,光对高折射的物质微粒将产生三维指向光束焦点的梯度力,只要微粒靠近光束焦点,该力就可以将数纳米到数十微米的粒子推向光场最强处,并稳定在那里,随光束焦点的移动而移动。若物质微粒对光全反射,则每根光线对微粒产生的力指向微粒的几何中心,如果光束的焦点刚好在微粒(一般为球状)的底部所处的平面,小球受到二维且指向光轴的力,否则力是背离光轴的。若物质微粒对光强烈的吸收时,由于光场分布的非均匀性,光能被微粒吸收后,将在离子的内部产生热量梯度分布,越靠近光轴的温度越高,由温度梯度产生热辐射力将把粒子推离光轴,也就是会排斥微粒。

3.光镊技术的应用

早在1970年光镊技术的先锋——贝尔实验室的阿什金(A.Ashkin)就利用多光束激光的三维势阱成功镊起并移动水溶液中的小玻璃珠,之后这一激光镊引起微粒的技术得到不断改进,所能捕获的粒子越来越小。美国Beckman 研究中心以最快的速度将这项新技术与已经成熟的激光微束光刀耦联起来实现了激光诱导细胞融合,并且利用这个方法研究人类精子的游动,对细胞有丝分裂中后期的染色体进行切割,对其的运动和分布进行深入细致的研究。又是通过激光光镊Stanford 研究中心于1995年记录到肌球蛋白沿肌动蛋白丝是依序地以10nm 的步距迈进而不是一大步跨越,并且还用激光陷阱测定了此微动力约为5pn 这一研究平息了人们多年来对肌球蛋白运动模式的争议,使得人类对生命中推动力的核心的认识进了一大步。此外激光陷阱技术在体外受精的辅助、细胞识别、细胞熔解、染色体在细胞分裂时的运动等问题,以及地球引力给植物根带来的影响方面

的研究还在进行中。以Missawa为代表的日本研究组在光阱应用上另辟鼷径,他们设计出了一种“分时装置”使一束光可以形成多达八个独立的光阱,能有效的控制粒子的流动方向、大小以及粒子的空间图案排布。他们的研究为光镊技术在化学、物理、生物等领域的应用开拓了先河。光镊可以非接触,无损伤地操纵活体物质,并且它产生的皮牛数量级的力适合于生物细胞、亚细胞以及大分子的力学性质的研究,所以光镊越来越广泛地在生命科学领域运用。

光镊不仅在生命科学中有着广泛的运用,在物理学中他同样也发挥着很重要的作用。利用激光陷阱可以使原子高密度的集在一起,而且我们可以观察到大量的冷原子以1cm/s的速率运动。现在人们可以用光冷原子来记录低温,冷原子的技术还被设计应用来提高原子钟的精度。基于该技术新型的更加精确的干涉计被开发出来,并已成功的提高了地球引力的测量精度;新的高精度的原子透镜被发明了,并运用在光束分析器上,使得一个新的领域原子光学诞生了;更高精度的平板印刷正在研究和开发中。最近,光镊被用来研究Bose-Einstein凝聚物,Wolfgang Ketterle利用光镊可以将Bose-Einstein凝聚物输运半米的距离。使用这种光输运法人们可以实现连续的原子激光器。光镊还被用于研究微粒的Brown运动,带电粒子间的相互作用,以及带电粒子在电磁场中的运动规律。近年来人们又提出了用光镊来引导微粒输运并且确定空间定位,排列或堆积,构造二维或者三维的微结构,目前国内也有人从事微堆积的研究,比如利用光镊制晶,我国目前天津大学对于该课题的研究处于前列。

4.结束语

光镊技术从发明到如今得到了迅速的发展,控制粒子精度的从最初的微米发展到现今的纳米数量级,并且在物理、生物、化学等多学科和微机械领域发挥着及其重要的作用,其中生命科学领域的运用最为广泛。现在虽然已经有公司推出了光镊系统的商业产品(Cell Robotics,Inc,Albuquerque,NM、SL.Inc),但是由于其高昂的价格影响了该技术的广泛应用。目前,我国中国科技大学的李银妹等教授正致力降低价格,使光镊更易于构建和操作方面的研究,并取得了一些进展,由于所研究的对象不同对光镊系统的配置及要求都不同。所以,适用面广、操纵简便的安全系数高的光镊系统的开发之路还很长。

参考文献

[1]A.Ashkin(1970) phys.Rev.Lett.24,156-159

[2] A.Ashkin.Forces of a single beam gradient laser trap on a dielectric sphere in the ray optics regime[J].Biophys.J.,1991,61(2): 569 582

[3] S. Sato, Y. Harada, Y. Waseda et al. Optical trapping of

microscopic metal particles. Opt. Lett.,1994,19(22):1807 1809

浅谈对生命科学进展的认识

浅谈对生命科学进展的认识 生命科学对于我们来说既熟悉又陌生。当我们说到基因、细胞、组织、器官等的时候,我们觉得好熟悉,这就是生命科学;但当我们更深入的了解基因,了解细胞的时候,我们感觉真的好陌生,感觉我们并没有真正的了解生命科学。 当代的生命科学涉及和覆盖的范围很广,面面俱到的讲解对它的认识,做到的只能是面面都不俱到。因此,我打算只挑肿瘤这方面的内容,来“侃侃而谈”一番。 一.什么是肿瘤 肿瘤(tumour)是指机体在各种致瘤因子作用下,局部组织细胞增生所形成的新生物。根据新生物的细胞特性及对机体的危害性程度,又将肿瘤分为良性肿瘤和恶性肿瘤两大类,而癌症即为恶性肿瘤的总称。良性肿瘤和恶性肿瘤的区别,如下图 二.引起肿瘤的原因 肿瘤在本质上是基因病。各种环境的和遗传的致癌因素以协同或序贯的方式引起DNA损害,从而激活原癌基因和(或)灭活肿瘤抑制基因,加上凋亡调节基因和(或)DNA修复基因的改变,继而引起表达水平的异常,使靶细胞发生转化。被转化的细胞先多呈克隆性的增生,经过一个漫长的多阶段的演进过程,其中一个克隆相对无限制的扩增,通过附加突变,选择性地形成具有不同特点的亚克隆(异质化),从而获得浸润和转移的能力(恶性转化),形成恶性肿瘤。 1.内因 如果机体内部的某些条件或状况适合外界环境中致癌物质的作用,这些人群就具备了癌症发病的内因。包括精神因素、内分泌失调、免疫缺陷与遗传因素等。约有60%的癌症患者在发病前有明显的精神创伤史。内分泌紊乱可能与乳腺癌、

前列腺癌发病有关。先天性免疫缺陷或长期应用免疫抑制药的人群中,肿瘤的发病率较高。遗传因素与癌的发病有密切关系,如患有错构瘤病综合征、遗传性皮肤病、染色体脆弱综合征等遗传病者,约10%发生恶性肿瘤,一些致癌外因诱发肿瘤时也都通过遗传因素起作用。 2.外因 外界致癌因素是引起癌症的重要刺激因素,大约80%~90%的癌症是由环境因素引起的。已知致癌因素有化学、物理、生物、营养等几种,较重要的有以下几项: ①吸烟与被动吸烟。肺癌病人中吸烟者是不吸烟者的10倍;吸烟者肺癌、喉癌、食管癌、膀胱癌、口咽癌的发病率也比不吸烟寄生虫引发人类肿瘤者高。吸烟量与癌症发病关系尚不明确,即使接触烟草的烟雾量不大也会发生癌症。近年来还发现,经常生活在嗜烟者烟雾环境中的不吸烟者,发生癌症的机会也多。 ②职业因素。因长期接触煤焦油、芳香胺或偶氮染料、亚硝胺类化合物等而致的职业性癌,可占全部癌症的2%~8%。职业性癌一般有相当长的潜伏期,发生在皮肤、泌尿道、呼吸道等部位的职业性癌较常见。 ③放射线及紫外线。电离辐射(X射线、γ射线)所诱发的癌症约占全部癌症的3%,紫外线照射可诱发皮肤癌或恶性黑色素瘤。 ④膳食。人类的饮食结构和习惯与消化道癌关系密切。膳食中脂肪过多易诱发乳癌、大肠癌;水果和蔬菜可降低大肠癌的发病;有些食品添加剂具有致癌作用;腌、熏食品和一些蔬菜、肉类、火腿、啤酒中可能含有致癌的亚硝酸盐和硝酸盐;含有黄曲霉毒素的食品与肝癌发病可能有关。 ⑤药物。治疗癌症的各种抗肿瘤药特别是烷化剂,本身也具有致癌作用;此外,某些解热镇痛药、抗癫痫药、抗组胺药、激素类等与癌症的病因有关。 ⑥寄生虫与病毒。血吸虫病可引起膀胱癌;中华分枝睾吸虫可引起胆管癌。迁延性乙型肝炎所致的肝硬变患者容易发生肝癌;单纯疱疹病毒与宫颈癌的发病有关。许多病毒可以诱发动物肿瘤,但在人类尚缺乏直接证据。 三.肿瘤的治疗方法 (1)手术治疗 理论依据:肿瘤是一类以"局部肿块病变"为主的"全身性"疾病,因此,从理论上讲,手术切除局部肿块可以起到治疗肿瘤的作用,也应作为治疗肿瘤的主要手段。临床实践也证明了这两点:对于大多数肿瘤来说,手术常是目前的主要治疗手段;手术确能治愈部分病例。 适应证:早期、中期和局限性肿瘤的根治性治疗,晚期肿瘤的姑息治疗。 优缺点:手术是一种机械手段,局部病变治疗彻底,不存在化疗耐药、放

光镊原理

1.1光镊技术简介 光镊是以激光的力学效应为基础的一种物理工具,是利用强会聚的光场与微粒相互作用时形成的光学势阱来俘获粒子的【4】。1969年,A. Ashkin等首次实现了激光驱动微米粒子的实验。此后他又发现微粒会在横向被吸入光束(微粒的折射率大于周围介质的折射率)。在对这两种现象研究的基础上,Ashkin提出了利用光压操纵微粒的思想,并用两束相向照射的激光,首次实现了对水溶液中玻璃小球的捕获,建立了第一套利用光压操纵微粒的工具。1986年,A. Ashkin等人又发现,单独一束强聚焦的激光束就足以形成三维稳定的光学势阱,可以吸引微粒并把它局限在焦点附近,于是第一台光镊装置就诞生了【5,6】。也因此,光镊的正式名称为“单光束梯度力势阱” (single-beam optical gradient force trap)。 由于使用光镊来捕获操纵样品具有非接触性、无机械损伤等优点,这使得光镊在生物学领域表现出了突出的优势。这些年来,随着研究的深入和技术的不断完善,光镊在生物学的应用对象由细胞和细胞器逐步扩展到了大分子和单分子等。目前,光镊常被用来研究生物过程中的细胞和分子的运动过程【7-10】,也常被用来测量生物过程中的一些力学特征【11-14】。 1.2光镊的原理与特点 众所周知,光具有能量和动量,但是在实际应用中人们经常利用了光的能量,却很少利用光的动量。究其原因,这主要是因为在生活中我们接触到的自然光和照明光等的力学效应都很小,无法引起人们可以直接感受到或观察到的宏观效应。而科学家们利用激光所具有的高亮度和优良的方向性,使得光的力学效应在显微镜下显现了出来,在这里我们要介绍的光镊技术正是以这种光的力学效应为基础发展起来的。 1.2.1光压与单光束梯度力光阱 光与物质相互作用的过程中既有能量的传递,也有动量的传递,动量的传递常常表现为压力,简称光压。1987年,麦克斯韦根据电磁波理论论证了光压的存在,并推导出了光压力的计算公式。1901年,俄国人П.Н.列别捷夫用悬在细丝下的悬体实现了光压的实验测量【15】。此后,美国物理学家尼克尔、霍尔也

光电子技术的发展态势分析及应用

光电技术的发展态势分析及应用 学校: 班级: 学号: 姓名: 指导老师: 时间:

摘要 光电子技术指利用光子激发电子或电子跃迁产生光子的物理现象所能提供的手段和方法。作为具有比电子更高频率和速度的信息载体以其不存在电磁串扰和路径延迟的优点,光电子技术在信息领域的应用无可替代。本文首先对光电子技术的优越性做简单介绍,然后阐述了光电子技术在世界及中国的发展历程,接着叙述了光电子技术在纺织工业,数据的超速传输和获取图像信息方面等方面巨大的应用前景,表现了光电子技术在当今信息时代愈发占有重要的关键地位。 关键词:光电子技术;发展;应用 II

引言 当今全球范围内,已经公认光电子产业是本世纪的第一主导产业,是经济发展的制高点,光电子产业的战略地位是不言而喻的。鉴于此,光电子技术应用的开发被世界各国所关注,新的应用领域也在不断发现中。 光电子技术是继微电子技术之后近30年来迅猛发展的综合性高新技术,是由光学技术和电子学技术相结合而形成的。1962年半导体激光器的诞生是近代科学技术史上一个重大事件。经历十多年的初期探索,从70年代后期起,随着半导体光电子器件和硅基光导纤维两大基础元件在原理和制造工艺上的突破,光子技术与电子技术开始结合并形成了具有强大生命力的信息光电子技术和产业。可以说光电子学技术是电子学技术在光频波段的延伸与扩展。 我国光电子技术和发展,从“六五”起步,开始发展以激光技术为主的光电子技术。1987年科技部把信息光电子列入“863”计划,给予支持,激光科学技术的研究和发展受到国家的很大重视,在国防建设和社会应用上起了重要作用。我国光电子产业的原始基础是军事光学,军用光电子学和红外技术。自60年代以来,我国依靠自己的力量,研制出“神龙”高功率激光装置,激光分离同位素装置,军用靶场激光经纬仪,激光卫星测距仪,高速摄影机,红外扫描仪等重要的军用光电子设备,并在此过程中,形成了实力雄厚的10多个光电子技术研究基地。70年代末,光纤通信的研究和开发也在我国兴起。80年代中期光盘技术和光电平面显示技术也得到发展。我国在"八五"计划期间对一些光电器件企业进行了技术改造,已在"九五"计划中产生了效益。例如,12英寸彩色液晶显示屏已经在1996年投产。国家重大成套通信设备2.5Gbps同步数字系列(SDH)光通信系统,于1997年研制开发成功,现已广泛应用于国家通信骨干网的建设。 总之,我国的光电子技术经过“七五”入轨,“八五”攻坚和“九五”拼搏,在信息光电子方面取得了可喜的成绩。而我国光电子技术理论的迅速发展,更为该领域的可持续发展奠定了坚实的基础。理论是发展的基础,发展是理论的延续。对于较新兴的技术领域更是如此。2000-2005年,我国光电子技术理论论文发表数量从812篇增加到3103篇,6年间增长了282.14%,论文年平均增长率在光电子技术领域的所有专业中最高,这为光电子技术的进一步发展和产业化奠定了厚实的基础。 III

生命科学与金融学

生命科学与金融学 生命科学是研究包括人在内的各种生物,其生命特征的规律性,如生物类群、结构功能、生长发育、遗传变异、起源进化,以及生物和环境相互作用的基础科学。生命科学作为一门基础科学,传统上是农业和医学的基础,涉及种植、畜牧、养殖、医药、体育与卫生等。随着生命科学理论体系的完善和科研方法和技术的不断进步,其应用领域正在不断的扩大。现在生命科学的影响已经扩大到食品、化工、环保、冶金等方面,若考虑仿生学因素,其影响还涉及机械、电子、信息技术诸领域。 从生物科学到生物技术和生物工程是人们从认识生命活动和探索生命的规律性到改造及提高人们的环境适应能力的飞跃。而随着生命科技渗透到人口、环境、健康、资源和海洋开发等重大问题的解决途径中,生命科技产业化的步伐大大加快,生物产业已成为关系到中国民生的重要产业,以生命科学产业化为基础的生物经济将引领中国社会又好又快的可持续的发展 所示为生命科学的实践化过程 生物经济这一概念是由stan davis 和Christophermeyer于2000年提出的。生命科技的研发应用是生物经济的基础,生物经济是建立在生物经济产品和产业上的。与具有垄断性质的信息技术和信息经济不同,生物技术和生物经济具有较强的资源依赖性、技术通用性和产品多样性,而市场垄断性则较弱。这为拥有丰富的生物资源的发展中国家在未来的生物经济时代中实现跨越式发展提供了契机。 与互联网局限在人们信息层次上的交流不同,生命科学的革命性在于它将改变人们生存和健康的各方面。生物产业所带来的商机远远大于信息技术,生物科技产业具有的研发领域广、研发投入高、附加值高、公害低、土地和劳动力的需求少,也已成为人类社会经济发展的新动力。 我国的生物经济 我国是世界上生物资源最为实饶的国家之一,我国有十三亿人口的食物和健康需求。我国发展生物经济是应对国际竞争和解决未来人口、资源、能源等问题的关键。生物技术不反自身发展迅速,而且带动的大批高新技术产业的成长。经过20多年努力,我国已初步建立了完整的生物技术研发体系,我国生物经济初见端倪。我国目前拥有200多个生物技术实验室(重点项目),技术和研发产品人员约两万人。我国涉及现代生物技术的企业约500余家,从业人员超过五万人,我国建立了生物基地。 通过学习生命科学与技术,发现自己所学专业金融学是可以与生命科学一起服务于社会主义现代化建设,通过自己的专业知识,为生命科学在实际生产中筹资,开拓市场,造福社会做出贡献。

谈谈你对分子生物学未来发展的看法

谈谈你对分子生物学未来发展的看法? 21世纪是生命科学世纪,生物经济时代,分子生物学的发展揭示了生命本质的高度有序性和一致性,是人类认识论上的重大飞跃。生命活动的一致性,决定了二十一世纪的生物学将是真正的系统生物学,是生物学范围内所有学科在分子水平上的统一。 分子生物学是目前自然学科中进展最迅速、最具活力和生气的领域,也是新世纪的带头学科。 分子生物学的研究将带动生物科学全面迅速地发展,生物科学的众多分支学科,将在更高层次上实现理论的大综合。 5、比较原核、真核基因组的特点(上海第二军医大硕士研究生入学考试试题) 一、原核生物基因组结构特点 1、基因组很小,大多只有一条染色体 2、原核生物基因主要是单拷贝基因 3、结构简炼 4、存在转录单元(trnascriptional operon)、多顺反子(polycistron) 5、有重叠基因 二、真核生物基因组结构特点 1、真核基因组结构庞大 2、含有大量重复序列 3、非编码序列多 4、转录产物为单顺反子 5、基因不连续性 6、存在大量的顺式作用元件。 7、存在大量的DNA多态性 8、端粒结构 2、简述RNA转录的基本概念基本过程? 转录(transcription):DNA分子中的遗传信息转移到RNA分子中的过程称为转录。转录产物有mRNA ,tRNA和rRNA。 转录的基本过程:

1)无论是原核还是真核细胞,转录的基本过程都包括:模板识别、转录起始、通过启动子及转录的延伸和终止。 2)全酶上的因子辨认DNA模板上的起始位点,使全酶结合在起始位点上形成全酶-DNA复合物,从而开始“起始反应”; 3)转录开始后,因子立即从复合物上脱落,由核心酶催化RNA的合成; 4)当转录到一定长度时,终止因子识别模板上的终止信号,终止转录,释放转录产物。 简述因子的作用 启动子的识别要靠因子来完成。 10.真核生物的原始转录产物必须经过哪些加工才能成为成熟mRNA,以用作蛋白质合成的模板? 答:内含子的剪接、编辑、在编码及化学修饰。 简述原核和真核生物mRNA的区别? 原核生物mRNA的特征: A、半衰期短 B、多以多顺反子的形式存在 C、单顺反子mRNA:只编码一个蛋白质的mRNA。 D、多顺反子mRNA:编码多个蛋白质的mRNA E、5’端无“帽子”结构,3’端没有或只有较短的poly(A )结构 F、SD序列:mRNA中用于结合原核生物核糖体的序列。 真核生物mRNA的特征: a、5’端存在“帽子”结构 b、多数mRNA 3’端具有poly(A )尾巴(组蛋白除外) C、以单顺反子的形式存在 什么是Pribnow box?它的保守序列是什么?

《光镊原理及应用》课程教学大纲

《光镊原理及应用》课程教学大纲 一、课程基本信息 课程中文名称:光镊原理及应用 课程英文名称:Optical tweezers theory and application 开课学期:2 学时:16 学分:1 二、课程目的和任务 激光生物学是多学科交叉的新兴学科,其中以激光微束光阱效应为基础的光镊技术是生命科学和生物工程研究的有力工具,已成为当前生物物理学中新方法和新仪器的研究热点之一。是光子技术和生命科学相互交叉与渗透而形成的一门新的边缘学科,课程教学目标:让光镊在生命学科及其他应用领域中的作用与地位,逐步树立科学的世界观,促进综合素质的提高;帮助学生获得光镊的基本知识,掌握光镊相关技术。通过课程小论文与研讨,让学生了解本学科的发展前沿,培养学生的创造型思维;开放式的教学,提高学生的综合分析和解决问题的能力。 三、教学内容与基本要求 教学主要内容及对学生的要求: 教学主要内容 第一章 光镊技术的产生与发展 光镊技术的理论研究、光镊技术的应用研究 国内外光镊技术的研究现状 第二章 光镊技术及其基本原理 光镊技术的描述、光镊的基本原理、光辐射压力、 梯度力和散射力、二维光学势阱、基于激光微束的三维光学势阱 第三章 光镊的理论分析与计算方法 光镊理论计算的意义、粒子分类与计算方法、光阱力与光操纵束缚条件第四章 光镊的系统构成与技术性能

传统光镊的原理、系统构成、激光器和显微镜的选取、多光镊技术 第五章 光纤光镊技术 远场光纤光镊、近场光镊 第5章 光镊技术的发展应用 光镊技术在生物学方面应用、光镊在分子生物学领域的应用、光镊与其它技术的结合应用 对学生的要求: 1、 对光镊原理方法有明确认识。 2、 对光镊系统的性能、参数能深入了解,并能自由运用。 3、 能够了解光阱力的计算方法。 4、 有查阅外文资料的能力。 五、教学设计及方法 教学方式 1) 教学与科研结合,激发学生的求知欲 2)专家讲授与教师专题讲座相结合,拓展学生知识面 3)理论与实践结合,加强学生实验技能的训练 4)中、英双语教学相结合,提高学生国际交流能力 5)撰写专题调研报告,培养学生的自主创新能力 教学手段 将多种现代的教学手段运用于课程教学之中,多方位多途径地展教学活动,以激发学生学习兴趣,提高教学效果。 1)将多媒体教学与板书相结合,以解决学时少内容多的矛盾 2)课件与电视录像片相结合,以提高学生的自学能力 3)丰富的网络资源为学生学习提供良好的软环境 六、调查、参观、实践、实验内容 七、主要参考资料 [1]《光镊原理、技术和应用》李银妹编译中国科学技术大学出版社1996 [2]《时域有限差分法FDTD Method 》 高本庆 国防工业出版社.1995年 [3][《非均匀介质中的场与波》美]Weng Cho Chew 著聂在平,柳清伙译电子工业出版社,1992年 [4] Ashkin A. Optical trapping and manipulation of single cells using infrared laser beams. Nature, 1987, 33: 256-

光电子技术的应用和发展前景

光电子技术的应用和发展前景 姓名:曾倬 学号:14021050128 专业:电子信息科学与技术 指导老师:黄晓莉

摘要:光电子技术确切称为信息光电子技术,本文论述了一些新型光电子器件及其发展方向 20世纪60年代激光问世以来,最初应用于激光测距等少数应用,光电子技术是继微电子技术之后近30年来迅猛发展的综合性高新技术。1962年半导体激光器的诞生是近代科学技术史上一个重大事件。经历十多年的初期探索,到70年代,由于有了室温下连续工作的半导体激光器和传输 损耗很低的光纤,光电子技术才迅速发展起来。现在全世界敷设的通信光纤总长超过1000万公里,主要用于建设宽带综合业务数字通信网。以光盘为代表的信息存储和激光打印机、复印机和发光二极管大屏幕现实为代表的信息显示技术称为市场最大的电子 产品。人们对光电神经网络计算机技术抱有很大希望,希望获得功耗的、响应带宽很大,噪音低的光电子技术。

目录 (一)光电子与光电子产业概况 (二)光电子的地位与作用 (三)二十一世纪信息光电子产业将成为支柱产业 (四)国际光电子领域的发展趋势 (五)光电子的应用

(一),光电子及光电子产业概况 光电子技术是一个比较庞大的体系,它包括信息传输,如光纤通信、空间和海底光通信等;信息处理,如计算机光互连、光计算、光交换等;信息获取,如光学传感和遥感、光纤传感等;信息存储,如光盘、全息存储技术等;信息显示,如大屏幕平板显示、激光打印和印刷等。其中信息光电子技术是光电子学领域中最为活跃的分支。在信息技术发展过程中,电子作为信息的载体作出了巨大的贡献。但它也在速率、容量和空间相容性等方面受到严峻的挑战。 采用光子作为信息的载体,其响应速度可达到飞秒量级、比电子快三个数量级以上,加之光子的高度并行处理能力,不存在电磁串扰和路径延迟等缺点,使其具有超出电子的信息容量与处理速度的潜力。充分地综合利用电子和光子两大微观信息载体各自的优点,必将大大改善电子通信设备、电子计算机和电子仪器的性能。 今天,光电子已不再局限传统意义上的用于光发射、光调制、光传输、光传感等的电子学的一

生命科学与技术研究进展

1. 什么是系统生物学? 系统生物学是一种典型的多学科交叉研究,它需要生命科学、信息科学、数学、计算机科学等各种学科的共同参与。它是一种整合型大科学,要把系统内不同性质的构成要素(基因、mRNA、蛋白质、生物小分子等)整合在一起进行研究。对于多细胞生物而言,系统生物学就是要实现从基因到细胞、到组织、到个体的各个层次的整合。 系统生物学包括四个方面: 一、系统结构。包括基因,蛋白间关系以及由此得到的基因蛋白网络和生物通路,以及这些相互之间关系所牵涉到的细胞内和细胞外结构的物理特性和机制。 二、系统动力学。可以通过代谢分析,敏感性分析,动力学分析工具比如分叉分析等,以及识别不同行为所内含的机制等分析方法和手段来理解在不同时间点不同条件下系统的行为。 三、系统的控制方法。掌握这些控制细胞处于各种状态的机制,用来模拟系统,能得到治疗疾病的药靶。 四、设计的方法。基于某些设计的原则和模拟方法,可以修正和构造具有所需特性的系统,而不需要盲目地反复实验。 2. 生物芯片技术对于系统生物学的意义? 生物芯片是多领域相揉合的产物,生物芯片技术涉及电子技术、成像光学、材料学、计算机技术、生物技术等。简单说,生物芯片就是在一块玻璃片、硅片、尼龙膜等材料上放上生物样品,然后由一种仪器收集信号,用计算机分析数据结果。根据生物分子间特异相互作用的原理,将生化分析过程集成于芯片表面,从而实现对细胞、蛋白质、DNA以及其他生物组分的准确、快速、大信息量的检测。生物芯片技术是系统生物学技术的基本内容。 系统生物学有两个关键技术基础,“组学”数据基础,以及检测和实验技术基础。在检测和实验技术这一方面,生物芯片占有举足轻重的地位。二十世纪末期,生物芯片开始进入大家的视野,它有着传统技术无可比拟的优势:高通量、微型化、自动化。系统生物学需要处理海量的组学数据,如果仅仅依靠传统手段,将举步维艰,借助于芯片技术,将事半功倍。 3. 以某离子通道为例,叙述蛋白结构和功能的测量方法和手段 以BK通道为例,结构测量:首先得到通道的序列,设计引物,通过体外PCR 快速高效的体外扩增该片段,然后连接到合适的载体上导入宿主细胞中进行表达,获得蛋白,通过HPLC进行蛋白分析和分离,将纯化后的蛋白配制成浓溶液,进行晶体生长实验,获得高质量的单晶体后,进行X射线衍射来解析该通道的结构,功能测量:通过量:通过切除部分序列,来测量通道的功能序列,定点突变来确定通道的关键氨基酸。通过特异性药物或毒素与通道的结合相互作用来检测通道的生理活性和功能。 4、有哪些方法可用来确定离子通道生理功能? (1)电压钳技术 膜对某种离子通透性的变化是膜电位和时间的函数。用玻璃微电极插入细胞内,利用电子学技术施加一跨膜电压并把膜电位固定于某一数值,可以测定该膜电位条件下离子电流随时间变化的动态过程。利用药物使其他离子通道失效,即可测定被研究的某种离子通道的功能性参量

浅谈对生命科学的认识

浅谈对生命科学的认识 对于生命科学有一个比较全面的概括----------生命科学是研究 生物之间和生物与环境之间相互关系的科学。用于有效地控制生命活动能动地改造生物界造福人类生命科学与人类生存、人民健康、经济建设和社会发展有着密切关系是当今在全球范围内最受关注的基础自然科学。 生物科学主要涵盖了植物学、动物学、微生物学、神经学、生理学、组织学、解剖学等 生物技术则涉及到基因工程、细胞工程、酶工程、发酵工程等内容 信息进行存储、检索和分析的学基因组学、蛋白学和系统生物学等方面而我自身比较感兴趣的是微生物学与植物学的交叉学科下面先以微生物学与植物学的交 2008年度国家自然科学基金项目指南中提到生命科学部一处由微生物学学科与植物学学科组成,主要受理针对微生物和植物开展的生物多样性、形态与结构、系统与进化、生理与代谢、遗传与发育等科学问题的综合研究。微生物学学科主要受理范围微生

病毒学基于微生物学的交 包括次生代谢、植物化学和天然 物学植物等。可见微生物学的研究与植物学是密不可分的同时其也是生命科学中一个重要的研究方向其应用实例有鏈霉菌在植物保護方面的應用。生物防治法是农业生态系中植物病原、昆虫与益菌或天敌等族群间维持均衡的重要策略之一。就植物病害而 下透过一种或多种拮 而达到防治植物病害的效果。链霉菌拮抗植物病原菌的原生物 的效果。 链霉菌拮抗植物病原菌的原理可分为抗生、竞争和超寄生作用。抗生作用是指拮抗菌所分泌 抑制病原菌的生长。竞争作用是拮抗菌与植物病原菌竞争养分、 制病原菌的生长及存活间接保护作物免于被病原危害。超寄生作

受破坏甚至死亡。例如利迪链霉菌WYEC108 腐霉菌菌丝的细胞壁。如果把豌豆种子粉衣以WYEC108 菌株 灰绿链霉菌可产生 霉菌 链霉菌还可产生多种可分解蛋白质、木质素、几丁质及纤维素的 、分子生物学与基因工程方面、发酵工程以及医学上的应用分子生物学与基因工程方 科学在自然科学中的位置起了革命性的变化。20世纪50年代遗传物质DNA生命活动的新纪元。此后遗传信息由DNA通过RNA传向蛋白质这一“中

光镊原理浅析

光镊原理浅谈 岑学学 光镊技术由来已久,阿瑟·阿什金(Arthur Ashkin )在1986年就发明了第一代光镊。经过30多年的发展,光镊技术已经越来越成熟,并应用在生物学、物理学、医学等领域。这里我们将尽量通俗地介绍光镊的原理。 光镊,简单来讲,就是用激光来俘获、操纵、控制微小粒子的技术。这微小粒子可以是小水珠,活细胞,生物大分子等。当激光打到小粒子的时候,粒子就被光“吸住”了,并且会被吸到光强最强的地方,也就是焦点处,移动光束,就可以移动粒子。 那么,粒子为什么会被吸到光强最强的地方并被束缚住呢? 光与物质是可以相互左右的。一柱水喷我们身上,或者一阵风迎面吹来,我们都能感觉到些许压力,具有波粒二象性的光自然也一样会对我们产生压力,只不过这个力很小很小而已,这就是光压。而在某些情况下,光还能对物体产生拉力,这样就形成了能束缚粒子的一个“陷阱”,通常被称为势阱。那么势阱又是如何产生的呢?我们需要先来复习一些中学的物理知识---动量守恒定律。

如图,有两个小球,铜球有一个初速度,动量为p1,钢球则是静止的,动量为p2=0。把这两个小球看作一个系统,那么这个系统的初始动量就是p=p1+p2。

铜球撞上钢球后,它们各自的速度都发生了变化,动量也变了。但是系统的动量是不变的,还是等于p,这就是动量守恒定律。 我们回来看光束和透明小球组成的系统,如图,光束有一个动量,而小球则是静止的,动量为0,而光束的动量是水平的,系统在竖直方向上的动量为0. 当光束照射到小球但不通过中心的时候,小球会使光线折射,如图。

这时光束在竖直方向上有了一个向下的动量。为了使系统的动量守恒,小球必须有一个向上的动量,这个动量就把小球“吸”向光速的轴线。 如果小球在光束的轴线上但在焦点之外,那小球就会使光束汇聚,如图。

光电子技术发展态势及应用

光电子技术发展态势及应用 姓名:刘鹏学号:200910711234 摘要:当今社会正在从工业化社会向信息化社会过渡,在这个社会大变革时期,光电子技术迅速发展,不断渗透到国民经济的各个方面,成为信息社会的支柱之一。本文讨论了光电子的发展历程以及光电子在不同时期的重要发明与应用,同时对光电子技术今后的发展态势做了展望。 引言:光电子技术又名信息光电子技术,是继微电子技术之后近30年来迅猛发展的综合性高新技术。20世纪60年代激光问世以来应用于光纤通信、激光、LED.等诸多领域,经历十多年的初期探索,随着半导体光电子器件和硅基光导纤维两大基础元件在原理和制造工艺上的突破,光子技术与电子技术开始结合并形成了具有强大生命力的信息光电子技术和产业。 关键词:光电子技术发展历程应用展望 一、光电子技术的概念 光电子技术是光子技术与电子技术相结合而形成的一门技术【1】。激光器的发明,解决了光频载波的产生问题,从此电子技术的各种基本概念几乎都移植到了光频段。电子学与光学之间的鸿沟在概念上消失了,产生了光频段的电子技术,习惯上简称为光电子技术。从电子学频段扩展的意义上讲,光电子技术就是电子技术在光波段的开拓和发展;从光学发展的角度讲,光电子技术发展需求的牵引,大大促进了相干光学技术的信息化进步。所以,光电子技术也是光电子技术与光学技术相结合的产物。 二、光电子技术的发展历程 最早出现的光电子器件是光电探测器,而光电探测器的基础是光电效应的发现和研究。1888年,德国H.R.赫兹观察到紫外线照射到金属上时,能使金属发射带电粒子,当时无法解释。1890年,P.勒纳通过对带电粒子的电荷质量比的测定,证明它们是电子,由此弄清了光电效应的实质【2】。1900年,德国物理学家普朗克在黑体辐射研究中引入能量量子,提出了著名的描述黑体辐射现象的普朗克公式,为量子论坚定了基础。1929年,L.R.科勒制成银氧铯光电阴极,出现了光电管。1939年,前苏联V.K.兹沃雷金制成实用的光电倍增管。20世纪30年代末,硫化铅(PbS)红外探测器问世,它可探测到3μm辐射。40年代出现用半导体材料制成的温差电型红外探测器和测辐射热计。50年代中期,可见光波段的硫化镉(CdS)、硒化镉(CdSe)、光敏电阻和短波红外硫化铅光电探测器投入使用。1958年,英国劳森等发明碲镉汞(HgCdTe)红外探测器。在军事需求牵引和半导体工艺等技术发展的推动下,红外探测器自60年代以来迅速发展。 尽管光电子技术历史可追溯到19世纪70年代,但那时期到1960年,光学和电子学仍然是两门独立的学科,因而只能算作光电子学与光电子技术的孕育期,20世纪60年代激光问世开创了光电子技术的新纪元。 激光器是光波短的相干辐射源。它的理论基础是爱恩斯坦在1916年奠定的。当时,爱恩斯坦提出光的发射与吸收可以经过受激吸收,受激辐射和自发辐射三种基本过程的假设。但是,直到1954年,美国C.H.汤斯才根据这个假设,以制

公元年公元年生命科学发展大事记

生命科学发展大事记 公元1600年~公元1839年 公元1609年 ●意大利物理学家、天文学家G.伽利略制造一台复合显微镜,并用于观察昆虫的复眼。公元1628年 ●英国医生、解剖学家W.哈维所著的《动物心血运动的研究》一书出版,建立血液循环 理论,奠定了近代医学和生理学的基础。 公元1660年 ●意大利解剖学家M.马尔皮基观察到蛙肺里连接动脉和静脉的毛细血管,证实了哈维的 血液循环理论。 公元1665年 ●英国物理学家R.Hooke(R.胡克)在显微镜下观察软木切片,发现蜂窝状小室,称之为 “Cell”,并发表著作《显微摄影》描述之。 公元1668年 ●意大利医生F.雷迪通过蝇卵生蛆的对比实验,为反对自然发生说提供了第一个证据。公元1675年 ●荷兰人A.van 列文虎克发明了显微镜。 公元1675年 ● A.van 列文虎克用自制的、当时分辨率最高的显微镜进行了广泛观察,发现了由种种 活着的“小动物”组成的微生物世界,同时也发现了人的精子。 公元1682年 ●英国植物学家N.格鲁编著的《植物解学》出版,其中也包括植物生理学的研究成果。公元1686年 ●英国博物学家J.雷所著《植物史》第一卷出版,以后继续出版第二、三卷,其中讨论了 种的定义。 公元1727年 ●中国医学家俞茂鲲在《痘科金镜赋集解》中记载,人痘接种术起于明朝隆庆年间(1567~

1572);《医宗金鉴》(1742)介绍了痘衣、痘浆、水苗、旱苗四种方法。据俞正燮(1775~1840)在《癸巳存稿》中记载,1688年(清康熙二十七年)俄国已派医生来学“人痘法”。公元1735年 ●瑞典植物学家Linne C.V.(C.von林奈)所著的巨著《自然系统》第一版出版,首创物 种二名法,把自然界的植物、动物、矿物、分成纲、目、属、种,实现了植物与动物分类范畴的统一,在全世界得到普遍承认与推广。 公元1761年 ●科尔鲁特以早熟的普通烟草和晚熟的心叶烟草杂交获得了品质优良的早熟杂种一代。公元1770年~公元1774年 ●氧气的发现,经历了一个较为漫长的曲折历程。造成这种曲折的原因尽管是多方面的, 但主要还是发现者本人的主观因素所造成的。因此,总结这一深刻教训,可给后人留下许多有益的历史启示。 人类关于氧气的研究,可以追溯到遥远的古代。据史书记载,公元8世纪,中国就曾经对大气进行过研究,并把大气分为阴阳两部分。到17世纪,罗伯特·波义耳(R. Boyle,1627-1691)在进行抽气机与燃烧实验时,发现了一些奇妙有趣的现象。在真空中,火药环只在受热的地方才燃烧,但一通入空气,立刻全部燃烧。这些燃烧现象,使波义耳得出结论:“空气中有一些活性物质不是被磷的烟雾消耗掉,就是被它驯化”。 这给人们以启发,那就是空气中含有两种截然不同的气体。此后,R. 虎克(R. Hooke,1635-1703)也做了类似的燃烧实验,并得出结论,认为空气中存在一种可以溶解可燃物体自身的东西。 罗伯特·波义耳和虎克的实验,对发现氧气都是极为有益的。只要沿着这个正确的思路去寻找空气中那种具有活性的物质是什么?氧气就会很顺利地被发现。但科学发现的道路是曲折的。在通往客观真理的征途上,遇到任何一点障碍,都可能使科学家犹豫不前,而大大推迟科学发现的时间。 在氧气发现的过程中,最大的障碍,就是“燃素说”的提出。它使一些科学家步入歧途,茫然而不能自拔。“燃素说”是英国人乔治.恩斯特.史塔尔继承了约翰.约阿希姆.帕克的《地下的自然哲学》中的学说,并综合了各家观点,于1703年较系统地阐述和发挥为完整理论的。史塔尔认为,空气中有一种可燃的油状土,即为燃素。史塔尔所说的燃素是“火质和火素而非火本身”,燃素存在于一切可燃物体中,在燃烧时,快速逸出。 燃素是金属性质、气味和颜色的根源。它是火微粒构成的火元素。按照“燃素说”的观点,

现代生命科学与技术结课论文

现代生命科学技术的论文 基因芯片——“生物信息精灵” ——浅谈数学、计算机在现代生命科学研究中的作用 二十世纪是物理科学的世纪,而二十一世纪则是生命科学的世纪。生命科学,尤其是生物技术的迅猛发展,不仅与人类健康,农业发展以及生存环境密切相关,而且还将对其它学科的发展起到促进作用,所谓"今天的科学,明天的技术,后天的生产"。而生命科学的基础性研究是现代生物技术的源泉、科学和技术创新的关键。 现代生物技术,是一门领导尖端科技的学科,正因如此,我很想知道它与数学——我得专业课,计算机等理论或技术是怎样有机的联系在一起的。基于此,我利用课余时间查阅了许多网站、书籍,并有了小小的收获。现就“基因芯片”技术,浅谈如下。 一、基因芯片简介 基因芯片,也叫DNA芯片,是在90年代中期发展出来的高科技产物。基因芯片大小如指甲盖一般,其基质一般是经过处理后的玻璃片。每个芯片的基面上都可划分出数万至数百万个小区。在指定的小区内,可固定大量具有特定功能、长约20个碱基序列的核酸分子(也叫分子探针)。 由于被固定的分子探针在基质上形成不同的探针阵列,利用分子杂交及平行处理原理,基因芯片可对遗传物质进行分子检测,因此可用于进行基因研究、法医鉴定、疾病检测和药物筛选等。基因芯片技术具有无可比拟的高效、快速和多参量特点,是在传统的生物技术如检测、杂交、分型和DNA测序技术等方面的一次重大创新和飞跃。 二、基因芯片技术 生物芯片技术是于90年代初期随着人类基因组计划的顺利进行而诞生,它是通过像集成电路制作过程中半导体光刻加工那样的微缩技术,将现在生命科学研究中许多不连续的、离散的分析过程,如样品制备、化学反应和定性、定量检测等手段集成于指甲盖大小的硅芯片或玻璃芯片上,使这些分析过程连续化和微型化。也就是说将现在需要几间实验室、检验室完成的技术,制作成具有不同用途的便携式生化分析仪,使生物学分析过程全自动化,分析速度成千上万倍地提高,所需样品及化学试剂成千上万倍地减少。可以预见,在不远的将来,用它制作的微缩分析仪将广泛地应用于分子生物学、医学基础研究、临床诊断治疗、新药开发、司法鉴定、食品卫生监督、生物武器战争等领域。 生物芯片技术是目前应用前景最好的DNA分析技术之一,分析对象可以是核酸、蛋白质、细胞、组织等。目前全世界用生物芯片进行疾病诊断还处于研究阶段,国外已将其用于观察癌基因及肌萎缩等一些遗传病基因的表达和突变情况。

浅谈生命科学的应用

浅谈生命科学的应用 生工121 徐娜 2012121104 这学期选修了生命科学导论这门课,了解到生命科学是通过分子遗传学为主的研究生 命活动规律、生命的本质、生命的发育规律,以及各种生物之间和生物与环境之间相互关 系的科学。最终能够达到治疗诊断遗传病、提高农作物产量、改善人类生活、保护环境等 目的。今天就来谈谈生命科学与我所学专业的联系,我的专业是生物工程,方向主要的是 食品发酵,那么生命科学在食品发酵方面有哪些应用呢? 一、基因工程技术在食品发酵生产中的应用 基因工程技术是现代生物技术的核心内容,采用类似工程设计的方法,按照人类的特殊 需要将具有遗传性的目的基因在离体条件下进行剪切、组合、拼接,再将人工重组的基因通过载体导入受体细胞,进行无性繁殖,并使目的基因在受体细胞中高速表达,产生出人类所需要的产品或组建成新的生物类型。 (一)改良面包酵母菌的性能 面包酵母是最早采用基因工程改造的食品微生物。将优良酶基因转入面包酵母菌中后,其含有的麦芽糖透性酶及麦芽糖的含量比普通面包酵母显著提高,面包加工中产生二氧化碳气体量提高,应用改良后的酵母菌种可生产出膨润松软的面包。 (二)改良酿酒酵母菌的性能 利用基因工程技术培育出新的酿酒酵母菌株,用以改进传统的酿酒工艺,并使之多样化。采用基因工程技术将大麦中的淀粉酶基因转入啤酒酵母中后,即可直接利用淀粉发酵,使生 产流程缩短,工序简化,革新啤酒生产工艺。 (三) 改良乳酸菌发酵剂的性能 乳酸菌是一类能代谢产生乳酸,降低发酵产品pH值的一类微生物。乳酸菌基因表达系 统分为组成型表达和受控表达两种类型。通过基因工程得到的乳酸菌发酵剂具有优良的发 酵性能,产双乙酰能力、蛋白水解能力、胞外多糖的稳定形成能力、抗杂菌和病原菌的能力较强。 二、细胞工程技术在食品发酵生产中的应用 细胞工程是生物工程主要组成之一,是在细胞水平上改变细胞的遗传特性或通过大规模细胞培养以获得人们所需物质的技术过程。细胞工程主要有细胞培养、细胞融合及细胞代 谢物的生产等。细胞融合是在诱导剂作用下,使两个或两个以上的异源细胞或原生质体相互接触,从而发生膜融合、胞质融合和核融合并形成杂种细胞的现象。细胞融合技术是一种改良微生物发酵菌种的有效方法,主要用于改良微生物菌种特性、提高目的产物的产量、使菌种获得新的性状、合成新产物等。与基因工程技术结合,使对遗传物质进一步修饰提供了多样的可能性。例如日本味之素公司应用细胞融合技术使产生氨基酸的短杆菌杂交,获得比原产量高3倍的赖氨酸产生菌和苏氨酸高产新菌株。酿酒酵母和糖化酵母的种间杂交,分离子后代中个别菌株具有糖化和发酵的双重能力。日本国税厅酿造试验所用该技术获得了优良 的高性能谢利酵母来酿制西班牙谢利白葡萄酒获得了成功。 在细胞培养方面最典型的例子是人参细胞培养成功,还有香料与色素的生产。日本利 用培养草莓细胞生产红色素的技术已成功应用于葡萄酒及食品加工之中。利用香草细胞培 养技术可大量生产香草香精。当今,白酒、果酒、酱类等食品发酵行业以使用酵母为主, 曲菌也适于酒类和酱油生产。这些行业的微生物育种目标是培养出耐乙醇酵母、耐盐酵母、耐高糖酵母、无泡酵母、耐温酵母及谷酰胺酶与蛋白质分解酶活性高的曲菌。具有重要意

第五组——光镊技术的新应用剖析

光镊技术的新应用 纪美伶,白中博,王娜,马学进(西安交通大学生物医学工程) 摘要激光光镊自从1986年发明以来,作为一种无直接接触、无损伤、可产生和检测微小力以及精确测量微小位移的物理学工具,在生命科学等多个领域得到了广泛的应用。本文从光镊的诞生出发,简要讨论了光镊的原理,光镊装置的基本结构,并简要介绍了各个种类光镊的独特功能以及基于光镊的一些新技术,进而对光镊技术及其在生命科学中的应用现状和进一步发展作了评述和讨论,阐述了光镊在生命科学研究中的潜在地位和巨大的发展前景。关键词光镊;生命科学;原理;基本结构;应用现状;发展 New Applications of Optical Tweezer Ji Mei-ling,Bai Zhong-bo,Wang Na,Ma Xue-jin Abstract The optical tweezer technique has emerged as a flexible and powerful tool for exploring a variety of scientific processes such as life science since it was invented in 1986. From the birth of the optical tweezer, this paper will briefly discuss its working principle, its basic structure and introduce some kinds of optical tweezers with novel features or some new technologies based on it. Then its recent developments on both the technology and applications in life science will be reviewed. It is shown that optical tweezer will have great potential in life science. Key words:optical tweezer; life science; principle; basic structure; application; development 光镊简介 一百年前,爱因斯坦提出的光量子学说最终导致了激光的诞生,20世纪60年代激光器的发明,使光与物质相互作用产生的力学效应真正走向实际的应用。20世纪70年代,美国贝尔实验室的学者Arthur Ashkin等人[1]发现了激光具有移动微粒的能力,并首先提出利用光压操控微小粒子的概念:在氩离子激光器发出的TEM00模式激光束作用下,硅小球在横向梯度力的作用下陷入光束中心,然后在光束散射力的作用下沿着光束传播的方向加速运动;还发现了折射率低于周围介质的粒子(气泡)会被激光束排斥,同时也会被激光束沿着激光传播的方向加速。其后Ashkin 利用两束相对照射的TEM00模式激光去捕获高折射率粒子,发现粒子在激光横向梯度力的作用下陷入光束中心,然后沿着光束传播的方向运动到一个稳定的平衡点停止下来,这样粒子就被两束相对照射的激光束稳定捕获了。这时它还不能称之为光镊,因为只能实现横向二维捕获,而在轴向上由于强烈的散射力的存在无法实现捕获。 1971 年,Ashkin 和Dziedzic 第一次使用了单光束捕获粒子[2]。他们利用一束聚焦的TEM00模式激光从下向上照射粒子,在轴向散射力的作用下粒子被顶起,同时粒子受到向下的重力作用。当粒子运动到平衡位置时,向上的散射力和向下的重力达到平衡,粒子在轴向上稳定下来。在横向上,由于光束的横向梯度力始终指向光束中心,因此粒子被稳定地捕获在光束中心。这样就形成了一个单光束悬浮光阱(opticallevitation trap)。在1986年,Ashkin 发表了一篇具有深远意义的论文[3],标志着光镊的诞生。在此文中Ashkin仅仅利用一束激光就实现了在三维方向上捕获电介质粒子,而且在轴向上利用的是梯度力捕获粒子,而非利用重力作用的悬浮光阱。实验中Ashkin利用高度聚焦的单光束焦点形成的单光束梯度力势阱(single beam gradientforce trap),在水中成功地捕获了直径从25nm 到10μm 的电介质粒子,且在横向和轴向上所施加的捕获力都来自于光场梯度力。由于这种单光束梯度力势阱

相关文档
相关文档 最新文档