文档库 最新最全的文档下载
当前位置:文档库 › 目标识别技术

目标识别技术

目标识别技术
目标识别技术

目标识别技术

摘要:

针对雷达自动目标识别技术进行了简要回顾。讨论了目前理论研究和应用比较成功的几类目标识别方法:基于目标运动的回波起伏和调制谱特性的目标识别方法、基于极点分布的目标识别方法、基于高分辨雷达成像的目标识别方法和基于极化特征的目标识别方法,同时讨论了应用于雷达目标识别中的几种模式识别技术:统计模式识别方法、模糊模式识别方法、基于模型和基于知识的模式识别方法以及神经网络模式识别方法。最后分析了问题的可能解决思路。

引言:

雷达目标识别技术回顾及发展现状

雷达目标识别的研究始于"20世纪50年代,早期雷达目标特征信号的研究工作主要是研究达目标的有效散射截面积。但是,对形状不同、性质各异的各类目标,笼统用一个有效散射面积来描述,就显得过于粗糙,也难以实现有效识别。几十年来,随着电磁散射理论的不断发展以及雷达技术的不断提高,在先进的现代信号处理技术条件下,许多可资识别的雷达目标特征信号相继被发现,从而建立起了相应的目标识别理论和技术。

随着科学技术的飞速发展,一场以信息技术为基础、以获取信息优势为核心、以高技术武器为先导的军事领域的变革正在世界范围内兴起,夺取信息优势已成为夺取战争主动权的关键。电子信息装备作为夺取信息优势的物质基础,是推进武器装备信息化进程的重要动力,其总体水平和规模将在很大程度上反映一个国家的军事实力和作战能力。

雷达作为重要的电子信息装备,自诞生起就在战争中发挥了极其重要的作用。但随着进攻武器装备的发展,只具有探测和跟踪功能的雷达也已经不能满足信息化战争的需要,迫切要求雷达不仅要具有探测和跟踪功能,而且还要具有目标识别功能,雷达目标分类与识别已成为现代雷达的重要发展方向,也是未来雷达的基本功能之一。目标识别技术是指:利用雷达和计算机对遥远目标进行辨认的技术。目标识别的基本原理是利用雷达回波中的幅度、相位、频谱和极化等目标特征信息,通过数学上的各种多维空间变换来估算目标的大小、形状、重量和表面层的物理特性参数,最后根据大量训练样本所确定的鉴别函数,在分类器中进行识别判决。目标识别还可利用再入大气层后的大团过滤技术。当目标群进入大气层时,在大气阻力的作用下,目标群中的真假目标由于轻重和阻力的不同而分开,轻目标、外形不规则的目标开始减速,落在真弹头的后面,从而可以区别目标。

所谓雷达目标识别,是指利用雷达获得的目标信息,通过综合处理,得到目标的详细信息(包括物理尺寸、散射特征等),最终进行分类和描述。随着科学技术的发展,武器性能的提高,对雷达目标识别提出了越来越高的要求。

目前,目标识别作为雷达新的功能之一,已在诸如海情监控系统、弹道导弹防御系统、防空系统及地球物理、射电天文、气象预报、埋地物探测等技术领域发挥出很大威力。为了提高

我国的军事实力,适应未来反导弹、反卫、空间攻防、国土防空与对海军事斗争的需要,急需加大雷达目标识别技术研究的力度雷达目标识别策略主要基于中段、再入段过程中弹道导弹目标群的不同特性。从结构特性看,飞行中段的威胁目标群可粗分为球锥类、球、角反射器、圆柱及碎片等,形体相对简单,通过高分辨成像进行区分是可行的。从姿态特性看,各目标的飞行姿态特性主要取决于母舱释放弹头和诱饵时的阶段,一般情况下,弹头自旋稳定飞行以保持空间定向,由于释放过程中不可避免地将对弹头产生一定的横向扰动,可能使弹头产生进动;另外,当弹头章动角较大,或者母舱投放弹头时因为某些不可控制的原因,甚至是母舱事先设计好的,弹头有可能产生翻滚,模拟弹头形状的诱饵通常也会产生翻滚。再入段是导弹防御的最后一个屏障,防御系统可以根据各再入目标的运动状态估算出质阻比,区分出轻重目标。具体步骤如下:

(1)通过高分辨雷达成像获取目标的结构特征信息,从目标群中识别出具有锥体结构特性的目标。

(2)根据锥体目标的进动数学模型,结合锥体目标在不同姿态角下,-.,得到目标进动状态下的回波模板,当确定锥体目标,-. 回波周期分量中不是目标翻滚时,基于,-. 序列估计出章动角和进动周期,进而计算出目标的惯量比等特征。

(3)为保证对所有真弹头进行有效拦截,在再入段通过跟踪目标运动状态估计其质阻比,基于此排除轻诱饵。

(4)将上述不同措施确定出来的威胁目标作为“威胁目标”,通过积累观测综合评判目标类型。

研究方法

现代雷达(包括热雷达和激光雷达)不但是对遥远目标进行探测和定位的工具,而且能够测量与目标形体和表面物理特性有关的参数,进而对目标分类和识别。目标识别的基本原理是利用雷达回波中的幅度、相位、频谱和极化等目标特征信息,通过数学上的各种多维空间变换来估算目标的大小、形状、重量和表面层的物理特性参数,最后根据大量训练样本所确定的鉴别函数,在分类器中进行识别判决。目标识别还可利用再入大气层后的大团过滤技术。当目标群进入大气层时,在大气阻力的作用下,目标群中的真假目标由于轻重和阻力的不同而分开,轻目标、外形不规则的目标开始减速,落在真弹头的后面,从而可以区别目标。

雷达目标识别模型

雷达目标识别需要从目标的雷达回波中提取目标的有关信息标志和稳定特征并判明其属性。它根据目标的后向电磁散射来鉴别目标,是电磁散射的逆问题。利用目标在雷达远区所产生的散射场的特征,可以获得用于目标识别的信息,回波信号的幅值、相位、频率和极化等均可被利用。对获取的目标信息进行计算机处理,与已知目标的特性进行比较,从而达到自动识别目标的目的。识别过程分成三个步骤:目标的数据获取、特征提取和分类判决。

整个识别过程可以分为两个阶段:训练(或设计)阶段和识别阶段。前者用一定数量的训练

样本进行分类器的设计或训练,后者用所设计或训练的分类器对待识别的样本进行分类决策。

训数据获取是对各已知目标进行测量,取得目标的训练数据。测试数据获取是获得未知种类目标的测量数据;测量数据的获得可采用目标的靶场动态测量、外场静态测量、微波暗室缩比模型等。特征提取模块从目标回波数据中提取出对分类识别有用的目标特征信息。特征空间压缩与变换模块对特征信息进行特征空间维数压缩与变换,得到具有高同类聚合性和异的训练样本进行分类器的设计。类间可分离性的特征。分类器设计模块根据已知类别目标分类模块完成对未知目标的分类判决。

近年来理论研究和实际应用比较成功的目标识别方法有以下4类。

一基于目标运动的回波起伏和调制谱特性的目标识别

这类方法大都基于目前广泛使用的雷达时域一维目标回波波形,抽取波形序列中包含的目标特征信息来实现目标分类。这类研究已获得一些成功应用。

1)利用目标回波起伏特性的识别

空中目标对低分辨力雷达来讲可以看作点目标,其运动过程中,目标回波的幅度和相位将随目标对雷达的相对姿态的不同而变化,根据目标回波的幅度与相位的变化过程,判断其形状,对复信息数据进一步分析,可以判断目标的运动情况。

2)利用动态目标的调制谱特性的识别

动态目标如飞机的螺旋桨或喷气发动机旋转叶片、直升机的旋翼等目标结构的周期运动,产生对雷达回波的周期性调制。不同目标的周期性调制谱差异很大,因而可用于目标识别。Bell 等详细分析了喷气发动机的调制(JEM)现象,并建立了相应的数学模型,为利用JEM 效应进行目标识别奠定了理论基础。

二基于极点分布的目标识别

目标的自然谐振频率又称为目标极点,“极点”和“散射中心”分别是在谐振区和光学区建立起来的基本概念。目标极点分布只决定于目标形状和固有特性,与雷达的观测方向(目标姿态)及雷达的极化方式无关,因而给雷达目标识别带来了很大方便。目标极点的概念出现于1971年。1975年,Blaricum等首先提出了直接从一组瞬态响应时域数据来提取目标极点的prony方法,使用提取出的目标极点作为目标特征,而通过将提取到的目标极点与目标库的目标极点进行匹配完成目标识别过程。80年代以来,关于目标极点的研究主要集中在如何提高算法本身的抗噪能力和估算精度方面。提取目标极点的函数束法(POF)以及广义函

数束法(GPOF)等,在极点的估计精度以及抗噪能力方面均优于Prony法。

除了直接求目标的极点外,由于目标的极点与目标的频率响应存在一一对应的关系,人们还研究了由目标的频域响应来识别目标的方法,典型方法有,从目标的频域响应来识别目标的方法;获取目标极点的频域Prony 法(FDPM);由于频域法的目标极点估算精度同样受到噪声和杂波的限制,具有改善作用的数据多重组合法被提出。

为避开需要实时地直接从含噪的目标散射数据中提取目标的极点,基于波形综合技术的目标识别方法被得到广泛重视。它将接收到的目标散射信号回波与综合出来的代表目标的特征波形进行数字卷积,再根据卷积输出的特征来判别目标。E-脉冲法(9)、频域极大极小拟合匹配法(10)等,都避开了直接提取目标极点,减小了运算量。

三基于高分辨力雷达成像的目标识别

借助高分辨力雷达对目标进行一维或二维距离成像,或采用合成孔径雷达或逆合成孔径雷达对目标成像得到二维雷达图像,可获取目标的形状结构信息。

由于一维距离像的获取相对简单,利用一维距离像进行目标识别的方法在80 年代以后被得到广泛重视和深入研究。基于一维距离像的目标识别方法,在舰船目标〔11〕、坦克、车辆等地面目标〔12〕〔13〕、飞机目标〔14〕识别中分别获得了较高的正确识别率。由于目标的一维距离像常会受目标之间、目标各散射点之间的相互干涉、合成等交叉项的影响,限制了识别率的提高,因而距离像方法被提出并〔15〕获得了较高的识别率。为改善目标识别的性能,可以将目标一维距离像与其它目标特征(如极化特征〔16〕)相结合。对于基于二维雷达图像的目标识别,可利用图象识别技术来进行,这是目标识别领域中最为直观的识别方法,但是如何获得高质量的目标二维图像是进行目标识别的首先要解决的问题。

四基于极化特征的目标识别

极化是描述电磁波的重要参量之一,它描述了电磁波的矢量特征。极化特征是与目标形状本质有密切联系的特征。任何目标对照射的电磁波都有特定的极化变换作用,其变换关系由目标的形状、尺寸、结构和取向所决定。测量出不同目标对各种极化波的变极化响应,能够形成一个特征空间,就可对目标进行识别。

化散射矩阵(复二维矩阵)〔17〕完全表征了目标在特定姿态和辐射源频率下的极化散射特性。对目标几何形状与目标极化特性的关系的研究结果表明(18),光学区目标的极化散射矩阵反映了目标镜面曲率差等精密物理结构特性。

早在50年代初期,利用极化特征来识别目标的原理(19)就已被提出,美国在50-60 年代已将用极化散射矩阵识别目标的技术初步应用于远程测量雷达和大型相控阵雷达中,可粗略识别简单形状的外空目标。通过对目标极化特性的研究,最佳极化的概念〔19〕被提出,产生

了基于零极化、特征( 本征极化等极化不变量的目标识别技术。经过近)20 年的发展,已经出现了许多种利用极化信息进行雷达目标识别的方法,其主要方法分为:

1)根据极化散射矩阵识别目标

根据极化散射矩阵来识别目标是利用极化信息识别目标的基本方法。具体分为(20):根据不同极化状态下目标截面积的对比来识别目标;根据从目标极化散射矩阵中导出的目标极化参数集(极化不变量)来识别目标;根据目标的最佳极化或极化叉来识别目标。

由于不同姿态角下目标极化特性的改变,限制了根据极化散射矩阵及其派生参数识别目标的有效性,使之只能应用于简单几何形体目标,或与其它识别方法结合使用。Cameron等利用极化散射矩阵对简单形体目标的识别获得了80%的正确识别率(21)。伪本征极化(22)(23)、去极化系数(24)、极化参数平面描述(25)、Poincare极化球面描述(26)和信号频率敏感特性描述(27)等特征都被用于了飞机目标识别研究。

2)利用目标形状的极化重构识别目标

对低分辨力雷达,不能区分目标上各个散射中心的回波,只能从它们的综合信号中提取极化特征,因而只能从整体上对简单形体的目标加以粗略的识别。

对高分辨力雷达,目标回波可分解为目标上各个主要散射中心的回波分量。对复杂形状目标的极化重构,就是利用高分辨力雷达区分出各个散射中心的回波,分别提取其极化信息。在对各个散射中心分别作出形状判断(可以利用目标的极化散射矩阵,或利用目标的缪勒矩阵中各个元素同目标形状的关系)后,依据其相对位置关系,组合成目标的整体形状。最后同已知目标数据库相比较,得到识别结果。

Cameron等〔21)给出了用卡车进行识别实验的情况,给出了卡车上各个主要散射中心的识别结果,并按其空间相对位置排列成图。在Pottier(28)〕对SAR图象进行分析与识别时也用到了任意散射体由几种典型散射机制合成的观点。

3)利用瞬态极化响应识别目标

Chamberlain 等(29)将极化信息与冲激响应结合起来,提出了利用目标瞬态极化响应(TPR)进行目标识别。利用TPR识别目标是将极化识别与时(频)域识别相结合的很好范例。在Chamberlain 的基础上,参考文献〔30〕进行了进一步的研究。通过TPR 特征提取,把复杂目标在结构上分解成由散射中心对应的多个子结构来分别描述,对飞机目标识别获得了较好的效果。

4)与成像技术相结合的目标识别

结合SAR 和ISAR成像,在相应雷达上加装变极化装置,从而可以利用极化信息或将极化信息与已有的图象识别技术相结合,对每一像素进行更有效的识别。Tenoux等〔2!〕利用法国的;RENE 机载极化SAR雷达,对4张SAR不同极化图象(HH,HV,VH,VV)作比较,并对每一像素进行了极化识别。

各种特征识别方法对雷达的要求

不同的识别方法对雷达系统有着不同的要求。

基于目标运动的回波起伏和调制谱特性的目标识别方法对雷达没有特殊的要求,它是在现有雷达的基础上,利用目标运动所引起的回波起伏特性和动态目标的调制谱特性,并结合雷达所能获取的目标空间坐标及运动参数(如目标高度、速度、航迹等)来进行目标识别,因而主要用于低分辨雷达的目标识别。

基于极点分布的目标识别方法可分为时域和频域方法。时域方法提取目标极点要求雷达的发射信号带宽足够宽,以保证由目标的瞬态响应中能够获得正确的目标极点;频域方法则要求雷达能够发射多种频率的电磁波以获取目标的频率响应。

基于高分辨力雷达成像的目标识别方法要求雷达不仅具有高的距离分辨力(对于一维距离像方法)而且具有高的角分辨力(对于二维距离像方法),这就要求采用宽带高分辨、合成孔径或逆合成孔径雷达。基于目标极化特征的目标识别方法要求雷达能够测量目标对不同极化方向的入射电磁波的极化散射特性、雷达具有变极化特性,这增加了雷达系统的复杂性,限制了其应用。

用于雷达目标识别中的模式识别技术

进行雷达目标识别,必须依靠有效的目标特征分类技术(模式识别技术)。模式识别技术的发展为雷达目标识别的研究提供了有利的条件。统计模式识别方法、模糊模式识别方法、基于模型和基于知识的模式识别方法以及神经网络模式识别方法等在雷达目标识别中均有成功的应用。

(1) 统计模式识别方法

统计模式识别是传统的模式识别方法,也是雷达目标识别中最常用到的特征分类方法,它是一种根据已知样本的统计特性来对未知类别样本进行分类的方法。其基本思想是用N 维特征矢量表征目标模式,并通过对样本的学习,估计出特征矢量的概率分布密度函数,在某种最优准则下,利用特征矢量的统计知识来构造判别函数,从而在保证分类误差概率最小的条件下,对目标进行分类。

最近邻域法(29)、相关匹配法(15)(32)(33)(34)、多维相关匹配方法(16)、Bayes最大似然(35),Bayes 分类器(36)、Bayes优化决策规则(36)、最大似然函数(37)等都被用于了目标特征的分类决策。

(2)模糊模式识别方法

在雷达目标识别中,由于噪声对目标背景的污染,目标信息转换过程中特征信息的随机交迭,

目标信息时间、距离、方位和姿态等因素的变化都可引起信息的模糊及目标特征的畸变,影响目标识别的效果。

在模糊集理论基础上发展起来的模糊模式识别技术(38)(39),适于描述目标特征存在不同程度的不确定性。在目标识别过程中,模糊模式识别技术通过将数值变换提取的目标特征转换成由模糊集及隶属函数表征,再通过模糊关系和模糊推理等对目标的所属关系加以判定了。

因此,模糊模式识别技术可以有效地完成一些传统模式识别中遇到的难题,近年来得到了广泛的研究。如郭桂蓉等〔40〕(41〕在低分辨非相干雷达体制下,利用目标视频回波的幅度细微结构特性和动态起伏特性,结合模糊模式识别技术,完成了对海上目标的识别。

(3)基于模型和基于知识的模式识别方法

基于模型的模式识别方法是用一种数学模型来表示从标样本空间或特征空间中获取的、描述目标固有特性的各种关系准则。在建模过程中,除了利用目标的物理特性外,还运用了特征之间的符号关系准则,如特征随姿态角变化的规律等,因此,基于模型的的模式识别方法在一定程度上改善了传统的统计模式识别方法中信息利率不高的缺点。目前也有不少人在致力于基于模型的目标识别方法的研究〔42〕。

基于知识的模式识别方法是结合人工智能技术的识别方法。它把人们在实践中逐步积累的知识和经验用简单的推理规则加以表述,并转换为计算机语言,利用这些规则可以获得与专家有同样识别效果的模式识别结果。

基于模型的方法常与基于知识的方法相结合,通过建立的目标模型库与相应的推理规则相结合完成目标的分类识别。

Mcune 等(43〕将基于知识的识别方法用于了对高分辨率舰船雷达目标的识别;Sadjadi(44)采用基于模型的模式识别方法对任意姿态角下的坦克等装甲目标进行了分类,其模型是根据目标散射中心三维分布图在不同径向距离上投影而建立起来的。运用推理规则库模型成功地对动态变化的雷达干扰信号进行了识别。

(4)神经网络模式识别方法

人工神经网络(ANN)和生物神经系统之间有着内在的联系,能够在有限领域内模拟人脑加工、存储与搜索信息的机制来解决某些特定的问题。它具有自适应、自组织、自学习能力,可以处理一些环境信息十分复杂、背景知识不清楚的问题,通过对样本的学习建立

起记忆,然后将未知模式判为其最为接近的记忆。由于其自身的上述特点,模式识别是神经网络技术应用得最为广泛的领域之一。

由于雷达目标特征信息在模式空间中的分布常常极为复杂,要获得其先验统计知识并用传统的模式识别方法来实现目标识别很困难。ANN可以通过学习获得目标特征信号在模式空间中的分布,因此在目标识别的预处理、特征提取、模式分类的整个过程中均有初步的应用。近10 年来,ANN 用于雷达目标识别得到了广泛的重视。

采用BP 算法(45)(46)、感知器算法〔47〕的多层前向网络;径向基函数网络(RBFN)(48)(49);模糊:ARTMAP网络〕、自组织特征映射SOFM(14)等自组织神经网络;以及异联想存储器神经网络(51)、自划分神经网络(52)、实时循环神经网络(53)、模糊极大———极小神经网络(54),等等,在目标识别中都有成功的应用。总之,先进的模式识别方法对于提高、改善雷达自动目标识别系统的性能将起到至关重要的作用,对它的进一步研究将具有重要的意义。

结束语

到目前,研究者们已从多个方面研究了雷达目标识别技术。研究表明,用单一技术解决雷达目标识别问题都将是困难的,问题的解决有赖于多种技术的综合运用〔20〕。针对单一方法存在的各自局限性,可以考虑将多种技术相结合,以提高正确识别率。

从已有的研究来看,多地利用了目标回波信号的幅值、相位、频率等信息,而对目标的极化信息的利用却很有限。这一方面是因为在低分辨力雷达情况下,从雷达回波中不能得到稳定且明确的目标极化特征,使得极化信息在低分辨力情况下对目标识别的用途不大,另一方面受限于极化散射矩阵的精确测量技术。高分辨力雷达技术、极化散射矩阵的精确测量技术的发展为雷达回波中获得稳定且明确的目标极化特征提供了可能。因此,将高分辨力雷达技术与极化信息相结合就是一条可行的思路。

高分辨、极化雷达与智能信号处理和自动分类技术相结合将为雷达目标识别提供一条很好的途径。随着雷达技术、信号处理技术和目标识别算法的不断发展,自动雷达目标识别技术有望取得较大进展。

参考文献

(1)Bell M B,Gyubbs R A.JEM modeling and measurement fore radar target identification.IEEE Trans on AES,1993,29(1):12-13

(2)Blaricum M L Van,Mittra R.A technique for extracting the poles and residues of a sustem directly from its transient response.IEEE Trans.on AP,1975,23(6):777-781

(3)Jain V K,et al.Rational modeling by Pencil-of-Function method.IEEE Trans.on ASSP,1983,31(3):564-573

(4)Hua Y B,Sarkar T K.Generalized Pencil-of-Function method for extracting poles of an EM system from its transient response.IEEE Trans on AP,1989,37(2)

(5)Chuang C W,Moffat D L.Natural resonance of radar target via Prony's method and target diserimination.IEEE Trans.on AES,1976,12(5):583-589

(6)Brittingham J N,et al.Pole extration from real-frequency information.Proceedings of IEEE,1980,68(2):263-273

(7)Ksienski A A.Ploe and residue extraction from measured data in rhe frequencu domain using multiple data set.Radio Science,1985,20(1)

(8)Chen K M.Rradar wave synthesis method-a new radar detection scheme.IEEE Trans.on AP,1981,29(4):553-565

(8)庄钊文,柯有安。频域目标识别的极大极小法。西安:第二届信号处理年会论文集,CCSP-88,1988

(9)Zwicke P E,Imrekiss J R.A new implementation of the Mellin transform of range profile of ship.IEEE Trans on PAMI,1983,5(2):139-142

(9)何松华,郭桂蓉,郭修煌。基于目标距离像的地面目标检测与跟踪。国防科技大学学报,1991,13(1)

(10)Stewart C,Lu Y C,Larson V.A neural clustering approach for high resolution radar target identification.Pattern Recognition,1994,27(4):503-513

(11)Hudson S,Psaltis D.Correlation filters for aircraft identification from radar range profiles.IEEE Trans.on AES,1993,29(3):741-748

(12)文树梁。基于双距离像的雷达目标识别技术。现代雷达,1996,18(1):15-21

雷达的目标识别技术

雷达的目标识别技术 摘要: 对雷达自动目标识别技术和雷达目标识别过程进行了简要回顾,研究了相控阵雷达系统中多目标跟踪识别的重复检测问题提出了角度相关区算法,分析了实现中的若干问题,通过在相控阵雷达地址系统中进行的地址实验和结果分析表明:采用角度相关区算法对重复检测的回波数据进行处理时将使识别的目标信息更精确从而能更早地形成稳定的航迹达到对目标的准确识别。 一.引言 随着科学技术的发展,雷达目标识别技术越来越引起人们的广泛关注,在国防及未来战争中扮演着重要角色。地面雷达目标识别技术目前主要有-Se方式,分别是一维距离成象技术、极化成象技术和目标振动声音频谱识别技术。 1.一维距离成象技术 一维距离成象技术是将合成孔径雷达中的距离成象技术应用于地面雷达。信号带宽与时间分辨率成反比。例如一尖脉冲信号经过一窄带滤波器后宽度变宽、时间模糊变大。其基本原理如图1所示。 2.极化成象技术 电磁波是由电场和磁场组成的。若电场方向是固定的,例如为水

平方向或垂直方向,则叫做线性极化电磁波。线性极化电磁波的反射与目标的形状密切相关。当目标长尺寸的方向与电场的方向一致时,反射系数增大,反之减小。根据这一特征,向目标发射不同极化方向的线性极化电磁波,分别接收它们反射(散射)的回波。通过计算目标散射矩阵便可以识别目标的形状。该方法对复杂形状的目标识别很困难。 3.目标振动声音频谱识别技术 根据多普勒原理,目标的振动、旋转翼旋转将引起发射电磁波的频率移动。通过解调反射电磁波的频率调制,复现目标振动频谱。根据目标振动频谱进行目标识别。 传统上我国地面雷达主要通过两个方面进行目标识别:回波宽度和波色图。点状目标的回波宽度等于入射波宽度。一定尺寸的目标将展宽回波宽度,其回波宽度变化量正比于目标尺寸。通过目标回波宽度的变化可估计目标的大小。目标往往有不同的强反射点,如飞机的机尾、机头、机翼以及机群内各飞机等,往往会在回波上形成不同形状的子峰,如图2所示。 这类波型图叫作波色图。根据波色图内子峰的形状,可获得一些目标信息。熟练的操作员根据回波宽度变化和波色图内子峰形状,进行目标识别。

水下目标搜索与识别技术

水下目标搜索与识别技术 水下目标搜索与识别系统一般分为光视觉系统和声视觉系统,当距离物体十米以内,一般采用光视觉系统,当距离物体大于十米以上时则用声视觉系统。当前流行的趋势是采用激光的方式来进行目标搜索与识别。 一.光视觉系统 传统的光视觉系统包括水下摄像机、照明等设备用来满足获取光学图像和视频信息等基本的要求。而现在的光视觉系统不仅要求满足上述要求,还要求具备对图像和视频信息进行处理、特征提取以及分类识别的功能。总之,只能水下机器人中光视觉系统的使命是:快速、准确德获取水下目标的相关信息,并对信息进行实时处理,将处理结果反馈给计算机,从而指导机器人进行正确的作业。 1.光视觉系统框架 水下光视觉系统主要分为三大块:(1)底层模块:图像采集系统,包括专用水下CCD感光摄像头和图像采集卡,这部分属于硬件部分;(2)中层模块:图像处理,包括图像预处理、图像分割、特征提取、根据目标模型进行学习,形成知识库和逻辑推理机制,得到单幅图像的初步理解和评价。(3)高层模块:分类是水下目标识别最为核心的技术,也是最终实现部分。 1.1硬件组成 光视觉系统硬件包括光视觉计算机、水下CCD摄像头、云台和辅助照明灯。光视觉计算机完成视觉建模、高层视觉信息处理和理解、与机器人主控计算机的网络通讯,实时监控系统每个时间节拍的运行状态与处理参数。 1.2软件体系 水下光视觉系统的软件体系涵盖了两个部分:中层模块和高层模块。中层模块主要负责图像处理工作(图像处理一般包括图像预处理、图像分割和特征提取三方面)。高层模块是水下目标识别系统的最终实现部分,一般采用的是神经网络识别算法进行识别分类。 二.声视觉系统 理想的声视觉系统作为智能水下机器人的传感设备,应该具备灵敏度高、空间分辨率高、隐蔽性好、抗干扰能力强、自主调节和全天候作业等特点,能适合

目标检测与识别

采用视频图像的运动目标检测与识别 相关调研 目标检测是计算机视觉的一个重要组成部分,在军事及工业等领域有着重要的应用前景。运动目标的检测方法主要有光流法,差值法。光流法的计算量很大,实时性和应用性较差。而图像差值法比较简单,实时性较好,是目前应用最广泛,最成功的运动目标检测的方法。图像差值法可分为两类,一类是用序列图像的每一帧与一个固定的静止的参考帧做图像差分,但自然场景不是静止不变的,因而必须不断的更新背景。另一类是用序列图像的两帧进行差分,这种方法无法检测出两帧图像中重合的部分,只能检测出目标的一部分信息。在绝大多数视频监控图像应用中,每一个像素都可以用一个或多个高斯模型近似,因此,高斯背景模型是绝大多数目标检测方法常用的基本模型。 智能视频服务器是飞瑞斯在多年视频分析技术优势的基础上,推出的一系列具有智能视频分析功能的DVS 视频编码设备。智能视频服务器基于DSP、ARM等核心平台,完成前端标准的H.264高压缩率编码,同时完成智能分析功能。 智能视频服务器的最大的创新点在于,这一系列DVS不仅仅提供视频监控的功能,能通过飞瑞斯核心的智能视频分析技术,来感知视频场景内的环境、人和物,并挖掘其中的人(物)行为、状态、身份信息、数量、轨迹等更深层次的元数据信息。 智能视频服务器赋予了视频监控系统智慧的大脑,从此视频监控不仅仅是能看得到,而且还能自己思考,提供更为智能的应用。

https://www.wendangku.net/doc/327544210.html,/products_20_26.html?bdclkid=BztEJhpzcR34JE_Ft948PGoNuxuK0gsc zre7HPa3EhvUMBqk3J

目标识别技术

目标识别技术 摘要: 针对雷达自动目标识别技术进行了简要回顾。讨论了目前理论研究和应用比较成功的几类目标识别方法:基于目标运动的回波起伏和调制谱特性的目标识别方法、基于极点分布的目标识别方法、基于高分辨雷达成像的目标识别方法和基于极化特征的目标识别方法,同时讨论了应用于雷达目标识别中的几种模式识别技术:统计模式识别方法、模糊模式识别方法、基于模型和基于知识的模式识别方法以及神经网络模式识别方法。最后分析了问题的可能解决思路。 引言: 雷达目标识别技术回顾及发展现状 雷达目标识别的研究始于"20世纪50年代,早期雷达目标特征信号的研究工作主要是研究达目标的有效散射截面积。但是,对形状不同、性质各异的各类目标,笼统用一个有效散射面积来描述,就显得过于粗糙,也难以实现有效识别。几十年来,随着电磁散射理论的不断发展以及雷达技术的不断提高,在先进的现代信号处理技术条件下,许多可资识别的雷达目标特征信号相继被发现,从而建立起了相应的目标识别理论和技术。 随着科学技术的飞速发展,一场以信息技术为基础、以获取信息优势为核心、以高技术武器为先导的军事领域的变革正在世界范围内兴起,夺取信息优势已成为夺取战争主动权的关键。电子信息装备作为夺取信息优势的物质基础,是推进武器装备信息化进程的重要动力,其总体水平和规模将在很大程度上反映一个国家的军事实力和作战能力。 雷达作为重要的电子信息装备,自诞生起就在战争中发挥了极其重要的作用。但随着进攻武器装备的发展,只具有探测和跟踪功能的雷达也已经不能满足信息化战争的需要,迫切要求雷达不仅要具有探测和跟踪功能,而且还要具有目标识别功能,雷达目标分类与识别已成为现代雷达的重要发展方向,也是未来雷达的基本功能之一。目标识别技术是指:利用雷达和计算机对遥远目标进行辨认的技术。目标识别的基本原理是利用雷达回波中的幅度、相位、频谱和极化等目标特征信息,通过数学上的各种多维空间变换来估算目标的大小、形状、重量和表面层的物理特性参数,最后根据大量训练样本所确定的鉴别函数,在分类器中进行识别判决。目标识别还可利用再入大气层后的大团过滤技术。当目标群进入大气层时,在大气阻力的作用下,目标群中的真假目标由于轻重和阻力的不同而分开,轻目标、外形不规则的目标开始减速,落在真弹头的后面,从而可以区别目标。 所谓雷达目标识别,是指利用雷达获得的目标信息,通过综合处理,得到目标的详细信息(包括物理尺寸、散射特征等),最终进行分类和描述。随着科学技术的发展,武器性能的提高,对雷达目标识别提出了越来越高的要求。 目前,目标识别作为雷达新的功能之一,已在诸如海情监控系统、弹道导弹防御系统、防空系统及地球物理、射电天文、气象预报、埋地物探测等技术领域发挥出很大威力。为了提高

雷达空间目标识别技术综述

2006年10月第34卷 第5期 现代防御技术 MODERN DEFENCE TECHNOLOGY O ct.2006 V o.l34 N o.5雷达空间目标识别技术综述* 马君国,付 强,肖怀铁,朱 江 (国防科技大学ATR实验室,湖南 长沙 410073) 摘 要:随着人类航天活动的增加,对于卫星和碎片等空间目标进行监视变得非常重要。为了实现空间监视任务,对空间目标进行识别是非常必要的。对空间目标的轨道特性与动力学特性进行了介绍,对雷达空间目标识别技术的研究现状和发展趋势进行了详细的综述。 关键词:空间目标识别;低分辨雷达;高分辨雷达成像 中图分类号:TN957 52 文献标识码:A 文章编号:1009 086X(2006) 05 0090 05 Survey of radar space target recognition technology MA Jun guo,F U Q iang,X I AO Huai tie,Z HU Jiang (ATR L ab.,N ationa lU n i versity o f De fense T echno l ogy,Hunan Changsha410073,Ch i na) Abst ract:W ith t h e deve l o pm ent of spacefli g ht acti v ity of hum an,surveillance of space tar get such as sate llite and debris beco m es very i m portan.t In or der to i m p le m ent surveillance task,space target recogni ti o n is ver y necessary.Orb it property and dyna m ics property of space targe t are i n troduced,a deta iled sur vey is set forth about current research state and developi n g trend of radar space target recogn iti o n techno l ogy. K ey w ords:space tar get recogniti o n;lo w reso lution radar;h i g h reso lution radar i m aging 1 引 言 自从前苏联发射了第1颗人造地球卫星以来,卫星在预警、通信、侦察、导航定位、监视和气象等方面具有不可替代的优势。随着人类航天活动的增加,空间碎片日益增多,对于卫星等航天器的安全造成极大的威胁,因此对于卫星和碎片等空间目标进行监视变得非常重要。其中空间目标识别是空间监视任务中不可或缺的基本条件,空间目标识别主要是利用雷达等传感器获取空间目标的回波信号,从中提取目标的位置、速度、结构等特征信息,进而实现对空间目标的类型或属性进行识别。 2 空间目标的轨道特性与动力学特性 (1)轨道特性[1,2] 空间目标在轨道上的运动是无动力惯性飞行,本质上空间目标与自然天体的运动是一致的,故研究空间目标的运动可以用天体力学的方法。空间目标在运动时受到地球引力、月球引力、太阳及其他星体引力、大气阻力和太阳光辐射压力等的作用,轨道存在摄动。但是对轨道的实际分析表明,空间目标受到的主要力是地球引力。假设空间目标只是受到地球引力的作用,同时假设地球是一个质量均匀分布的球体,则空间目标与地球构成二体运动系统,开 *收稿日期:2005-12-15;修回日期:2006-01-23 作者简介:马君国(1970-),男,吉林长春人,博士生,主要从事目标识别与信号处理研究。 通信地址:410073 湖南长沙国防科技大学ATR实验室 电话:(0731)4576401

雷达目标识别

目标识别技术 2009-11-27 20:56:41| 分类:我的学习笔记| 标签:|字号大中小订阅 摘要: 针对雷达自动目标识别技术进行了简要回顾。讨论了目前理论研究和应用比较成功的几类目标识别方法:基于目标运动的回波起伏和调制谱特性的目标识别方法、基于极点分布的目标识别方法、基于高分辨雷达成像的目标识别方法和基于极化特征的目标识别方法,同时讨论了应用于雷达目标识别中的几种模式识别技术:统计模式识别方法、模糊模式识别方法、基于模型和基于知识的模式识别方法以及神经网络 模式识别方法。最后分析了问题的可能解决思路。 引言: 雷达目标识别技术回顾及发展现状 雷达目标识别的研究始于"20世纪50年代,早期雷达目标特征信号的研究工作主要是研究达目标的有效散射截面积。但是,对形状不同、性质各异的各类目标,笼统用一个有效散射面积来描述,就显得过于粗糙,也难以实现有效识别。几十年来,随着电磁散射理论的不断发展以及雷达技术的不断提高,在先进的现代信号处理技术条件下,许多可资识别的雷达目标特征信号相继被发现,从而建立起了相应的目标 识别理论和技术。 随着科学技术的飞速发展,一场以信息技术为基础、以获取信息优势为核心、以高技术武器为先导的军事领域的变革正在世界范围内兴起,夺取信息优势已成为夺取战争主动权的关键。电子信息装备作为夺取信息优势的物质基础,是推进武器装备信息化进程的重要动力,其总体水平和规模将在很大程度上反 映一个国家的军事实力和作战能力。 雷达作为重要的电子信息装备,自诞生起就在战争中发挥了极其重要的作用。但随着进攻武器装备的发展,只具有探测和跟踪功能的雷达也已经不能满足信息化战争的需要,迫切要求雷达不仅要具有探测和跟踪功能,而且还要具有目标识别功能,雷达目标分类与识别已成为现代雷达的重要发展方向,也是未来雷达的基本功能之一。目标识别技术是指:利用雷达和计算机对遥远目标进行辨认的技术。目标识别的基本原理是利用雷达回波中的幅度、相位、频谱和极化等目标特征信息,通过数学上的各种多维空间变换来估算目标的大小、形状、重量和表面层的物理特性参数,最后根据大量训练样本所确定的鉴别函数,在分类器中进行识别判决。目标识别还可利用再入大气层后的大团过滤技术。当目标群进入大气层时,在大气阻力的作用下,目标群中的真假目标由于轻重和阻力的不同而分开,轻目标、外形不规则的目标开始减 速,落在真弹头的后面,从而可以区别目标。 所谓雷达目标识别,是指利用雷达获得的目标信息,通过综合处理,得到目标的详细信息(包括物理尺寸、散射特征等),最终进行分类和描述。随着科学技术的发展,武器性能的提高,对雷达目标识别 提出了越来越高的要求。 目前,目标识别作为雷达新的功能之一,已在诸如海情监控系统、弹道导弹防御系统、防空系统及地球物理、射电天文、气象预报、埋地物探测等技术领域发挥出很大威力。为了提高我国的军事实力,适应未来反导弹、反卫、空间攻防、国土防空与对海军事斗争的需要,急需加大雷达目标识别技术研究的力度雷达目标识别策略主要基于中段、再入段过程中弹道导弹目标群的不同特性。从结构特性看,飞行中段

自动检测技术的应用与发展

自动检测技术的应用与发展 摘要 在当今经济全球化高速发展的时代,随着工业自动化技术的迅猛发展,自动检测技术被广泛地应用在工业自动化、化工、军事、航天、通讯、医疗、电子等行业,是自动化科学技术的一个格外重要的分支科学。众所周知,自动检测技术是在仪器仪表的使用、研制、生产的基础上发展起来的一门综合性技术。 自动检测系统广泛应用于各类产品的设计、生产、使用、维护等各个阶段,对提高产品性能及生产率、降低生产成本及整个生产周期成本起着重要作用。本文首先介绍自动检测系统的概念,其次通过自动检测系统的各个组成部分,详述系统的工作原理,介绍了自动检测系统组建的概念、结构以及在组建中所使用的关键技术。以此为铺垫,进而深入探讨自动检测技术在各领域间的应用与推广。 关键词:自动检测系统应用发展 第一章自动检测系统的概念与组成 自动检测技术是一种尽量减少所需人工的检测技术,是一种依赖仪器仪表,涉及物理学、电子学等多种学科的综合性技术。与传统检测技术相比,这一技术可以减少人们对检测结果有意或无意的干扰,减轻人员的工作压力,从而保证了被检测对象的可靠性,因此自动检测技术已经成为社会发展不可或缺的重要部分。自动检测技术主要有

两项职责,一方面,通过自动检测技术可以直接得出被检测对象的数值及其变化趋势等内容;另一方面,将自动检测技术直接测得的被检测对象的信息纳入考虑范围,从而制定相关决策。检测和检验是制造过程中最基本的活动之一。通过检测和检验活动提供产品及其制造过程的质量信息,按照这些信息对产品的制造过程进行修正,使废次品与反修品率降至最低,保证产品质量形成过程的稳定性及产出产品的一致性。 传统的检测和检验主要依赖人,并且主要靠手工的方式来完成。传统的检验和检测是在加工制造过程之后进行,一旦检出废次品,其损失已发生。基于人工检测的信息,经常包含人的误差影响,按这样的信息控制制造过程,不仅要在过程后才可以实施,而且也会引入误差。自动检测是以多种先进的传感技术为基础的,且易于同计算机系统结合,在合适的软件支持下,自动地完成数据采集、处理、特征提取和识别,以及多种分析与计算。而达到对系统性能的测试和故障诊断的目的。 1.1检测与检验的概念 检测是指为确定产品、零件、组件、部件或原材料是否满足设计规定的质量标准和技术要求目标值而进行的测试、测量等质量检测活动,检测有3个目标: ①实际测定产品的规定质量我及其指标的量值。 ②根据测得值的偏离状况,判定产品的质量水平,确定废次品。 ③认定测量方法的正确性和对测量活动简化是否会影响对规

探测与识别技术

目标探测与识别技术调研报告 摘要:目标检测与识别在军事上对于战场监视和侦察具有重要作用,是现代高科技战争中赢得战争胜利的关键因素之一。目标检测与识别就是对目标及环境的探测、识别、跟踪、定位,提供目标的信息,探测技术包括微光夜视技术、热成像技术、激光技术、兵器雷达技术等目前各国对目标检测与识别的研究都十分重视,探测与识别技术在现代国防,工业,医学和空间等领域有着广泛的应用前景。 关键词:探测、识别、跟踪、定位、微光夜视技术、热成像技术、激光技术、兵器雷达技术。 引言:目标检测与识别在军事上对于战场监视和侦察具有重要作用,是现代高科技战争中赢得战争胜利的关键因素之一。目标检测与识别就是对目标及环境的探测、识别、跟踪、定位,提供目标的信息,探测技术包括微光夜视技术、热成像技术、激光技术、兵器雷达技术等。 微光夜视技术 在可见光和近红外波段范围内,将微弱的光照图像转变为人眼可见的图像,扩展人眼在低照度下的视觉能力。微光夜视仪器可分为直接观察和间接观察两种类型。直接观察的微光夜视仪,由物镜、像增强器、目镜和电源、机械部件等组成,人眼通过目镜观察像增强器荧光屏上的景物图像,已广泛用于夜间

侦察、瞄准、驾驶等。间接观察的微光电视,由物镜、微光摄像器件组成微光电视摄像机,通过无线或有线传输,在接收显示装置上获得景物的图像,可用于夜间侦察和火控系统等。1934年,荷兰的霍尔斯特等人制成第一只近贴式红外变像管,树立起人类冲破夜暗的第一块里程碑。随着夜视技术的不断进展,品种不断增多,目前主要有:主动式红外夜视仪、微光夜视仪和热成像仪三种。其中微光夜视仪与主动红外夜视仪相比,有着体积小、重量轻,而且由于工作方式是被动的,使用起来安全可靠,不易暴露的优点;和热成像仪相比虽然在性能上稍逊一筹,但其极高的性价比使其逐渐成为各国军队的主战夜视装备。 主动式红外夜视仪是夜视器材的鼻祖,它的出现使人类第一次看到黑暗中的目标。像增强器研制成功,使得夜视器材的发展产生了一个新飞跃。而利用微弱的光线进行观测,是因为两个技术上的重大突破。首先,研制成功了灵敏度极高的光电阴极(S-20多碱光电阴极),使得夜视仪的光电增益大大提高。另一个突破是采用了光学纤维面板,大大提高了成像质量,将光线逐级放大,便实现了无须红外照明的微光观测。到1998年,就在美国陆军与利顿和ITT公司签订合同之际,第三代管的性能似乎已经达到了极限,然而利顿在投标中却又抛出了撒手锏——无膜微通道板像增强器。自动门控允许像增强器在照明区域和白天仍产生对比度良好的高分辨率影像,而不是产生模糊的影像。这个特点对陆军直升机驾驶员来说特别重要,因为驾驶员在城镇、村庄上空飞

水下目标识别技术探究

Technology Analysis 技术分析DCW 111数字通信世界2019.04(接上页)视,并采取相应有力措施加以解决,以促进高速公路 机电通信新技术的应用,为高速公路的发展提供更多通信技术支 持。 参考文献[1] 黄冠群.高速公路机电系统的维护与管理[J].科技创新与应用,2014,15(06):199.[2] 王小利.高速公路机电工程通信系统技术浅述[J].工程技术,2017,4(下):977. 1 研究背景 一般来说,水下目标情况复杂,我们研究的方向主要包括包 括舰船、潜艇、水雷、鱼群、海底沉物、地貌底质等。水下目标识别是实现水声装备与武器系统智能化的关键技术,更是现代信 息化条件下克敌制胜的前提,一直是各国海防领域面临的技术难 题。在20世纪40年代,世界各主要国家就已开始重视水下目标 识别技术,鉴于水下目标识别领域具有复杂性和特殊性,导致 该技术研究进展一直较为缓慢。近年来,尤其是军事应用方面, 低噪声核潜艇的出现对水下目标特征分析和识别技术的需求愈 加强烈。同时,新兴的信息处理技术、微处理器技术、VLSI 和 VHSIC 技术也取得了重大进展。正是基于军事需求和新兴电子技术的推动下,数值计算和实验室仿真技术日趋成熟,水下目标 识别技术迅速发展起来。 2 识别技术的发展 水下目标识别根据回波信号符合大信噪比条件,一般分为瞬态回波信号识别和水声图像信号识别两种。前者主要用于识别航 行舰艇,直接对目标回波或噪声信号进行实时辨别;后者多用于 静态目标,如海底沉淀物、地质结构等识别。早期的目标识别技 术,目标判断主要依据目标噪声或回波的波形音调、节奏分布特 性进行识别。随着研究技术和设备的发展,上个世纪七十年代后,目标回波的亮点分布结构起伏和展宽特性以及目标噪声的线谱分 布特性均已作为目标的特征量。但由于目标本身以及声传输信道 的复杂性,目标特征量及其数量的选取问题还是没有得到有效解 决。八十年代以来,目标识别技术广泛引入了近代信号处理技术,仪器设备研制和测量水平得到大幅提升,这为水下目标特征量提 取和数据收集提供了便利条件,与此同时,人工神经网络分析将 目标识别过程进一步智能化。 在全球电子化、智能化手段的快速发展和广泛应用下,各国 在水下目标识别的多个领域实现了突破。一是日本东京大学和美 国RESON 公司从2010年起联合开发应用于浅海及沿岸港口的自 动声纳目标探测跟踪系统。此系统能在低信噪比情况下,有效跟 踪探测水下运动目标。并在此基础上,使用干涉仪测量法计算相 位差场,这样就能够有效抑制噪声混响及静止假目标的干扰,从而提高识别率。二是美国爱荷华大学2013年深入研究了非稳态干扰下主动声纳目标探测及分类,并提出自适应子空间跟踪算法,在时频区域对目标回波进行动态监测,结果表明此算法能够有效抑制杂波对目标回波的干扰。三是欧美各国均建立了蛙人散射模型,进行水下小目标探测识别研究。通过实验,仿真分析了蛙人的目标强度,并开展水池试验,测量了蛙人呼吸气瓶的目标强度, 海上试验测量了蛙人目标强度。据公开资料显示,蛙人探测声纳(DDS )的性能描述,几乎所有的蛙人探测声纳均称实现了目标 识别和预警。四是2013年,美国海洋SPAWAR 系统中心海洋系统太平洋分部,应用多普勒方位测定法对多基地连续主动声纳目标进行跟踪。在多收发装置情况下,以此方法对目标进行有效定位和跟踪,取得良好效果。在先进发达国家的推动下,目标特性试验数据资源建设较为完善。俄罗斯、美国、英国在多年前就建立了大西洋海上试验场、DERA 测试场、活动式试验场及靶场,收集并整理了大量本国和盟约国及世界各国的舰艇目标特征数据资源,并对这些数据资源进行了对比分析、深层次挖掘,形成以特征库数据为基准的探测、识别体系。据了解,美俄等军事大国,每艘潜艇上都具有相应数据库,库中记载着各种舰艇、水中兵器的数据库及特征知识库,从而为作战中指挥官的准确判断提供数据支撑。 3 未来发展趋势随着吸声和隔声材料工艺提高、发动机减振降噪技术提升、仿生技术发展、干扰器种类多样化以及安静级潜艇应用给复杂的水下目标探测提出更高要求,识别与反识别技术出现了激烈碰撞。同时,水下目标识别技术和途径也逐渐多样化,己从单一源目标 提高到系统综合识别。据研究发现,现代激光技术可以作为水下目标识别系统的补充,尤其是在浅水区域、环境复杂的海洋区域、不易接近的区域等,使用激光可以快速探测和识别。机载激光扫描系统可以快速部署,用于探测水下目标或水面浮动目标。如果 目标足够大,机载激光扫描还可识别不同类型的目标,在这种情况下,在水面平台或水下平台上部署激光门控视图(LGV )、水下激光扫描(ULS )系统,可以确认目标。可以预见,未来的发展方向主要是非声探测、多传感器信息融合和智能目标识别等。人工智能技术与水声目标识别有机结合将是今后水下目标识别研究的重要方向。 参考文献[1] 丁玉薇.被动声呐目标识别技术的现状与发展[J].声学技术,2004,23(4).[2] 强超超 王元斌.水声目标识别技术现状与发展[J].指挥信息系统与技术,2018,9(2). [3] 徐慧.水声目标被动识别相关技术研究[D].武汉:中国舰船研究院,2017[4] 柳革命,孙超,杨益新.基于特征融合的被动声呐目标识别[J].计算机仿真,2009,26(8).水下目标识别技术探究 刘梦琪 (哈尔滨工程大学水声学院,哈尔滨 150000) 摘要:水下目标识别就是从水声信号中提取水下目标特性并做出识别,确定出目标的本质属性,进而采取有效应对措施。在军事方面,水下目标识别是世界各国海防情报处理的重要组成,是武器分配、反潜和鱼雷防御的前提;在民用方面,水下目标识别是现代化海洋开发利用的重要基础。因此,开展水下目标识别研究在国家安全、海洋应用等方面意义重大。 关键词:水声目标;技术发展;综合识别 doi :10.3969/J.ISSN.1672-7274.2019.04.081 中图分类号:TP391.4 文献标示码:A 文章编码:1672-7274(2019)04-0111-01

目标检测、跟踪与识别技术与现代战争

目标检测、跟踪与识别技术与现代战争 【摘要】本文讨论目标检测、跟踪与识别技术在现代战争各个领域中的应用,总结目标识别技术的发展方向,提出目标识别技术工程化实现方法,同时本文介绍了国外目标识别的现状及发展趋势,提出了现代战争应采用综合识别系统解决目标识别问题的建议。 关键词目标检测;目标跟踪;目标识别;雷达;人工神经网络;精确制导 1.引言 随着现代科学技术的飞速发展及其在军事领域内日益广泛的应用,传统的作战思想、作战方式已发生根本性的变化。从第一次海湾战争到科索沃战争,特别是刚刚结束的海湾战争,空中精确打击和空地一体化作战已经成为最重要的作战形式。集指挥、控制、通信、计算机、情报、监视侦察于一体的C ISR 已成为取得战场主动权,赢得最后胜利的关键因素。目标识别技术是雷达智能化、信息化的重要技术支撑手段。在现代化战争中,目标识别技术在预警探测、精确制导、战场指挥和侦察、敌我识别等军事领域都有广泛的应用前景,已受到了世界各国的关注。 现代战争中取得战场制信息权的关键之一是目标属性识别。现代战争的作战环境十分复杂,作战双方都在采用相应的伪装、隐蔽、欺骗和干扰等手段和技术,进行识别和反识别斗争。因此仅仅依靠一种或少数几种识别手段很难准确地进行目标识别,必须利用多个和多类传感器所收集到的多种目标属性信息,综合出准确的目标属性,进行目标检测,跟踪后进行识别。 2.目标检测、跟踪与识别技术在现代战争中的应用 2.1 目标检测、跟踪与识别技术在预警探测上的应用 目标检测、跟踪与识别技术对于弹道导弹的预警工作有重要的作用。弹道导弹一般携带多个弹头,其中可能包含核弹头或大规模杀伤的弹头以及常规弹头,预警雷达必须具备对目标进行分类和识别真假弹头的能力,将核弹头或大规模杀伤的弹头分离出来,为弹道导弹防御(BMD)系统进行目标攻击和火力分配提供依据。早期的BMD系统假设只有一个核弹头,多弹头分导技术的出现,使问题转化为雷达的多目标识别问题,加上电子对抗技术的广泛使用,给目标识别技术带来很大困难。另外,预警雷达还要对空中目标或低空目标进行探测,对来袭目标群进行分类识别。利用星载雷达以及远程光学望远镜等观测设备,可以对外空目标进行探测,对外空来袭目标进行分类和识别,达到早期预警的工作。

雷达目标识别发展趋势

雷达目标识别发展趋势 雷达具备目标识别功能是智能化的表现,不妨参照人的认知过程,预测雷达目标识别技术的发展趋势: (1)综合目标识别 用于目标识别的雷达必将具备测量多种目标特征的手段,综合多种特征进行目标识别。我们人类认知某一事物时,可以通过观察、触摸、听、闻、尝,甚至做实验的方法认知,手段可谓丰富,确保了认知的正确性。 目标特征测量的每种手段会越来越精确,就如同弱视的人看东西,肯定没有正常人看得清楚,也就不能认知目标。 识别结果反馈给目标特征测量,使目标特征测量成为具有先验信息的测量,特征测量精度会有所提高,识别的准确程度也会相应提高。 雷达具备同时识别目标和背景的功能。人类在观察事物的时候,不仅看到了事物的本身,也看到了事物所处的环境。现有的雷达大多通过杂波抑制、干扰抑制等方法剔除了干扰和杂波,未来的雷达系统需要具备识别目标所处背景的能力,这些背景信息在战时也是有用的信息。 雷达具备自适应多层次综合目标识别能力。用于目标识别的雷达虽然需要具备测量多种目标特征的手段,但识别目标时不一定需要综合所有的特征,这一方面是因为雷达系统资源不允许,另一方面也是因为没有必要精确识别所有的目标。比如司机在开车时,视野中有很多目标,首先要评价哪几个目标有威胁,再粗分类一下,是行人还是汽车,最后再重点关注一下靠得太近、速度太快的是行人中的小孩子还是汽车中的大卡车。 (2)自学习功能 雷达在设计、实现、装备的过程中,即具备了设计师的基因,但除了优秀的基因之外,雷达还需要具有学习功能,才能在实战应用中逐渐成熟。 首先,要具有正确的学习方法,这是设计师赋予的。对于实际环境,雷达目标识别系统应该知道如何更新目标特征库、如何调整目标识别算法、如何发挥更好的识别性能。 其次,要人工辅助雷达目标识别系统进行学习,这就如同老师和学生的关系。在目标识别系统学习时,雷达观测已知类型的合作目标,雷达操作员为目标识别系统指出目标的类型,目标识别系统进行学习。同时还可以人为的创造复杂的电磁环境,使目标识别系统能更好地适应环境。 (3)多传感器融合识别 多传感器的融合识别必定会提高识别性能,这是毋容置疑的。这就好比大家坐下来一起讨论问题,总能讨论出一个好的结果,至少比一个人说的话更可信。但又不能是通过投票的方式,专家的话肯定比门外汉更有说服力。多传感器融合识别需要具备双向作用的能力。 并不是给出融合识别的结果就结束了,而是要利用融合识别的结果反过来提高各个传感器的识别性能,这才是融合识别的根本目的所在。反向作用在一定程度上降低了人工辅助来训练目标识别系统的必要性,也减少了分别进行目标识别试验的总成本。

探测与识别 技术总结哦!!!

第一章绪论 1.目标探测与识别:对固定或移动目标的非接触测量,测量的信号中包含距离、位置、方位角或高度信息等,这种测量的装置可以使固定,也可以是运动的,而测量到的信号经过特殊的识别方法能正确地给出相关的信息。 2.高新技术弹药:在弹药上采用了末端敏感技术、末端制导技术、弹道修正技术等,此类弹药都具有一定的目标探测功能。 3.“三打”:打武装直升机、打巡航导弹、打隐形机。 4.“三防”:防侦查、防电子干扰、防精确打击。 5.智能导弹工作原理: 智能雷弹由声传感器探测1000m左右直升机螺旋桨产生的噪声,一旦分析出这种信号,雷弹锁定其频率,当信号或噪声增加到一定水平时,第二个探测系统开始工作,它能探测到直升机的接近距离或敏感到直升机主螺旋桨下降气流产生的大气压力变化,一旦达到预定的距离或压力变化时,雷弹可被弹射到一定的高度爆炸,毁伤直升机。 6.水下反鱼雷三种三种方式:声纳、磁探测技术、两者的复合技术。 7.灵巧化的精确制导的两项关键的核心技术: 1)高分辨率、高灵敏度的毫米波或红外探测敏感技术; 2)智能化信息技术处理与识别技术。 第二章目标特性 1.坦克的主要特性与特征:红外辐射特征、声传播特征、行驶过程中产生的地面震动特征。 2.大气窗口:在某些波长范围内,其辐射能较好地通过,几乎一切与大气有关的光学设备都只能去适应这些窗口。 3.喷气式飞机的4种红外辐射源:作为发动机燃烧室的热金属空腔、排出的热燃气、飞机壳体表面的自身辐射、飞机表面反射的环境辐射。 4.蒙皮辐射在8~14μm波段内占有极重要的地位的3个原因: 1)蒙皮辐射的峰值波长约为10μm,正好处在8~14μm波段范围内; 2)此波段的宽度较宽; 3)飞机蒙皮的面积非常大,它的辐射面积比喷口面积大许多倍。 第三章声探测技术 1.声压:声音为纵波,其传播引起空气的疏密变化,从而引起气压的变化,该 压力与大气压的差值即为声压。 2.声强:垂直于传播方向的单位面积上声波所传递的能量随时间的平均变化率, 也就是单位面积上输送的平均功率。 3.声强级:β=10lg I I0=20lg P P0 (dB) 式中I0——任选的参考强度,通常取为10~12W/m2 P0——对应的声压,即大约相当于可听到的最弱声音。 4.声传播速度与温度、湿度的关系:温度越高,湿度越大,声传播速度越快。 理想的干燥、清洁空气中:c=γRT M

雷达目标识别技术

雷达目标识别技术述评 孙文峰 (空军雷达学院重点实验室,湖北武汉430010) 摘要:首先对雷达目标识别研究领域已经取得的成果和存在的问题进行简单的回顾,然后结合对空警戒雷达,阐明低分辨雷达目标识别研究的具体思路。 关键词:雷达目标识别;低分辨雷达 Review on Radar Target Recognition SUN Wen-feng (Key laboratory, Wuhan Radar Academy, Wuhan 430010, China)Abstract: The acquired productions and existent problems of radar target recognition are reviewed simply, then the specific considerations of target recognition with low resolution radar are illustrated connect integrating with air defense warning radar in active service. Key words: radar target recognition; low resolution radar 1.引言 雷达目标识别(RTR—Radar Target Recognition)是指利用雷达对单个目标或目标群进行探测,对所获取的信息进行分析,从而确定目标的种类、型号等属性的技术。1958年,D.K.Barton(美国)通过精密跟踪雷达回波信号分析出前苏联人造卫星的外形和简单结构,如果将它作为RTR研究的起点,RTR至今已走过了四十多年的历程。目前,经过国内外同行的不懈努力,应该说RTR已经在目标特征信号的分析和测量、雷达目标成像与特征抽取、特征空间变换、目标模式分类、目标识别算法的实现技术等众多领域都取得了不同程度的突破,这些成果的取得使人们有理由相信RTR是未来新体制雷达的一项必备功能。目前,RTR技术已成功应用于星载或机载合成孔径雷达(SAR—Synthetic Aperture Radar)地面侦察、毫米波雷达精确制导等方面。但是,RTR还远未形成完整的理论体系,现有的R TR 系统在功能上都存在一定的局限性,其主要原因是由于目标类型和雷达体制的多样化以及所处环境的极端复杂性。本文首先对RTR研究领域已经取得的成果和存在的问题进行简单的回顾,最后结合对空警戒雷达,阐明了低分辨雷达目标识别研究的具体思路。 2.雷达目标识别技术的回顾与展望 雷达目标识别研究的主体有三个,即雷达、目标及其所处的电磁环境。其中任何一个主体发生改变都会影响RTR系统的性能,甚至可能使系统完全失效,即RTR研究实际上是要找到一种无穷维空间与有限类目标属性之间的映射。一个成功的RTR系统必定是考虑到了目标、雷达及其所处电磁环境的主要可变因素。就目标而言主要有目标的物理结构、目标相对于雷达的姿态及运动参数、目标内部的运动(如螺旋桨等)、目标的编队形式、战术使用特点等等;就雷达而言主要有工作频率、带宽、脉冲重复频率(PRF)、天线方向图、天线的扫描周期等等;环境因素主要有各种噪声(如内部噪声和环境噪声)、杂波(如地杂波、海杂波和气象杂波)和人为干扰等。在研制RTR系统时必须综合考虑这些因素,抽取与目标属性有关的特征,努力消除与目标属性无关的各种不确定因素的影响。

空间目标识别中的激光探测技术

第40卷 第7期 激光与红外Vol.40,No.7 2010年7月 LASER & I N FRARE D July,2010 文章编号:100125078(2010)0720685205?综述与评论?空间目标识别中的激光探测技术 黄 涛1,2,胡惠灵3,胡以华1,2,赵楠翔1,2 (1.脉冲功率激光技术国家重点实验室电子工程学院,安徽合肥230037; 2.安徽省电子制约技术重点实验室,安徽合肥230037; 3.合肥工业大学计算机与信息学院,安徽合肥230009) 摘 要:空间目标探测与识别技术是空间资源开发、空间安全等方向应用的前提条件,同其他 方式相比,激光探测具有其突出的优势。当前传统的空间监视网是以微波雷达和光学望远镜 为基础,激光探测与之相比具有系统简单、效费比高、能探测空间目标多种特征参数的优点。 介绍了激光探测空间目标中的空间目标轨道确定、几何形状估计、对装配的光学设备检测和对 空间目标的振动识别等几种目标识别技术。最后分析了激光探测在空间目标识别中存在的问 题和发展的方向。 关键词:激光探测;空间目标;识别;逆合成孔径;猫眼效应;振动识别 中图分类号:T N149 文献标识码:A Laser detecti on i n the i denti fi cati on of space t arget HUANG Tao1,2,HU Hui2ling3,HU Yi2hua1,2,Z HAO Nan2xiang1,2 (1.State Key Laborat ory of Pulsed Power Laser Technol ogy Electr onic Engineering I nstitute,Hefei230037,China; 2.Key Laborat ory of Electr onic Restricti on,Anhui Pr ovince,Hefei230037,China; 3.Hefei University of Technol ogy,School of Computer&I nf or mati on,Anhui Pr ovince,Hefei230009,China) Abstract:Space targets detecti on and identificati on is a key technol ogy in s pace app licati ons such as s pace security, attack2warning,debris detecti on ect.Among vari ous detecti on t ools,laser technol ogy has its s pecial advantages under certain conditi on.Ce mpaved with the conventi onal s pace surveillance net w ork which is composed of radar and op tical telescope,laser system can get mone infor mati on about the t orget mean while boasts mone compact size,higher efficien2 cy.The paper intr oduces how t o use laser t o deter m ine the orbit of the s pace target,how t o esti m ate the target′s shape thr ough the return signal,and how t o measure the vibrati on s pectru m of the target.A ls o intr oduced is the devel opment and future of the s pace target detecti on and identificati on by laser. Key words:laser detecti on;s pace target;identifying;inverse synthetic aperture;Cat′s eye effect;vibrati on identifica2 ti on 1 引 言 空间目标主要指各种卫星、空间碎片、空间站、航天飞机,中远程弹道导弹,以及进入地球外层空间的各种宇宙飞行物,如彗星和小行星。空间目标探测系统的任务是对重要空间目标进行精确探测和跟踪,确定可能对航天系统构成威胁的目标的任务、尺寸、形状和轨道参数等重要目标特性;对目标特性数据进行归类和分发。空间目标探测不仅可以帮助确定潜在敌人的空间能力,还可以预测空间物体的轨道,对可能发生的碰撞和对己方空间系统的攻击告警等,具有重要的军事价值[1]。 当前的空间目标探测的主要手段是以各种超远程雷达和大口径光学望远镜组成的空间的监视网对空间目标进行探测和跟踪。这种探测方式虽然能够 基金项目:国家自然科学基金项目(No.60672154)资助。 作者简介:黄 涛(1983-),男,硕士研究生,主要从事激光遥感信息处理方面的研究工作。E2mail:tao_online@https://www.wendangku.net/doc/327544210.html, 收稿日期:2010203217;修订日期:2010204207

目标检测与跟踪

第九章图像目标探测与跟踪技术 主讲人:赵丹培 宇航学院图像处理中心 zhaodanpei@https://www.wendangku.net/doc/327544210.html, 电话:82339972

目录 9.1 概论 9.2 目标检测与跟踪技术的发展现状9.3 目标检测与跟踪技术的典型应用9.4 图像的特征与描述 9.5 目标检测方法的基本概念与原理9.6 目标跟踪方法涉及的基本问题

9.1 概论 1、课程的学习目的 学习和掌握目标探测、跟踪与识别的基本概念和术语,了解一个完整信息处理系统的工作流程,了解目标探测、跟踪与识别在武器系统、航空航天、军事领域的典型应用。了解目标检测、跟踪与识别涉及的关键技术的发展现状,为今后从事相关的研究工作奠定基础。 2、主要参考书: 《目标探测与识别》,周立伟等编著,北京理工大学出版社; 《成像自动目标识别》,张天序著,湖北科学技术出版社; 《动态图像分析》,李智勇沈振康等著,国防工业出版社;

引言:学习目标检测与跟踪技术的意义 ?现代军事理论认为,掌握高科技将成为现代战争取胜的重要因素。以侦察监视技术、通信技术、成像跟踪技术、精确制导技术等为代表的军用高科技技术是夺取胜利的重要武器。 ?成像跟踪技术是为了在战争中更精确、及时地识别敌方目标,有效地跟踪目标,是高科技武器系统中的至关重要的核心技术。 ?例如:一个完整的军事战斗任务大致包括侦察、搜索、监视以及攻击目标和毁伤目标。那么快速的信息获取和处理能力就是战争胜利的关键,因此,目标的实时探测、跟踪与识别也成为必要的前提条件。

?随着现代高新技术的不断发展及其在军事应用领域中的日益推广,传统的作战形态正在发生着深刻的变化。 1973年的第四次中东战争,1982年的英阿马岛之战,1991年的海湾战争及1999年的科索沃战争,伊拉克战争等都说明了这一点。西方各军事强国都在积极探索对抗武器,特别是美国更是投入了巨大的物力、人力和财力积极研制弹道导弹防御系统。而图像检测、跟踪和识别算法作为现代战场信息环境作战成败的关键,具备抗遮挡、抗丢失和抗机动鲁棒性的智能跟踪器,将是现代战场作战必备品,具有广泛的应用前景。

相关文档