文档库 最新最全的文档下载
当前位置:文档库 › 时变电磁场习题

时变电磁场习题

时变电磁场习题
时变电磁场习题

1、时变电磁场的激发源是( )。

A .电荷和电流

B .变化的电场和磁场

C .同时选择A 和B

2.坡印廷矢量S 的瞬时表示为__________________,平均值为________________。

3.位移电流的表达式为( )

A .J D =????S t

D ·ds B .J D =t D ?? C .J D =????-S t D ·ds D .J D =t

D ??- 4.在理想介质中,波阻抗为( )

A .实数

B .虚数

C .复数

D .零

5.电磁波的传播速度等于___________。P159

6.时变电磁场中的感应电动势,包括发电机电动势和变压器电动势二部分,它们产生的条件

是( )。

A. 导体回路和磁场随时间变化

B. 只要磁通随时间变化

C. 导体回路运动和磁场随时间变化

D. 导体回路运动切割磁力线和磁通随时间变化

7.由动态位A 和?求E 和H 的关系式是( )。

A. E =?-?,B =?·A

B. E =?-?-t A ?? 和B =??A

C. E=??+t A ?? 和B =??A

D. E =?-?-t A ?? ,B =-??A P156 8.平面电磁波的波阻抗等于( )。

A.με

B. με

1 C.με1

P159 D. ε

μ

9. 电磁感应定律的本质就是变化的磁场产生 。

10.全电流定律的微分方程为( )

A .▽×H=J C

B .▽×H=J+t D ??

C .▽×H=t

D ?? D .▽×H=0 11.达朗贝尔方程(动态位)

12.什么是传导电流?在时变场中,传导电流是否保持连续?

13. 坡印亭矢量

14. 用场的观点分析静电屏蔽、磁屏蔽和电磁屏蔽,对屏蔽材料有什么要求?

静电屏蔽p51:利用导体在静电场中达到平衡状态时具有(1)导体内电场为0;(2)导体为等位体;(3)电荷只分布在导体表面。故把导体空腔接地,可把导体内外的场分割为两个互不影响的独立系统,达到屏蔽的目的。(把不可受外界电场影响的带电体或不希望去影响外界的带电体用一接地的金属壳罩起来,以隔绝有害的静电影响)

磁屏蔽P138:利用高磁导率材料具有低磁阻的特性,将其制成有一定厚度的外壳,起磁分路作用,使壳内设备少受磁干扰,达到磁屏蔽。

电磁屏蔽p207:一方面利用电磁波在金属表面产生涡流,从而抵消原来的磁场;另利用电磁波在金属表面产生反射损耗和透射波在金属内的传播过程中衰减产生吸收损耗,达到屏蔽作用。

屏蔽材料:静电屏蔽——金属

磁屏蔽 ——铁磁性材料

电磁屏蔽——良导体

电磁场试题及答案

一、填空 1.方程▽2φ=0称为静电场的(拉普拉斯(微分))方程 2.在静电平衡条件下,导体内部的电场强度E 为(0) 3.线性导电媒质是指电导率不随(空间位置)变化而变化 4.局外电场是由(局外力)做功产生的电场 5.电感线圈中的磁场能量与电流的平方(成正比) 6.均匀平面电磁波中,E 和I 均与波的传播方向(垂直) 7.良导体的衰减常数α≈(β≈2ωμγ ) 8.真空中,恒定磁场安培环路定理的微分形式(▽x B=0μJ ) 9.在库伦规范和无穷远参考点前提下,面电流分布的矢量的磁位公式 (A=?R Idl 40 πμ)公式3-43 10.在导体中,电场力移动电荷所做的功转化为(热能) 11. 在静电平衡条件下,由导体中E=0,可以得出导体内部电位的梯度为(0 )(p4页) 12.电源以外的恒定电场中,电位函数满足的偏微分方程为----- (p26 页) 13.在无源自由空间中,阿拉贝尔方程可简化为----------波动方程。 瞬时值矢量齐次 (p145页) 14.定义位移电流密度的微分表达式为------------ t ??D =0εt ??E +t P ?? (p123页) 15.设电场强度E=4,则0 P12页 16.在单位时间内,电磁场通过导体表面流入导体内部的能量等于导线电阻消耗的(热能) 17.某一矢量场,其旋度处处为零,则这个矢量场可以表示成某一标量函数的(梯度) 18.电流连续性方程的积分形式为(???s dS j =-dt dq ) 19.两个同性电荷之间的作用力是(相互排斥的) 20.单位面积上的电荷多少称为(面电荷密度) 21.静电场中,导体表面的电场强度的边界条件是:(D1n-D2n=ρs ) 22.矢量磁位A 和磁感应强度B 之间的关系式:( B =▽ x A ) 23.E (Z ,t )=e x E m sin (wt-kz-错误!未找到引用源。)+ e y E m cos (wt-kz+错误!未找到引用源。),判断上述均匀平面电磁波的极化方式为:(圆极化)(应该是 90%确定) 24.相速是指 均匀平面电磁波在理想介质中的传播速度。 25.电位移矢量D=ε0E+P 在真空中 P 的值为(0)

作业06_第四章时变电磁场

作业06_第四章时变电磁场-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第四章 时变电磁场 1. 在无源的自由空间中,已知磁场强度597.210cos(31010)A/m y H t z e -=??-,求位移电流密度。 2. 在电导率310S/m γ=、介电常数06εε=的导电媒质中,已知电场强度 58210sin(10)x E t e -=?π,计算在92.510s t -=?时刻,媒质中的传导电流密度c J 和位移电流密度d J 。 3. 在无源区域,已知电磁场的电场强度90.1cos(6.281020.9)V/m x E t z e =?-,求空间 任一点的磁场强度H 和磁感应强度B 。 4. 一个同轴圆柱型电容器,其内、外半径分别为11cm r =、24cm r =,长度0.5m l =,极板间介质介电常数为04ε,极板间接交流电源,电压为 V u t =π。求极板间任意点的位移电流密度。 5.一个球形电容器的内、外半径分别为a 和b ,内、外导体间材料的介电常数为ε,电导率为γ,在内、外导体间加低频电压sin m u U t ω=。求内、外导体间的全电流。

6. 已知自由空间中电磁波的两个场量表达式为 20002)V/m x E =t z e ωβ-, 5.32sin()A/m y H =t z e ω β- 式中,20MHz f =,0.42rad/m β==。求(1)瞬时坡印亭矢量;(2)平均坡印亭矢量;(3)流入图示的平行六面体(长为2m ,横截面积为0.5m 2)中的净瞬时功率。 7. 一个平行板电容器的极板为圆形,极板面积为S ,极板间距离为d ,介质的介电常数和电导率分别为ε, γ,试问: (1). 当极板间电压为直流电压U 时,求电容器内任一点的坡印亭矢量; (2). 如果电容器极板间的电压为工频交流电压cos314u t =,求电容器内任一点的坡印亭矢量及电容器的有功功率和无功功率。 8. 在时变电磁场中,已知矢量位函数m e cos()z x A A t z e αωβ-=-,其中m A 、α和β均是常数。试求电场强度E 和磁感应强度B 。 x

(完整版)电磁场复习题

《电磁场与电磁波基础》复习题 一、 填空题: (第一章)(第二章)(第三章)(第四章)(第五章)(第六章) (第一章) 1、直角坐标系下,微分线元表达式 z e y e x e l z y x d d d d 面积元表达式 2、圆柱坐标系下,微分线元表达式z e e e l z d d d d , 面积元表达式z e l l e S z d d d d d z e l l e S z d d d d d d d d d d z z z e l l e S 3、圆柱坐标系中, e 、e r 随变量 的变化关系分别是 e e , e -e 4、矢量的通量物理含义是 矢量穿过曲面的矢量线的总和; 散度的物理意义是 矢量场中任意一点处通量对体积的变化率; 散度与通量的关系是 散度一个单位体积内通过的通量。 5、散度在直角坐标系 F z F y F x F V S d F F div Z Y X S V 0lim 散度在圆柱坐标系 z F F F F div Z 1)(1 6、矢量微分算符(哈密顿算符) 在直角坐标系的表达式为 z z y y x x e e e 圆柱坐标系 z e z e e 球坐标系分别 sin e e r e r r r 7、高斯散度定理数学表达式 V s S d F dV F ,本课程主要应用的两个方面分别是 静电场的散度 、 恒定磁场的散度 ;

8、矢量函数的环量定义 C l z y x F d ),,(;旋度的定义MAX l S S l d F F rot lim 0; 二者的关系 ? ? C S l d F S d F )(;旋度的物理意义:描述矢量场中某一点漩涡源密度。 9、旋度在直角坐标系下的表达式F =)()()(y F x F e x F z F e z F y F e z y z z x y y Z x 10、旋度的重要恒等式,其物理意义是旋涡源密度矢量; 11、斯托克斯定理数学表达式 ? ? C S l d F S d F )(,本课程主要应用的两个方面分别是 静电场的旋度 、 恒定磁场的旋度 ; 12、梯度的物理意义 描述标量场在某点的最大变化率及其变化最大的方向;等值面、方向导数与梯度的关系是 空间某一点的梯度垂直过该点的等值面;梯度在某方向上的投影即为方向导数; 13、用方向余弦cos ,cos ,cos 写出直角坐标系中单位矢量l e r 的表达式 cos cos cos e l z y x e e e ; 14、直角坐标系下方向导数的数学表达式l M u M u M )()(lim |l u 00l 0, 梯度的表达式; 15、梯度的一个重要恒等式u u grad ,其主要应用是求出任意方向的方向导数 ; 16、亥姆霍茨定理表述在有限区域的任一矢量场由它的散度,旋度以及边界条件唯一地确定; 说明的问题是 要确定一个矢量或一个矢量描述的场,须同时确定其散度和旋度 17、描述一个矢量场的矢量函数能够用一个标量函数来描述的必要条件是 旋度 处处为零 ,这是因为恒等式 0u F 。

电磁场与电磁波5答案

第5章时变电磁场 5.1 有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场 5cos mT z e t ω=B 之中,如题6.1图所示。滑片的位置由0.35(1cos )m x t ω=-确定,轨道终端接有电阻0.2R =Ω,试求电流i. 解 穿过导体回路abcda 的磁通为 5cos 0.2(0.7) cos [0.70.35(1cos )]0.35cos (1cos )z z d B ad ab t x t t t t ωωωωωΦ==?=?-=--=+? B S e e 故感应电流为 11 0.35sin (12cos ) 1.75sin (12cos )mA in d i R R dt t t t t R ωωωωωωΦ = =-=-+-+E 5.2 一根半径为a 的长圆柱形介质棒放入均匀磁场0z B =B e 中与z 轴平行。设棒以角 速度ω绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。 解 介质棒内距轴线距离为r 处的感应电场为 00z r r r B φωω=?=?=E v B e e B e 故介质棒内的极化强度为 00000(1)()e r r r r B r B εεεωεεω==-=-P E e e X 极化电荷体密度为 200 00 11()()2()P rP r B r r r r B ρεεωεεω?? =-??=- =--??=--P 极化电荷面密度为 00 ()()P r r r a e r a B σεεωεεω==?=-?=-P n B e 则介质体积内和表面上同单位长度的极化电荷分别为 220020012()212()P P PS P Q a a B Q a a B πρπεεωπσπεεω=??=--=??=- 5.3 平行双线传输线与一矩形回路共面,如题 6.3图所示。 设0.2a m =、0.1m b c d ===、71.0cos(210)A i t π=?,求回路中的感应电动势。

时变电磁场

第五章 时变电磁场 1 什么是时变电磁场:场源(电荷、电流或时变场量)和场量(电场、磁场)随时间变化的电磁场。由于时变的电场和磁场相互转换,也可以说时变电磁场就是电磁波。 2 时变电磁场的特点:1)电场和磁场互为对方的涡旋(旋度)源。2)电场和磁场共存,不可分割。3)电力线和磁力线相互垂直环绕。 3 本教科书自第五章以后内容全是关于电磁波的,第五章主要是基础,引入波动方程去掉电场与磁场的耦合,引入复矢量,简化时间变量的分析。第六章以平面波为例,首先研究无限大区域内的电磁波的传播特点,引入用于描述电磁波特性的参量。然后介绍半无限大区域内的电磁波的传播特点-电磁波的反射和折射。第七章首先介绍一个坐标方向无限、其余坐标方向有限的区域内的电磁波传播特性—导行电磁波特性,然后介绍了有限区域内的电磁波谐振特性。第八章介绍了电磁波的产生-天线。 4 本章内容线索:1)理论方面:基本场方程,位函数(引入矢量位),边界条件,波动方程。2)基本方法:复矢量 §时变电磁场方程及边界条件 1 1)因为 t ?? 不为零,电场和磁场相互耦合,不能分开研究。其基本方程就是Maxwell 方程。 微分形式:?? ??? ????????????-=??=??=????-=????+=??t J B D t B E t D J H ρρρρ ρ ρ ρρ ρρ0 积分形式??????? ??????????-=?=?=????-=????+=??????????s V s s V c s c s dV t s d J s d B dV s d D s d t B l d E s d t D J l d H ρρρρρρρρρρρρρρρρρ0)( 2)物质(本构)方程: 在线性、各向同性媒质中 H B E D ρρρρμε== 其它媒质有:非线性,各向异性,双各向异性,负相对电导率、负相对磁导率媒质等人工媒质。这些媒质在微波、光学、隐身、伪装方面有很多应用。 3)上面的电流J ρ包括传导电流E J c ρρσ=和运移电流v J v ρ ρρ= 2 边界条件: § 时变电磁场的唯一性定理 1 如果1)一个区域内0=t 时,每一点的电场强度和磁场强度的初始值已知,2)区域边界

电磁场复习题

一、填空题 ⒈电场强度的方向与( )的受力方向相同。 ⒉电偶极子产生的电场为()。 ⒊无限长带线电荷密度为τ的导线周围电场强度为( )。 ⒋静电场中,选定Q点为电位参考点,则空间任一点P的电位值为( )。 ⒌电力线的微分方程为( )。 ⒍球坐标系中电力线的微分方程为( )。 ⒎静电场中,电通密度与电场强度、极化强度之间的关系式为( )。 ⒏各向同性的线性介质中,极化强度与电场强度的关系为( )。 ⒐极化电介质中电通密度与电场强度和极化强度的关系式为( )。 ⒑静电场中媒质分界面上的衔接条件为( )和( )。 ⒒静电场中导体与电介质分界面上电位表示的衔接条件为( )和( )。 ⒓真空中半径为a的孤立导体球的电容量为( )。 ⒔半径为a的球形区域内均匀分布有电荷体密度为ρ,则此球内电场为( )。 ⒕静电场中电位函数的泊松方程为( )。 ⒖同轴电缆内外导体半径分别为a和b,电压为U,中间介质介电常数为ε,则中间介质的电场强度为( )。 ⒗内外半径分别为a和b的同心球面间电容量为( )。 ⒘已知带电体上连续电荷分布密度函数和电位分布,计算静电能量的公式为( )。 ⒙已知n个分离带电体上电荷量和电位分布,计算总的静电能量的公式为( )。 ⒚已知静电场分布区域中电场强度分布以及区域媒质介电常数,总的静电能量计算公式为( )。 ⒛电荷为q的带电体在电场中受到电场力为( )。 21静电场中,对带电荷量不变的系统,虚位移法计算电场力的公式为( )。 22静电场中,对电位不变系统,虚位移法计算电场力的公式为( )。 23在自由空间中,电荷运动形成的电流称为( )。 24恒定电场中电流连续性方程为( )。 25恒定电流指的是( )。

时变电磁场习题

1、时变电磁场的激发源是( )。 A .电荷和电流 B .变化的电场和磁场 C .同时选择A 和B 2.坡印廷矢量S 的瞬时表示为__________________,平均值为________________。 3.位移电流的表达式为( ) A .J D =????S t D ·ds B .J D =t D ?? C .J D =????-S t D ·ds D .J D =t D ??- 4.在理想介质中,波阻抗为( ) A .实数 B .虚数 C .复数 D .零 5.电磁波的传播速度等于___________。P159 6.时变电磁场中的感应电动势,包括发电机电动势和变压器电动势二部分,它们产生的条件 是( )。 A. 导体回路和磁场随时间变化 B. 只要磁通随时间变化 C. 导体回路运动和磁场随时间变化 D. 导体回路运动切割磁力线和磁通随时间变化 7.由动态位A 和?求E 和H 的关系式是( )。 A. E =?-?,B =?·A B. E =?-?-t A ?? 和B =??A C. E=??+t A ?? 和B =??A D. E =?-?-t A ?? ,B =-??A P156 8.平面电磁波的波阻抗等于( )。 A.με B. με 1 C.με1 P159 D. ε μ

9. 电磁感应定律的本质就是变化的磁场产生 。 10.全电流定律的微分方程为( ) A .▽×H=J C B .▽×H=J+t D ?? C .▽×H=t D ?? D .▽×H=0 11.达朗贝尔方程(动态位) 12.什么是传导电流?在时变场中,传导电流是否保持连续? 13. 坡印亭矢量 14. 用场的观点分析静电屏蔽、磁屏蔽和电磁屏蔽,对屏蔽材料有什么要求? 静电屏蔽p51:利用导体在静电场中达到平衡状态时具有(1)导体内电场为0;(2)导体为等位体;(3)电荷只分布在导体表面。故把导体空腔接地,可把导体内外的场分割为两个互不影响的独立系统,达到屏蔽的目的。(把不可受外界电场影响的带电体或不希望去影响外界的带电体用一接地的金属壳罩起来,以隔绝有害的静电影响) 磁屏蔽P138:利用高磁导率材料具有低磁阻的特性,将其制成有一定厚度的外壳,起磁分路作用,使壳内设备少受磁干扰,达到磁屏蔽。 电磁屏蔽p207:一方面利用电磁波在金属表面产生涡流,从而抵消原来的磁场;另利用电磁波在金属表面产生反射损耗和透射波在金属内的传播过程中衰减产生吸收损耗,达到屏蔽作用。 屏蔽材料:静电屏蔽——金属 磁屏蔽 ——铁磁性材料 电磁屏蔽——良导体

第五章时变电磁场题解

第五章 时变电磁场 5-1 如图5-1所示,一个宽为a 、长为b 的矩形导体框,放置在磁场中,磁感应强度为 B e =B t y 0sin ω。 导体框静止时其法线方向e n 与y e 呈α角。求导体框静止时或以角速度ω绕x 轴旋转(假定t =0时刻,α=0)时的感应电动势。 解 由于 y t B e B ωsin 0=,据 ?? ???-=s t e s B d , 导体框静止时,t B ab ab t B e ωωααcos cos cos 0-=???-= 导体框旋转时, ()()t abB t ab B t ab t B t t ab B t t e ωωωωωωω2cos 2cos 22 1 cos sin cos d 000s -=??-=??? -=???-=???- =??s B 5-2 设图5-2中随时间变化的磁场只有z 轴分量,并沿y 轴按 B B y t B t ky z ==-(,)cos()m ω的规律分布。现有一匝数为N 的线圈平行于xoy 平面,以速度v 沿y 轴方向移动(假定t =0时刻,线圈几何中心处y =0)。求线圈中的感应电动势。 解 据 ()???=l e l B v d 设 2 , 221a vt y a vt y + =-=,则有 ()()[]()kvt vB Nb a vt k a vt k vB Nb y B y B v Nb e m m sin 2cos 2cos 2211?-=????? ???? ?? ++??? ??-?=+?= 5-3 一半径为a 的金属圆盘,在垂直方向的均匀磁场B 中以等角速 度ω旋转,其轴线与磁场平行。在轴与圆盘边缘上分别接有一对电刷,如图5-3所示。这一装置称为法拉第发电机。试证明 两电刷之间的电压为2 2B a ω。 解 由于t d d α ω= ,αωd d =t ,t ωα=,ωr v = 则有 ()??=?=??=a l Ba r B r e 02 2d d ωωl B v 5-4 设平板电容器极板间的距离为d ,介质的介电常数为ε0,极板间接交流电源,电压为 u U t =m sin ω。求极板间任意点的位移电流密度。 解 对于平板电容器,极间电场为均匀场, 则有 t d U E m ωsin =,t d U E D m ωεεsin 0==,t d U e D J m D ωωεcos 0=??= 5-5 一同轴圆柱形电容器,其内、外半径分别为cm 11=r 、cm 42=r ,长度m 5.0=l ,极板间介

电磁场考试试题及答案

电磁波考题整理 一、填空题 1. 某一矢量场,其旋度处处为零,则这个矢量场可以表示成某一标量函数的(梯度)形式。 2. 电流连续性方程的积分形式为(??? s dS j dt dq) 3. 两个同性电荷之间的作用力是(相互排斥的)。 4. 单位面积上的电荷多少称为(面电荷密度)。 5. 静电场中,导体表面的电场强度的边界条件是:(D12ρs) 6. 矢量磁位A和磁感应强度B之间的关系式:(=▽ x A) 7. (Z,t)()+ (),判断上述均匀平面电磁波的极化方式为:(圆极化)(应该是 90%确定) 8. 相速是指均匀平面电磁波在理想介质中的传播速度。 9.根据电磁波在波导中的传播特点,波导具有()滤波器的特点。(,,三选一) 10.根据电与磁的对偶关系,我们可以由电偶极子在远区场的辐射场得到(磁偶极子)在远区产生的辐射场 11. 电位移矢量ε0在真空中 P的值为(0) 12. 平板电容器的介质电容率ε越大,电容量越大。 13.恒定电容不会随时间(变化而变化) 14.恒定电场中沿电源电场强度方向的闭合曲线积分在数值上等于电源的(电动势)

15. 电源外媒质中电场强度的旋度为 0。 16.在给定参考点的情况下,库伦规范保证了矢量磁位的(散度为零) 17.在各向同性媚质中,磁场的辅助方程为(εE, μH, σE) 18. 平面电磁波在空间任一点的电场强度和磁场强度都是距离和时间的函数。 19. 时变电磁场的频率越高,集肤效应越明显。 20. 反映电磁场中能量守恒与转换规律的定理是坡印廷定理。 二、名词解释 1. 矢量:既存在大小又有方向特性的量 2. 反射系数:分界面上反射波电场强度与入射波电场强度之比 3. 波:电场强度矢量和磁场强度矢量均与传播方向垂直的均匀平面电磁波 4. 无散场:散度为零的电磁场,即·=0。 5. 电位参考点:一般选取一个固定点,规定其电位为零,称这一固定点为参考点。当取点为参考点时,P点处的电位为=;当电荷分布在有限的区域时,选取无穷远处为参考点较为方便,此时=。 6. 线电流:由分布在一条细线上的电荷定向移动而产生的电流。 7.磁偶极子:磁偶极子是类比而建立的物理模型。具有等值异号的两个点磁荷构成的系统称为磁偶极子场。磁偶极子受到力矩的作用会发生转动,只有当力矩为零时,磁偶极子才会处于平衡状态。利用这个道理,可以进行磁场的测量。但由于没有发现单独存在的,故我们将一个载有的圆形作为的模型。 8. 电磁波的波长:空间相位变化所经过的距离称为波长,以表示。按此定

作业06_第四章时变电磁场

第四章 时变电磁场 1. 在无源的自由空间中,已知磁场强度597.210cos(31010)A/m y H t z e -=??-v v ,求位移 电流密度。 2. 在电导率310S/m γ=、介电常数06εε=的导电媒质中,已知电场强度 58210sin(10)x E t e -=?πv v ,计算在92.510s t -=?时刻,媒质中的传导电流密度c J v 和位移电流密度d J v 。 3. 在无源区域,已知电磁场的电场强度90.1cos(6.281020.9)V/m x E t z e =?-v v ,求空间 任一点的磁场强度H v 和磁感应强度B v 。 4. 一个同轴圆柱型电容器,其内、外半径分别为11cm r =、24cm r =,长度 0.5m l =,极板间介质介电常数为04ε,极板间接交流电源,电压为 V u t =π。求极板间任意点的位移电流密度。 5.一个球形电容器的内、外半径分别为a 和b ,内、外导体间材料的介电常数为ε,电导率为γ,在内、外导体间加低频电压sin m u U t ω=。求内、外导体间的全电流。

6. 已知自由空间中电磁波的两个场量表达式为 )V/m x E =t z e ωβ-v v ,)A/m y H =t z e ωβ-v v 式中,20MHz f = ,0.42rad/m β==。求(1)瞬时坡印亭矢量;(2)平均坡印亭矢量;(3)流入图示的平行六面体(长为2m ,横截面积为0.5m 2)中的净瞬时功率。 7. 一个平行板电容器的极板为圆形,极板面积为S ,极板间距离为d ,介质的介电常数和电导率分别为ε,γ,试问: (1). 当极板间电压为直流电压U 时,求电容器内任一点的坡印亭矢量; (2). 如果电容器极板间的电压为工频交流电压cos314u t =,求电容器内任一点的坡印亭矢量及电容器的有功功率和无功功率。 8. 在时变电磁场中,已知矢量位函数m e cos()z x A A t z e αωβ-=-v v ,其中m A 、α和β 均是常数。试求电场强度E v 和磁感应强度B v 。

《电磁场与电磁波》(第四版)习题集:第4章 时变电磁场

第4章 时变电磁场 在时变的情况下,电场和磁场相互激励,在空间形成电磁波,时变电磁场的能量以电磁波的形式进行传播。电磁场的波动方程描述了电磁场的波动性,本章首先对电磁场的波动方程进行讨论。 在时变电磁场的情况下,也可以引入辅助位函数来描述电磁场,使一些复杂问题的分析求解过程得以简化。本章对时变电磁场的位函数及其微分方程进行了讨论。 电磁能量一如其它能量服从能量守恒原理,本章将讨论电磁场的能流和表征电磁场能量守恒关系的坡印廷定理。 本章在最后讨论了随时间按正弦函数变化的时变电磁场,这种时变电磁场称为时谐电磁场或正弦电磁场。 4. 1 波动方程 由麦克斯韦方程可以建立电磁场的波动方程,揭示了时变电磁场的运动规律,即电磁场的波动性。下面建立无源空间中电磁场的波动方程。 在无源空间中,电流密度和电荷密度处处为零,即0ρ=、0=J 。在线性、各向同性的均匀媒质中,E 和H 满足的麦克斯韦方程为 t ε ???=?E H (4.1.1) t μ???=-?H E (4.1.2) 0?=H (4.1.3) 0?=E (4.1.4) 对式(4.1.2)两边取旋度,有 ()()t μ ? ????=-???E H 将式(4.1.1)代入上式,得到 22()0t με?????+=?E E 利用矢量恒等式2 ()()????=??-?E E E 和式(4.1.4),可得到 22 20t με??-=?E E (4.1.5) 此式即为无源区域中电场强度矢量E 满足的波动方程。 同理可得到无源区域中磁场强度矢量H 满足的波动方程为 22 20t με??-=?H H (4.1.6) 无源区域中的E 或H 可以通过求解式(4.1.5)或式(4.1.6)的波动方程得到。 在直角坐标系中,波动方程可以分解为三个标量方程,每个方程中只含有一个场分量。例如,式(4.1.5)可以分解为

第三章 电磁场边值问题的求解(2)....

3.4静态场边值问题解法 静态场问题分为两大类: 1、分布型问题:由已知场源分布,直接从场的积分公式求 空间各点的场分布。 2、边值型问题:由已知场量在场域边界上的值,求场域内 的场分布。 边值问题的解分为解析法和数值法。 1

2 图有 有边限 限界差 元法量 解元 保 分电镜离轴换 像法角 变法量变 解析法 法数值202??ρε???=?????=??? 拉氏方程泊松方程

本讲内容 1 静电场的唯一性定理 2 镜像法 点电荷与导体球、点电荷与无限大导体平面、点电荷与无限大的介质平面 3 分离变量法 直角坐标系、圆柱坐标系 3

4 数学物理方程是描述物理量随空间和时间的变化规律。对于某一特定的区域和时刻,方程的解取决于物理量的初始值与边界值,这些初始值和边界值分别称为初始条件和边界条件,两者又统称为该方程的定解条件。静电场的场量与时间无关,因此电位所满足的泊松方程及拉普拉斯方程的解仅决定于边界条件。根据给定的边界条件求解空间任一点的电位就是静电场的边值问题。 通常给定的边界条件有三种类型: 第一类边界条件给定的是边界上的物理量,这种边值问题又称为狄利克雷问题。第二类边界条件是给定边界上物理量的法向导数值,这种边值问题又称为诺依曼问题。第三类边界条件是给定一部分边界上的物理量及另一部分边界上物理量的法向导数值,这种边界条件又称为混合边界条件。 静电场的唯一性定理

对于任何数学物理方程需要研究解的存在、稳定及惟一性问题。 解的存在是指在给定的定解条件下,方程是否有解。 解的稳定性是指当定解条件发生微小变化时,所求得的解是否会发生很大的变化。 解的惟一性是指在给定的定解条件下所求得的解是否惟一。 静电场是客观存在的,因此电位微分方程解的存在确信无疑。 由于实际中定解条件是由实验得到的,不可能取得精确的真值, 因此,解的稳定性具有重要的实际意义。 泊松方程及拉普拉斯方程解的稳定性在数学中已经得到证明。可 以证明电位微分方程解也是惟一的。 5

第四章 时变电磁场 作业

第四章 时变电磁场 作业 1、试由麦克斯韦方程推导均匀无损耗媒质无源区域的E 的波动方程 2220E E t με???=? 。(() 2A A A ?×?×=????? ) 解:H E t μ??×=?? ,() E H t μ??×?×=??×? ()()2E E H t μ??????=??×? ,0E H E t ε??×=??=? ∵又 2220E E t με???=? 2、推导线性、各向同性、无源、无损耗媒质中磁场强度H 的波动方程: J t H H ×??=????222με。 解:线性、各向同性、无源、无损耗媒质中,0,0J ρ== H E t μ??×=?? ;J t E H +??=×?ε;E ρε ??= ;0H ??= 对第二式两边取旋度: J E t H ×?+×???=×?×?)(ε=J H t t ×?+?????)(με=J t H ×?+???22με 2()H H H ?×?×=????? =2H ?? J t H H ×??=????2 22με 3、推导线性、各向同性、有源(J ,ρ) 、无损耗媒质中平面电磁波的电场强度E 的波动方程(亥姆霍兹方程):ρε ωμμεω?+=+?122 J i E E 。(公式:H i E ωμ?=×?;E i J H ωε+=×?;/E ρε??= ;0H ??= ) 解:线性、各向同性、有源、无损耗媒质中,平面电磁波的麦克斯韦方程组: H i E ωμ?=×?;E i J H ωε+=×?;/E ρε??= ;0H ??= 对第一式两边取旋度: H i E ×??=×?×?ωμ)(E i J i ωεωμ+?=

时变电磁场的势函数

5.2 时变电磁场的势函数

自强●弘毅●求是●拓新

静态电磁场可通过势函数满足的方程进行求解
时变电磁场能否引入势函数,通过势函数满足 的方程来求解,达到求解时变电磁场的目的?

Br ,t 是一无散矢量场,引入势函数 Ar, t
B
0
Br,t Ar,t
将上式代入电磁感应定律,得到

E
r ,
t
Ar, t
t
0
无旋矢量场

E r
,t
Ar
t
,t
是一无旋矢量场,可以引入标量 函数的梯度表示,即
Er, t Ar, t r, t
t
Er,t r,t Ar,t
t
Ar,t 和 r,t 分别为电磁场的磁矢势和电标势。

尽管磁感应强度在形式上只与磁矢势有关,不能 据此认为磁感应强度由磁矢势决定而与电标势无 关。因为在时变情形下,电磁场相互激发,而时 变电场由磁矢势和电标势共同描述,使得时变磁 场本质上与磁矢势和电标势都有联系。

根据矢量场的Helmholtz定理,确定区域上的矢量函数,只有在
该矢量函数的散度和旋度及其边界条件是确定的才能唯一确定。
根据磁矢势引入的定义,由关系式:
Br,t Ar,t
Er,t r,t Ar,t
t
是不能唯一确定磁矢势
Ar , t ,例如:A

E

B

A

A
t


第四章 时变场

第四章时变电磁场电磁感应定律和全电流定律 电磁场基本方程组?分界面上的衔接条件动态位 坡印亭定理和坡印亭向量

第四章时变电磁场 时变电磁场的概念: 电场、磁场矢量不仅是空间坐标的函数,而且是时间的函数,这样的场称为时变电磁场。 在时变电磁场中,电场与磁场互相依存、互相制约,已不可能如前面三种静态场那样分别进行研究,而必须在一起进行统一研究。变化的磁场会产生电场,变化的电场会产生磁场,电场与磁场相互依存,构成统一的电磁场。 英国科学家麦克斯韦将静态场、恒定场、时变场的电磁基本特性用统一的电磁场基本方程组高度概括。电磁场基本方程组是研究宏观电磁场现象的理论基础。

第四章时变电磁场 在本章中,首先引出并扩展电磁感应定律的适用范围,在提出位移电流概念的基础上,将安培环路定律推广到时变场中,导出普遍适用的全电流定律。从而总结出得出变化的磁场产生电场、变化的电场产生磁场。 然后,总结电磁场的基本方程(即麦克斯韦方程组),媒质的构成方程和它在分界面的衔接条件。介绍动态位和达朗贝尔方程的解答,提出电磁场的波动性和电磁波概念。 其三,由基本方程出发推导出反映电磁场中能量守恒与能量转换的坡印廷定理和坡印廷矢量。再进一步介绍正旋稳态时变场中电磁场的基本方程和坡印廷矢量。

电磁感应定律全电流定律 Maxwell方程组 分界面上衔接条件动态位A , 达朗贝尔方程正弦电磁场坡印亭定理与坡印亭矢量 电磁幅射( 应用) 时变场知识结构框图

4.1.1 电磁感应定律(1) 定律的内容 1831年法拉弟在大量实验基础上归纳总结,提出了电磁感应定律。 l S 磁场中的线圈 当一导体回路l 所限定的面积S 中的磁通发生变化时,在这个回路中就要产生感应电势,形成感应电流。 感应电势的大小与S 中的磁通对时间的变化率成正比, 感应电势的方向由楞次定律确定。 楞次定律指出:感应电动势及其所产生的感应电流总是企图阻止与导体回路相交链的磁通的变化。

时变电磁场

时变电磁场 1.法拉第电磁感应定律的物理意义:若通过导体回路的磁通量是变化的,则在闭和回路中会产生感应电动势,即( )的磁场产生电场 2.电场和磁场的能量密度随电场强度和磁场强度变化,空间各点( )的变化引起能量流动 3.单位时间内穿过与能量流动方向向垂直的单位表面的能量为( ),其意义是电磁场中某点的功率密度,方向为该点能量流动的方向 4.( )表征了时变场中的电磁能量守恒关系,坡印亭矢量代表了时变场中的能流矢量 5.( )定律表征的是变化的磁场产生电场的规律。对于磁场中的任意闭合回路有 6.麦克斯韦方程是经典电磁理论的基本定律。麦克斯韦方程如下:积分形式( )微分形式( )。 7.坡印廷定理是电磁场中的( )关系,单位时间内体积中能量的增加量等于从表面进入体积的功率 8.( )矢量表示沿能流方向的单位表面的功率的矢量 9.平均坡印廷矢量是坡印廷矢量在一个周期内的平均值,代表( )。 10.证明在时变电磁场中,介质1和介质2的分界面上: 1)电场强度的边界条件为:12()0n E E ?-=

s ? s ?0? 2θ D D n 2)电位移矢量的边界条件为:12()n D D σ?-=( 其中n 是两介质分界面的法向单位矢量(由介质2指向介质1),σ是两介质分界面上的自由面电荷密度。 11.真空中一点电荷Q 以角速度ω作半径为a 的匀速圆周运动,求圆心处的位移电流密度。 12.一频率为100MHz 的均匀平面电磁波在均匀且各向同性的理想介质(4r e =、1r m =)中沿+z 方向传播,设电场沿x 方向,振幅为410m E V -=,且t=0时,在 z=0点电场等于其振幅。求1)电场的瞬时表达式(,)E z t r 2)磁场的瞬时表达式( ,)H z t r 3)平均坡印亭矢量av S 13. 半径为a 的导线同以直流电Iz ,导线单位长度的电阻为R ,试应用坡印廷矢量计算该导线单位长度的损耗功率。 14. 同轴线的内外半径分别为 a 和 b ,同轴线中的介质为空气,传输的是TEM 波(即电场和磁场分量均分布在与传播方向垂直的横平面内),其内导体表面上的电流分布为,试用坡印亭矢量求其传输功率。 15. 有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场 中。滑片的位置由 确定,轨道终端接有 电阻,试求I 。

电磁场复习题1

一、填空题 1. Faraday 电磁感应现象的物理本质是: 。 2. 在时变场中的理想导体表面,磁场与表面 。 3. 库仑规范0A ??=限制了矢量磁位A 的 。 4. 理想介质条件是: 。 5. 一半径为 a 的圆柱形导体在均匀外磁场中磁化后,导体内的磁化强度为0z M M e =, 则导体表面的磁化电流密度为 。 6.静止电荷所产生的电场,称之为_______。 7.面电荷密度σ( r )的定义是_______,用它来描述电荷在_______的分布。 8.电场强度的方向与正电荷在电场中受力的方向_______。 9.恒定电场中,电源的电动势等于_______从电源负极到正极的线积分。 10.散度定理(高斯定理)的一般表达式为_______。 11.变化的磁场产生电场的现象称作_______定律。 12.库仑规范限制了矢量磁位 A 的多值性,但不能唯一确定 A 还必须给出 A _______。 13.时变电磁场中的动态位既是时间的函数,也是_______的函数。 14.矩形波导中最低阶的TM 模式是_______。 15. 已知A =x e -9 y e -z e ,B =2x e -4y e +3z e ,则 (1) B A += (2) B A -= (3) B A ?= (4)B A ?= 。 16.已知A =x e +b y e +c z e ,B =-x e +3y e +8z e ,若使A ⊥B 及A ∥B ,则 b = 和 c = 17.已知A =12 x e +9 y e +z e ,B =a x e +b y e ,若B ⊥A 及B 的模为1,则 a = 和 b = 。 18.已知z y x xy z y x u 62332222--++++=,求在点(0,0,0)和点(1,1, 1)处的梯度分别为 和 。 19.已知矢量场A =)(2x axz +x e +)(2xy by +y e +)2(2xyz cxz z z -+-z e ,使得A 成 为一无源场,则a= , b= , c= 。 20.电流连续性原理表示为 。 21.静电场基本方程为 , 和 。 22.恒定电场基本方程为 , 和 。 23.矢量场的环流量有两种特性:一是环流量为0,表明这个矢量场 。另一个是环流量不为0,表明矢量场的 。 24.带电导体内静电场值为 ,从电位的角度来说,导体是一个 ,电荷分

《电磁场与电磁波》习题参考标准答案..

《电磁场与电磁波》知识点及参考答案 第1章 矢量分析 1、如果矢量场F 的散度处处为0,即0F ??≡,则矢量场是无散场,由旋涡源所 产生,通过任何闭合曲面S 的通量等于0。 2、如果矢量场F 的旋度处处为0,即0F ??≡,则矢量场是无旋场,由散度源所 产生,沿任何闭合路径C 的环流等于0。 3、矢量分析中的两个重要定理分别是散度定理(高斯定理)和斯托克斯定理, 它们的表达式分别是: 散度(高斯)定理:S V FdV F dS ??=?? ?和 斯托克斯定理: s C F dS F dl ???=??? 。 4、在有限空间V 中,矢量场的性质由其散度、旋度和V 边界上所满足的条件唯一的确定。( √ ) 5、描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。( √ ) 6、标量场的梯度运算和矢量场的旋度运算都是矢量。( √ ) 7、梯度的方向是等值面的切线方向。( × ) 8、标量场梯度的旋度恒等于0。( √ ) 9、习题1.12, 1.16。

第2章 电磁场的基本规律 (电场部分) 1、静止电荷所产生的电场,称之为静电场;电场强度的方向与正电荷在电场中受力的方向相同。 2、在国际单位制中,电场强度的单位是V/m(伏特/米)。 3、静电系统在真空中的基本方程的积分形式是: V V s D d S d V Q ρ?==? ?和 0l E dl ?=?。 4、静电系统在真空中的基本方程的微分形式是:V D ρ??=和0E ??=。 5、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。 6、在两种媒质分界面的两侧,电场→ E 的切向分量E 1t -E 2t =0;而磁场→ B 的法向分量 B 1n -B 2n =0。 7、在介电常数为e 的均匀各向同性介质中,电位函数为 22 11522 x y z ?= +-,则电场强度E =5x y z xe ye e --+。 8、静电平衡状态下,导体内部电场强度、磁场强度等于零,导体表面为等位面;在导体表面只有电场的法向分量。 9、电荷只能在分子或原子范围内作微小位移的物质称为( D )。 A.导体 B.固体 C.液体 D. 10、相同的场源条件下,真空中的电场强度是电介质中的( C )倍。 A.ε0εr B. 1/ε0εr C. εr D. 1/εr 11、导体电容的大小( C ) A.与导体的电势有关 B.与导体所带电荷有关 C.与导体的电势无关 D.与导体间电位差有关 12、z >0半空间中为ε=2ε0的电介质,z <0半空间中为空气,在介质表面无自由电荷分布。

时变电磁场.

第五章 时变电磁场 5.1 为什么电容器通交流阻直流?位移电流在含有电容的电路中起怎样的作用? 解答:当电容器外加直流电压时,由于电容器两端电压不变,由可知极板上的电荷量不随时间变化,因而连接电容器的导线上没有电流,即电容器阻直流;当电容器外加交流电压时,由可知极板上的电荷量也随时间交变,如正电荷在一个极板上增加时,另一个极板的负电荷量也随之增加,多余的正电荷增量便沿导线传导形成电流,因而电容器通交流。 CU Q =CU Q =电容器极板上的带电量决定了两极板间的电场强度及电位移矢量,极板上电荷量的变化导致另一极板上感应电荷量随之变化,使得两极板间的电位移也随时间同步变化,此变化率称为位移电流(密度)。可见自由电荷的变化形成位移电流并导致传导电流,电容器中的位移电流起到了连接两点(电极)之间真实电流的桥梁作用。 5.2 对于时变场,理想导体表面电场和磁场有何特点?怎样解释? 解答:理想导体表面电场切向为零,只有法向分量;磁场法向为零,只有切向分量。在理想导体中,由222E J σ=,∞→2σ可知,必有02=E ,否则会出现电流无穷大,即电源能量无穷大,这是不可能的。由电场切向连续的边界条件可知,。另外,由0t 1=E 022=??- =??t B E 0可知,对于时变场,2=B 。由磁感应法向连续的边界条件可知。 01n =B 5.3 在时变场中为什么电容器会存在分布电感?电感线圈会存在分布电容? 解答:对于外加交变电压的电容器,两极之间的电场也是交变的,由 t ??=??E H ε可知,交变的电场在两极之间会产生磁场分布,即电容器中储存有磁场能量,因此电容器具有分布电感。类似的,线圈中的磁场是交变的,由t ??-=??H E μ可知,交变的磁场在线圈中会产生涡旋电场,即线圈中会储存有电场能量,因此电感线圈具有分布电容。 5.4 在交变电路中,能量是在导线中传递吗? 解答:不是。能量在导线中只有损耗。能量的传递是在导线外进行的,导线起着引导能量传递方向的作用。以同轴传输线为例,内外导体之间的电场分布沿径向方向,磁场分布绕轴沿?角方向,按照坡印廷定理,能流矢量)()()(t t t H E S ?=,方向正是传输线的轴线方向。对平行双线传输线,也有相同的结果。 5.5 用复数表示正弦场有何方便之处?场量的实部和虚部有何关系?

第六章 时变电磁场典型例题

第六章 时变电磁场 6.1 在3z m =的平面内,长度0.5l m =的导线沿x 轴方向排列。当该导线以 速度24x y m v e e s =+ 在磁感应强度2 2363x y z B e x z e e xz T =+- 的磁场中移动时,求 感应电动势。 解:给定的磁场为恒定磁场,故导线中的感应电动势只能是导线在恒定磁场中移动时由洛仑兹力产生的。有 ()in v B d l ε=??? 根据已知条件,得 2 233()|(24)(363)|z x y x y z z v B e e e x z e e xz ==?=+?+- 210854(1236)x y z e x e x e x =-++- x d l e dx = 故感应电动势为 0.5 2 [10854(1236)]13.5in x y z x e x e x e x e dx V ε= -++-?=-? 6.2 长度为l 的细导体棒位于xy 平面内,其一端固定在坐标原点。当其在恒 定磁场0z B e B = 中以角速度ω旋转时,求导体棒中的感应电动势。 解:导体中的感应电动势是由洛仑兹力产生的,即 ()in v b dl ε= ??? 根据已知条件,导体棒上任意半径r 处的速度为 v e r ωΦ= r dl e dr = 故感应电动势为 2 0000001()()2 l l L in z r v b dl e r e B e dr B rdr B l V εωωωΦ=??=??==??? 6.3 试推出在线性、无耗、各向同性的非均匀媒质中的麦克斯韦方程。 解:考察麦克斯韦方程中的参量,利用它们与电场强度E 和磁感应强度B 的关系,

相关文档
相关文档 最新文档