文档库 最新最全的文档下载
当前位置:文档库 › 条件数学期望及其应用

条件数学期望及其应用

条件数学期望及其应用
条件数学期望及其应用

条件数学期望及其应用

The ways of finding the inverse matrix and it ’s application Abstract :The passage lists the ways of calculating the first type of curvilinear integral,and discusses it ’s application in geometry and in physical.

Keywords :Curvilinear integral;Continuous;Integrable; Lateral area.

0前言

在曲线积分中,被积函数可以是标量函数或向量函数.积分的值是路径各点上的函数值乘上相应的权重(一般是弧长,在积分函数是向量函数时,一般是函数值与曲线微元向量的标量积)后的黎曼和.带有权重是曲线积分与一般区间上的积分的主要不同点.物理学中的许多公式在推广之后都是以曲线积分的形式出现.曲线积分是物理学中重要的工具.

1条件数学期望

1.1条件数学期望的定义

定义1 设X 是一个离散型随机变量,取值为},,{21 x x ,分布列为},,{21 p p .又事件A 有0)(>A P ,这时

,2,1,)

()}({)|(|=?====i A P A x X P A x X P P i i A i 为在事件A 发生条件下X 的条件分布列.如果有

∞<∑A i i i p x

|

则称

A i i

i p x A X E |]|[∑=.

为随机变量X 在条件A 下的条件数学期望(简称条件期望).

定义2 设X 是一个连续型随机变量,事件A 有0)(>A P ,且X 在条件A 之

下的条件分布密度函数为)|(A x f .若?∞

∞-∞

定义3 设),(Y X 是离散型二维随机变量,其取值全体为

},2,1,),,{( =j i y x i i ,

联合分布列为

,2,1,),,(====j i y Y x X P p i i ij ,

在i y Y =的条件下X 的条件分布列为 ,2,1),|(|====i y Y x X P p i i j i 若

∞<∑j i i i p x |,

j i i i i p x y Y X E |]|[∑==

为随机变量X 在i y Y =条件下的条件数学期望.

定义 4 设),(Y X 是连续型二维随机变量,随机变量X 在y Y =的条件下的条件密度函数为)|(|y x p Y X ,若

则称

dx y x xp y Y X E Y X )|(]|[|?∞∞-== 为随机变量X 在}{y Y =条件下的条件数学期望.

1.2条件数学期望的性质

定理1 条件期望具有下面的性质:

(1) )|()|()|(G bE G aE G b a E ηξηξ+=+,

其中R b a ∈,,且假定)|(G b a E ηξ+存在;

(2) )()]|([ξξE G E E =;

(3) 如果ξ为G 可测,则ξξ=)|(G E ;

(4) 如果ξ与σ代数G 独立,则ξξE G E =)|(;

(5) 如果1G 是σ代数G 的子σ代数,则)|(]|))|([(11G E G G E E ξξ=;

(6) )(不等式Jensen 如果f 是R 上的下凸函数,则

)|)(())|((G f E G E f ξξ=;

定理2 条件期望的极限定理:

(1)单调收敛定理:若s a n ..ξξ↑,则在})|({-∞>G E ξ上,则

)|(lim )|(G E G E n n ξξ∞

→=. (2)Fatou 引理:若s a Y n .,≤ξ,则在})|({-∞>G E ξ上,则

)|(sup lim )|sup (lim G E G E n n ξξ=.

(3) 控制收敛定理:若Y s a Y n ,.,≤ξ可积,且P s a n 或.,ξξ→,则

0)|(lim =-∞

→G E n n ξξ. 1.3条件数学期望的求法

在现代概率论体系中,条件期望的概念只是一种理论上的工具,在其定义中没有包含算法,所以求条件期望概率往往很难,需要技巧.本文对两种不同情形下的条件期望的求法做出讨论.

方法一:利用问题本身所具有的某种对称性求解.

例1设n ξξξ,,,21 时独立同分布随机变量.∞<ξE ,记∑==n

k k S 1ξ,求

n k S E k ,,2,1,|( =ξ.

解 易证j i S E S E j i ≠=),|()|(ξξ.则

n i S S nE S S E i ,,2,1,)|()|( ===ξ

n k s a n

S S E k ,,2,1,.,)|( ==ξ 方法二:利用线性变换将随机变量分解为关于作为条件的σ域可测或独立的随机变量之和,利用条件期望的性质求和.

例 2 设有正态样本n X X ,,1 ),0(2

σN ,统计量∑==n

i k X T 1,求)|(2T X E k .

解 令∑==n k k X S 12,则)|(1)|(2T S E n

T X E k =

.作正交变换:??????

? ??=??????? ??=n n X X X C Y Y Y Y 2121,其中C 为正交阵,第一行为)1,,1(n n ,则有n T

I CC Y X Cov EY ===),(,0,即∑=n

k k Y T 22与独立,k Y n k N ,,2),,0(2 =σ,从而∑∑∑===+===n k k n k k

n k k Y n T Y X S 222

1212,2T 关于)(T σ可测,所以 222

2222)11(]|)[(1)|(1)|(σn n T T Y n T E n T S E n T X E n k k k -++==

∑=

由以上例题可以看出,条件期望的求法是一个复杂的问题,我们必须从问题本身出发化简,将其转化为可测或独立于σ代数的随机变量,然后运用条件期望的性质求解.

1.4全期望公式

设事件n B B B ,,,21 是一完备事件组,即n B B B ,,,21 互不相交,n k B P k ≤≤>1,0)(,且Ω=?=k n

k B 1,由全概率公式有

,2,1),()()|()

(1

|1

==?====∑∑==i B P p B P B x X P x X P p k n k B i k k n

k i i i k 这时若∞

)

()|[)

()())

((1

|1

1|k n k k k B i i i n k k n

k B i i i i i i B P B X E B P p x B P p x p x EX k k ∑∑∑∑∑∑=====?==

如同全概率公式一样,上式可称为全期望公式.

若n B B B ,,,21 是一个完备事件组,则也有全期望公式

)(]|[1∑==n

k k k B P B X E EX

(注意,X 的密度有公式))()|()(1k n

k k B P B x f x f ∑==.

2条件数学期望的应用

2.1条件数学期望在实际问题中的应用

条件数学期望在概率论与数理统计中有重要的作用,在实际问题中也有大量应用.例如人们常说体育要从娃娃抓起.某少体校要在小学中选拔一批小学生进行重点培养,为我国篮球,排球运动准备后备力量.对一个运动员来说,他(她)的身高显然是一个非常重要的因素.于是问题产生了,在一大群各项素质(包括目前的身高)都差不多的七八岁的小朋友中,用什么办法来选拔一批将来(十年以后)身材会比较高的幼苗进行重点培养呢?科学工作者发现了小孩的足长与他(她)长大后的身高之间有密切的关系.我国的体育科研人员对16个省市的几万名青少年儿童进行了观测,建立了下述预测公式:

成年身高=?k (少儿当年足长) (单位:cm )

其中系数k 对不同性别,不同年龄组的儿童有不同的数值,其具体数值如下表:

你大概很想知道上述预测公式是如何建立的?理论依据是什么?其实这正是现在所讨论的条件数学期望,对n (n 取定)岁的少年儿童来说,成年后的身高为X ,当年足长为Y 则),(Y X 是一个二维随机变量.一般认为他们的联合分布是正态分布.如果我们已知Y 的值,可以近似地以Y 的条件下X 的条件数学期望

来估计X 的值,即用]|[Y X E 作X 的预测值.这时]|[Y X E 是Y 的线性函数,这就是成年身高的预测公式.

例3 一全自动流水线正常生产时,产品中的一等品率为1p ,二等品率为2p ,等外品(即次品)率为3p ,1321=++p p p .为保证产品质量,厂方规定当生产出一件等外品时,该流水线即停工检修一次.已知首次检修之前共生产了n 件产品,求n 件产品中一等品件数的数学期望.

解 设X 表示前n 件产品中一等品的件数,令

}{件产品首次出现等外品第n A =.

据题意是要求]|[A X E .因为在条件A 下,前1-n 件产品中没有等外品,这时1-n 件产品中的一等品率是211p p p +,而二等品率是2

12p p p +,因此 10,1)|(1212211|-≤≤???? ??+???? ??+???? ??-===--n k p p p p p p k n A k X P p k n k A k 这是参数为),1(2

11p p p n +-的二项分布.即 2

111

0|)1(]|[p p p n kp A X E n k A k +-=

=∑-=. 实际上我们认为在条件A 下,前1-n 次试验是1-n 重贝努里试验,试验成功(取到一等品)的概率是211/p p p +.从直观意义看这是明显的,这也正是直接讨论条件分布的简捷之处.

2.2全期望公式的应用

例4 在贝努里试验中,每次试验成功的概率为p ,试验进行到出现首次成功时停止.求平均需试验多少次?

解 设X 为首次成功需做试验的次数,问题是求EX .定义

?

??=.,0,1第一次试验失第一次试验成功,Y 由全期望公式

)0(]0|[)1(]1|[==+===Y P Y X E Y P Y X E EX ,

已知p Y P p Y P -====1)0(,)1(,在1=Y ,即首次试验成功的条件下,自然有1=X ,因此1]1|[==Y X E .在0=Y 即首次首次实验失败的条件下,从第二次实验开始可以看作重新开始,因此,EX Y X E +==1]0|[.第一项的1是已经试验了一次,以后的情况与从头开始一样.所以

)1)(1(EX p p EX +-+=,

p

EX 1=. 原来求数学期望需要知道分布,但在上例的做法中可以不必知道分布,充分利用了随机变量的特性,并借助全期望公式,简化了计算,这是真正有概率特点的做法.

例5 设电力公司每月可以供应某电厂的电力服从]30,10[(单位:万度)上的均匀分布,而该工厂每月实际生产所需要的电力服从]20,10[上的均匀分布.如果工厂能从电力公司得到足够的电力,则每一万度电可以创造30万元利润,若工厂从电力公司得不到足够的电力,则不足部分由工厂通过其他途径自行解决,每一万度电只有10万元利润.问该厂每月的平均利润为多大?

解 设电力公司每月供应电厂的电力为X (万度),工厂每月实际需要的电力为Y (万度),工厂每月的利润为T (万元).由题设条件知

???>-+≤=X

Y X Y X X Y Y T 当当),(1030,30 于是当3020≤≤x 时,有

dy x y dy y x X T E x x ??++==102010

1)2010(10130]|[ 22224050)20(2)20(2

1)100(23x x x x x x -+=-+-+-=

由式

]}|[{X T E E ET =

4332251006730025450201)4050(201302020102≈+?-+=+-+=

??dx dx x x 所以该工厂平均每月的利润为433万元.

2.3预测与回归

对于二维随机变量),(Y X ,如果已知其中一个随机变量Y 的值,要根据这一信息对另一个随机变量X 的取值作出预测,这样的问题在人们的实践中可以说是比比皆是,常称它们为“预测问题”.前面我们提议用]|[Y X E 作为X 的预测值,这样做的依据是什么呢?

一般地,我们可以选取Y 的一个函数)(Y g 作为X 的预测值.这时预测的误差是)(Y g X -,由于绝对值运算在数学上处理不方便,我们用2)]([Y g X -代替它.自然应该使误差尽可能地小,但2)]([Y g X -是一个随机变量,因此很自然的要求它的平均值2)]([Y g X E -尽可能地小.这样的准则就称为均方误差最小准则.

假设),(Y X 为连续型二维随机变量,密度函数为),(y x f ,则

dy dx y x f y g x y f dxdy y x f Y g x Y g X E Y X Y ))|()]([)((),()]([)]([|222???

?∞∞-∞

∞-∞∞-∞

∞--=-=- 对每个y ,当]|[)(y Y X E y g ==时,能使dx y x f y g x Y X )|()]([|2?∞

∞--达到最小.因此取]|[)(Y X E Y g =时,2)]([Y g X E -达到最小,这就证明了,按照均方误差最小准则,]|[Y X E 是X 的最佳预测.这就是选取条件数学期望作X 的预测值的理论依据.对离散型情形也可用相同的方法论证上述结论.

函数]|[)(Y X E Y g =称为X 关于Y 的回归函数.一般情况下,求)(y g 是比较困难的.因此,把预测问题简化,选取Y 的线性函数b aY +作为X 的预测值.同样采用均方误差最小准则,选取常数b a ,使得

22][)]([b aY X E b aY X E --=+-

取最小值.我们早已知道,若a 固定,

a E Y EX aY X E

b -=-=)(

时,2][b aY X E --取最小值][aY X D -.我们只需求a ,使

DX Y X a DY a aY X D +-=-),cov(2)(2

达到最小值,即a 应取为

DY

Y X a ),cov(=

, 我们称

EX EY Y DY Y X +-)(),cov( 为X 关于Y 的回归直线. 参考文献:

[1] 中山大学数学系.概率论与数理统计[M].高等教育出版社.2002.

[2] 周概容.概率论与数理统计[M].高等教育出版社.1984.

[3] 茆试松.程依明.濮晓龙.概率论与数理统计教程[M].高等教育出版社.2004.

[4] 孙荣恒.应用概率论[M].科学出版社.2001.

[5] 何声武.概率论与数理统计[M].经济科学出版社.1992.

数学期望的计算及应用

数学期望的计算及应用 数学与应用数学111 第四小组 引言: 我们知道,随机变量的概率分布是随机变量的一种最完整的数学描述,而数学期望又是显现概率分布特性的最重要的特征数字之一。因此,掌握数学期望的计算并应用他来分析和解决实际问题显得尤为重要。在学习了概率论以后,我们计算数学期望一般有三种方法:1.从定义入手,即∑∞ == 1 )(k k k p x X E ;2. 应用随机变量函数的期望公式 ∑∞ ==1 )())((k k k p x q x q E 3. 利用期望的有关性质。但是还是会碰到许多麻烦,这里我们将 介绍一些解决这些难题的简单方法。在现实生活中,许多地方都需要用到数学期望。如果我们可以在学会怎么解决数学期望的计算之后,将数学期望应用到现实生活中。就可以解决许多问题,例如农业上,经济上等多个方面难以解决的难题。 下面就让我们来看看,除了最常用的三种计算方法之外还有哪些可以计算较为棘手的数学期望的方法。 1. 变量分解法 ] 1[ 如果可以把不易求得的随机变量X 分解成若干个随机变量之和,应用)(...)()()...(2121n n X E X E X E E E X E ++=++再进行求解得值, 这种方法就叫做变量分解法。这种方法化解了直接用定义求数学期望时的难点问题,因为每一种结果比较好计算,分开来计算便可以比较简单的获得结果。 例题1 : 从甲地到乙地的旅游车上载有20位旅客,自甲地开出,沿途有10个车站,如到达一个车站没有旅客下车,就不停车,以X 表示停车次数,求E(X).(设每位旅客在各个车站下车是等可能的) 分析 : 汽车沿途10站的停车次数X 所以可能取值为0,1,….,10,如果先求出X 的分布列,再由定义计算E(X),则需要分别计算{X=0},{X=1},…,{X=10}等事件的概率,计算相当麻烦。注意到经过每一站时是否停车,只有两种可能,把这两种结果分别与0,1对应起来,映入随机变量i X 每一种结果的概率较易求得。把X 分解成若干个随机变量i X 之和,然后应用公式)(...)()()...(2121n n X E X E X E E E X E ++=++就能最终求出E(X)。

数学期望在生活中的应用

数学期望在生活中的应用 王小堂保亭中学 摘要:数学期望是随机变量的重要数字特征之一,也是随机变量最基本的特征之一。通过几个例子,阐述了概率论与数理统计中的教学期望在生活中的应用,文章内容包括决策、利润、彩票、医疗等方面的一些实例,阐述了数学期望在经济和实际问题中颇有价值的应用。 关键词:随机变量,数学期望,概率,统计 数学期望(mathematical expectation)简称期望,又称均值,是概率论中一项重要的数字特征,在经济管理工作中有着重要的应用。本文通过探讨数学期望在经济和实际问题中的一些简单应用,以期起到让学生了解知识与人类实践紧密联系的丰富底蕴,切身体会到“数学的确有用”。 随机变量的数学期望值: 在概率论和统计学中,一个离散性随机变量的期望值(或数学期望、或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和。换句话说,期望值是随机试验在同样的机会下重复多次的结果计算出的等同“期望”的平均值。需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。(换句话说,期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。) 单独数据的数学期望值算法: 对于数学期望的定义是这样的。数学期望 E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) X1,X2,X3,……,Xn为这几个数据,p(X1),p(X2),p(X3),……p(Xn)为这几个数据的概率函数。在随机出现的几个数据中p(X1),p(X2),p(X3),……p(Xn)概率函数就理解为数据X1,X2,X3,……,Xn出现的频率f(Xi).则:E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) = X1*f1(X1) + X2*f2(X2) + …… + Xn*fn(Xn) 很容易证明E(X)对于这几个数据来说就是他们的算术平均值。 1 决策方案问题 决策方案即将数学期望最大的方案作为最佳方案加以决策。它帮助人们在复杂的情况下从可能采取的方案中做出选择和决定。具体做法为:如果知道任一方案Ai(i=1,2,…m)在每个影响因素Sj(j=1,2,…,n)发生的情况下,实施某种方案所产生

计量经济学简答题及答案

计量经济学简答题及答案 1、比较普通最小二乘法、加权最小二乘法和广义最小二乘法的异同。 答:普通最小二乘法的思想是使样本回归函数尽可能好的拟合样本数据,反映在 图上就是是样本点偏离样本回归线的距离总体上最小,即残差平方和最小 ∑=n i i e 12min 。 只有在满足了线性回归模型的古典假设时候,采用OLS 才能保证参数估计结果的可靠性。 在不满足基本假设时,如出现异方差,就不能采用OLS 。加权最小二乘法是对原 模型加权,对较小残差平方和2i e 赋予较大的权重,对较大2i e 赋予较小的权重,消除异方差,然后在采用OLS 估计其参数。 在出现序列相关时,可以采用广义最小二乘法,这是最具有普遍意义的最小二乘 法。 最小二乘法是加权最小二乘法的特例,普通最小二乘法和加权最小二乘法是广义 最小二乘法的特列。 6、虚拟变量有哪几种基本的引入方式? 它们各适用于什么情况? 答: 在模型中引入虚拟变量的主要方式有加法方式与乘法方式,前者主要适用于 定性因素对截距项产生影响的情况,后者主要适用于定性因素对斜率项产生影响的情况。除此外,还可以加法与乘法组合的方式引入虚拟变量,这时可测度定性因素对截距项与斜率项同时产生影响的情况。 7、联立方程计量经济学模型中结构式方程的结构参数为什么不能直接应用OLS 估计? 答:主要的原因有三:第一,结构方程解释变量中的内生解释变量是随机解释变 量,不能直接用OLS 来估计;第二,在估计联立方程系统中某一个随机方程参数时,需要考虑没有包含在该方程中的变量的数据信息,而单方程的OLS 估计做不到这一点;第三,联立方程计量经济学模型系统中每个随机方程之间往往存在某种相关性,表现于不同方程随机干扰项之间,如果采用单方程方法估计某一个方程,是不可能考虑这种相关性的,造成信息的损失。 2、计量经济模型有哪些应用。 答:①结构分析,即是利用模型对经济变量之间的相互关系做出研究,分析当其 他条件不变时,模型中的解释变量发生一定的变动对被解释变量的影响程度。②经济预测,即是利用建立起来的计量经济模型对被解释变量的未来值做出预测估计或推算。③政策评价,对不同的政策方案可能产生的后果进行评价对比,从中做出选择的过程。④检验和发展经济理论,计量经济模型可用来检验经济理论的正确性,并揭示经济活动所遵循的经济规律。 6、简述建立与应用计量经济模型的主要步骤。 答:一般分为5个步骤:①根据经济理论建立计量经济模型;②样本数据的收集; ③估计参数;④模型的检验;⑤计量经济模型的应用。 7、对计量经济模型的检验应从几个方面入手。 答:①经济意义检验;②统计准则检验;③计量经济学准则检验;④模型预测检 验。

条件数学期望及其应用

条件数学期望及其应用 The ways of finding the inverse matrix and it ’s application Abstract :The passage lists the ways of calculating the first type of curvilinear integral,and discusses it ’s application in geometry and in physical. Keywords :Curvilinear integral;Continuous;Integrable; Lateral area. 0前言 在曲线积分中,被积函数可以是标量函数或向量函数.积分的值是路径各点上的函数值乘上相应的权重(一般是弧长,在积分函数是向量函数时,一般是函数值与曲线微元向量的标量积)后的黎曼和.带有权重是曲线积分与一般区间上的积分的主要不同点.物理学中的许多公式在推广之后都是以曲线积分的形式出现.曲线积分是物理学中重要的工具. 1条件数学期望 1.1条件数学期望的定义 定义1 设X 是一个离散型随机变量,取值为},,{21 x x ,分布列为 },,{21 p p .又事件A 有0)( A P ,这时 ,2,1,) () }({)|(| i A P A x X P A x X P P i i A i 为在事件A 发生条件下X 的条件分布列.如果有 A i i i p x | 则称 A i i i p x A X E |]|[ . 为随机变量X 在条件A 下的条件数学期望(简称条件期望). 定义2 设X 是一个连续型随机变量,事件A 有0)( A P ,且X 在条件A 之

数学期望在生活中的应用原文

一、数学期望的定义及性质 (一)数学期望分为离散型和连续型 1、离散型 离散型随机变量的一切可能的取值Xi与对应的概率Pi(=Xi)之积的和称为该离散型随机变量的数学期望(设级数绝对收敛),记为E(X)。数学期望是最基本的数学特征之一。它反映随机变量平均取值的大小。又称期望或均值。如果随机变量只取得有限个值,称之为离散型随机变量的数学期望。它是简单算术平均的一种推广,类似加权平均。E(X) = X1*P(X1)+ X2*P(X2)+ …… + Xn*P(Xn)。X1,X2,X3,……,Xn 为这几个数据,P(X1),P(X2),P(X3),……,P(Xn)为这几个数据的概率函数。在随机出现的几个数据中,P(X1),P(X2),P(X3),……,P(Xn)概率函数就理解为数据X1,X2,X3,……,Xn出现的频率f(Xi),则:E(X) = X1*P(X1)+ X2*P(X2)+ …… + Xn*P(Xn) = X1*f1(X1) + X2*f2(X2)+ …… + Xn*fn(Xn)。 2、连续型 连续型则是:设连续性随机变量X的概率密度函数为f(X),若积分绝对收敛,则称积分的值为随机变量的数学期望,记为E(X)。若随机变量X的分布函数F(X)可表示成一个非负可积函数f(X)的积分,则称X为连续随机变量,f(X)称为X的概率密度函数(分布密度函数)。能按一定次序一一列出,其值域为一个或若干个有限或无限区间,这样的随机变量称为连续型随机变量。 (二)数学期望的常用性质 1.设X是随机变量,C是常数,则E(CX)=CE(X); 2.设X,Y是任意两个随机变量,则有E(X+Y)=E(X)+E(Y); 3.设X,Y是相互独立的随机变量,则有E(XY)=E(X)E(Y)。 对于第一条性质,假设E(X)你的考试成绩,C为你们全班人数,则你们全班总分的期望等于全班人数乘以个人的期望,这很好理解。 对于第二条性质,E(X)为你的考试成绩,E(Y)是小明的考试成绩,你和他成绩总和的期望当然等于你和他的期望值和。 对于第三条性质,我们一再强调是独立的,也就是相互没有关联,有关联是肯定是不是不等的。

条件数学期望及其应用

实用文档 文案大全条件数学期望及其应用 The ways of finding the inverse matrix and it's application Abstract:The passage lists the ways of calculating the first type of curvilinear integral,and discusses it's application in geometry and in physical. Keywords:Curvilinear integral;Continuous;Integrable; Lateral area. 0前言 在曲线积分中,被积函数可以是标量函数或向量函数.积分的值是路径各 点上的函数值乘上相应的权重(一般是弧长,在积分函数是向量函数时,一般是函数值与曲线微元向量的标量积)后的黎曼和.带有权重是曲线积 分与一般区间上的积分的主要不同点.物理学中的许多公式在推广之后都 是以曲线积分的形式出现.曲线积分是物理学中重要的工具. 1条件数学期望 1.1条件数学期望的定义 定义1设X是一个离散型随机变量,取值为},,{21?xx,分布列 为},,{21?pp.又事件A有0)(?AP,这时 ,2,1,)()}({)|(|??????iAPAxXPAxXPP iiAi

为在事件A发生条件下X的条件分布列.如果有 ???Aiii px| 则称 ??. Aiii pxAXE|]|[ 为随机变量X在条件A下的条件数学期望(简称条件期望). 定义2设X是一个连续型随机变量,事件A有0)(?AP,且X在条件A 之 实用文档 ??????dxAXxf)|(称为随机变量文案大全下的条件分布密度函数为)|(Axf.若 X在条件A下的条件数学期望. 定义3设),(YX是离散型二维随机变量,其取值全体为 },2,1,),,{(??jiyx ii, 联合分布列为 ?,2,1,),,(????jiyYxXPp iiij, 在i yY?的条件下X的条件分布列为?,2,1),|(|????iyYxXPp iiji若 ???jiii px|, 则 ??? jiiii pxyYXE|]|[ 为随机变量X在i yY?条件下的条件数学期望. 定义4 设),(YX是连续型二维随机变量,随机变量X在yY?的条件下的条件密度函数为)|(|yxp YX,若 ??????dxyxpx YX)|(|, 则称

数学期望的计算方法及其应用

数学期望的计算方法及其应用

数学期望的计算方法及其应用 摘要:在概率论中,数学期望是随机变量一个重要的数字特征,它比较集中的反映了随机变量的某个侧面的平均性,而且随机变量的其他数字特征都是由数学期望来定义的,因此对随机变量的数学期望的计算方法的研究与探讨具有很深的实际意义。本论文着重总结了随机变量的数学期望在离散型随机变量分布与连续型随机变量分布下的一些常用的计算方法,如利用数学期望的定义和性质,利用不同分布的数学期望公式等等,并通过一些具体的例子说明不停的计算方法在不同情况下的应用,以达到计算最简化的目的。本文还通过介绍了一些随机变量数学期望的计算技巧,并探讨了各种简化计算随机变量数学期望的方法,利用一些特殊求和与积分公式,利用数学期望定义的不同形式,利用随机变量分布的对称性、重期望公式以及特征函数等,并通过例题使我们更加了解和掌握这些计算技巧,已达到学习该内容的目的。 关键词:离散型随机变量连续型随机变量数学期望计算方法 ABSTRACT:

第一节离散型随机变量数学期望的计算方法及应用1.1利用数学期望的定义,即定义法[1] 定义:设离散型随机变量X分布列为 则随机变量X的数学期望E(X)=)( 1i n i i x p x ∑=

注意:这里要求级数)( 1i n i i x p x ∑ = 绝对收敛,若级数 []2 例1 某推销人与工厂约定,永川把一箱货物按期无损地运到目的地可得佣金10元,若不按期则扣2元,若货物有损则扣5元,若既不按期又有损坏则扣16元。推销人按他的经验认为,一箱货物按期无损的的运到目的地有60﹪把握,不按期到达占20﹪,货物有损占10﹪,不按期又有损的占10﹪。试问推销人在用船运送货物时,每箱期望得到多少? 解设X表示该推销人用船运送货物时每箱可得钱数,则按题意,X的分布为 按数学期望定义,该推销人每箱期望可得= ) (X E10×0.6+8×0.2+5×0.1-6×0.1=7.5元1.2公式法 对于实际问题中的随机变量,假如我能够判定它服从某重点性分布特征(如二项分布,泊松

数学期望的计算方法及其应用概要

数学期望的计算方法及其应用 摘要:在概率论中,数学期望是随机变量一个重要的数字特征,它比较集中的反映了随机变量的某个侧面的平均性,而且随机变量的其他数字特征都是由数学期望来定义的,因此对随机变量的数学期望的计算方法的研究与探讨具有很深的实际意义。本论文着重总结了随机变量的数学期望在离散型随机变量分布与连续型随机变量分布下的一些常用的计算方法,如利用数学期望的定义和性质,利用不同分布的数学期望公式等等,并通过一些具体的例子说明不停的计算方法在不同情况下的应用,以达到计算最简化的目的。本文还通过介绍了一些随机变量数学期望的计算技巧,并探讨了各种简化计算随机变量数学期望的方法,利用一些特殊求和与积分公式,利用数学期望定义的不同形式,利用随机变量分布的对称性、重期望公式以及特征函数等,并通过例题使我们更加了解和掌握这些计算技巧,已达到学习该内容的目的。 关键词:离散型随机变量 连续型随机变量 数学期望 计算方法 ABSTRACT : 第一节 离散型随机变量数学期望的计算方法及应用 1.1 利用数学期望的定义,即定义法[1] 则随机变量X的数学期望E(X)= )(1 i n i i x p x ∑=

学期望不存在 [] 2 例1 某推销人与工厂约定,永川把一箱货物按期无损地运到目的地可得佣金10元,若不按期则扣2元,若货物有损则扣5元,若既不按期又有损坏则扣16元。推销人按他的经验认为,一箱货物按期无损的的运到目的地有60﹪把握,不按期到达占20﹪,货物有损占10﹪,不按期又有损的占10﹪。试问推销人在用船运送货物时,每箱期望得到多少? 按数学期望定义,该推销人每箱期望可得 =)(X E 10×0.6+8×0.2+5×0.1-6×0.1=7.5元 1.2 公式法 对于实际问题中的随机变量,假如我能够判定它服从某重点性分布特征(如二项分布,泊松分布,超几何分布等),则我们就可以直接利用典型分布的数学期望公式来求此随机变量的期望。 (1) 二点分布:X ~??? ? ??-p p 101 ,则()p X E = (2) 二项分布:),(~p n B X ,10 p ,则np X E =)( (3) 几何分布:)(~p G X ,则有p X E 1 )(= (4) 泊松分布:) (~λP X ,有λ=)(X E (5) 超几何分布: ),,(~M N n h X ,有N M n X E =)( 例2 一个实验竞赛考试方式为:参赛者从6道题中一次性随机抽取3道题,按要求独立完成题目.竞赛规定:至少正确完成其中2题者方可通过,已知6道备选题中参赛者甲有4题能正确分别求出甲、乙两参赛者正确完成题数的数学期望. 解 设参赛者甲正确完成的题数为X ,则X 服从超几何分布,其中 6,4,3N M n ===, 设参赛者乙正确完成的题数为Y ,则 )32,3(~B Y ,23 2 3)(=?==np Y E 1.3 性质法

数学期望在经济生活中的应用

数学期望在经济生活中的应用 【摘要】数学期望是随机变量的重要数字特征之一。本文通过探讨数学期望在决策、利润、委托代理关系、彩票等方面的一些实例,阐述了数学期望在经济和实际问题中的应用。 【关键词】随机变量数学期望经济应用 数学期望(mathematical expectation)简称期望.又称均值,是概率论中一项重要的数字特征.在经济管理工作中有着重要的应用。本文通过探讨数学期望在经济和实际问题中的一些简单应用,以期起到让学生了解知识与人类实践紧密联系的丰富底蕴,切身体会到“数学的确有用”。 一.决策方案问题 决策方案即将数学期望最大的方案作为最佳方案加以决策。它帮助人们在复杂的情况下从可能采取的方案中做出选择和决定。具体做法为:如果知道任一方案A(i=1,2,?,m)在每个影响因素S(j=1.2,?,n)发生的情况下,实施某种方案所产生的盈利值及各影响因素发生的概率,则可以比较各个方案的期望盈利,从而选择其中期望盈利最高的为最佳方案。 1.风险方案 假设某公司预计市场的需求将会增长。目前公司的员工都满负荷地工作着.为满足市场需求,公司考虑是否让员工超时工作或以添置设备的办法提高产量。假设公司预测市场需求量增加的概率为P,同时还有1-p的可能市 是合算的。然而现实是不知道哪种情况会出现,因此要比较几种方案获利的 期望大小。用期望值判断,有:E(A 1)=30(1-p)+34p,E(A 2 )=29(1-p)+42p, E(A 3)=25(1-p)+44p。事实上.若p=0.8,则E(A 1 )-33.2(万), E(A 2)=39.4(万),E(A 3 )=40.2(万),于是公司可以决定更新设备,扩大生产。 若p=O.5,则E(A 1)=32(万),E(A 2 )=35.5(万),E(A 3 )=34.5(万),此时公司 可决定采取员工超时工作的应急措施。由此可见,只要市场需求增长可能性在50%以上.公司就应采取一定的措施,以期利润的增长。 2.投资方案 假设某人用10万元进行为期一年的投资.有两种投资方案:一是购买股票:二是存入银行获取利息。买股票的收益取决于经济绝势,若经济形势

数学期望性质与应用举例

5.数学期望的基本性质 利用数学期望的定义可以证明,数学期望具有如下基本性质: 设ξ, η为随机变量,且E(ξ),E(η)都存在,a,b,c为常数,则 性质1.E(c)=c; 性质2.E(aξ)=aE(ξ); 性质3.E(a+ξ)=E(ξ)+a; 性质4.E(aξ+b)=aE(ξ)+b; 性质5. E(ξ+η)=E(ξ)+E(η). 例3.5.7设随机变量X的概率分布为: P(X =k)=0.2 k =1,2,3,4,5. 求E(X),E(3X+2). 解. ∵P(X=k)=0.2 k=1,2,3,4,5 ∴由离散型随机变量的数学期望的定义可知 E(X)=1×0.2+2×0.2+3×0.2+4×0.2+5×0.2=3, E(3X+2)=3E(X)+2=11. 例3.5.8. 设随机变量X的密度函数为: 求E(X),E(2X-1). 解.由连续型随机变量的数学期望的定义可知 =-1/6+1/6=0. ∴E(2X-1)=2E(X)-1=-1. 我们已经学习了离散型随机变量和连续型随机变量的数学期望,在随机变量的数字特征中,除数学期望外,另一重要的数字特征就是方差.

4.1.2 数学期望的性质 (1)设是常数,则有。 证把常数看作一个随机变量,它只能取得唯一的值,取得这个值的概率显然等于1。所以,。 (2)设是随机变量,是常数,则有 。 证若是连续型随机变量,且其密度函数为。 。 当是离散型随机变量的情形时,将上述证明中的积分号改为求和号即得。 (3)设都是随机变量,则有 。 此性质的证明可以直接利用定理4.1.2,我们留作课后练习。这一性质可以推广到有限个随机变量之和的情况,即 。 (4)设是相互独立的随机变量,则 。 证仅就与都是连续型随机变量的情形来证明。设的概率密度分别为 和,的联合概率密度为,则因为与相互独立,所以有 。 由此得

数学期望和方差的应用

2QQ2±:箜!塑工 -学术-理论现代衾案一 数学期望和方差的应用 陈奕宏张鑫 (武警广州指挥学院广东广州510440) 摘要:本文主要讨论随机变量的数学期望和方差的性质,利用随机变量的对称性可简化求数学期望和方差的计算过程: 关键词:对称性数学期望方差 在教学过程中,由于很多同学对概牢论巾的定义和性质认识不深刻,冈此对概率论巾的问题存在许多认识误区,进一步影响了计算、证明能力。 性质l对随机变量x和y,则有E(nn簟Ⅸ+Ey①性质2设随机变量x和y相互独立,贝咿育层陇n=Ex?Ey②定义l设X是一个随机变量,若EI肛删Iz存在,则称其为X的方差,记为Dx。即 Dx=坦Ix—Ex】2③显然可得:们,-ElX一以】2 =E瞄2—2xEX+(踊2] =麟z一(删):④性质3设随机变量x和y相互独立,则有层孵y:净E孵?Ey2⑤证明:设随机变量X和y的联合分布密度为m砂),|jl《为x和y相互独立,有 “r,y)=^(掌)。,r(y) .’.E(x2y2)=J一。J一。工2y2“r,j,)d膏咖 =eex2y2以(r)厂r(y)如咖 =Cx2^(工)如Cy2加)咖 :Ex2E】,2⑥性质4设随机变量x和l,,n和西为常数,则有E(口X2+6y2)=n露x2+6曰y2(D证明:设随机变量x和l,的联合分布密度为厂(x,j,),则有 E似x2+6y2)=J+。J一。(口工2+6j,2)“r,j,)d_咖 =e仁nx2flx,,Mxdy+e仁b矿fIx,yⅪxdy ,+∞,+∞r十o,+∞ =n\一。\一亭2fIx,如dxd,+b1.。1一。旷fIx,,Ⅺxdy =口f)2【e№j,)dy】dr拍ej,2【C“础)dx协 =口仁量2【e,(Ⅵ)dyJdx柏ej,2【C,(础)dx坳 =n尽2以(r)dy拍D2加)dy =口EX2+西Ey2 掣狮,=∥茗引m,=驴㈣’翟引 求E伍2+y2)。 解:E(x2+y2)=Ex2+Eyz(南公式⑦) =I:一4r3出+炒.12y2(1+y)咖《 性质5设随机变量x和y卡H互独立,则有 D(x的=Dx?Dy+(E幻2?Dl,+(层y)2?Dx⑧ 证明:ODⅨy)=层(xy)2一IE(xy)J2 =E(X2y2)一(EX)2(E】,)2 南公式⑤,所以 D(Xn=EX2Ey2一(EX)2(E”2 =曰x2El,2一(E的2EP+(E的2(El,)2一(E抑2僻y)2 =【层x2一(EX)2】EP+(Ex)2【(E】,)2一(日y)2】 矗剪陋妒+(雕净汗钮曙(联)辚苦帮 =n碰Iy+(EY)2Dy+(Ey)2蹦 显然,若随机变量x和y独立,则可得D(xn>Dx?Dy⑨例设随机变量x和l,相互独立,均服从Ⅳ(O,1)分布,f=x—y,叩=xy,试求1)D叩;2)p£。。 解:1)方法一 OX和y相互独立 .‘.D即=D(xy)=E(xl,)2一【层(x聊】2 =E(r—l,)2一(以E的2 =E舻EP(由公式⑤) =【脚“(E的2】【Dy;(E玢2】=1 方法二 0X和y相互独立 .?.Dq=D(x】,)=似Dy+(E柳2Dy+(目】,)2Dx=l(由公式⑧)2)op。:』业 q厩丽 又OcoV(f,'7)=层【(f—Ef)('7一露77)j =层(x2y)一E(xP)(把f=x—y,’7=xy代人) 曲(南x与r鹃对称性)综上所述,本文主要讨论连续型随机变量的数字特征的性质,结合对随机变量的对称性可解决存概率论巾一些常见的求数[字特征的问题。 参考文献: …盛骤等编概率论与数理统计高等教育出版社2001.12口 现代企业教育MODERNENTERPRISEEDUCATION117 万方数据

数学期望在生活中的运用

数学期望的性质及其在实际生活中的应用 ●数学期望的概念: 在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和。是最基本的数学特征之一,它反映随机变量平均取值的大小。 ●数学期望的定义 E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) X1,X2,X3,……,Xn为这几个数据,p(X1),p(X2),p(X3),……p(Xn)为这几个数据的概率函数。在随机出现的几个数据中p(X1),p(X2),p(X3),……p(Xn)概率函数就理解为数据X1,X2,X3,……,Xn出现的频率f(Xi). 则: E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) = X1*f1(X1) + X2*f2(X2) + …… + Xn*fn(Xn) E(X)对于这几个数据来说就是他们的算术平均值。 ●数学期望的应用: 例一、某一彩票中心发行彩票10万张,每张2元。设头等奖1个,奖金1万元,二等奖2个,奖金各5千元;三等奖10个,奖金各1千元;四等奖100个,奖金各100元; 五等奖1000个,奖金各10元。每张彩票的成本费为0.3元,请计算彩票发行单位的创收利润。 E(X)=10000×+5000×+ 0 =0.5(元) 每张彩票平均可赚 2-0.5-0.3=1.2(元), 因此彩票发行单位发行10万张彩票的创收利润为 100000×1.2=120000(元) 小结:通过计算期望,我们可以得到单张彩票的平均利润,从而得出总共的创收利润。 例二、某投资者有10万元资金,现有两种投资方案供选择:一是购买股票;二是存人银行。买股票的收益主要取决于经济形势,假设经济形势分为三种状态:形势好、形势中等、形势不好。在股市投资10万元,以一年计算,若形势好可获利40 000元;若形势中等可获利10 000元;若形势不好则会损失20 000元。如果存人银行,假设年利率为8%,即一年可得利息8 000元。又设年经济形势好、中等、不好的概率分别为30%、50%和20%。试问该投资者想获得最高收益期望应选择哪种投资方案? 分析: 购买股票的收益与经济形势有关,存入银行的收益与经济形势无关。购买股票在经济形势好和中等的情况下是合算的,但是如果经济形势不好,则采取存人银行的方案比较好。因此,要辨别哪一种方案更优,就必须计算购买股票的收益期望,然后与存入银行的收益进行比较来判断。 如果购买股票,其收益的期望值E=40000×0.3+10000×0.5+(-20000)×0.2=13000(元);如

§条件数学期望和条件方差

§2.6条件分布与条件数学期望 一、条件分布 我们知道随机变量的分布列全面地描述了随机变量的统计规律,如果要同 时研究两个随机变量,就需要他们的联合分布列,设二维随机变量()的可 能取值为()i.j=1.2…,为了计算联合分布列,利用乘法公式: 其中是表示在“”的条件下””的条件概率,常常记作 j=1.2…容易验证这时有 1) i=1.2… 2) 这说明具有分布列的两个性质, 事实上因而确是一个分布列,它描述了在””的条件 下,随机变量的统计规律,当然一般来说这个分布列与原来的分布列 不同,称为条件分布列。 如果()的联合分布列已知,则边际分布列为: 从而 由对称性,同时还有 反过来,如果已知,(或,)也可求得联合分布列 。 设与相互独立 显然当与相互独立时,。 二、条件数学期望 既然是一个分布列,当然可以对这个分布列求数学期望; 1、定义 定义:设随机变量在“”条件下的条件分布列为,

又,则称为在“”条件下的条件数学期望,简称条件期望,记作。 例1:某射手进行射击,每次击中目标的概率为p(0

数学期望及其应用

数学期望及其应用 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

本科生毕业论文 题目: 数学期望的计算方法与实际应用 专业代码: 070101 原创性声明 本人郑重声明: 所提交的学位论文是本人在导师指导下, 独立进行研究取得的成果. 除文中已经注明引用的内容外, 论文中不含其他人已经发表或撰写过的研究成果, 也不包含为获得聊城大学或其他教育机构的学位证书而使用过的材料. 对本文的研究做出重要贡献的个人和集体, 均已在文中以明确方式标明. 本人承担本声明的相应责任. 学位论文作者签名: 日期 指导教师签名: 日期 目录

摘要 数学期望简称期望,又称均值,是概率论中一项重要的数字特征,它代表了随机变量总体取值的平均水平。数学期望的涉及面非常之大,广泛应用于实际生活中的各个领域。在实际生活中,有许多问题都可以直接或间接的利用数学期望来解决。其意义是运用对实践中抽象出来的数学模型进行分析的方法,从而达到认识客观世界规律的目的,为进一步的决策分析等提供准确的理论依据。 本文从数学期望的内涵出发,介绍了数学期望的定义、性质,介绍了数学期望的几种计算方法并举以实例,通过数学期望在医学疾病普查、体育比赛和经济问题中的应用的探讨。特别是在经济问题方面,本文又详细分为免费抽奖问题、保险公司获利问题、决定生产批量问题、机器故障问题、最佳进货量问题和求职决策问题,试图初步说明数学期望在实际生活中的重要作用,几个例子将数学期望与实际问题结合,用具体实例说明利用数学期望方法解决实际问题的可行性,体现了数学期望在生活中的应用。 关键词:概率论与数理统计;数学期望;性质;计算方法;应用 Abstract Mathematical expectation or expectations, also known as average, is very important digital features in the theory of probability, and it represents the overall average value random variables. Mathematical expectation is very big, widely applied in all fields in actual life. In real life, there are a lot of problems can be directly or indirectly solved by using the mathematical expectation. Its meaning is to use mathematical model to carry on the analysis of practice of abstracting

数学期望在实际生活中的应用

摘要 在现代快速发展的社会中,数学期望作为一门重要的数学学科,它是随机变量的重要数字特征之一,也是随机变量最基本的特征之一。通过几个例子,阐述数学期望在实际生活中的应用包括经济决策、彩票抽奖、求职决策、医疗、体育比赛等方面的一些实例,体现出数学期望在实际生活中颇有价值的应用。通过探讨数学期望在实际生活中的应用,以起到让大家了解知识与人类实践紧密联系的丰富底蕴,切身体会到“数学的确有用”。所谓的求数学期望其实就是去求随机变量的以概率为权数的加权平均值,而平均值这一概念又是我们在实际应用中最常用的一个指标,在预测中使用是很具有科学性的。 关键词:数学期望随机变量性质实际应用

Abstract In the rapid development of modern society, the mathematical expectation as an important mathematical subject, it is one of the important digital features of random variables, is also one of the basic characteristics of random variables. Through several examples, in this paper, the mathematical expectation in the practical application of life including economic decision-making, lottery tickets, job, health, sports, etc. In some instances, manifests the mathematical expectation valuable application in real life. Through discuss the application of mathematical expectation in real life to play let everybody understand the knowledge and practice closely linked human rich background, personal experience "mathematics really useful". So-called mathematical expectation is to actually ask for random variables of the probability weighted average of the weight, and mean value in actual application of this concept is our one of the most commonly used indicators, used in the forecast, it is very scientific. Key words: Mathematical Expectation; Stochastic Variable; quality; Practical Application

数学期望理论及其应用

目录 1.摘要 (2) 2.数学期望理论简述 (3) 3.数学期望理论的应用 (5) 3.1在证明等式和不等式中的应用 (5) 3.2在投资理财问题中的应用 (7) 3.3在天气预测问题中的应用 (8) 3.4在求职决策问题中的应用 (8) 3.5在委托代理问题中的应用 (9) 3.6在法律纠纷问题中的应用 (10) 4.结语 (11) 5.参考文献 (12)

数学期望理论及其应用 吴庆安,合肥师范学院 摘要:数学期望是数学概率统计中一个重要的数字特征,在研究理论和解决实际问题方面有着广泛的应用。本文通过列举一些理论上和现今实际生活中相关的问题,同时利用数学期望的相关理论进行解决,从而达到理论联系实际的目的。 关键词:概率统计;数学期望;决策 The Mathematic Expectation Theory and its Application Wu Qing An,He Fei Teacher’s College Abstract:The mathematic expectation is an important digital characteristic in the probability statistics, which has the widespread application in the fundamental research and the actual problem solution aspect. This article through enumerates some theoretically the question which is related with the nowadays practical life, simultaneously carries on the solution using mathematic expectation's correlation theories, thus achieves the apply theory to reality the goal. Key words:Probability statistics;Mathematic expectation;Decision-making

数学期望及其应用修订稿

数学期望及其应用 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

本科生毕业论文 题目: 数学期望的计算方法与实际应用 专业代码: 070101 原创性声明 本人郑重声明: 所提交的学位论文是本人在导师指导下, 独立进行研究取得的成果. 除文中已经注明引用的内容外, 论文中不含其他人已经发表或撰写过的研究成果, 也不包含为获得聊城大学或其他教育机构的学位证书而使用过的材料. 对本文的研究做出重要贡献的个人和集体, 均已在文中以明确方式标明. 本人承担本声明的相应责任. 学位论文作者签名: 日期 指导教师签名: 日期 目录

摘要 数学期望简称期望,又称均值,是概率论中一项重要的数字特征,它代表了随机变量总体取值的平均水平。数学期望的涉及面非常之大,广泛应用于实际生活中的各个领域。在实际生活中,有许多问题都可以直接或间接的利用数学期望来解决。其意义是运用对实践中抽象出来的数学模型进行分析的方法,从而达到认识客观世界规律的目的,为进一步的决策分析等提供准确的理论依据。 本文从数学期望的内涵出发,介绍了数学期望的定义、性质,介绍了数学期望的几种计算方法并举以实例,通过数学期望在医学疾病普查、体育比赛和经济问题中的应用的探讨。特别是在经济问题方面,本文又详细分为免费抽奖问题、保险公司获利问题、决定生产批量问题、机器故障问题、最佳进货量问题和求职决策问题,试图初步说明数学期望在实际生活中的重要作用,几个例子将数学期望与实际问题结合,用具体实例说明利用数学期望方法解决实际问题的可行性,体现了数学期望在生活中的应用。 关键词:概率论与数理统计;数学期望;性质;计算方法;应用 Abstract Mathematical expectation or expectations, also known as average, is very important digital features in the theory of probability, and it represents the overall average value random variables. Mathematical expectation is very big, widely applied in all fields in actual

简述数学期望的性质及其应用

编号:08005110111 南阳师范学院2012届毕业生 毕业论文(设计) 题目:简述数学期望的性质及其应用 完成人:xxx 班级:2008-01 学制:4年 专业:数学与应用数学 指导教师:xxx 完成日期:2012-03-31

目录 摘要 (1) 关键词 (1) 0引言 (1) 1 数学期望的定义 (1) 2 数学期望的性质 (1) 2.1一维随机变量数学期望的性质 (1) 2.2多维随机变量数学期望的性质 (3) 3数学期望的应用 (5) 3.1数学期望在农业中的应用 (5) 3.2数学期望在生活中的应用 (7) 3.3数学期望在经济中的应用 (9) 3.4数学期望在数学中的应用 (11) 参考文献 (12) Abst ract (12)

简述数学期望的性质及其应用 作者:xxx 指导老师:xxx 摘要:在概率论及数理统计中,数学期望是随机变量最重要的数字特征之一,许多随机变量的分布都与他的期望有关,文章解析了数学期望在日常生活中的应用,如求职决策问题,投资问题,彩票问题等, 从而不断激发学生学习数学的积极性和主动性,让学生在兴趣中学习探索,并应用于生活,让数学改变生活. 关键词:随机变量;风险概率;数学期望 0引言 概率论同其他数学分支一样,是在一定的社会条件下,通过人类 的社会实践和生产活动发展起来的一种智力积累.今日的概率论被广 泛应用于各个领域,已成为一棵参天大树,枝繁叶茂,硕果累累.人 类认识到随即现象的存在是很早的,从太古时代起,估计各种可能性 就一直是人类的一件要事.早在古希腊,哲学家就已经注意到必然性 和偶然性问题;我国春秋时代也已有可考词语(辞海);即使提到数 学家记事日程上的可考记载,也至少可推到中世纪.数学期望是概率 论早期发展中就已产生的一个概念,当时研究的概率问题大多于赌博 有关.通过对数学期望定义和性质的深刻理解和领悟,明白了数学期 望在当今乃至未来的重要作用。列举一些生产和生活实际中具有重要 指导意义的问题,加深对数学期望的性质及其应用的理解,对于学生 学习数学期望具有启发意义,结合生活实际和当今金融社会动荡不安 的情形,运用数学期望的性质综合分析,解决问题. 1数学期望的定义 数学期望是最基本的数学特征之一,它反映随即变量平均取值的 大小,又称期望或均值,随即变量可分为连续型随即变量和离散型随 即变量,其定义如下: 广义定义:一次随机抽样中所期望的某随机变量的取值.

相关文档
相关文档 最新文档