文档库 最新最全的文档下载
当前位置:文档库 › DSP图像处理综述

DSP图像处理综述

DSP图像处理综述
DSP图像处理综述

DSP应用综述

摘要:数字信号处理(DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。它是一种通过使用数学技巧执行转换或提取信息,来处理现实信号的方法,这些信号由数字序列表示。本文概述了数字信号处理技术的发展过程,分析了 DSP 处理器在图像领域应用状况,介绍了DSP的最新发展,对数字信号处理技术的发展前景进行了展望。

关键词:数字信号处理; 数学图形处理;DSP平台; DSP发展趋势

引言:在过去的几年中,各种各样的数字信号处理方法层出不穷。数字信号处理器已经成为许多消费、通信、医疗、军事和工业类产品的核心器件。在实际应用中可以选用的数字信号处理实现方法很多。但是,数字信号处理器(DSP)以其在处理速度、价格和功耗上的无以替代的优势赢得了大多数用户的信任。随着信息家电、网络通信和3G移动通信的飞速发展,作为最关键的核心器件的数字信号处理器,将会把人们带人高速信息化的时代。而基于DSP的数字图像处理技术也随之DSP的发展而不断革新。图像处理技术最初是在采用高级语言编程在计算机上实现的,后来还在计算机中加入了图像处理器(GPU),协同计算机的CPU 工作,以提高计算机的图形化处理能力。在大批量、小型化和低功耗的要求提出后,图像处理平台依次出现了基于VLSI 技术的专用集成电路芯片((ASIC)和数字信号处理器((DSP)。但基于DSP的图像处理系统以其可降低体积、重量与功耗,同时价格也较低,具有较高的可靠性,且易于维修与测试,对噪声与干扰有较强的抗干扰能力,越来越受到了人们的青睐。

1. DSP发展历史

DSP的历史可分为三个阶段

1.在数字信号处理技术发展的初期(二十世纪50-60 年代),人们只能在微处理器上完成数字信号的处理。直到70 年代,有人才提出了DSP的理论和算法基础。一般认为,世界上第一个单片DSP芯片应当是1978 年AMI 公司发布的S281l。1979 年美国Intel 公司发布的商用可编程器件2920 是DSP 芯片的一个重要里程碑。这两种芯片内部都没有现代DSP 芯片所必须有的单周期乘法器。1980 年,日本NEC 公司推出的mPD7720 是第一个具有硬件乘法器的商用DSP 芯片,从而被认为是第一块单片DSP 器件。

2.随着大规模集成电路技术的发展,1982 年美国德州仪器公司推出世界上第一代DSP 芯片TMS32010 及其系列产品,标志了实时数字信号处理领域的重大突破。Ti 公司之后不久相继推出了第二代和第三代DSP芯片。90 年代DSP发展最快。Ti 公司相继推出第四代、第五代DSP芯片等。

3.随着CMOS 技术的进步与发展,日本的Hitachi 公司在1982 年推出第一个基于CMOS 工艺的浮点DSP 芯片,1983 年日本Fujitsu 公司推出的MB8764,其指令周期为120ns,且具有双内部总线,从而使处理吞吐量发生了一个大的飞跃。而第一个高性能浮点DSP 芯片应是A T&T 公司于1984 年推出的DSP32.与其他公司相比,Motorola 公司在推出DSP 芯片方面相对较晚。1986 年,该公司推出了定点处理器MC56001.1990 年推出了与IEEE 浮点格式兼容的浮点DSP芯片MC96002。美国模拟器件公司(AD)在DSP 芯片市场上也占有一定的份额,相继推出了一系列具有自己特点的DSP 芯片。自1980 年以来,DSP 芯片得到了突飞猛进的发展,DSP 芯片的应用越来越广泛,并逐渐成为电子产品更新换代的决定因素。从运算速度来看,MAC(一次乘法和一次加法)时间已经从20 世纪80 年代初的400ns 降低到10ns 以下,处理能力提高了几十倍。DSP 芯片内部关键的乘法器部件从1980 年占模片区的40%左右下降到5%以下,片内RAM 数量增加一个数量级以上。DSP 芯片的引脚数量从1980 年的最多64 个增加到现在的200 个以上,引脚数量的增加,意味着结构灵活性的增加,如外部存储器的扩展和处理器间的通信等。

2. 国内外发展现状

2.1国内发展现状

随着我国信息产业的发展,近年来我国的数字信号处理学科发展较快。DSP处理器已经在我国的数字通信、信号处理、雷达、电子对抗、图像处理等方面得到了广泛的应用,为科学技术和国民经济建设创造了很大价值。全国有很多高校、科研机构的信号处理

实验室都在大力研究性能更高的数字信号处理设备,取得了很多研究成果。我国的科研人员通过对先进的DSP芯片的研究,已经研制出一些高性能处理设备的解决方案,并且在板级PCB设计方面,也取得了宝贵的设计经验。以我国某电子技术研究所研制的DSP 雷达数字信号处理通用模块为例,它使用了6片ADSP21060和大规模可编程器件构成通用处理模块。通过信号处理算法并行设计、系统多数据流设计、处理任务分配调度程序设计,实现高速实时雷达数字信号处理。以FFT算法为例,将任务分为3个流水处理过程:FFT、复数乘法、IFFT,实现多片DSP组成并行处理。在33 MHz时钟下,1 024点处理通过时间为0.7 ms,可以实现单通道数据率为1 MHz,双通道并行工作为 2 MHz。国内的某大学所研制的基于TMS320C6201的高速实时数字信号处理平台,实现基-2的复数FFT,允许输入数据的动态范围16-bit,可以实现59 μs内完成512点的FFT,130 μs内可以完成1 024点的FFT。但是,应该看到,我国在信号处理理论、高速高性能处理器设计和制造方面与国际先进水平还有较大差距。而且,主要的核心处理器件基本完全依赖进口,这也是我国半导体研究领域需要大力加强的工作之一。复杂的大型处理机PCB板级设计和制造也存在一定困难,也是需要我国科研人员发扬勇于拼搏的精神,继续的刻苦努力。

2.2国际发展现状

国外的商业化信号处理设备一直保持着快速的发展势头。欧美等科技大国保持着国际领先的地位。例如美国DSP research公司,Pentek公司,Motorola 公司,加拿大Dy4公司等,他们很多已经发展到相当大的规模,竞争也愈发激烈。我们从国际知名DSP技术公司发布的产品中就可以了解一些当今世界先进的数字信号处理系统的情况。以Pentek公司一款处理板4293为例,使用8片TI公司300 MHz的TMS320C6203芯片,具有19 200 MIPS的处理能力,同时集成了8片32 MB的SDRAM,数据吞吐600 MB/s。该公司另一款处理板4294集成了4片Motorola MPC7410 G4 PowerPC处理器,工作频率400/500 MHz,两级缓存256K×64 bit,最高具有16MB的SDRAM。ADI公司的TigerSHARC芯片也由于其出色的协同工作能力,可以组成强大的处理器阵列,在诸多领域(特别是军事领域)获得了广泛的应用。以英国Transtech DSP公司的TP-P36N 为例,它由4~8片TS101b(TigerSharc)芯片构成,时钟250 MHz,具有6~12 GFLOPS的处理能力。DSP应用产品获得成功的一个标志就是进入产业化。在以往的20年中,这一进程在不断重复进行,而且周期在不断缩小。在数字信息时代,更多的新技术和新产品需要快速地推上市场,因此,DSP的产业化进程还是需要加速进行。随着竞争的加剧,DSP生产商随时调整发展规划,以全面的市场规划和完善的解决方案,加上新的开发历年,不断深化产业化进程。

3 DSP的主要特点及其平台

3.1主要优点

数字信号处理系统是以数字信号处理为基础,因此除具有数字处理的全部特点外,相对其他处理器还有突出优点:

3.1.1精度高

模拟网络中元件(R。L。C等)精度很难达到10—3以上,而16位数字系统可以达到10—5的精度,定点DSP芯片字长16位,CALU(中央算术逻辑单元)和累加器32位,浮点DSP芯片字长32位,累加器40位;

3.1.2可靠性强

DSP系统以数字处理为基础,受环境温度以及噪声的影响较小,稳定性好,同时,由于DSP系统对采用大规模集成电路的故障率也远比采用分立元件构成的模拟系统的故障率低;

3.1.3集成度高

DSP系统中的数字部件有高度的规范性,便于大规模集成,大规模生产,在DSP系统中,由于DSP芯片、CPLD、FPGA等都是高集成度的产品,加上采用表面贴装技术.体积得以大幅度压缩;

3.1.4接口方便以现代数字技术为基础的系统或设备都是兼容的,系统接口方便;

3.1.5灵活性好

模拟系统的性能受元器件参数性能变化大,而数字系统基本不受影响,因此数字系统便于测试、调试

和大规模生产;

3.1.6保密性好DSP系统隐蔽内部总线地址变化,做成ASIC 保密性能几乎无懈可击:

3.1.7时分复用可使用一套DSP系统分时处理几个通道的信号。

3.2 TI DSP平台及其应用

世界上没有完美的处理器,DSP不是万能的。DSP 器件的特点使得它特别适合嵌入式的实时数字信号处理任务。

3.2.1实时的概念实时的概念

实时的定义因具体应用而异。一般而言,对于逐样本(sample-by-sample) 处理的系统,如果对单次样本的处理可以在相邻两次采样的时间间隔之内完成,我们就称这个系统满足实时性的要求。即:tproess>tsample,其中,tproess代表系统对单次采样样本的处理时间,tsample代表两次采样之间的时间间隔。举例来说,某个系统要对输入信号进行滤波,采用的是一个100阶的FIR滤波器,即。假设系统的采样率为1KHz,如果系统在1ms之内可以完成一次100阶的FIR滤波运算,我们就认为这个系统满足实时性的要求。如果采样率提高到10KHz,那么实时性条件也相应提高,系统必须在0.1ms内完成所有的运算。需要注意,tproess 还应当考虑各种系统开销,包括中断的响应时间,数据的吞吐时间等。正确理解实时的概念是很重要的。工程实现的原则是“量体裁衣”,即从工程的实际需要出发设计系统,选择最合适的方案。对于DSP的工程实现而言,脱离系统的实时性要求,盲目选择高性能的DSP器件是不科学的,因为这意味着系统复杂度、可靠性设计、生产工艺、开发时间、开发成本以及生产成本等方面不必要的开销。从这个角度而言,即使系统开发成功,整个工程项目可能仍然是失败的。

3.2.2嵌入式应用嵌入式应用

嵌入式应用对系统成本、体积和功耗等因素敏感。DSP器件在这些方面都具有可比的优势,因此DSP 器件特别适合嵌入式的实时数字信号处理应用。反过来,对于某一个具体的嵌入式的实时数字信号处理任务,DSP却往往不是唯一的,或者是最佳的解决方案。越来越多的嵌入式RISC处理器开始增强数字信号处理的功能;FPGA厂商为DSP应用所做的努力一直没有停止过;针对某项特定应用的ASIC/ASSP器件的推出时间也越来越快。开发人员面临的问题是如何根据实际的应用需求客观地评价和选择处理器件。以媒体处理应用为例,现行的国际标准较多,包括MPEG1/2/4、H261/3/4等,各种标准在一段时间内共存,新的标准还在不断涌现。如果系统设计需要兼顾实现性能和多标准的适应性,DSP可能是一个较好的选择。但是,如果应用比较固定,对价格又特别敏感,采用专用的ASIC芯片可能就会更加合适。

3.2.3.算法是DSP应用的核心

算法是DSP应用的核心算法是DSP随着DSP 器件的发展,DSP 系统开发的主要工作已经转向软件开发,软件开发将占据约80%的工作量,必须引起足够的重视。另外,在目前的现状条件下,算法是我们核心知识产权的主要体现,也是产品竞争力的主要因素。因此算法是DSP应用的核心。

4 DSP在数学图像处理的应用

4.1数字图像处理简介

图像处理技术发展到今天,已经被应用到工程学、计算机科学、信息科学、统计学、物理学、化学、生物学、医学甚至社会科学等多个学科,并成为这些学科获取信息的重要来源及利用信息的重要手段,所以图像处理科学己经成为与国计民生紧密相连的一门应用科学。图像处理技术研究的重点在于图像处理算法和系统结构,随着计算机、集成电路等技术的飞跃发展,图像处理技术在这两方面都取得了长足的发展。但随着图像信息数据量的增大,图像处理算法复杂度的提高,图像处理技术依然面临着许多挑战性的问题,具体可概括为图像处理的网络化、

这些挑战性的问题。

图像处理技术最初是在采用高级语言编程在计算机上实现的,后来还在计算机中加入了图像处理器(GPU),协同计算机的CPU 工作,以提高计算机的图形化处理能力。在大批量、小型化和低功耗的要求提出后,图像处理平台依次出现了基于VLSI 技术的专用集成电路芯片((ASIC)和数字信号处理器((DSP),

近年来,随着EDA技术的发展以及FPGA(Field-Programmable Gate Array,现场可编程门阵列)技术的提高,越来越多的厂家和科研机构将FPGA作为图像处理技术实现的主要平台,以提高图像处理系统的性能。FPGA是在PAL, GAL, CPLD 等可编程器件的基础上进一步发展的产物。它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。

4.2数字图像处理的硬件平台

数字图像处理的发展是和计算机、集成电路等技术的发展密切相关的,曾经作为数字图像处理平台的有:计算机、专业集成电路、DSP 芯片和FPGA,下面将按时间的顺序予以介绍。从1946 年到1964 年,计算机分别进入了“电子管计算机时代,和“晶体管计算机时代”,这个时代的计算机才能称之为现代计算机,特别是进入“晶体管计算机时代”后,由于晶体管比电子管小得多,不需要暖机时间,消耗能量较少,处理更迅速、更可靠。第二代计算机的程序语言从机器语言发展到汇编语言。接着,高级语言FORTRAN 语言和COBOL 语言相继开发出来并被广泛使用。这时,开始使用磁盘和磁带作为辅助存储器。第二代计算机的体积和价格都下降了,使用的人也多起来了,计算机工业迅速发展。所以,虽然数字图像处理起源于20 世纪20 年代,但真正意义上的发展开始于20 世纪50 年代。

随着集成电路的发展,计算机进入中小规模集成电路计算机时代及大规模集成电路计算机时代,这个时代中计算机通常作为非实时图像处理平台和图像管理工作站平台,后来为了提高计算机的图形化处理能力,在计算机中加入GPU 协同CPU 工作,但GPU 仅仅是对CPU 若干指令的加速,并不是实际意义上的并行化处理,其实时图像处理能力还是较弱。为了解决实时图像处理,降低单件图像处理设备的成本,图像处理设备生产商开始使用集成电路生产图像处理专用芯片,利用集成电路技术生产的图像处理专用芯片,其优势在于:集成电路具有体积小,重量轻,引出线和焊接点少,寿命长,可靠性高,性能好等优点,同时成本低,便于大规模生产。超大规模集成电路(VLSI)的今天,大批量的图像处理专用芯片ASIC(专用集成电路)与ASSP(专用标准产品)仍占据着很大的市场份额。在小批量的图像处理系统中,使用专用芯片成本太高,研发周期太长,所以需要使用合适的微处理器予以取代,DSP 的出现解决了这方面的问题。DSP(Digital Signal Processor,数字信号处理器),是一种具有特殊结构的微处理器,DSP 芯片的内部采用程序和数据分开的哈佛结构,具有专门的硬件乘法器,广泛采用流水线操作,提供特殊的DSP指令,可以用来快速地实现各种数字信号处理算法。

从上世纪80 年代末直至现在,DSP一直作为小批量的图像处理系统的处理器,用来实现如二维和三维图形处理、图像压缩与传输、图像增强、动画、机器人视觉等图像处理。随着计算机、多媒体和数据通信技术的高速发展,数字图像技术近年来得到了极大的重视和长足的发展,并在科学研究、工业生产、医疗卫生、教育、娱乐、管理和通信等方面取得了广泛的应用。同时,人们对计算机视频应用的要求也越来越高,从而使得高速、便捷、智能化的高性能数字图像处理设备成为未来视频设备的发展方向,实时图像处理技术在目标跟踪、机器人导航、辅助驾驶、智能交通监控中都得到越来越多的应用。由于图像处理的数据量大,数据处理相关性高,实时的应用环境决定严格的帧、场时间限制,因此实时图像处理系统必须具有强大的运算能力。各种高性能DSP不仅可以满足在运算性能方面的需要,而且由于DSP的可编程性,还可以在硬件一级获得系统设计的极大灵活性。

5发展趋势

5.1 DSP在数字图像处理应用的发展趋势

DSP 芯片具有较高的指令处理速度,但处理图像数据的能力还是有限的,所以只适用于小批量、低数据处理量的图像处理系统中。一直以来,大多的科研机构及公司将FPGA作为图像处理系统研发时的临时平台。在产品化之后,FPGA往往被ASIC 或ASSP 代替。当然也有些图像系统设备的批量产品中装备有FPGA,但这些FPGA往往被用作“辅助芯片(companion chip)"。虽然高性能FPGA的电路规模和性能正在逼近采用90rim 工艺的ASIC,但目前高性能FPGA芯片的单价是几千元,和基于标准单元的ASIC 相比高出很多,因此FPGA在大批量的图像处理系统中应用还存在成本方面的问题。另外,FPGA 设计时考虑到其通用性,在内置DSP 模块以及高速IO 接口等方面功能比较齐全,对于某个特定的图像处理设备而言,有些功能未被使用,出现了浪费的现象。通过上面的讨论可以知道,具体概括为:PC作为通用平台在小批量的非实时图像处理系统中仍有应用,ASIC

或 ASSP 在大批量的图像处理系 统中仍占据着很大的市场份额,但有被 FPGA 取代的趋势,DSP 在高速图像处理领域已经 逐渐被取代,FPGA 随着工艺的发展已逐渐成为主流的图像处理平台。 5.2 DSP 发展趋势

DSP 在其发展道路上不断满足人们日益提高的要求.正在逐渐朝向个人化和低功耗化方向发展,因此,DSP 发展的前景是非常可观的。

5.2.1系统级集成DSP 是潮流

缩小DSP 芯片尺寸始终是DSP 技术的发展方向。当前的DSP 多数基于RISC(精简指令集计算)结构,这

种结构的优点是尺寸小、功耗低、性能高。各DSP 制造商纷纷采用新工艺,改进DSP 芯核,并将几个DSP 芯核、MPU 芯核、专用处理单元、外围电路单元、存储单元集成在一个芯片上,成为DSP 系统级集成电路。

5.2.2可编程DSP 是主导产品

可编程DSP 给生产厂商提供了很大的灵活性。生产厂商可在同一个DSP 平台上开发出各种不同型号的系列产品.以满足不同用户的需求,同时,可编程DSP 也为广大用户提供了易于升级的良好途径。

5.2.3定点DSP 是主流

从理论上讲虽然浮点DSP 的动态范围比定点DSP 大,且更适合DSP 的应用场合,但定点运算的DSP 器

件成本较低,对存储器的要求也较低,而且耗电量小。因此,定点运算的可编程DSP 器件仍是市场上的主流产品。据统计,目前销售的DSP 器件中的绝大多数属于16位定点可编程DSP 器件.预计今后的比重将逐渐增大。

5.2.4追求更高的运算速度

电子设备的更新步伐。DSP 运算速度的提高,主要依靠新工艺改进芯片结构。当前DSP 器件大都采用0.5 m 051,zmCMOS 工艺,按照CMOS 的发展趋势,DSP 的运算速度再提高100倍(达到1600GIPS)是完全有可能的。

6结论

DSP 在数字图像处理方面的应用可能有被取代的趋势。但DSP 在图像处理方面还会得到应用。例如FPGA 内嵌DSP 模块等。随着DSP 功能的不断提高,DSP 在数字图像处理方面还会得到进一步的发展。

整体来看,DSP 应用在通讯领域、数字影音的产品将越来越普及,使得相关市场需求越来越大,未来 DSP 市场竞争将越趋激烈。虽然目前 DSP 的主要应用产品的市场都是由国际半导体大厂所控制,但是我国在政策的扶植下,本土厂商积极投入研发资源,以消费性产品作为进入DSP 市场的一个敲门砖,也必将在 DSP 市场上争得一席之地。 参考文献

[1]张雄伟,陈亮,徐光辉编著.DSP 芯片的原理与开发应用.北京:电子工业出版

社.2003.

[2]张军,赵静.DSP 芯片的特点及其应用.现代电子技术,2001(11). [3]方华刚,叶琅等.DSP 原理与应用[M].北京:机械工业出版社2006. [4]胡广书擞字信号处理.北京:清华大学出版社,2000

[5]戴明桢,周建江,《TMS320C54XDSP 原理、结构与应用》(第二版) ,北京航天大学出版社,2007 年 8 月

[6]申敏等,《DSP 原理及其在移动通信中的应用》 ,人民邮电出版社,

2001 年 9 月

[7]李刚等,《TMS320F206 DSP 原理、节后与应用》,北京航空航天大学初八是,2003 年 1 月

[8]刘和平等, 《TMS320 LF240X DSP 》北京航空航天大学出版社,2003 年 1 月

[9]张云,谢丽萍等, 《DSP 控制器及其应用》 ,机械工业出版社,2001 年 8 月

[10]张雄伟,曹铁勇, 《DSP 芯片的原理与开发应用》 (第二版) ,电子工业出版社,2000 年9月

Summary of DSP Application

Jianlong Xia

(Ocean University of China, College of Information Science and Engineering, Telecommunication and Information System 266100) Abstract : Digital signal processing (DSP) is widely used in many disciplines involved in many areas of emerging disciplines. It is a through the use of mathematical skills execution conversion or extract information, to deal with real signal method, these signals by digital sequence said. This paper outlines the development of digital signal processing technology, processes, analyzes the DSP processor, application status in Digital Image Processing, introduced the latest developments in DSP, digital signal processing technology for the future development prospects.

Key words: Digital Signal Processing ; Digital Image Processing ;DSP platform ; the development trend

of DSP

数字图像处理的发展现状及研究内容概述

数字图像处理的发展现状及研究内容概述人类传递信息的主要媒介是语音和图像。据统计,在人类接受的信息中,听觉信息占20%,视觉信息占60%,所以作为传递信息的重要媒体和手段——图像信息是十分重要的,俗话说“百闻不如一见”、“一目了然”,都反映了图像在传递信息中独到之处。 目前,图像处理技术发展迅速,其应用领域也愈来愈广,有些技术已相当成熟并产生了惊人的效益,当前图像处理面临的主要任务是研究心的处理方法,构造新的处理系统,开拓更广泛的应用领域。 数字图像处理(Digital Image Processing)又称为计算机数字图像处理,它是指将数字图像信号转换成数字信号并利用计算机对其进行处理的过程。数字图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和数字图像信息。数字图像处理作为一门学科大约形成于20世纪60年代初期。早期的数字图像处理的目的是改善数字图像的质量,它以人为对象,以改善人的视觉效果为目的。数字图像处理中,输入的是质量低的数字图像,输出的是改善质量后的数字图像,常用的数字图像处理方法有数字图像增强、复原、编码、压缩等。 1:数字图像处理的现状及发展 数字图像处理技术在许多应用领域受到广泛重视并取得了重大的开拓性成就,属于这些领域的有航空航天、生物医学工程、工业检测、机器人视觉、公安司法、军事制导、文化艺术等,使数字图像处理成为一门引人注目、前景远大的新型学科。随着数字图像处理技术

的深入发展,从70年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展。 人们已开始研究如何用计算机系统解释数字图像,实现类似人类视觉系统理解外部世界,这被称为数字图像理解或计算机视觉。很多国家,特别是发达国家投入更多的人力、物力到这项研究,取得了不少重要的研究成果。其中代表性的成果是70年代末MIT的Marr提出的视觉计算理论,这个理论成为计算机视觉领域其后十多年的主导思想。数字图像理解虽然在理论方法研究上已取得不小的进展,但它本身是一个比较难的研究领域,存在不少困难,人类本身对自己的视觉过程还了解甚少,因此计算机视觉是一个有待人们进一步探索的新领域。如今数字图像处理技术已给人类带来了巨大的经济和社会效益。不久的将来它不仅在理论上会有更深入的发展,在应用上意识科学研究、社会生产乃至人类生活中不可缺少的强有力的工具。 数字图像处理进一步研究的问题,不外乎如下几个方面: (1)在进一步提高精度的同时着重解决处理速度问题。如在航天遥感、气象云图处理方面,巨大的数据量和处理速度任然是主要矛盾之一。 (2)加强软件研究、开发新的处理方法,特别要注意移植和借鉴其他学科的技术和研究成果,创造新的处理方法。 (3)加强边缘学科的研究工作,促进数字图像处理技术的发展。如:人的视觉特性、心理学特性等的研究,如果有所突破,讲对团向处理技术的发展起到极大的促进作用。

图像处理技术的研究现状和发展趋势

图像处理技术的研究现状和发展趋势 庄振帅 数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。数字图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。数字图像处理作为一门学科大约形成于20世纪60年代初期。早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。首次获得实际成功应用的是美国喷气推进实验室(JPL)。他们对航天探测器徘徊者7号在1964年发回的几千张月球照片使用了图像处理技术,如几何校正、灰度变换、去除噪声等方法进行处理,并考虑了太阳位置和月球环境的影响,由计算机成功地绘制出月球表面地图,获得了巨大的成功。随后又对探测飞船发回的近十万张照片进行更为复杂的图像处理,以致获得了月球的地形图、彩色图及全景镶嵌图,获得了非凡的成果,为人类登月创举奠定了坚实的基础,也推动了数字图像处理这门学科的诞生。在以后的宇航空间技术,如对火星、土星等星球的探测研究中,数字图像处理都发挥了巨大的作用。数字图像处理取得的另一个巨大成就是在医学上获得的成果。1972年英国EMI公司工程师Housfield发明了用于头颅诊断的X射线计算机断层摄影装置,也就是我们通常所说的CT(Computer Tomograph)。CT的基本方法是根据人的头部截面的投影,经计算机处理来重建截面图像,称为图像重建。1975年EMI公司又成功研制出全身用的CT装置,获得了人体各个部位鲜明清晰的断层图像。1979年,这项无损伤诊断技术获得了诺贝尔奖,说明它对人类作出了划时代的贡献。与此同时,图像处理技术在许多应用领域受到广泛重视并取得了重大的开拓性成就,属于这些领域的有航空航天、生物医学过程、工业检测、机器人视觉、公安司法、军事制导、文化艺术等,使图像处理成为一门引人注目、前景远大的新型学科。随着图像处理技术的深入发展,从70年代中期开

DSP 在图像处理中的应用

DSP 在图像处理中的应用 (北京科技大学自动化学院北京100081) 摘要:本文以TI TMS320C54X DSP 为例描述了DSP 作为优秀的数字信号处理平台所具备的特点,并在此基础上介绍了利用Altera 公司提供的数字信号处理开发工具DSP Builder 和现代DSP 技术,在 Matlab/Simulink 环境中建立了JPEG 算法模型,并进行了仿真验证,最后将编译代码下载到硬件上进行了在线调试。 关键词:DSP Builder;TMS320C54X图像处理 The Application of DSP in Image Processing College of Automation, University of Science and Technology Beijing, Beijing 100081 Abstract:This paper presents the excellent characteristics of DSP chips using TI TMS320C54X DSP as an example.And it has been introduced in this paper that a JPEG algorithm model is created in the environment of Matlab/Simulinkwith the help of DSP Bulider, a digital signal processing development tool provided by Altera Corporation, and modern DSP technology. Then a simulation verification has been performed, and finally the code is compiled and downloaded to the hardware for thepurpose of on-line debugging. Key words :DSP Builder TMS320C54X Image processin g. 0 前言 数字图像处理在当今工业及医疗领域的应用日益广泛,从而对图像处理系统的实时性和准确性提出了更高的要求。DSP 芯片以其适应于高速数字信号处理的内部结构,在图像处理领域发挥了不可替代的作用。 1 DSP 芯片简介 当前数字信号处理领域并存两大类处理器:通用处理器(GPP) 和专用处理器(DSP) ,通用处理器主要应用于PC 机中,而DSP 器件主要应用于便携式、嵌入式设备中。消费类电子产品对器件成本和功耗要求苛刻,DSP 器件正是在这两方面较通用处理器有优势。DSP 芯片采用能提供多条地址及数据总线的哈佛结构而摒弃了以往的冯·诺依曼结构。由于片内存储器比片外存储器快,在通用处理器中广泛使用的高速缓存也被引入到DSP 芯片中来。另外,为提高处理速度DSP 芯片还使用了流水线技术。TMS320C54x 是TI 公司为实现低功耗、高性能而专门设计的定点DSP 芯片。54x 系列DSP 采用改进的哈佛结构,该结构有8 条总线,使数据处理能力达到了最大限度。通过程序、数据空间的分离可同时进行程序指令和数据的存取并提供了高度的并行性。此外数据还可以在数据空间和程序空间进行传送。这种并行性还持一系列功能强劲的算术逻辑及位操作运算。所有这些运算都可以在单个机器周期内完成。同时,54x 还有包括终端管理、重复操作及功能调用等在内的控制机制。 2 DSP Builder 介绍 DSP Builder 开发工具是Altera 公司提供的数字信号处理平台, 它是一个系统级( 或算法级) 设计工具, 架构在多个软件工具之上,并把系统级和RTL 级两个设计领域的设计工具连接起来,最大程度地发挥了两种工具的优势。DSP Builder 依赖于MathWorks 公司的数学分析工具Matlab /Simulink ,以Simulink 的Blockset 出现,可以在Simulink 中进行图形化设计和仿真,同时通过SignalCompiler 把Matlab/Simulink 的设计文件(.mdl) 转成相应的硬件描述语言VHDL 设计文件(.vhd),以及用于控制综合与编译的TCL 脚本。而对后者的处理可以由FPGA/CPLD 开发工具Quartus II 来完成。 设计人员能够同时进行多个HDL 模型或者QuartusII软件设计工程的设计,为每一个

数字图像处理技术的研究现状及其发展方向

目录 绪论 (1) 1数字图像处理技术 (1) 1.1数字图像处理的主要特点 (1) 1.2数字图像处理的优点 (2) 1.3数字图像处理过程 (3) 2数字图像处理的研究现状 (4) 2.1数字图像的采集与数字化 (4) 2.2图像压缩编码 (5) 2.3图像增强与恢复 (8) 2.4图像分割 (9) 2.5图像分析 (10) 3数字图像处理技术的发展方向 (13) 参考文献 (14)

绪论 图像处理技术基本可以分成两大类:模拟图像处理和数字图像处理。数字图像处理是指将图像信号转换成数字信号并利用计算机进行处理的过程。其优点是处理精度高,处理内容丰富,可进行复杂的非线性处理,有灵活的变通能力,一般来说只要改变软件就可以改变处理内容。困难主要在处理速度上,特别是进行复杂的处理。数字图像处理技术主要包括如下内容:几何处理、算术处理、图像增强、图像复原、图像重建、图像编码、图像识别、图像理解。数字图像处理技术的发展涉及信息科学、计算机科学、数学、物理学以及生物学等学科,因此数理及相关的边缘学科对图像处理科学的发展有越来越大的影响。 数字图像处理的早期应用是对宇宙飞船发回的图像所进行的各种处理。到了70年代,图像处理技术的应用迅速从宇航领域扩展到生物医学、信息科学、资源环境科学、天文学、物理学、工业、农业、国防、教育、艺术等各个领域与行业,对经济、军事、文化及人们的日常生活产生重大的影响。 数字图像处理技术发展速度快、应用范围广的主要原因有两个。最初由于数字图像处理的数据量非常庞大,而计算机运行处理速度相对较慢,这就限制了数字图像处理的发展。现在计算机的计算能力迅速提高,运行速度大大提高,价格迅速下降,图像处理设备从中、小型计算机迅速过渡到个人计算机,为图像处理在各个领域的应用准备了条件。第二个原因是由于视觉是人类感知外部世界最重要的手段。据统计,在人类获取的信息中,视觉信息占60%,而图像正是人类获取信息的主要途径,因此,和视觉紧密相关的数字图像处理技术的潜在应用范围自然十分广阔。近年来,数字图像处理技术日趋成熟,它广泛应用于空间探测、遥感、生物医学、人工智能以及工业检测等许多领域,并促使这些学科产生了新的发展。 1数字图像处理技术 1.1数字图像处理的主要特点 (1)目前数字图像处理的信息大多是二维信息,处理信息量很大,因此对计

DSP数字图像处理实验课设

华东交通大学理工学院 课程设计报告书 所属课程名称DSP原理及应用 题目数字图像处理系统设计分院电信分院 专业班级 12通信2班 学生姓名余志强 指导教师李杰

目录 第一章课程设计内容及要求 第二章程序设计原理 2.1数字图象处理基本原理 2.2数字图像处理常用方法 2.3图象灰度处理的基本原理 2.4图象的反色原理和实现 2.5灰度图象二值化原理及意义第三章程序设计步骤 第四章总结

第一章课程设计内容及要求 一、设计内容 1了解数字图象处理的基本原理 2 学习灰度图象反色处理技术 3 学习灰度图象二值化处理技术 第二章程序设计原理 2、1数字图像处理的基本原理 数字图像处理是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。图像处理最早出现于 20 世纪 50 年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。数字图像处理作为一门学科大约形成于 20 世纪 60 年代初期。早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。 2、2 数字图像处理常用方法: 1 )图像变换:由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有

效的处理(如傅立叶变换可在频域中进行数字滤波处理)。目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。 2 )图像编码压缩:图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量。压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。 3 )图像增强和复原:图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立“降质模型”,再采用某种滤波方法,恢复或重建原来的图像。 4 )图像分割:图像分割是数字图像处理中的关键技术之一。图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。因此,对图像分割的研究还在不断深入之中,是目前图像处理中研究的热点之一。

图像处理文献综述

文献综述 1.1理论背景 数字图像中的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。 物体的边缘是以图像的局部特征不连续的形式出现的,也就是指图像局部亮度变化最显著的部分,例如灰度值的突变、颜色的突变、纹理结构的突变等,同时物体的边缘也是不同区域的分界处。图像边缘有方向和幅度两个特性,通常沿边缘的走向灰度变化平缓,垂直于边缘走向的像素灰度变化剧烈。根据灰度变化的特点,图像边缘可分为阶跃型、房顶型和凸缘型。 1.2、图像边缘检测技术研究的目的和意义 数字图像边缘检测是伴随着计算机发展起来的一门新兴学科,随着计算机硬件、软件的高度发展,数字图像边缘检测也在生活中的各个领域得到了广泛的应用。边缘检测技术是图像边缘检测和计算机视觉等领域最基本的技术,如何快速、精确的提取图像边缘信息一直是国内外研究的热点,然而边缘检测也是图像处理中的一个难题。 首先要研究图像边缘检测,就要先研究图像去噪和图像锐化。前者是为了得到飞更真实的图像,排除外界的干扰,后者则是为我们的边缘检测提供图像特征更加明显的图片,即加大图像特征。两者虽然在图像边缘检测中都有重要地位,但本次研究主要是针对图像边缘检测的研究,我们最终所要达到的目的是为了处理速度更快,图像特征识别更准确。早期的经典算法有边缘算子法、曲面拟合法、模版匹配法、门限化法等。 早在1959年Julez就曾提及边缘检测技术,Roberts则于1965年开始了最早期的系统研究,从此有关边缘检测的理论方法不断涌现并推陈出新。边缘检测最开始都是使用一些经验性的方法,如利用梯度等微分算子或特征模板对图像进行卷积运算,然而由于这些方法普遍存在一些明显的缺陷,导致其检测结果并不

基于matlab的图像预处理技术研究文献综述

毕业设计文献综述 题目:基于matlab的图像预处理技术研究 专业:电子信息工程 1前言部分 众所周知,MATLAB在数值计算、数据处理、自动控制、图像、信号处理、神经网络、优化计算、模糊逻辑、小波分析等众多领域有着广泛的用途,特别是MATLAB的图像处理和分析工具箱支持索引图像、RGB 图像、灰度图像、二进制图像,并能操作*.bmp、*.jpg、*.tif等多种图像格式文件如。果能灵活地运用MATLAB提供的图像处理分析函数及工具箱,会大大简化具体的编程工作,充分体现在图像处理和分析中的优越性。 图像就是用各种观测系统观测客观世界获得的且可以直接或间接作用与人眼而产生视觉的实体。视觉是人类从大自然中获取信息的最主要的手段。拒统计,在人类获取的信息中,视觉信息约占60%,听觉信息约占20%,其他方式加起来才约占20%。由此可见,视觉信息对人类非常重要。同时,图像又是人类获取视觉信息的主要途径,是人类能体验的最重要、最丰富、信息量最大的信息源。通常,客观事物在空间上都是三维的(3D)的,但是从客观景物获得的图像却是属于二维(2D)平面的。 图像存在方式多种多样,可以是可视的或者非可视的,抽象的或者实际的,适于计算机处理的和不适于计算机处理的。 图像处理它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。图像处理作为一门学科大约形成于20世纪60年代初期。早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。首次获得实际成功应用的是美国喷气推进实验室(JPL)。他们对航天探测器徘徊者7号在 1964 年发回的几千张月球照片使用了图像处理技术,如几何校正、灰度变换、去除噪声等方法进行处理,并考虑了太阳位置和月球环境的影响,由计算机成功地绘制出月球表面地图,获得了巨大的成功。随后又对探测飞船发回的近十万张照片进行更为复杂的图像处理,以致获得了月球的地形图、彩色图及全景镶嵌图,获得了非凡的成果,为人类登月创举奠定了坚实的基础,也推动

DSP图像处理综述

DSP应用综述 摘要:数字信号处理(DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。它是一种通过使用数学技巧执行转换或提取信息,来处理现实信号的方法,这些信号由数字序列表示。本文概述了数字信号处理技术的发展过程,分析了 DSP 处理器在图像领域应用状况,介绍了DSP的最新发展,对数字信号处理技术的发展前景进行了展望。 关键词:数字信号处理; 数学图形处理;DSP平台; DSP发展趋势 引言:在过去的几年中,各种各样的数字信号处理方法层出不穷。数字信号处理器已经成为许多消费、通信、医疗、军事和工业类产品的核心器件。在实际应用中可以选用的数字信号处理实现方法很多。但是,数字信号处理器(DSP)以其在处理速度、价格和功耗上的无以替代的优势赢得了大多数用户的信任。随着信息家电、网络通信和3G移动通信的飞速发展,作为最关键的核心器件的数字信号处理器,将会把人们带人高速信息化的时代。而基于DSP的数字图像处理技术也随之DSP的发展而不断革新。图像处理技术最初是在采用高级语言编程在计算机上实现的,后来还在计算机中加入了图像处理器(GPU),协同计算机的CPU 工作,以提高计算机的图形化处理能力。在大批量、小型化和低功耗的要求提出后,图像处理平台依次出现了基于VLSI 技术的专用集成电路芯片((ASIC)和数字信号处理器((DSP)。但基于DSP的图像处理系统以其可降低体积、重量与功耗,同时价格也较低,具有较高的可靠性,且易于维修与测试,对噪声与干扰有较强的抗干扰能力,越来越受到了人们的青睐。 1. DSP发展历史 DSP的历史可分为三个阶段 1.在数字信号处理技术发展的初期(二十世纪50-60 年代),人们只能在微处理器上完成数字信号的处理。直到70 年代,有人才提出了DSP的理论和算法基础。一般认为,世界上第一个单片DSP芯片应当是1978 年AMI 公司发布的S281l。1979 年美国Intel 公司发布的商用可编程器件2920 是DSP 芯片的一个重要里程碑。这两种芯片内部都没有现代DSP 芯片所必须有的单周期乘法器。1980 年,日本NEC 公司推出的mPD7720 是第一个具有硬件乘法器的商用DSP 芯片,从而被认为是第一块单片DSP 器件。 2.随着大规模集成电路技术的发展,1982 年美国德州仪器公司推出世界上第一代DSP 芯片TMS32010 及其系列产品,标志了实时数字信号处理领域的重大突破。Ti 公司之后不久相继推出了第二代和第三代DSP芯片。90 年代DSP发展最快。Ti 公司相继推出第四代、第五代DSP芯片等。 3.随着CMOS 技术的进步与发展,日本的Hitachi 公司在1982 年推出第一个基于CMOS 工艺的浮点DSP 芯片,1983 年日本Fujitsu 公司推出的MB8764,其指令周期为120ns,且具有双内部总线,从而使处理吞吐量发生了一个大的飞跃。而第一个高性能浮点DSP 芯片应是A T&T 公司于1984 年推出的DSP32.与其他公司相比,Motorola 公司在推出DSP 芯片方面相对较晚。1986 年,该公司推出了定点处理器MC56001.1990 年推出了与IEEE 浮点格式兼容的浮点DSP芯片MC96002。美国模拟器件公司(AD)在DSP 芯片市场上也占有一定的份额,相继推出了一系列具有自己特点的DSP 芯片。自1980 年以来,DSP 芯片得到了突飞猛进的发展,DSP 芯片的应用越来越广泛,并逐渐成为电子产品更新换代的决定因素。从运算速度来看,MAC(一次乘法和一次加法)时间已经从20 世纪80 年代初的400ns 降低到10ns 以下,处理能力提高了几十倍。DSP 芯片内部关键的乘法器部件从1980 年占模片区的40%左右下降到5%以下,片内RAM 数量增加一个数量级以上。DSP 芯片的引脚数量从1980 年的最多64 个增加到现在的200 个以上,引脚数量的增加,意味着结构灵活性的增加,如外部存储器的扩展和处理器间的通信等。 2. 国内外发展现状 2.1国内发展现状 随着我国信息产业的发展,近年来我国的数字信号处理学科发展较快。DSP处理器已经在我国的数字通信、信号处理、雷达、电子对抗、图像处理等方面得到了广泛的应用,为科学技术和国民经济建设创造了很大价值。全国有很多高校、科研机构的信号处理

基于dsp的数字图像处理

基于DSP的数字图像处理 时间:2009-12-08 15:40:35 来源:作者:张振福,周江涛国防科技大学 随着计算机、多媒体和数据通信技术的高速发展,数字图像技术近年来得到了极大的重视和长足的发展,并在科学研究、工业生产、医疗卫生、教育、娱乐、管理和通信等方面取得了广泛的应用。同时,人们对计算机视频应用的要求也越来越高,从而使得高速、便捷、智能化的高性能数字图像处理设备成为未来视频设备的发展方向,实时图像处理技术在目标跟踪、机器人导航、辅助驾驶、智能交通监控中都得到越来越多的应用。由于图像处理的数据量大,数据处理相关性高,实时的应用环境决定严格的帧、场时间限制,因此实时图像处理系统必须具有强大的运算能力。各种高性能DSP不仅可以满足在运算性能方面的需要,而且由于DSP的可编程性,还可以在硬件一级获得系统设计的极大灵活性。为了获得足够的计算能力,我们以两片TMS320C6201作为系统的运算中心构筑了实时图像处理系统;为了获取最大的灵活性,在系统体系机构上采用了一种可重构的FPGA计算系统模型。 1 功能强大的TMS320C6x TMS320C6000是美国TI(Texas Instruments)公司于1997年推出的新一代高性能DSP芯片。这种芯片是定点、浮点兼容的DSP。其定点系列是TMS32C62XX,浮点系列是TMS320C67XX。最早推出的C6201芯片的运算速度已经达到1600MIPS,在业界首次突破1000MIPS,在数字信号处理器数里能力上创造了新的里程碑,并因此获得了美国EDN杂志“1997年度创新大奖”2000年3月,TI发布了新的C64XX内核,主频1.1GHz,处理速度接近9000MIPS,总体性能比C62XX提高了10~15倍。其中C6416在2002年3月获得EDN杂志“2001年度创新大奖”。 C6000内部结构的主要特点包括: ①定点/浮点系列兼容DSP,目前CPU主频100MHz~600MHz。 ②具有先进VLI W结构内核。 (1)8个独立的功能单元:6个ALU(32/40bit),2个乘法器(16×16),浮点系列支持IEEE 标准单精度和双精度浮点运算。 (2)可以每周期执行8条32bi t指令,最大峰值速度4800MIPS。 (3)专用存取结构,32/64个32bit通用寄存器。 (4)指令打包技术,减少代码容量。 ③具有类似RISC的指令集。 (1)32bit寻址范围,支持bit寻址。 (2)支持40bitALU运算。 (3)支持bit操作。 (4)100%条件指令。 ④片内集成大容量SRAM,最大可达8Mbit。 ⑤16/32/64bit高性能外部存储器接口(EMIF)提供了与SDRAM、SBRAM和SRAM登同步/异步存储器的直接接口。 ⑥内置高效率协处理器(C64X)。 (1)Viterbi编解码协处理器(VCP),支持500路7.95kb/s AMR。 (2)Turbo码编解码协处理器(TCP),支持6路2Mb/s 3GPP。 ⑦片内提供多种集成外设(不同芯片的资源不同) (1)多通道DMA/EDMA控制器

图像增强研究现状

在借鉴国外相对成熟理论体系与技术应用体系的条件下,国内的增强技术与应用也有了很大的发展。总体来说,图像增强技术的发展大致经历了初创期、发展期、普及期与应用期4个阶段。初创期开始于20世纪60年代,当时的图像采用像素型光栅进行扫描显示,大多采用中、大型机对其进行处理。在这一时期由于图像存储成本高,处理设备造价高,因而其应用面很窄。20世纪70年代进入了发展期,开始大量采用中、大型机进行处理,图像处理也逐渐改用光栅扫描显示方式,特别就是出现了CT与卫星遥感图像,对图像增强处理提出了一个更高的要求。到了20世纪80年代,图像增强技术进入普及期,此时的计算机已经能够承担起图形图像处理的任务。20世纪90年代进入了应用期,人们运用数字图像增强技术处理与分析遥感图像,以有效地进行资源与矿藏的勘探、调查、农业与城市的土地规划、作物估产、气象预报、灾害及军事目标的监视等。在生物医学工程方面,运用图像增强技术对X射线图像、超声图像与生物切片显微图像等进行处理,提高图像的清晰度与分辨率。在工业与工程方面,主要应用于无损探伤、质量检测与过程自动控制等方面。在公共安全方面,人像、指纹及其她痕迹的处理与识别,以及交通监控、事故分析等都在不同程度上使用了图像增强技术。图像增强就是图像处理的重要组成部分,传统的图像增强方法对于改善图像质量发挥了极其重要的作用。随着对图像技术研究的不断深入与发展,新的图像增强方法不断出现。例如一些学者将模糊映射理论引入到图像增强算法中,提出了包括模糊松弛、模糊熵、模糊类等增强算法来解决增强算法中映射函数选择问题,并且随着交互式图像增强技术的应用,可以主观控制图像增强效果。同时利用直方图均衡技术的图像增强也有许多新的进展:例如提出了多层直方图结合亮度保持的均衡算法、动态分层直方图均衡算法。这些算法通过分割图像,然后在子层图像内做均衡处理,较好地解决了直方图均衡过程中的对比度过拉伸问题,并且可以控制子层灰度映射范围,增强效果较好。 20世纪20年代图片第一次通过海底电缆从伦敦传往纽约。当时人们通过字符模拟得到中间色调的方法来还原图像。早期的图像增强技术往往涉及硬件参数的设置,如打印过程的选择与亮度等级的分布等问题。在1921年年底提出了一种基于光学还原的新技术。在这一时期由于引入了一种用编码图像纸带去调制光束达到调节底片感光程度的方法,使灰度等级从5个灰度级增加到15个灰度等级,这种方法明显改善了图像复原的效果。到20世纪60年代早期第一台可以执行数字图像处理任务的大型计算机制造出来了,这标志着利用计算机技术处理数字图像时代的到来。1964年,研究人员在美国喷气推进实验室(JPL)里使用计算机以及其它硬件设备,采用几何校正、灰度变换、去噪声、傅里叶变换以及二维线性滤波等增强方法对航天探测器“徘徊者7号”发回的几千张月球照片进行处理,同时她们也考虑太阳位置与月球环境的影响,最终成功地绘制出了月球表面地图。随后她们又对1965年“徘徊者8号”发回地球的几万张照片进行了较为复杂的数字图像处理,使图像质量进一步提高。这些成绩不仅引起世界许多有关方面的注意而且JPL本身也更加重视对数字图像处理地研究与设备的改进,并专门成立了图像处理实验室IPL。在IPL里成功的对后来探测飞船发回的几十万张照片进行了更为复杂的图像处理,最终获得了月球的地形图、彩色图以及全景镶嵌图。从此数字图像增强技术走进了航空航天领域。 20世纪60年代末与20世纪70年代初有学者开始将图像增强技术用于医学图像、地球遥感监测与天文学等领域。X射线就是最早用于成像的电磁辐射源之一,在1895年X射线由伦琴发现。20世纪70年代Godfrey N、Hounsfield先生与Allan M、Cormack教授共同发明计算机轴向断层技术:一个检测器围绕病人,并用X射线源绕着物体旋转。X射线穿过身体并由位于对面环中的相应检测器收集起来。其原理就是用感知的数据去重建切片图像。当物体沿垂直于检测器的方向运动时就产生一系列的切片,这些切片组成了物体内部的再现图像。到了20世纪80年代以后,各种硬件的发展使得人们不仅能够处理二维图像,而且开始处理三维图像。许多能获得三维图像的设备与分析处理三维图像的系统已经研制成功了,图像处理技术

DSP在图像处理中的应用

DSP 在图像处理中的应用 The Application of DSP in Image Processing 刘 治3 李 建 田 伟 LIU Zhi LI Jan TIAN Wei 摘 要  本文以TI T MS320C54X DSP 为例描述了DSP 作为优秀的数字信号处理平台所具备的特点,并在此基础上介绍了在DSP 上实现数字图像处理所需的方法及特殊算法。 关键词  DSP 芯片 T MS320C54X 图像处理 Abstract This paper presents the excellent characteristics of DSP chips using TI T MS320C54X DSP as an exam 2 ple.And s ome methods and alg orithms ,which w ould be im plemented on DSP chips in image processing ,are intro 2duced. K eyw ords DSP chips T MS320C54X Image processing. 3山东大学信息科学与工程学院 250100 数字图像处理在当今工业及医疗领域的应用日益广泛,从而对图像处理系统的实时性和准确性提出了更高的要求。 DSP 芯片以其适应于高速数字信号处理的内部结构,在图像 处理领域发挥了不可替代的作用。 1 DSP 芯片简介 当前数字信号处理领域并存两大类处理器:通用处理器 (G PP )和专用处理器(DSP ),通用处理器主要应用于PC 机 中,而DSP 器件主要应用于便携式、 嵌入式设备中。消费类电子产品对器件成本和功耗要求苛刻,DSP 器件正是在这两方面较通用处理器有优势。 DSP 芯片采用能提供多条地址及数据总线的哈佛结构 而摒弃了以往的冯?诺依曼结构(两种结构的简单比较见图 1)。由于片内存储器比片外存储器快,在通用处理器中广泛 使用的高速缓存也被引入到DSP 芯片中来。另外,为提高处 图1(a )冯?诺依曼结构 (b )哈佛结构 理速度DSP 芯片还使用了流水线技术。 T MS320C54x 是TI 公司为实现低功耗、高性能而专门设 计的定点DSP 芯片。54x 系列DSP 采用改进的哈佛结构,该结构有8条总线,使数据处理能力达到了最大限度。通过程序、数据空间的分离可同时进行程序指令和数据的存取并提供了高度的并行性。此外数据还可以在数据空间和程序空间进行传送。这种并行性还支持一系列功能强劲的算术逻辑及位操作运算。所有这些运算都可以在单个机器周期内完成。同时,54x 还有包括终端管理、重复操作及功能调用等在内的控制机制。图2为c54x 的内部功能框图。 2 DSP 系统设计 2.1 有关数据传输的处理 一幅未经处理的CC D 图像大约有5M 左右,这已超出 DSP 的寻址能力,而DSP 在绝大多数情况下不能以全速访问 外部存储器,于是提出对中间缓冲区的要求,而缓冲区又不宜过大,解决的办法之一是将图像数据转换成数据流进行传送。首先是将像素进行横向滤波,在处理某一像素的时间内,FIR 滤波器必须同时接收下一个要处理的像素并将本次处理结果传送至下一单元,这一过程就是一个简单的流水线操作。其中滤波器纵向宽度决定能够存储的行数。对于TI T MS320c54X 系列的DSP 片内存储器为16k ~64k ,对于动辄 几兆的图像数据显得杯水车薪,但它已基本满足非实时应用的要求,譬如对静态图像的处理。 另一方法是在系统中使用DM A 技术,即当原始的CC D 图像数据进入外部存储器后,以DM A 方式将数据由速度较慢的外部存储器传送至DSP 片内存储器。由于DSP 没有和 外部存储器之间的直接通道,因此首先应在算法上将数据分 7 5

数字图像处理技术的研究现状与发展方向

数字图像处理技术的研究现状与发展方向 孔大力崔洋 (山东水利职业学院,山东日照276826) 摘要:随着计算机技术的不断发展,数字图像处理技术的应用领域越来越广泛。本文主要对数字图像处理技术的方法、优点、数字图像处理的传统领域及热门领域及其未来的发展等进行相关的讨论。 关键词:数字图像处理;特征提取;分割;检索 引言 图像是指物体的描述信息,数字图像是一个物体的数字表示,图像处理则是对图像信息进行加工以满足人的视觉心理和应用需求的行为。数字图像处理是指利用计算机或其他数字设备对图像信息进行各种加工和处理,它是一门新兴的应用学科,其发展速度异常迅速,应用领域极为广泛。 数字图像处理的早期应用是对宇宙飞船发回的图像所进行的各种处理。到了70年代,图像处理技术的应用迅速从宇航领域扩展到生物医学、信息科学、资源环境科学、天文学、物理学、工业、农业、国防、教育、艺术等各个领域与行业,对经济、军事、文化及人们的日常生活产生重大的影响。 数字图像处理技术发展速度快、应用范围广的主要原因有两个。最初由于数字图像处理的数据量非常庞大,而计算机运行处理速度相对较慢,这就限制了数字图像处理的发展。现在计算机的计算能力迅速提高,运行速度大大提高,价格迅速下降,图像处理设备从中、小型计算机迅速过渡到个人计算机,为图像处理在各个领域的应用准备了条件。第二个原因是由于视觉是人类感知外部世界最重要的手段。据统计,在人类获取的信息中,视觉信息占60%,而图像正是人类获取信息的主要途径,因此,和视觉紧密相关的数字图像处理技术的潜在应用范围自然十分广阔。 1数字图像处理的目的 一般而言,对图像进行加工和分析主要有以下三方面的目的[1]: (1)提高图像的视感质量,以达到赏心悦目的目的。如去除图像中的噪声,改变图像中的亮度和颜色,增强图像中的某些成分与抑制某些成分,对图像进行几何变换等,从而改善图像的质量,以达到或真实的、或清晰的、或色彩丰富的、或意想不到的艺术效果。 (2)提取图像中所包含的某些特征或特殊信息,以便于计算机进行分析,例如,常用做模式识别和计算机视觉的预处理等。这些特征包含很多方面,如频域特性、灰度/颜色特性、边界/区域特性、纹理特性、形状/拓扑特性以及关系结构等。 (3)对图像数据进行变换、编码和压缩,以便于图像的存储和传输。 2数字图像处理的方法 数字图像处理按处理方法分,主要有以下三类,即图像到图像的处理、图像到数据的处理和数据到图像的处理[2]。 (1)图像到图像。图像到图像的处理,其输入和输出均为图像。这种处理技术主要有图像增强、图像复原和图像编码。 首先,各类图像系统中图像的传送和转换中,总要造成图像的某些降质。第一类解决方法不考虑图像降质的原因,只将图像中感兴趣的特征有选择地突出,衰减次要信息,提高图像的可读性,增强图像中某些特征,使处理后的图像更适合人眼观察和机器分析。这类方法就是图像增强。例如,对图像的灰度值进行修正,可以增强图像的对比度;对图像进行平滑,可以抑制混入图像的噪声;利用锐化技

数字图像处理在DSP上的实现

数字图像处理在DSP上的实现(旋转) 1 绪论 1.1设计目的 图像旋转是一种应用广泛的数字图像处理技术,随着应用水平的不断提高,对在嵌入式系统中实现高分辨率大图像旋转的需求也越来越高。如在航空领域的高分辨率数字地图图像的显示处理过程中,由于现有的显示芯片均不能支持图像旋转功能,就需要在资源有限的嵌入式平台上实现大幅面地图图像的实时旋转。采用DSP平台是一种实现方式,具体实现时需仔细考虑两个方面的问题,一是选用计算量小的旋转算法,二是充分发挥DSP平台强大的并行计算能力。 1.2设计任务 1.能从计算机上读取图片。 2.编写图像旋转程序,在TMS320C5509上实现。

2 设计原理及分析 2.1设计原理 目前,已经有很多有效降低计算量的图像旋转算法,基于图像线性存储结构的旋转方法就是其中之一。然而,在DSP平台上,有限的高速存储资源限制了这些算法效率的直接发挥,需要针对算法及DSP平台的性能结构特点进行高效的数据调度。对于图像旋转问题而言,数据调度还需要克服由于存在大量非连续图像像素地址访问而严重影响DSP数据存取及CPU效率发挥的问题。这是图像旋转本身的特殊性,在其他图像处理技术中是不存在的。 由DSP的结构特点可知,只有在数据和程序均位于片存储器当中的条件下,DSP 的效率才能得到最大化的发挥。在大图像旋转算法中,由于涉及的图像数据量远大于DSP的片存储器容量,源图像和最终视口图像等数据必须被存放在片外存储器中。在这种情况下,为了保证DSP CPU高速处理能力的发挥,必须优化数据流,将源图像分块,依次搬移至片处理,并设法保证CPU当前要处理的图像数据块已经事先在片存储器中准备好了。因此在算法整体优化结构上采用Ping-Pong双缓冲技术,利用EDMA与CPU并行工作来隐藏图像数据块在片和片外之间的传输时间,使CPU能连续不断地处理数据,中间不会出现空闲等待。 传统的图像旋转一般通过矩阵乘法实现: 其中,α为旋转角度。 由于图像是线性存储的,各个像素点之间的相对位置关系确定。如图1(a)所示,图像旋转前,任意像素点P(x,y)和P1(x1,y1)、P2(x2,y2)及A(xA,yA)在几何上是矩形的四顶点关系。由于旋转变换是线性变换,如图1(b)所示,图像旋转后,各个像素点之间的相对位置关系不发生变化,

数字图像处理技术在遥感等领域的现状和未来发展趋势精选版

数字图像处理技术在遥感等领域的现状和未来 发展趋势 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

数字图像处理技术在遥感领域的现状和未来发展趋势 崔云腾 【摘要】阐述了遥感技术目前在国内外的发展现状,以及数字图像处理技术在遥感技术上起到的重大作用。随着数字图像处理技术的发展,让遥感技术有了翻天覆地的变化。并且详细的描述了图像处理技术在遥感领域的关键技术,对这些技术在遥感中起的作用进行解释。最后对图像处理技术在遥感领域未来的发展趋势进行分析。 【关键词】遥感;图像处理;技术发展 Digital image processing technology in the current situation and future development trend in the field of remote sensing Cui Yunteng A bstract this paper expounds the remote sensing technology in the domestic and foreign development present situation, and the digital image processing technology to play a major role in the remote sensing technology. With the development of digital image processing technology, remote sensing technology have changed dramatically. And a detailed description of the key technologies in the field of remote sensing image processing technology, plays the role of these techniques in remote sensing for explanation. Finally, the image processing technology in the field of remote sensing in the future development trend of the analysis. 0.引言 几十年来,随着卫星技术的不断成熟,遥感技术也不断地发展,通过卫星收集大量的影像资料,随之而来对图像的处理分析有了更高的要求,以前需要雇佣几千人,现在运用图像处理系统仅仅需要一台高级计算机,与之前相比分析识别速度有了显着的提高[1],同时减少了大量的人员工作,并且还可以从照片中发现通过人力所不容易发现不能找到的有用情报。 1.数字图像处理技术在国内外的发展现状 上个世纪60年代,第一台可移植性图像处理的大型计算机研制成功。可以说是数字图像处理技术的开端,自此开始用数字图像处理技术来处理卫星发回来的图片。当时“旅行者七号”发回来的月球图片就是运用数字图像处理技术进行处理,来校正

相关文档
相关文档 最新文档