文档库 最新最全的文档下载
当前位置:文档库 › 土钉墙基坑支护设计资料

土钉墙基坑支护设计资料

土钉墙基坑支护设计资料
土钉墙基坑支护设计资料

《地基基础》课程设计

土钉墙基坑支护设计

四川建筑职业技术学院土木系

基础工程教研室2008年6月

目录

1. 土钉墙基坑支护设计基本理论

2.土钉墙基坑支护设计任务书

3.土钉墙基坑支护设计指导书

4.本次设计的相关资料

5.设计步骤参考资料

1 土钉墙基坑支护设计基本理论

1.1概述

1.1.1基坑支护的作用

基坑开挖后,形成临空面,在基坑土体自身重量、地表荷载、地下水渗透作用下,可能产生破坏或过大变形,危及基础施工或周围建筑物的安全,因此,须对基坑侧壁采取一定的措施进行支护。

1.1.2土钉墙及土钉的定义、支护原理

土钉墙:由土钉、被加固的土体、面层组成的支护结构。土钉墙支护在某些施工企业也称为喷锚支护。其组成如图:

图1.1.2-1 土钉墙剖面示意图

土钉:用来加固、锚固现场原位土体的细长杆件。通常采用土中钻孔,置入变形钢筋,并沿孔全长注浆的方法做成。土钉依靠与土体之间的界面粘结力或摩擦力,在土体发生变形的条件下被动受力,并主要承受拉力作用。土钉也可用钢管、角钢直接击入土中,并全长注浆的方法做成。

面层:在土钉端部沿水平方向及竖向焊接加强钢筋,在加强钢筋上焊接分布钢筋,再喷射砼制作而成。

加固原理:基坑临空面形成后,侧壁土体有向临空面位移的趋势,及沿某一潜在破坏面破坏的趋势,置入土钉后,土钉承受了由周围土体及面层传递过来的土压力,把土压力传递至稳定的土层中去,从而阻止了侧壁土体向基坑方向的位移;土钉加固土体使土体强度提高,并由于土钉的拉力,使潜在破坏面上的法向应力增大,因而摩擦力增大,阻止基坑侧壁沿某一潜在破坏面破坏。

1.1.3土钉墙的适用条件

1.基坑侧壁安全等级宜为二、三级的非软土场地(基坑侧壁安全等级根据侧壁破坏后果的严重程度划分)。

2.基坑深度不宜大于12m。

3.当地下水位高于坑底面时,应采取降水或截水措施。

当土质较差,且基坑边坡靠近重要建筑设施,需要严格控制支护变形时,宜开挖前先沿基坑边缘设置密排的竖向微型桩(见图1.1.3-1),其间距不宜大于1m,深入基坑底部1~3m。微型桩可用无缝钢管或焊管,直径48~150m,管壁上应设置出浆孔。小直径的钢管可分段在不同挖深处用击打方法置入并注浆;较大直径

(大于100mm)的钢管宜采用钻孔置入并注浆,在距孔底1/3孔深范围内的管壁上设置注浆孔,注浆孔直径10~15mm,间距400~500mm。

当支护变形需要严格限制在不良土体中施工时,宜联合使用其他支护技术,将土钉支护扩展为土钉——预应力锚杆联合支护、土钉——桩联合支护、土钉——防渗墙联合支护等,并参照相应标准进行设计施工。

图1.1.3-1 超前设置微形桩的土钉支护

1.1.4与锚杆支护相比,土钉与土钉墙支护的特点

1.土钉的作用之一是加固周围土体,使周围土体的强度增加,保证其稳定性,并和被加固的土体一起作为挡土结构,支护基坑。锚杆常与桩、墙联合使用,作为桩墙等挡土结构的支点,与桩墙一起作为支护结构,此时,锚杆周围的土体不再为支护结构的一部分。

2.土钉在基坑侧壁上的排列较密,锚杆的排列间距较大。

3.土钉在土体发生变形后才被动受拉,土钉对土体的约束需要土体变形作为补偿,锚杆一般在设置时预加拉应力,给土体以主动约束。

4.土钉沿孔全长注浆、锚杆应考虑自由段长度不应小于5m。

1.1.5土钉及土钉墙的受力状态和破坏形式

1.土钉墙在自身重量等荷载作用下,可能沿内部或外部破裂面产生整体破坏,如图所示。

2.土钉墙沿墙底产生滑移,或沿墙趾产生倾覆。

3.单根土钉在拉力作用下被拔出。土体在自身重量等荷载作用下,产生变形, 作用土压力于面层,面层传递给土钉,土钉承受了由面层及及周围土体传递过来的拉力,有向基坑方向拔出的驱势;同时破裂面以外稳定土体与土钉的粘结力对土钉产生抗拔力,阻止土钉向外拔出。当拉力>抗拔力时,土钉被拔出。

4.土钉墙墙底承载力不够,产生破坏。

1.2土钉墙的构造要求

1.土钉墙墙面坡度不宜大于1:0.1;

2.土钉和面层须有效连接,应设置承压板或加强钢筋等构造措施,承压板或加强钢筋应与土钉螺栓连接或钢筋焊接连接;

3.土钉的长度宜为开挖深度的0.5~1.2倍,间距宜为1~2m,与水平面夹角宜为5。~20。;

4.土钉钢筋宜采用HPB235、HRB335级钢筋,钢筋直径宜为16~32mm,钻孔直径宜为70~120mm;

5.注浆材料宜为水泥浆或水泥砂浆,其强度等级不低于M10;

6.喷射混凝土面层宜配置钢筋网,钢筋直径宜为6~10mm,间距宜为150~300mm;喷射混凝土强度等级不宜低于C20,厚度不宜小于80mm;

7.坡面上下段钢筋搭接长度应大于300mm;

8.排水系统参照如下规定:

基坑四周支护范围内的地表应加修整,构筑排水沟和水泥砂浆或混凝土地面,防止地表降水向地下渗透,靠近基坑坡顶宽2~4m的地面应适当垫高,并且里高外低,便于迳流远离边坡。

为了排除积聚在基坑内的渗水和雨水,应在坑底设置排水沟及集水坑。排水沟应离开边壁0.5~1m,排水沟及集水坑宜用砖砌并用砂浆抹面以防止渗漏,坑中积水应及时抽出。

在支护面层背部应插入长度为400~600mm ,直径不小于40mm的水平排水管,其外端伸出支护面层,间距可为1.5~2m ,以便将喷射混凝土面层后积水排出。

1.3设计

1.3.1一般规定

1.根据构造要求和工程经验,初选支护各部件的尺寸和材料参数;

2.进行计算分析,主要有:

(1)支护的内部整体稳定性分析与外部整体稳定性分析;

(2)土钉的设计计算(抗拉承载力验算);

(3)喷射混凝土面层的设计计算,及土钉与面层的连接计算。

通过上述计算对各部件的初选参数作出修改,给出施工图。

3.根据施工过程中的量测监控数据和发现的问题,进行反馈设计。

1.3.2土钉支护的整体稳定性分析

土钉支护的内部整体稳定性分析是指边坡土体中可能出现的破坏面发生在支护内部并穿过全部或部分土钉。破坏模式如下图,破坏面为一圆弧面,并考虑土钉的拉力,采用普通条分法对支护作整体稳定性分析。安全稳定性系数计算公

式如下:

()()cos tan (/)sin tan (/cos )(/)s sin i

i i j k hk k j j i i k hk k s i i i w

Q R S c R S co F w Q αφβφαβα??+?+?+?+??

=

+????

∑∑

i w 、i Q :分别为作用于土条的自重和地面荷载;

i α: 土条i 圆弧破坏面切线与水平面的夹角;

i ?:土条

i 的宽度;

j φ:土条i 圆弧破坏面所处的第j 层土的内摩擦角;

j c :土条

i 圆弧破坏面所处的第j 层土的粘聚力;

k R :破坏面上第K 排土钉的最大抗力,按

1.3.3.3条确定;

k β:第k 排土钉轴线与该处破坏面之间的夹角;

hk S :第k 排土钉的水平间距。

需要收索所有可能破坏的圆弧面,并计算其安全稳定性系数(此工作量较大,一般由计算机完成),安全稳定性系数最小值所对应的圆弧面为最可能破坏的圆弧面,该安全稳定性系数最小值要求大于下表中的值。

土钉支护还应验算施工各阶段的内部稳定性。

土钉支护的外部整体稳定性分析是指整个土钉沿底面水平滑动、绕基坑底角倾覆、沿深部的圆弧破坏面失稳。 1.3.3单根土钉抗拉承载力验算 1.3.3.1土钉的设计计算遵循下列原则:

1.只考虑土钉的受拉作用;

2.土钉的设计内力按1.

3.3.2条规定的侧压力图形算出;

3.土钉的尺寸应满足设计内力(受拉荷载)的要求,同时还应满足支护内部整体稳定性的要求。

1

1

tan tan n i

i

i k n

i

i h

h

φφ===

∑∑1.3.3.2土钉设计内力N(受拉荷载) 的计算

N=p ·S V S h /cos θ 其中p=p 1+p q

S V :计算土钉在水平方向与相邻土钉中点的间距。

S h :计算土钉在竖直方向与相邻土钉中点的间距。

θ—土钉的倾角;p —土钉长度中点所处深度位置上的侧压力;

p1--土钉长度中点所处深度位置上由支护土体自重引起的侧压力,据图

1.3.3.2-1求出;

pq —地表均布荷载引起的侧压力。 p1及 pq 沿基坑深度分布图如下

:

图1.3.3.2-1 p 1及 p q 沿基坑深度分布图

P m :基坑深度方向土体自重产生的侧压力p 1的最大值,其求解方法如下: 对于C/γH ≤0.05的砂土和粉土P m =0.55k a γH 。 对于C/γH ≥0.05的一般粘性土:

H

k H Ka

rH

c k p a a m γγ55.0)21(≤-

=

粘性土P m 的取值应不小于0.2γH 。

p q =k a q ,其中q 为地表荷载,最小取15Kpa 。

2

tan (45)2

k a k Φ=-

γ为土的重度,H 为基坑深度。

?k 这样确定:

基坑侧壁若为单层土,则取该层土的内摩擦角角标准值;若为多层土,则先求:

再求?k 。(?i 、h i 分别为侧壁第i 层土的内摩擦角和厚度)

1.3.3.3土钉的极限抗拉承载力02i i R d l πτ=∑

各层土钉的长度l 应满足下列条件:

,02s d i i F N d l πτ≤∑

其中2i l —土钉在破坏面以外稳定土体第i 层土中的长度;

潜在破坏面与水平面的夹角取(β+Φk )/2 , β为基坑侧壁坡角。如下图:

图1.3.3.3-1 土钉与潜在破坏面剖面图

d 0—土钉孔径;τ—土钉与土体之间的界面粘结强度。按下表取值。 Fs,d —土钉的局部稳定性安全系数,取1.2-1.4,基坑深度较大时,取大值。

表1.3.3.3-1界面粘结强度标准值

表中数据为低压注浆时的极限粘结强度标准值。实际工程中需要对所有工况(基坑不同的开挖阶段及支护后的使用阶段),

土钉的抗拉承载力是否验算满足要求进行验算 1.3.3.4砼面层:可按构造要求设计。 1.4施工与检测

1.4.1施工前应具备下列文件

1.岩土工程勘察报告;

2.土钉墙支护结构施工图。

3.降水系统施工图,以及需要工程降水时的降水方案设计;

4.施工方案和施工组织设计,规定基坑分层、分段开挖的深度和长度,边坡开挖面的裸露时间限制等;

5.支护整体稳定性分析计算书;

6.现场测试监控方案和应急措施; 1.

7.2施工工序:

1.工作面,修整边坡;

2.设置土钉(包括成孔、置入钢筋、注浆、补浆);

3.铺设、固定钢筋网;

4.喷射混凝土面层。

参考资料:《建筑基坑支护规程》(JGJ120-99)

《基坑土钉支护技术规程》(CECS96:97)。

2 土钉墙基坑支护设计任务书

2.1教学班级:

2.2设计时间:校历1周。

2.3设计任务:完成一幢高层房屋的基坑支护设计。

2.4课程设计目的:了解实际工程中基坑支护设计的方法、内容和掌握设计土钉墙支护基坑的设计方法。

2.5设计要求:

2.5.1熟悉分析相关资料,确定土钉墙支护基坑的适宜性。

2.5.2设计内容:将基坑侧壁分成几段,分别确定以下内容。

①土钉墙墙面坡度。

②土钉类型、直径、钻孔直径。

③土钉水平方向、坡面竖向的间距及与水平面夹角。

④各土钉的长度。

⑤注浆材料种类、强度、。

⑥砼面层钢筋网钢筋直径、间距、砼强度、厚度;土钉与面层连接形式。

⑦坡面上、下层钢筋网搭接长度。

⑧土钉墙墙顶护面措施,坡顶、坡脚、排水措施,坡面泄水孔的布置。

2.5.3计算:

(1)土钉墙内部整体稳定性验算。实际工程中需要对所有工况(基坑不同的开挖阶段及支护后的使用阶段),收索基坑侧壁所有可能破坏的圆弧面,并验算其安全稳定性系数是否满足要求,本次课程设计只要求验算支护后使用阶段的基坑侧壁某一给定圆弧面的安全稳定性系数是否满足要求(基坑侧壁剖面图及该给定圆弧面详见“4.6基坑侧壁内部稳定性验算剖面图”);

(2)土钉的抗拉承载力验算。验算土钉的抗拉承载力是否满足受拉荷载的要求。实际工程中需要对所有工况(基坑不同的开挖阶段及支护后的使用阶段),土钉的抗拉承载力是否验算满足要求进行验算,本次课程设计只要求验算支护后使用阶段土钉的抗拉承载力是否满足要求。

2.5.4图件:提供基坑支护平面布置图;分段提供基坑侧壁土钉平面布置图、土钉墙剖面图。

2.5.5施工说明。(说明内容为图件未反映的部分支护方案要点)

2.6本次设计成果要求:各细部参数,清楚明确;计算正确,过程详细;图件规范清晰。

2.7、时间安排:

第1天:熟悉相关资料,明确设计思路,初步确定各参数。

第2、3、4天:计算。

第4、5天:图件,编写施工说明。

附:《岩土工程勘察报告》(部分内容):包括基础相关资料、环境资料。

3 土钉墙基坑支护设计指导书

3.1设计依据

①《基坑土钉支护技术规程》(CECS96:97)

②《建筑基坑支护技术规程》(JGJ120-99)

③《岩土工程勘察报告》

④上部结构资料

⑤邻近建筑物、道路、地下管线情况。

3.2设计步骤

1. 熟悉相关资料,根据场地条件、基坑开挖深度、环境条件、地表荷载、土质条件将基坑侧壁分成几段,对每段分别设计。以下是每段的设计步骤:

2. 选择相应的支护结构类型(选择土钉墙)。

3. 据基坑深度、地表荷载、场地土质情况,及土钉墙的构造要求等,初步拟定基坑支护的内容和对数,如:

基坑侧壁下口开挖线、坡度;

土钉类型、直径、钻孔直径;

土钉水平方向、坡面竖向的间距及与水平面夹角;

各土钉的长度;

注浆材料种类、强度;

砼面层钢筋网钢筋直径、间距、砼强度、厚度;

土钉与面层连接形式;

坡面上、下层钢筋网搭接长度。

土钉墙墙顶护面措施,坡顶、坡脚、排水措施,坡面泄水孔的布置。

4. 土钉整体稳定性验算:考虑土钉摩擦力,采用圆弧滑动简单条分法验算。安全稳定系数采用1.3.2节的公式进行计算。因需收寻多个潜在破坏面计算其安

全稳定系数,工作量很大,须用软件进行。在此只要求取一个潜在滑动面验算(“4.6基坑侧壁内部稳定性验算剖面图”分别提供了基坑北面、基坑南面安全稳定系数计算的一个剖面图,供参考)。

5.各段基坑侧壁单根土钉的抗拉承载力验算,以确定土钉长度、间距等是否满足要求。

单根土钉的长度l=l 1+l 2 ,如下图。

(1)按1.3.3.2节求出各土钉设计内力N(受拉荷载);

(2)确定潜在破坏面(为通过坡角、与水平面成 (Φk +β)/2夹角的平面),据几何关系求出l 1,;再求出土钉在潜在破坏面以外稳定土体各土层中的长度2i l ,按1.3.3.3节计算各土钉的极限抗拉承载力02i i R d l πτ=∑。

(3)验算各层土钉的长度l 是否满足下列条件:,02s d i i F N d l πτ≤∑ 通过以上整体稳定性验算及抗拉承载力验算,若均满足要求,则初步拟定的土钉长度及土钉的平面间距可行。若不满足,可加长土钉或减小土钉的平面间距,至满足为止。

6.面层:其砼的强度、厚度、钢筋直径、间距按构造要求确定。 3.3图件

①基坑支护平面布置图:反映边排基础轴线、边线,支护结构类型,基坑上口开挖线、下口开挖线,基底各部分标高,及周围环境情况。

②土钉墙支护剖面图:标明基坑深度、侧壁坡度;破裂面的位置及与水平面的夹角;每根土钉的长度及与水平面夹角;面层的厚度及砼的强度;砼护顶的宽度。 ③基坑侧壁土钉平面布置图:土钉位置、间距、钢筋直径、间距、面层砼强度、厚度。

3.4施工说明:参见《1土钉墙基坑支护设计》。

4 本次基坑支护设计的相关资料

本次设计是完成一幢12层的高层建筑的基坑支护设计,该拟建物所在场地的工程与水文地质条件、基础平面分布、基坑开挖深度、周边环境情况等详见以下

资料:

4.1地形地貌

场地位于成都平原东北绵远河左岸一级阶地,场地地形平坦。

4.2地层分布及岩土特征

场地覆盖层主要由第四系人工堆积物(Q4ml)、全新统冲积物(Q4al)和上更新统冰水流水冲积物(Q3fgl)组成,据其岩性特征,可分为6个岩性层,现将各地基土结构及特征从上到下分述于后:

1 杂填土①(Q4ml):全场分布,色杂,松散,潮湿,主要成分为建筑垃圾。

2 粉土②(Q4al):分布于场地东南部,黄灰色,稍密,湿,厚0.30~0.60m。

3 粗砂③(Q4al):呈透镜状分布,灰白色,稍密,潮湿~饱和,以中粒砂为主,局部相变为中细砂、砾砂,砂砾成分以长石、石英为主,厚0.40~2.90m。

4 圆砾④(Q4al):灰白色,稍密,潮湿~饱和,卵石含量20~40%,砾石含量30~50%,充填物以中粗砂为主,少量粘粒。

5 卵石⑤(Q4al):灰白色,潮湿~饱和,卵石含量50~70%,卵石粒径3~5cm为主,少数5~10cm,次圆,成分以砂岩、灰岩、花岗岩为主。据其密实度,可分为稍密卵石⑤a、中密卵石⑤b两个亚层。

6 半胶结卵石⑥(Q2-3fgl):层状分布,灰白色,卵石含量60~70%,粒径3~8cm为主,次圆,成分主要为砂岩、灰岩,充填物为砾石、粗砂为主,该卵石层为钙质半胶结状态。各地基岩土层分布特征详见工程地质剖面图。

4.3地下水

场内地下水主要为赋存于第四系全新统砂卵石层中的孔隙性潜水。季变幅为1~2m,勘察期间属平水期,勘察孔中测得地下水静止水位埋深7.70~8.40m。

4.4地基各土体主要物理力学指标见下表。

地基岩土主要物理力学指标建议值

4.5建筑物与勘探点平面布置图、工程地质剖面图附后。

4.6基坑侧壁内部稳定性验算剖面图

5 设计步骤参考资料

(1)将基坑侧壁分成4段。以北侧为例。 (2)选取支护结构的类型:土钉墙

选取勘探点ZK1作为计算的地质依据,土层分布情况见下图。 (3)初拟尺寸及其它构造要求:

取基础外边缘线外出0.5m 为基坑下口开挖线,侧壁坡角?=80;取土钉竖向间距S h =1.2m 、水平间距S v =1.0m ;土钉直径d 0=70mm 从上至下共布置5根土钉,长度分别为7.0m 、6.5m 、6.5m 、6.0m 、6.0m 。

喷射混凝土面层配置钢筋网,钢筋直径为8mm,间距为200mm ;喷射混凝土强度等级为C20,厚度为80mm;.坡面上下段钢筋搭接长度为300mm ;

(4)抗拉承载力验算:以第一根土钉为例。 求受拉荷载N :

1.6tan 10

1.4tan 230.7tan 28

1tan 18

1.3tan 28

tan 0.38

6.0

k φ++++=

=

k φ=20.8○

3

1.618 1.4200.721119 1.321

19.6/6.0

kN M

γ?+?+?+?+?=

=

2

220.8tan (45

)tan (45

)0.48

2

2

0.550.550.4819.6 6.031.0k

a m a K p k H kpa

?γ=-

=-

===???=

土钉中点的的深度为0.6+7sin10。/2=1.2m 。则

111.231.024.86.04

200.489.624.89.634.4/34.4 1.2 1.0/1041.9q a q V h p kpa

p qk kpa p p p kpa

N PS S C O S C O S kpa

θ=

?===?==+=+===??=

求抗拉承载力:

潜在破坏面与水平面的夹角为(?+?k )/2=(80。+20.8。)/2=50.4。

在三角形ABC 中,AB=(6.0-0.6)/sin80。=5.48m ,

∠BCA=80。-50.4。=29.6。 ,∠ABC=180。-10。-80。=90。

BC=ABtan29.6。=5.48 tan29.6。=3.11m 则CD=7.0-3.11=3.89m

BC 所在土层的厚度为BCsin10。=3.11 sin10。

=0.54m<(1.6-0.6)m,C 点在第一层土内。

BD 所在土层的厚度为BDsin10。=7 sin10。=1.21m >(1.6-0.6)m,D 点在第二层土内。

CE=(1.6-0.6-0.54)/ sin10。=2.65m 则ED=3.72-2.65=1.07m 。

受拉承载力02i i R d l πτ=∑=3.14×0.08×(2.65×40+1.07×100)=53.51KN >F s,d N=1.2×41.4=49.68KN

所以第一根土钉长度为7m 满足抗拉承载力要求。 同理:对其它土钉采用相同的方法与步骤进行验算。 (5)稳定性验算:

在基坑侧壁剖面图上,取一圆弧面作为潜在破坏面,并将圆弧面以上土体划分为几个等宽度的条块,此采用“4.6基坑侧壁内部稳定性验算剖面图”提供的北面基坑侧壁剖面图。

计算各土钉的受拉承载力02i i R d l πτ=∑

第一根土钉:1R =53.51KN;

第二根土钉:在潜在破坏面以外圆砾、稍密卵石中的长度分别为4.49m 、0.09m.,

2 3.140.08(4.491000.09120)115.5R K N

=??+?=

同理可得:第三根土钉、第四根土钉、第五根土钉的受拉承载力分别为: R 3=112.76KN; R 4=123.29KN ;R 5=154.69KN 根据公式:

()()cos tan (/)sin tan (/cos )(/)s sin i

i i j k hk k j j i i k hk k s i i i w

Q R S c R S co F w Q αφβφαβα??+?+?+?+??

=

+????

∑∑条块1:

i w =0.63×1×19.6=12.3KN 、i Q =0.83×1×20=16.6KN ;

i α=61○

;i ?=0.83m ;j φ=10○;j c =0;

k R =53.51KN ;

k β=70○

hk S =1m 。

条块1的抗滑力(分子)、滑动力(分母)分别为: 分子1=(12.316.6)cos 61tan10

53.51sin 70tan10

53.51cos 70

29.64o

o

o

o

o

K N

+++

=

分母1=(12.316.6)sin 6125.28o KN +=

根据“4.6基坑侧壁内部稳定性验算剖面图”,其它条块的各参数分别如下:

因此,29.64105.48126.43122.4934.15177.27 2.1625.2841.9563.7760.4363.0420.15

F s +++++=

=+++++>1.2

内部整体稳定性满足要求。

根据以上计算,土钉各参数可确定为:……

基坑支护(土钉墙)设计施工方案

第二标段基坑支护工程设计与施工方案 编制人: 审核人: 审批人: 2013年7月21日

土钉墙支护方案

目录 第一章概述 (1) 第二章土钉支护设计计算 (3) 第三章土钉支护设计方案 (9) 第四章土钉墙支护施工方案 (10) 第五章冬季施工措施 (18) 第六章基坑及环境监测 (19) 第七章土方支护工程应急预案 (21) 附图: 1.基坑土钉支护剖面图1张 2.基坑支护平面布置图1张 3.土钉墙节点详图1张

第一章概述 一、工程概况 科研中心项目消防水池工程。基坑开挖深度从自然地表下约6.00m。 拟建场地位于中央路西侧,占地面积约350平方米,地上1 层,设有地下 室一层。 二、工程地质、水文地质情况 1、地形、地貌及周边情况 本工程拟建场地地位于中央路西侧,原东校区内,该场地地貌单元属 河谷平原的丘陵地带,地基土的成因类型为第四纪冲洪积形成的粘性土和 白垩纪沉积不同程度的风化页岩、砂岩、砂质泥岩层。第四纪地层覆盖厚 度大于80m,沉积地层为粘性土、砂土为主。 场地施工范围内周围无污水管、给水管等地下管线。施工范围内无线 塔及电杆,基坑开挖边线距原有建筑物距离均超过10m。 2、工程地质特征 本次勘探的最大深度(25.00m)范围内,土层主要为人工堆积层和第 四纪冲洪积层。地层主要以填土、粉质粘土、第四纪Q4形成的堆残积粘 性土层、及白垩纪形成的风化沉积岩层。据《岩土工程勘察报告》,其主 要地层由上至下详细描述如下: ①杂填土:杂色,以残土为主,含碎砖头、碎石、煤灰渣等建筑垃 圾组成,层底埋深在0.5-1.0米,厚度为0.5-1.0米。 ②粉质粘土:黄色,可塑,土质较均匀,稍有光泽,无摇振反应,干强度和韧性中等,普遍分布于整个场地,厚度为2.2-3.5米。层底埋深3.2-4.0米。 ③残积粉质粘土:黄黑色,完全风化成土状,有少量页岩碎屑,湿—饱

土钉墙支护计算计算(准确)

土钉墙支护计算计算书 本计算书参照《建筑基坑支护技术规程》JGJ120-99 中国建筑工业出版《建筑施工计算手册》江正荣编著中国建筑工业、《实用土木工程手册》第三版文渊编著人民教同、《地基与基础》第三版中国建筑工业、《土力学》等相关文献进行编制。 土钉墙需要计算其土钉的抗拉承载力和土钉墙的整体稳定性。 一、参数信息: 1、基本参数: 侧壁安全级别:二级 基坑开挖深度h(m):7.430; 土钉墙计算宽度b'(m):100; 土体的滑动摩擦系数按照tanφ计算,φ为坡角水平面所在土层的摩擦角; 条分块数:/; 不考虑地下水位影响; 2、荷载参数: 序号类型面荷载q(kPa) 基坑边线距离b0(m) 宽度b1(m) 1 局布20.00 4.86 5 3、地质勘探数据如下:: 序号土名称土厚度坑壁土的重度γ坑壁土的摩擦角φ聚力C 极限摩擦阻力 (m) (kN/m3) (°) (kPa) (kPa)

1 填土 1.30 18.00 18.00 12.00 80.00 2 粘性土 1.30 18.00 20.00 25.00 100.00 3 粉土 3.10 19.00 25.00 18.00 110.00 4 粘性土 1.20 18.00 20.00 25.00 100.00 5 粉砂 4.10 19.00 35.00 18.00 115.00 4、土钉墙布置数据: 放坡参数: 序号放坡高度(m) 放坡宽度(m) 平台宽度(m) 1 7.43 3.00 100.00 土钉数据: 序号直径(mm) 长度(m) 入射角(度) 竖向间距(m) 水平间距(m) 1 150 6.00 15.00 1.50 1.50 二、土钉(含锚杆)抗拉承载力的计算: 单根土钉受拉承载力计算,根据《建筑基坑支护技术规程》JGJ 120-99, R=1.25γ0T jk 1、其中土钉受拉承载力标准值T jk按以下公式计算: T jk=ζe ajk s xj s zj/cosαj 其中ζ--荷载折减系数 e ajk --土钉的水平荷载 s xj、s zj--土钉之间的水平与垂直距离 αj--土钉与水平面的夹角 ζ按下式计算:

(完整版)土钉墙施工工序手册

目录 1、熟悉图纸 (2) 2、编写、上报、审批施工方案 (2) 3、现场考察 (2) 4、测量放样、撒白灰线 (3) 5、材料进场、取样检测 (3) 6、土方开挖 (4) 7、边坡修整与验收 (4) 8、土钉成孔与验收 (5) 9、钢筋绑扎与验收 (7) 10、土钉孔注浆与验收 (9) 11、喷锚与验收 (10) 12、锚杆成孔 (13) 13、钢绞线长度检查 (14) 14、张拉机具 (15) 15、千斤顶安装 (16) 16、张拉施工 (16) 17、成型锚杆 (16) 18、土钉墙施工易出现问题的工序及预防措施 (17)

1、熟悉图纸 2、编写、上报、审批施工方案 3、现场考察 认真审阅施工图纸和有关设计文件,相关施工规范和验收标准;参加图纸会审,提前发现各专业图纸矛盾和冲突,并协助设计院在施工前进行解决;按照流程手册及时办理工程中出现的变更、洽商,并及时提交正式文件给预算部和资料室;参加变更、洽商交底会。本工程适用规范:《锚杆喷射混凝土支护技术规范》GB50086-2001、《建筑基坑支护技术规程》JGJ 120-2012、《建筑地基基础工程施工质量验收规范》GB50202-2002。 编写施工方案,经公司、监理审核通过,上报审批并归档。同时,对批复完成的方案对项目部管理人员进行交底;根据施工方案编写工序作业交底,交底给施工队伍。 开工前考察施工现场,选择开工作业面,做好人员、材料、机械的进场等准备工作。

4、测量放样、撒白灰线 5、材料进场、取样检测 根据设计图纸,按照施工方案,对现场进行测量放样。 对进场原材料(钢筋、钢绞线)进行取样检验,取样时通知监理旁站。试验合格后,通知监理、技术人员、施工工长、施工队伍原材料可用。 对进场材料(砂、碎石)进行取样检验,取样时通知监理旁站。

基坑支护方案(土钉墙,详细计算)..

第一章基坑边坡计算 一、工程概况 (一)土质分布情况 ①1杂填土(Q4ml):由粉质粘土混较多的碎砖、碎石子等建筑垃圾及生活垃圾组成。层厚0.50~4.80米。 ①2素填土(Q4ml):主要由软~可塑状粉质粘土夹少量小碎石子、碎砖组成。层厚0.40~2.90米。 ①3淤泥质填土(Q4ml):。主要为原场地塘沟底部的淤泥,后经翻填。分布无规律,局部分布。层厚0.80~2.30米。 ②1粉质粘土(Q4al):可塑,局部偏软塑,中压缩性,切面稍有光泽,干强度中等,韧性中等,土质不均匀,该层分布不均,局部缺失。层顶标高5.00~13.85米,层厚0.50~8.20米。 ②2粉土夹粉砂(Q4al):中压缩性,干强度及韧性低。夹薄层粉砂,具水平状沉积层理,单层厚1.0~5.0cm,局部富集。该层分布不均匀,局部缺失。层顶标高1.30~ 10.93米,层厚0.80~4.50米。 ②3含淤泥质粉质粘土(Q4al):软~流塑,高压缩性,干强度、韧性中等偏低。局部夹少量薄层状粉土及粉砂,层顶标高1.87~10.03米,层厚1.00~13.50米。 ②4粉质粘土(Q4al):饱和,可塑,局部软塑,中压缩性,层顶标高-8.30~7.27米,层厚1.10~14.60米。 ③1粉质粘土(Q3al):可~硬塑,中压缩性。干强度高,韧性高。含少量铁质浸染斑点及较多的铁锰质结核。该层顶标高-11.83~13.23米,层厚1.40~14.00米。 ③2粉质粘土(Q3al)可塑,局部软塑,中压缩性。该层顶标高-18.83~6.83米,层厚2.20~23.70米。 ④粉质粘土混砂砾石(Q3al):可塑,局部软塑,中偏低压缩性,干强度中等,韧性中等。该层顶标高-26.73~-10.64米,层厚0.50~6.50米。 (二)支护方案的选择 根据本工程现场实际情况,基坑各部位确定采取如下支护措施

土钉墙基坑支护方案

嘉和园三期(东)基坑支护 设 计 施 工 组 织 方 案 山西新大新基础工程有限公司

目录 一、工程概况 1、工程概况 2、场地工程地质条件 3、设计概况 二、编制依据 1、法律法规、规范标准 2、工程勘察资料 三、土钉喷射混凝土设计 1、设计原理 2、土钉设计 3、喷射混凝土面层设计 四、施工工艺流程及施工要点 1、施工工艺 2、施工流程及要点 五、施工总体部署 1、施工组织机构及人员配置 2、施工机械设备配置 六、质量保证措施 1、质量保证体系 2、技术管理 3、材料供应与管理

七、安全生产和文明施工 1、安全生产 2、文明施工 八、附图

第一章工程概况 1.1 工程概况 嘉和园三期工程拟建场地位于晋中市榆次区桥东街,场地地形较平坦,建设场地周边开阔,东侧围墙外有一条土路,西南侧为二层楼房(现甲方办公用),南侧距离基坑约15m为桥东街,北侧为工地围墙。 1.2 场地工程地质条件 (1)根据《嘉和园三期(东)工程岩土工程勘察报告》(详勘),本基坑支护范围内主要是湿陷性黄土,场地初见地下水位埋深在30.5―32.0m,类型为孔隙微承压水,主要补给来源为大气降水和侧向迳流,由东北向西南迳流排泄。 (2)本场地抗震设防烈度为8度,场地土类别为Ⅱ级湿陷性土,建筑场地类别Ⅲ类。 1.3 设计概况 基坑开挖深度约10.0m,本着既安全又经济的设计原则,根据《岩土工程勘察报告》(详勘)提供的数据,经过详细计算与多年的施工经验,本基坑采用土钉喷射混凝土法进行支护。 第二章编制依据 本专项设计方案编制依据包括以下内容: 2.1 法律法规、规范标准 (1)《建筑地基处理技术规范》(JGJ79-2012) (2)《建筑地基基础设计规范》(GB50007-2011)

土钉墙支护计算计算书

土钉墙支护计算书计算依据: 1、《建筑基坑支护技术规程》JGJ120-2012 2、《建筑施工计算手册》江正荣编著 3、《实用土木工程手册》第三版杨文渊编著 4、《施工现场设施安全设计计算手册》谢建民编著 5、《地基与基础》第三版 土钉墙需要计算其土钉的抗拉承载力和土钉墙的整体稳定性。 一、参数信息 1、基本参数 放坡参数:

K a1=tan2(45°- φ1/2)= tan2(45-18/2)=0.528; K a2=tan2(45°- φ2/2)= tan2(45-18/2)=0.528; K a3=tan2(45°- φ3/2)= tan2(45-12/2)=0.656; K a4=tan2(45°- φ4/2)= tan2(45-20/2)=0.49; 第1层土:0-1.2m(+0) H1'=[∑γ0h0]/γi=[0]/20=0m P ak1上=γ1H1'K a1-2c1K a10.5=20×0×0.528-2×12×0.5280.5=-17.439kN/m2 P ak1下=γ1(h1+H1')K a1-2c1K a10.5=20×(1.2+0)×0.528-2×12×0.5280.5=-4.767kN/m2 第2层土:1.2-2m(+0) H2'=[∑γ1h1]/γsati=[24]/20=1.2m P ak2上=[γsat2H2'-γw(∑h1-h a)]K a2-2c2K a20.5+γw(∑h1-h a)=[20×1.2-10×(1.2-1.2)]×0.528-2×12×0.52 80.5+10×(1.2-1.2)=-4.767kN/m2 P ak2下

施工图设计范本(土钉墙)

1.概况 1.1工程概况 受**委托,我院对其拟建**项目的基坑工程进行基坑支护施工图设计。 该基坑工程(未做基坑支护初步设计,直接进行基坑支护施工图设计)已由我院进行了基坑支护初步设计,并通过了基坑支护初步设计审查。 拟建的**工程位于**,地处(与主要道路的位置关系)。拟建工程由(建筑物层数、单体名称等)组成,拟采用**基础,持力层为**。拟建场地范围内(地下室分布范围),地下室长约**m,宽约** m,大体上呈**形状,基坑底边线要求距地下室外墙**m。 本工程±0.000相当于绝对标高**m,地下室底板设计标高为**--**m,根据主体设计单位介绍地下室底板厚度按**m考虑,因此基坑支护设计的基坑底标高暂定为**--**m。 现基坑周边场地标高为**--**m,大体呈北高南低,(基坑开挖前基坑周边一倍深度范围内场地标高应整平至**m),基坑深度为**--**m。 本基坑采用**结合**的支护结构型式,地下水控制采用**方式。1.2基坑周边环境条件 1.2.1基坑周边建(构)筑物概况 基坑**侧有**栋**层的**,地下室外边线距该楼**侧外墙线为**m,该楼系**年代修建,为**结构,有(无)**层地下室,其地下室底标高为**m,基础形式为**基础,基础底部(桩端)标高为**m(以下),该楼

目前处于正常使用状态(待拆无人居住)。 基坑**侧无任何建(构)筑物。 人防设施情况的说明。 1.2.2基坑周边地下管线概况 基坑**侧距地下室外边线约**m处分布有正在使用的(废弃的)**线,其走向为**向,埋深**m,。 基坑**侧,**楼*侧外墙**m范围内,分布有**等地下管线,向为**向,埋深**m。 1.2.3 基坑周边道路概况 基坑**侧距地下室外边线约**m为市政(小区)道路。 1.2.4 基坑周边地形概况 地下室外边线3倍距离内地形基本平坦,标高变化在**-**。 基坑**侧地形起伏较大,为一**,标高变化在**-**。 基坑**侧有一(地表水体),距地下室外边线**m,水深**m。 1.2.5基坑周边环境详见《基坑周边环境条件图》。基坑周边环境(管线、建筑物基础等)尚有**不明,对尚未查明的周边环境条件(管线、建筑物基础等),施工前应进一步查清后方可后开始施工,必要时须变更设计。 2.设计依据 2.1技术标准 1)《建筑地基基础设计规范》GB50007-2002 2)《建筑基坑支护技术规程》JGJ120-99

土钉墙支护计算计算书

土钉墙支护计算书 本计算书参照《建筑基坑支护技术规程》JGJ120-99中国建筑工业出版社出版 《建筑施工计算手册》江正荣编著中国建筑工业出版社、《实用土木工程手册》 第三版杨文渊编著人民教同出版社、《地基与基础》第三版中国建筑工业出版社、《土力学》等相关文献进行编制。 土钉墙需要计算其土钉的抗拉承载力和土钉墙的整体稳定性。 一、参数信息: 1、基本参数: 侧壁安全级别:二级 基坑开挖深度h(m): 7.700; 土钉墙计算宽度b'(m): 15.00; 土体的滑动摩擦系数按照tan计算,?为坡角水平面所在土层内的内摩擦角;条分块数:10; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m): 15.000; 基坑内侧水位到坑顶的距离(m): 15.000; 2、荷载参数: 序号类型面荷载q(kPa)荷载宽度b0(m)基坑边线距离b1(m) 1 满布 2.00 -- -- 3、地质勘探数据如下::

4、土钉墙布置数据: 放坡参数: 序号放坡高度(m) 放坡宽度(m) 平台宽度(m) 1 7.70 2.54 12.00 土钉参数: 序号孑L径 (mm) 长度(m) 入射角(度) 竖向间距(m)水平间距(m) 1 120.00 4.00 15.00 1.50 2.00 2 120.00 7.00 15.00 1.50 2.00 3 120.00 5.00 15.00 1.50 2.00 、土钉(含锚杆)抗拉承载力的计算 单根土钉受拉承载力计算,根据《建筑基坑支护技术规程》JGJ 120-99, R=1.25 0T jk 1、其中土钉受拉承载力标准值T jk按以下公式计算: T jk= Z e k S xj S Zj/COS ja 其中 Z --荷载折减系数 ea jk --土钉的水平荷载 S xj、S zj --土钉之间的水平与垂直距离 a --土钉与水平面的夹角 按下式计算: Z =tan[Q(H)/2](1/(tan(( k)/2+-1/tan B )角加° ? /2) 其中/-土钉墙坡面与水平面的夹角。 ?-土的内摩擦角 e ajk按根据土力学按照下式计算:

土钉墙基坑支护方案[优秀工程方案]

嘉和园三期(东)基坑支护 设 计 施 工 组 织 方 案 山西新大新基础工程有限公司

目录 一、工程概况 1、工程概况 2、场地工程地质条件 3、设计概况 二、编制依据 1、法律法规、规范标准 2、工程勘察资料 三、土钉喷射混凝土设计 1、设计原理 2、土钉设计 3、喷射混凝土面层设计 四、施工工艺流程及施工要点 1、施工工艺 2、施工流程及要点 五、施工总体部署 1、施工组织机构及人员配置 2、施工机械设备配置 六、质量保证措施 1、质量保证体系 2、技术管理 3、材料供应与管理

七、安全生产和文明施工 1、安全生产 2、文明施工 八、附图

第一章工程概况 1.1 工程概况 嘉和园三期工程拟建场地位于晋中市榆次区桥东街,场地地形较平坦,建设场地周边开阔,东侧围墙外有一条土路,西南侧为二层楼房(现甲方办公用),南侧距离基坑约15米为桥东街,北侧为工地围墙. 1.2 场地工程地质条件 (1)根据《嘉和园三期(东)工程岩土工程勘察报告》(详勘),本基坑支护范围内主要是湿陷性黄土,场地初见地下水位埋深在30.5―32.0米,类型为孔隙微承压水,主要补给来源为大气降水和侧向迳流,由东北向西南迳流排泄. (2)本场地抗震设防烈度为8度,场地土类别为Ⅱ级湿陷性土,建筑场地类别Ⅲ类. 1.3 设计概况 基坑开挖深度约10.0米,本着既安全又经济的设计原则,根据《岩土工程勘察报告》(详勘)提供的数据,经过详细计算与多年的施工经验,本基坑采用土钉喷射混凝土法进行支护. 第二章编制依据 本专项设计方案编制依据包括以下内容: 2.1 法律法规、规范标准 (1)《建筑地基处理技术规范》(JGJ79-2012) (2)《建筑地基基础设计规范》(GB50007-2011)

土钉墙支护方案

一、编制依据 序号规程、规范名称类别编号 1《建筑地基基础设计规范》 国 家GB50007-200 2 2《岩土工程勘察规范》 国 家GB50021-200 2 3《工程测量规范》 国 家GB50026-200 7 4《建筑边坡工程技术规范》 国 家GB50330-200 2 5《建筑地基处理技术规范》 行 业 JGJ79-2002 6《建筑基坑支护技术规程》 地 方DB11/464-20 07 7 《建筑地基与基础工程施工质量验收规范》 国 家 GB50202-200 2 二、工程概况 工程名称:湾里区第三轮旧城改造项目5#地块 建设单位:南昌市湾里区城市建设投资发展有限责任公司 勘察单位:北京中核大地矿业勘查开发有限公司: 设计单位:浙江展诚建筑设计有限公司 施工单位:南昌市第三建设工程有限责任公司 监理单位:江西中昌工程咨询监理有限公司 拟建“湾里第三轮棚户区(城中村)改造005地块”工程位于南昌市湾里区,招磨一路北侧,磨盘山北路西侧,占地约78.82亩。由4

栋18层建筑物、6栋17层建筑物,8栋11层建筑物和2栋9层建筑物及其裙房,1栋1层社区用房。地上建筑面积124469平米,地下室1层,开挖深度约4.5米,建筑面积约32626平米。 本工程总建筑面积约158015m2,其中地上建筑面积约为 124051m2,住宅建筑面积约为114590 m2,商业建筑面积:8330 m2,物业建筑面积324 m2,社区用房建筑面积:805 m2,地下车库建筑面积:33964.20 m2 基坑四周暂无影响施工管线。 三、施工部署 我方将土钉墙一次性进行混凝土支护工作。 项目管理组织机构 根据同类工程施工经验,为保证按期保质完工,我们将严格按照 既定的施工计划,合理安排施工,合理安排机械设备和劳动力计划,监督落实计划中每个节点的实际完成情况,认真分析影响施工进度的各种因素,并及时制定出相应有效措施,确保工程工期目标和质量目标的实现。 为此,本工程特配备了优秀而富有施工经验的工程管理及技术人 员,以保证工期,保证质量。工程项目管理组织机构见下图: 项目管理组织机构 劳动计划 劳动力需要量按施工的不同阶段进行安排。开工后,进场4人进 行场地平整及边坡测量放线等准备工作。 支护 生产、技术管理人员:1人;设备操作人员:3人;壮工:8人; 电工:1人;钢筋工:2人。 四、基坑支护设计方案 本工程挖土深度为4米左右,主要土层是近淤泥状土层,考虑周

土钉墙支护施工方案(仅供参考)

土钉墙支护施工方案 一、工程概况 二、土钉墙工艺简介 土钉墙支护随基坑逐层开挖,逐层进行支护,直至坑底,施工时在基坑开挖坡面,用洛阳铲人工成孔或机械成孔,孔内放锚杆并注入水泥浆,在坡面安装钢筋网,喷射强度等级不低于 C20的混凝土,使土体、土钉锚杆及喷射混凝土面层结合,为深基坑土钉支护。其技术原理是利用岩土介质的自承能力,借助土钉与周围土体的摩擦力和粘聚力,将不稳定土体和深部稳定土层连在一起形成稳定的组合体,土钉端与钢筋网相互连接,之后喷射混凝土,土钉与土体形成复合体,提高了边坡整体稳定和承受坡顶超载能力,增强土体破坏延性,改变边坡突然坍方性质。有利于安全施工,由于该技术具有施工简便、灵活机动、适用性强、隔水防渗等优点,近年来在我国的应用日益广泛,在《建筑基础工程技术政策(1996~2010)》中,被列为积极开发的支护技术。 三、施工组织 健全施工组织机构是保证施工质量和进度的关键,工程实行项目管理,管理人员应履行各自职责。 加强组织管理,根据工程需要实行例会制。施工班组由具有丰富施工经验的劳务队组成,劳动力合理调整,确保各阶段施工人员及时到位。 作业层施工人员组成情况见附表1。 施工人员组成情况表(附表1)

四、主要施工机械设备 主要施工机械设备表(附表2) 五、工艺流程及施工方法 从保证工程质量的重要性来看土钉墙施工是关键环节,其特点表现为作业时间长,施工难度大,受土体影响大。施工应根据土方开挖情况进行。开挖一步,支护一步,直至基坑底。施工前设置位移观测点,施工期间应连续观测,直至施工完毕。 根据本工程具体情况,基槽开挖深度为5.2米,距基槽边外500mm有一处原有建筑物,该建筑物为地上单层,高 3.6m,在计算时按满面荷载进行考虑,考虑荷载为静荷载,荷载为10KPa。基槽开挖时,第一步先开挖2米深,然后进行第一步支护,然后逐步进行开挖及支护工作。 1、工艺流程:

土钉墙支护标准

深基坑土钉墙基坑支护施工工法 企业工法编号: 完成单位: 主要完成人: 1 .前言 本公司开发的高层,地下两层为车库,深基坑开挖9.8m,根据安全的要求必须进行基坑支护,本工程宜采用连续墙加内支撑、排桩加管式旋喷水泥土锚杆、排桩加预应力锚索、复合土钉墙支护等几种方案基坑土钉墙支护是近年来发展起来用于土体开挖和边坡稳定的一种挡土结构,由于其具有造价低、施工快、能适应复杂地质条件下的基坑支护,且性能可靠等优势,本工艺在本地有成功的工程使用经验,通过对工程实践总结,形成本工法。 2 . 工法特点 2.1土钉墙支护可与土方开挖流水施工,施工周期短。 2.2 分层开挖,分层支护,充分发挥土体的自稳定作用,可在开挖后及时进行土体封闭,使边坡位移和变形得到约束限制,有利于减少对周围建筑物的影响。 2.3 施工工艺简单,施工过程安全可靠,土钉的制作与成孔简单易行,可以根据工程的勘察报告和现场监测的变形数据及特殊情况,及时进行设计变更,以利于适应突遇地下水和基坑变形等复杂因素的影响。

3.适用X围 本工法适用于建筑边坡高度不大于12m(软土基坑开挖深度不大于5m),邻近无高大建筑物、构筑物、重要交通干线不宜在雨季汛期施工。 4 .工艺原理 在土体中设置土钉,其排列成空间骨架,形成了能提高原位土强度、刚度与稳定性的复合土体。系由密集的锚杆、被加固的原位土体、喷射细石混凝土面层和必要的防水系统组成支护体系,与土体共同承担荷载,起约束变形的作用。 5 . 施工工艺流程及操作要点 5.1 施工工艺流程 5.2 操作要点 5.2.1施工准备 1. 认真学习: 《工程的勘察报告》

《岩土工程勘察规X》(GB50021-2001) 《建筑地基基础设计规X》(GB50007-2002) 《混凝土结构设计规X》(GB50010-2002) 《建筑地基处理技术规X》(JGJ79-2002) 《建筑基坑支护技术规程》(JGJ120-99) 《预应力筋用锚具、夹具和连接器应用技术规程》(JGJ185-2002) 《岩土锚杆(索)技术规程》(CECS22-2005) 《基坑土钉支护技术规程》(CECS22 96:97) 等相关标准、规X,熟悉设计图纸,了解地下障碍物、管线位置。 2. 根据设计文件和设计图纸、施工合同及现场情况编写施工组织设计,根据《XX省建筑工程安全专项施工方案编制审查与专家论证暂行办法》进行论证。 3. 准备好施工机具设备,并检查设备运转情况,确保能正常使用,并对施工机具进行及时检测。 4. 做好材料进场的检验与混凝土、水泥浆的试配工作。 5.做好突遇地下水,安排轻型井点降水。 6.设置四个沉降观测点,对周围的建筑物和构筑物进行沉降观测。 7.建立健全突发应急救援预案,应对突发事件,并演练两次以上。 5.2.2开挖修坡 1. 土钉支护的土方应分层分段开挖,每层开挖深度一般为2m,每段长度可取18m。具体依据设计文件的分层深度和分段距离。应

土钉墙支护计算计算书

土钉墙支护计算书 永昌县同人商贸影视城工程;属于框架;地上5层;地下1层;建筑高度:32m;标准层层高:4.5m ;总建筑面积:17590平方米;总工期:500天;施工单位:金昌市隆凯建筑安装工程有限公司 本工程由永昌县万安房地产开发有限公司投资建设,华诚博远(北京)建筑规划设计有限公司设计,兰州岩土华夏有限公司勘察,金昌恒业建设工程监理有限公司监理,金昌市隆凯建筑安装工程有限公司组织施工;由李玉龙担任项目经理,张得文担任技术负责人。 本计算书参照《建筑基坑支护技术规程》 JGJ120-2012 中国建筑工业出版社出版《建筑施工计算手册》江正荣编著中国建筑工业出版社、《实用土木工程手册》第三版杨文渊编著人民教同出版社、《地基与基础》第三版中国建筑工业出版社、《土力学》等相关文献进行编制。 土钉墙需要计算其土钉的抗拉承载力和土钉墙的整体稳定性。 一、参数信息: 1、基本参数: 侧壁安全级别:一级 基坑开挖深度h(m):10.000; 土钉墙计算宽度b'(m):30.00; 土体的滑动摩擦系数按照tanφ计算,φ为坡角水平面所在土层内的内摩擦角; 条分块数:20; 不考虑地下水位影响; 2、荷载参数: 序号类型面荷载q(kPa) 基坑边线距离b 0(m) 宽度b 1 (m) 1 满布 15.00 -- --3、地质勘探数据如下::

序号土名称土厚度坑壁土的重度γ 坑壁土的内摩擦角φ 内聚力C 极限摩擦阻力饱和重度 (m) (kN/m3) (°) (kPa) (kPa) (kN/m3) 1 杂填土 1.60 18.00 30.00 15.00 112.00 1.00 2 角砾层 2.6 19.00 30.00 5.50 112.00 1.00 3 粉砂 2.30 19.50 30.50 30.00 112.00 20.00 4 角砾 1.40 21.50 37.50 12.50 112.00 1.00 放坡参数: 序号放坡高度(m) 放坡宽度(m) 平台宽度(m) 1 9.00 4.00 30.00 土钉数据: 序号孔径(mm) 长度(m) 入射角(度) 竖向间距(m) 水平间距(m) 1 50.00 9.00 15.00 1.40 1.50 2 50.00 9.00 15.00 1.40 1.50 3 50.00 7.00 15.00 1.40 1.50 4 50.00 7.00 15.00 1.40 1.50 5 50.00 7.00 15.00 1.40 1.50 6 50.00 7.00 15.00 1.40 1.50 7 50.00 7.00 15.00 1.40 1.50 二、土钉(含锚杆)抗拉承载力的计算: 单根土钉受拉承载力计算,根据《建筑基坑支护技术规程》JGJ 120-2012, R=1.25γ 0T jk 1、其中土钉受拉承载力标准值T jk 按以下公式计算: T jk =ζe ajk s xj s zj /cosα j 其中ζ--荷载折减系数 e ajk --土钉的水平荷载 s xj 、s zj --土钉之间的水平与垂直距离

东兴寺立交桥3号墩老拱座后背基坑土钉墙支护计算书解析

东兴寺立交桥3号墩老拱座后背基坑 土钉墙支护计算书 计算依据: 1、《建筑基坑支护技术规程》JGJ120-2012 2、《建筑施工计算手册》江正荣编著 3、《实用土木工程手册》第三版杨文渊编著 4、《施工现场设施安全设计计算手册》谢建民编著 5、《地基与基础》第三版 土钉墙需要计算其土钉的抗拉承载力和土钉墙的整体稳定性。 一、参数信息: 1、基本参数: 侧壁安全级别:一级 基坑开挖深度h(m):10.200; 土钉墙计算宽度b'(m):38.00; 土体的滑动摩擦系数按照tanφ计算,φ为坡角水平面所在土层内的内摩擦角; 条分块数:10; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m):9.400; 基坑内侧水位到坑顶的距离(m):10.200; 2、荷载参数: 序号类型面荷载q(kPa) 荷载宽度b0(m) 基坑边线距离b1(m) 1 局布 2.00 3 2 3、地质勘探数据如下::

4、土钉墙布置数据: 放坡参数: 序号放坡高度(m) 放坡宽度(m) 平台宽度(m) 1 5.81 5.81 4.00 2 4.39 0.01 0.01 土钉参数: 序号孔径(mm) 长度(m) 入射角(度) 竖向间距(m) 水平间距(m) 1 120.00 12.00 20.00 1.50 2.00 2 120.00 13.00 20.00 1.50 2.00

3 120.00 15.00 20.00 1.50 2.00 二、土钉(含锚杆)抗拉承载力的计算: 单根土钉受拉承载力计算,根据《建筑基坑支护技术规程》JGJ120-2012,R=1.25γ0T jk 1、其中土钉受拉承载力标准值T jk按以下公式计算: T jk=ζe ajk s xj s zj/cosαj 其中ζ--荷载折减系数 e ajk--土钉的水平荷载 s xj、s zj--土钉之间的水平与垂直距离 αj--土钉与水平面的夹角 ζ按下式计算: ζ=tan[(β-φk)/2](1/(tan((β+φk)/2))-1/tanβ)/tan2(45°-φ/2) 其中β--土钉墙坡面与水平面的夹角。 φ--土的内摩擦角 e ajk按根据土力学按照下式计算: e ajk=∑{[(γi×s zj)+q0]×K ai-2c(K ai)1/2} 2、土钉抗拉承载力设计值T uj按照下式计算 T uj=(1/γs)πd nj∑q sik l i 其中d nj--土钉的直径。 γs--土钉的抗拉力分项系数,取1.3 q sik--土与土钉的摩擦阻力。根据JGJ120-99 表6.1.4和表4.4.3选取。 l i--土钉在直线破裂面外穿越稳定土体内的长度。 第1号土钉钢筋的直径ds至少应取:5.956 mm; 第2号土钉钢筋的直径ds至少应取:21.601 mm;

土钉墙基坑支护设计

深基坑工程支护设计》 —基坑土钉支 护

四川建院土木系地质教研室二0 一四年六月

目录 1.土钉墙支护设计理论 2.基坑土钉墙支护设计任务书 3.基坑土钉墙支护设计指导书 4.本次设计的相关资料

1.土钉墙支护设计理论 1?1概述 1.1.1基坑支护的作用 基坑开挖后,形成临空面,在基坑土体自身重量、地表荷载、地下水渗透作用下,可能产生破坏或过大变形,危及基础施工或周围建筑物的安全,因此,须对基坑侧壁采取一定的措施进行支护。 1.1.2土钉墙及土钉的定义、支护原理 土钉墙:由土钉、被加固的土体、面层组成的支护结构。土钉墙支护在某些施工企业也称为喷锚支护。其组成如图 1.1.2-1所示: 图1.1.2-1 土钉墙剖面示意图 土钉:用来加固、锚固现场原位土体的细长杆件。通常采用土中钻孔,置入变形钢筋,并沿孔全长注浆的方法做成。土钉依靠与土体之间的界面粘结力或摩擦力,在土体发生变形的条件下被动受力,并主要承受拉力作用。土钉也可用钢 管、角钢直接击入土中,并全长注浆的方法做成。 面层:在土钉端部沿水平方向及竖向焊接加强钢筋,在加强钢筋上焊接分布 钢筋,再喷射混凝土制作而成。 加固原理:基坑临空面形成后,侧壁土体有向临空面位移的趋势,及沿某一潜在破坏面破坏的趋势,置入土钉后,土钉承受了由周围土体及面层传递过来的土压力,把土压力传递至稳定的土层中去,从而阻止了侧壁土体向基坑方向的位移;土钉加固土体使土体强度提高,并由于土钉的拉力,使潜在破坏面上的法向应力增大,因而摩擦力增大,阻止基坑侧壁沿某一潜在破坏面破坏。 1.1.3 土钉墙的适用条件 1?基坑侧壁安全等级宜为二、三级的非软土场地(基坑侧壁安全等级根据侧壁破坏后果的严重程度划分)。 2.基坑深度不宜大于12m。 3 ?当地下水位高于坑底面时,应采取降水或截水措施。 当土质较差,且基坑边坡靠近重要建筑设施,需要严格控制支护变形时,宜开挖前先沿基坑边缘设置密排的竖向微型桩(见图1.1.3-1),其间距不宜大于1m,深入基坑底部1~3m。微型桩可用无缝钢管或焊管,直径48~150 m,管壁上应设 置出浆孔。小直径的钢管可分段在不同挖深处用击打方法置入并注浆;较大直径

土钉墙支护施工方案52580

第一节、土钉墙支护施工方案 一、适用范围 本土钉墙支护工程施工方案需要经过论证后实施。 土钉墙由密集的土钉群、被加固的原位土体、喷射的混凝土面层和必要的防水系统组成。土钉墙支护工程的适用范围如下: (1)深度不大于12m的基坑支护或边坡加固,应用期限不宜超过18个月。 (2)基坑侧壁安全等级为二、三级。 二、施工准备 (一)材料要求 1、土钉钢筋宜采用HRB335、HRB400钢筋,钢筋直径宜为l6~32mm。使用前应调直、除锈、除油; 2、优先使用强度等级为P·032.5的普通硅酸盐水泥; 3、采用干净的中粗砂,含泥量应小于5%; 4、使用速凝剂时,应做与水泥的相容性试验及水泥浆凝结效果试验; 5、钢筋网,钢筋直径宜为6~10mm,间距宜为150~300mm。 (二)主要机具 1、成孔机具 一般宜选用体积较小、重量较轻、装拆移动方便的机具。常用有锚杆钻机、地质钻机、洛阳铲。在易塌孔的土体钻孔时宜采用套管成孔或挤压成孔设备。 2、灌浆机具设备 注浆设备有注浆泵、灰浆搅拌机等,其规格、压力和输浆量应满足施工要求。 3、混凝土喷射机具 混凝土喷射机具有z-5混凝土喷射机和空压机等。 (三)作业条件 1、有齐全的技术文件和完整的施工方案,并已进行技术交底。 2、进行场地平整,拆迁施工区域内的报废建筑物和挖除工程部位地面以下3m内的障碍物,施工现场应有可使用的水源和电源。在施工区域内已设置临时设施并修建施工便道及排水沟,各种施工机具已运到现场,且安装维修试运转正常。 3、已进行施工放线,土钉孔位置、倾角已确定;各种备料和配合比及焊接强度经试验可满足设计要求。 (四)土钉墙设计及构造应符合下列规定: 1、土钉墙墙面坡度不宜小于1:0.1。 2、土钉必须和面层有效连接,应设置承压板或加强钢筋等构造措施,承压板或加强钢筋应与土钉螺栓连接或钢筋焊接连接。 3、土钉的长度宜为开挖深度的0.5~1.2倍,间距宜为l~2m,呈梅花形或正方形布置,与水平面夹角宜为5°~200° 4、土钉钢筋宜采用HRB33 5、HRB400级钢筋,钢筋直径宜为l6~32mm,钻孔直径宜为70~150mm。 5、注浆材料宜采用水泥浆或水泥砂浆,其强度等级不宜低于Ml0。 6、喷射混凝土面层宜配置钢筋网,钢筋直径宜为6~10mm,间距宜为150~300mm;喷射混凝土强度等级不宜低于C20,面层厚度不宜小于

土钉墙基坑支护设计说明

《深基坑工程支护设计》 —基坑土钉支护 四川建院土木系地质教研室 二0一四年六月

目录 1.土钉墙支护设计理论 2.基坑土钉墙支护设计任务书 3.基坑土钉墙支护设计指导书 4.本次设计的相关资料

1.土钉墙支护设计理论 1.1概述 1.1.1 基坑支护的作用 基坑开挖后,形成临空面,在基坑土体自身重量、地表荷载、地下水渗透作用下,可能产生破坏或过大变形,危及基础施工或周围建筑物的安全,因此,须对基坑侧壁采取一定的措施进行支护。 1.1.2 土钉墙及土钉的定义、支护原理 土钉墙:由土钉、被加固的土体、面层组成的支护结构。土钉墙支护在某些施工企业也称为喷锚支护。其组成如图1.1.2-1所示: 图1.1.2-1 土钉墙剖面示意图 土钉:用来加固、锚固现场原位土体的细长杆件。通常采用土中钻孔,置入变形钢筋,并沿孔全长注浆的方法做成。土钉依靠与土体之间的界面粘结力或摩擦力,在土体发生变形的条件下被动受力,并主要承受拉力作用。土钉也可用钢管、角钢直接击入土中,并全长注浆的方法做成。 面层:在土钉端部沿水平方向及竖向焊接加强钢筋,在加强钢筋上焊接分布钢筋,再喷射混凝土制作而成。 加固原理:基坑临空面形成后,侧壁土体有向临空面位移的趋势,及沿某一潜在破坏面破坏的趋势,置入土钉后,土钉承受了由周围土体及面层传递过来的土压力,把土压力传递至稳定的土层中去,从而阻止了侧壁土体向基坑方向的位移;土钉加固土体使土体强度提高,并由于土钉的拉力,使潜在破坏面上的法向应力增大,因而摩擦力增大,阻止基坑侧壁沿某一潜在破坏面破坏。 1.1.3 土钉墙的适用条件 1.基坑侧壁安全等级宜为二、三级的非软土场地(基坑侧壁安全等级根据侧壁破坏后果的严重程度划分)。 2.基坑深度不宜大于12m。 3.当地下水位高于坑底面时,应采取降水或截水措施。 当土质较差,且基坑边坡靠近重要建筑设施,需要严格控制支护变形时,宜开挖前先沿基坑边缘设置密排的竖向微型桩(见图1.1.3-1),其间距不宜大于

土钉墙基坑支护施工方案

深基坑支护专项施工方案 一、工程概况 本工程由武汉海天实业集团有限公司投资兴建,中冶南方工程技术有限公司设计,位于武汉市沌口经济开发区4号地。该工程南面紧临珠山湖大道,北临海天幸福小城一期住宅小区,东临海天路。 本工程为地上18层,地下1层,地上一层为小型商铺,二层及以上为住宅。地下室为平战结合人防地下室,平时主要用作车库。总建筑面积为33693。80m2,其中商业2751 m2,住宅30942.8m2,建筑首层面积2524.7 m2 ,人防面积2585.5 m2,建筑总高度为55.7m。建筑层高:地下一层为3.6m。主体结构1层层高为4.4 m,主体结构2层至18层层高为3.0m。楼内设楼梯3部,电梯6部,其中客梯兼消防楼梯3部。 本工程结构类型为框架剪力墙体系,基础类型为人工挖孔桩基础;屋面采用有组织内排水,±0.000相当于绝对标高27.900m。框架剪力墙抗震等级:框架为四级,抗震墙为三级。建筑结构安全等级二级,抗震设防类别为丙类建筑,抗震设防烈度为六度。建筑结构的类别为1类,结构设计使用年限为50年。防火设计的建筑分类为二类高层,其耐火等级地下为一级,地上为二级。屋面防水等级为Ⅱ级,防水层耐用年限15年,地下室防水等级为2级,地下室人防等级六级。本工程建筑场地类别为Ⅱ类场地,场地土类型为中软场地土,地基基础设计等级为甲级。 二、基坑支护方案 本工程人防地下室基坑开挖深度大部标高为-4.0m,基坑开挖采用机械与人工相结合的方式进行开挖,基坑支护采用土钉墙护壁方式,并分两个阶梯进行土钉墙护壁处理。依据现场地下水情况,并参照周围环境情况,按照放坡坡度施工要求进行两级阶梯土钉墙护壁施

(完整版)土钉墙+挂网喷浆基坑支护施工工艺流程

土钉墙+挂网喷浆基坑支护 施工工艺流程 本工程分两层开挖,第一层挖土深度自然地坪下挖3m,采用放坡(1:0.3)+土钉墙的支护方法,坡顶设一排1m长摩擦锚杆,土钉墙共设3排土钉,长度分别为6m、4.5m、4.5m。土钉采用Φ25钢筋,梅花形布置,喷射砼设计强度C20,设计配比为水泥:砂:碎石=1:2:2(重量比),喷射厚度为:100mm,水灰比0.45~0.55网片采用Φ6.5钢筋,间距(双向)150mm×150mm,加强筋采用Φ16钢筋,菱形布置在土钉端部。 1、工艺流程: ┌→─钉杆制作─┐ 修理边坡─┴→─造孔──┴→土钉杆安设─→注浆→挂网→钉头固定→喷射砼 2、土钉造孔要求 (1)必须对开挖出的边坡进行人工修整,确保边坡的平整度,待监理验收后方进行下一道工序的施工。 (2)本工程采用人工成孔,孔直径130mm,孔深宜大于设计孔深100mm,成孔倾角约15度。 3、土钉制作安装 (1)土钉采用φ25钢筋。 (2)土钉杆接头应采用焊接的搭接接头,焊接必须符合规范要求。 (3)土钉杆体应沿土钉轴线方向每隔1.5米设置一个居中支架,居中支架采用φ6.5 HPB235钢筋制作,并将用作居中支架的钢筋弯成弧形与土钉杆焊接。 (4)土钉孔造好后应尽快放置土钉,土钉放入前应认真检查杆体质量。 4、注浆:水泥浆液采用P.C32.5级普通硅酸盐水泥,水灰比0.45~0.55,注浆压力0.4~0.5MPa。注浆注意事项如下: (1)浆液应随搅随用,并在初凝前用完。注浆作业开始时,应先用水或稀水泥浆循环注浆系统1~2min,确保注浆时浆液畅通。 (2)注浆完毕,当浆液硬化后,若发现浆液没有充满土钉孔时,应进行补浆,浆体初凝前需补浆1~2次。

土钉墙支护计算说明书

土钉墙支护计算书 一、计算依据 1、《建筑基坑支护技术规程》JGJ120-2012 2、《建筑施工计算手册》江正荣编著 3、《实用土木工程手册》第三版杨文渊编著 4、《施工现场设施安全设计计算手册》谢建民编著 二、计算参数

1 2 土钉参数 序号 直径d(mm) 长度 l(m) 入射角α(°) 横向间距Sx(m) 竖向间距Sz(m) 土钉杆体材料 杆体截面积As(mm 2) 抗拉强度标准值 fyk(N/mm 2) 抗拉强度设计值 fy(N/mm 2) 1 2 120 120 6 7 15 15 1 1 1.5 3 钢筋 钢管 314 314 400 400 360 360 三、土钉承载力计算 1、主动土压力计算 剖面图

1)主动土压力系数 Kai=tan2(45°- φi/2) 第1层土: K a1=tan2(45°-18/2)=0.527864 第2层土: K a2=tan2(45°-12/2)=0.65575 第3层土: K a3=tan2(45°-20/2)=0.490291 2)土压力、地下水产生的水平荷载 各层土所受的土压力: (1)地表处: P ak1上=qK a1-2c1K a10.5=10*0.527864-2*12*0.5278640.5=-12.1584kN/m2 (2)第2层土: P ak2上=(q+γ1*h1)K a1-2c1K a10.5=46*0.527864-2*12*0.5278640.5=6.84473kN/m2 P ak2下=(q+γ1*h1)K a2-2c2K a20.5=46*0.65575-2*10*0.655750.5=13.9688kN/m2 (3)第3层土: P ak3=(q+γ1*h1+γ2*h2)K a2-2c2K a20.5=112*0.65575-2*10*0.655750.5=57.2483kN/m2 3)水平荷载 (1)第1层土: E ak1=h1P ak1b a/1=2*-12.1584*1/1=-24.3168kN (2)第2层土: E ak2=h2(P ak2上+P ak2下)b a/2=2*(6.84473+13.9688)*1/2=20.8136kN

相关文档
相关文档 最新文档