文档库 最新最全的文档下载
当前位置:文档库 › 常用的泰勒公式

常用的泰勒公式

常用的泰勒公式
常用的泰勒公式

常用的泰勒公式

常见函数的麦克劳林公式

()2

2!

21x o x

x e x +++=

()()2

2

!

21ln x o x x x +-=+

()()()2

2

!

2111x o x a a ax x a

+-++=+

()4

4

2!4!21cos x o x x x ++-=

()3

3

!

3sin x o x x x +-=

()3

3

!

3arcsin x o x x x ++= ()3

3

3

tan x o x x x ++=

()3

3

3

arctan x o x x x +-=

泰勒公式(一般形式):

()()()()()()()()()()[

]

n n n x x o x x n x f x x x f x x x f x f x f 0002

00000!

2-+-+???+-''+-'+=

运用泰勒公式计算极限的基本步骤:

展开、整理、替换(当多个无穷小相加时,抓住起主导作用的那一项)

常用泰勒公式

简介 在数学上, 一个定义在开区间(a-r, a+r)上的无穷可微的实变函数或复变函数f的泰勒级数是如下的幂级数 这里,n!表示n的阶乘而f(n)(a) 表示函数f在点a处的n阶导数。如果泰勒级数对于区间(a-r, a+r)中的所有x都收敛并且级数的和等于f(x),那么我们就称函数f(x)为解析的。当且仅当一个函数可以表示成为幂级数的形式时,它才是解析的。为了检查级数是否收敛于f(x),我们通常采用泰勒定理估计级数的余项。上面给出的幂级数展开式中的系数正好是泰勒级数中的系数。 如果a = 0, 那么这个级数也可以被称为麦克劳伦级数。 泰勒级数的重要性体现在以下三个方面:首先,幂级数的求导和积分可以逐项进行,因此求和函数相对比较容易。第二,一个解析函数可被延伸为一个定义在复平面上的一个开片上的解析函数,并使得复分析这种手法可行。第三,泰勒级数可以用来近似计算函数的值。 对于一些无穷可微函数f(x) 虽然它们的展开式收敛,但是并不等于f(x)。例如,分段函数f(x) = exp(?1/x2) 当x≠ 0 且f(0) = 0 ,则当x = 0所有的导数都为零,所以这个f(x)的泰勒级数为零,且其收敛半径为无穷大,虽然这个函数f仅在x = 0 处为零。而这个问题在复变函数内并不成立,因为当z沿虚轴趋于零时 exp(?1/z2) 并不趋于零。 一些函数无法被展开为泰勒级数因为那里存在一些奇点。但是如果变量x是负指数幂的话,我们仍然可以将其展开为一个级数。例如,f(x) = exp(?1/x2) 就可以被展开为一个洛朗级数。 Parker-Sockacki theorem是最近发现的一种用泰勒级数来求解微分方程的定理。这个定理是对Picard iterati on一个推广。 [编辑]

些常用函数及其泰勒展开式的图像

图 1 )exp(x y =及其 Taylor 展开式 其中, 。 ! 4!3!21)(; ! 3!21)(; ! 21)(; 1)(;)exp(4 32443 23322211x x x x x P y x x x x P y x x x P y x x P y e x y x ++++==+++==++==+==== -3 -2-1 0123 -50 5 10 15 20 25 Figure 1 y=exp(x) and its Taylor expansion equation X Y

图 2 )sin(x y =及其 Taylor 展开式 其中, 。 ! 7!5!3)(; !5!3)(; ! 3)(; )();sin(7 53775 35533311x x x x x P y x x x x P y x x x P y x x P y x y -+-==+-==-===== -4 -3-2-1 01234 -8-6-4-202468Figure 2 y=sin(x) and its Taylor expansion equation X Y

图 3 )cos(x y =及其 Taylor 展开式 其中, 。 ! 8!6!4!21)(; !6!4!21)(; ! 4!21)(; !21)(); cos(8 642886 42664 2442 22x x x x x P y x x x x P y x x x P y x x P y x y +-+-==-+-==+-==-=== -4 -3-2-1 01234 -8-6 -4 -2 2 4 Figure 3 y=cos(x) and its Taylor expansion equation X Y

一些常用函数及其泰勒(Taylor)展开式的图像

其中, 。 ! 4!3!21)(; ! 3!21)(; ! 21)(; 1)(;)exp(4 32443 23322211x x x x x P y x x x x P y x x x P y x x P y e x y x ++++==+++==++==+==== -3 -2-1 0123 -50 5 10 15 20 25 Figure 1 y=exp(x) and its Taylor expansion equation X Y

其中, 。 ! 7!5!3)(; !5!3)(; ! 3)(; )();sin(7 53775 35533311x x x x x P y x x x x P y x x x P y x x P y x y -+-==+-==-===== -4 -3-2-1 01234 -8-6-4-202468Figure 2 y=sin(x) and its Taylor expansion equation X Y

其中, 。 ! 8!6!4!21)(; !6!4!21)(; ! 4!21)(; !21)(); cos(8 642886 42664 2442 22x x x x x P y x x x x P y x x x P y x x P y x y +-+-==-+-==+-==-=== -4 -3-2-1 01234 -8-6 -4 -2 2 4 Figure 3 y=cos(x) and its Taylor expansion equation X Y

其中, 。 4 32)(; 3 2)(; 2 )(; )();1ln(4 32443 23322211x x x x x P y x x x x P y x x x P y x x P y x y -+-==+-==-====+= -1 -0.50 0.51 1.52 -3-2 -1 1 2 3 Figure 4 y=ln(x) and its Taylor expansion equation X Y

常用的泰勒公式

常用的泰勒公式 e^x = 1+x+x^2/2!+x^3/3!+……+x^n/n!+…… ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k(|x|<1) sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……。(-∞

常见泰勒公式展开式

泰勒公式 泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数满足一定的条件,泰勒公式可以用函数在某一点的各阶导数值做系数构建一个多项式来近似表达这个函数。 泰勒公式得名于英国数学家布鲁克·泰勒,他在1712年的一封信里首次叙述了这个公式。泰勒公式是为了研究复杂函数性质时经常使用的近似方法之一,也是函数微分学的一项重要应用内容历史发展 泰勒公式是高等数学中的一个非常重要的内容,它将一些复杂的函数逼近近似地表示为简单的多项式函数,泰勒公式这种化繁为简的功能,使得它成为分析和研究许多数学问题的有力工具。 18世纪早期英国牛顿学派最优秀的代表人物之一的数学家泰勒( Brook T aylor),其主要著作是1715年出版的《正的和反的增量方法》,书中陈述了他于1712年7月给他老师梅钦信中提出的著名定理——泰勒定理。1717年,泰勒用泰勒定理求解了数值方程。泰勒公式是从格雷戈里——牛顿差值公式发展而来,它是一个用函数在某点的信息描述其附近取值的公式。如果函数足够光滑,在已知函数某一点各阶导数的前提下,泰勒公式可以利用这些导数值作为系数构建一个多项式来近似该函数在这一点的邻域中的值。1772年,拉格朗日强调了泰勒公式的重要性,称其为微分学基本定理,但是泰勒定理的证明中并没有考虑级数的收敛性,这个工作直到19世纪20年代,才由柯西完成。泰勒定理开创了有限差分理论,使任何单变量函数都

可以展开成幂级数,因此,人们称泰勒为有限差分理论的奠基者。 泰勒公式是数学分析中重要的内容,也是研究函数极限和估计误差等方面不可或缺的数学工具,泰勒公式集中体现了微积分“逼近法”的精髓,在近似计算上有独特的优势。利用泰勒公式可以将非线性问题化为线性问题,且具有很高的精确度,因此其在微积分的各个方面都有重要的应用。泰勒公式可以应用于求极限、判断函数极值、求高阶导数在某点的数值、判断广义积分收敛性、近似计算、不等式证明等方面。

常用的泰勒公式

常用的泰勒公式 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

常用的泰勒公式 e^x = 1+x+x^2/2!+x^3/3!+……+x^n/n!+…… ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k(|x|<1) sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k- 1)!+……。(-∞

泰勒公式的应用

泰勒公式及其应用

摘要 文章简要介绍了泰勒公式的证明及其推导过程,详细讨论了泰勒公式在最优化理论领域的应用,分别讨论了泰勒公式在理论证明和算法设计上面的应用,并用简单的算例加以说明。 关键词:泰勒公式,最优化理论,应用

一、泰勒公式 1.1 一元泰勒公式 若函数)(x f 在含有x 的开区间),(b a 内有直到1+n 阶的导数,则当函数在此区间内时,可展开为一个关于)(0x x -的多项式和一个余项的和: 1 0)1(00)(200000)()!1()()(!)()(!2)())(()()(++-++-++-''+-'+=n n n n x x n f x x n x f x x x f x x x f x f x f ξ 其中=)(x R n 10)1()()!1() (++-+n n x x n f ξ ξ在x 和0x 之间的一个数, 该余项)(x R n 为拉格朗日余项。 1.1.1 泰勒公式的推导过程 我们知道α+-'+=))(()()(000x x x f x f x f ,其在近似计算中往往不够精确,于是我们需要一个能够精确计算的而且能估计出误差的多项式: n n x x a x x a x x a a x p )()()()(0202010-++-+-+= 来近似表达函数)(x f ; 设多项式)(x p 满足)()()()(),()(0)(0)(0000x f x p x f x p x f x p n n ='='= 因此可以得出n a a a 10,.显然,00)(a x p =,所以)(00x f a =;10)(a x p =',所以 )(01x f a '=;20!2)(a x p ='',所以 !2)(02x f a ''= n n a n x p !)(0) (=,所以有! )(0)(n x f a n n = 所以,n n x x n x f x x x f x x x f x f x p )(! )()(!2)())(()()(00)(2 00000-++-''+ -'+= 1.1.2 泰勒公式余项的证明 我们利用柯西中值定理来推出泰勒公式的余项(拉格朗日余项): 设)()()(x p x f x R n -= 于是有0)()()(000=-=x p x f x R n 所以有0)()()()(0) (000===''='=x R x R x R x R n n n n n 根据柯西中值定理可得: n n n n n n n x n R x x x R x R x x x R ))(1()(0)()()()()(011)1(00)1(0-+'=---=-++ξξ 1ξ是在x 和0x 之间的一个数; 对上式再次使用柯西中值定理,可得:

常用十个泰勒展开公式

常用bai泰勒展开公式如下: 1、due^x = 1+x+x^2/2!+x^3/3!+……zhi+x^n/n!+…… 2、daoln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k(|x|<1) 3、sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……。(-∞

9、cosh x = 1+x^2/2!+x^4/4!+……+(-1)k*(x^2k)/(2k)!+……(-∞

一些常用的泰勒公式

一些常用的泰勒公式 作者:余世明 单位:星茂装饰有限公司 摘要:一些常用的泰勒公式 关键字:泰勒公式 前切点泰勒公式 后切点泰勒公式 中间切点泰勒公式 城市:上海 邮政编码:200011 中图分类号:O17 title: Some common Taylor formulas author: Yu Shiming company: Xinmao Decoration company city: Shanghai postcode: 200011 digest: Some common Taylor formulas 正文: 很容易推导下面的公式: K --+---=?3)2(2)1()(!3)()(!2)())(()(c x x f c x x f c x x f dx x f 1 由此可以通过牛顿莱布尼兹公式得到一下公式: Λ----+ -------=?])(!3)()(!3)([])(!2)()(!2)([)])(())(([)(3)2(3)2(2)1(2)1(c a a f c b b f c a a f c b b f c a a f c b b f dx x f b a 2 当 c=a 公式 2 为: Λ--+---=? 3)2(2)1()(!3)()(!2)())(()(a b b f a b b f a b b f dx x f b a 3 当 c=b 公式 2 为: Λ+-+-+-=?3)2(2)1()(! 3)()(!2)())(()(a b a f a b a f a b a f dx x f b a 4 当 c=0 公式 2 为: Λ--+---=?]!3)(!3)([]!2)(!2)([])()([)(3)2(3)2(2)1(2)1(a a f b b f a a f b b f a a f b b f dx x f b a 5 还可以利用以下公式,前半部分用公式4,后半部分用公式3: ???+=c a b c b a dx x f dx x f dx x f )()()( 6 或者可以利用以下公式进行积分: Λ+-+-+-+=3!3)(2!2)()1()()())(()()()3()2(c x c x c x c f c f x f c f c f 积分得到公式如下: Λ+-+-+-+=?????dx c x dx c x dx c x c f dx c f dx x f b a c f b a c f b a b a b a 3!3) (2!2)()1()()()()()()()3()2(

常用的泰勒公式

常用的泰勒公式 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

常用的泰勒公式 e^x = 1+x+x^2/2!+x^3/3!+……+x^n/n!+…… ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k(|x|<1) sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……。(-∞

常用的泰勒公式

h i n g s i n t h r b e i a r g o 常用的泰勒公式 e^x = 1+x+x^2/2!+x^3/3!+……+x^n/n!+…… ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k(|x|<1) sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……。(-∞

常用等价无穷小 _泰勒公式_三角函数

x →0 (1) sinx ~x (2) arcsinx ~x (3) tanx ~x (4) arctanx ~x (5) 1?cos x ~x 22 (6) ?x ?1~x (7) a x ?1~xlna (8) ln(1+x)~x (9) log a (1+x )= x ln a (10) (1+x )u ?1~ux (11) √n ?1~x n (12) √?1~x 2 (13) x ?sin x ~arc sin x ?x~ x 36 (14) tan x ?x~x ?arctan π~ x 33 (15) tan x ?sin x ~x 32 (16) ln (1+x )?x~?x 22 x →1 (1) ln x =ln [1+(x ?1)]~x ?1 (2) x x ?1~?x ln x ?1~x ln x 泰勒公式 ?x =1+x +x 2+?+x n

sin x=x?x3 + x5 ??+(?1)n?1 x2n?1 () cosx=1?x2 + x4 ??+(?1)n x2n () ln(x+1)=x?x2 2 + x3 3 ??+(?1)n?1 x n n 1 1+x =1?x+x2??+(?1)n x n 1 =1+x+x2+?+x n √x+1=1+x ? x2 1√1+x =1? x 2 + 3 8 x2 tan x=x+x3 3 + 2 15 x5 三角函数公式 1+tan2x=s?c2x s?c2x?1=tan2x 1+cot2x=csc2x csc2x?1=cot2x sin2x=1 2(1?cos2x)sin2x 2 =1 2 (1?cos x) cos2x=1 2(1+cos2x)cos2x 2 =1 2 (1+cos x) cos2x=cos2x?sin2x sin2x=2sin x?cos x 常用积分公式 ∫ 1 √x ?x=2√x+C

常用十个泰勒展开公式

常用十个泰勒展开公式 常用泰勒展开公式如下:1、e^x=1+x+x^2/2!+x^3/3!+……+x^n/n!+……2、ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k(|x|<1)3、sinx=x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+…….(- ∞

阶导数)泰勒定理开创了有限差分理论,使任何单变量函数都可展成幂级数。 在数学中,泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数足够光滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。 泰勒公式还对于此处,这里o(x^5)和o(x^6)都是可以的∵sinx继续往后展开的次数为x^7∴可以写o(x^5),也可以写o(x^6)但是写o(x^6)对这个无穷小的阶更准确通常的展开是分别按x,x,x,..展开的∴如果展开到x^n,那么后面一般就写o(x^n)就可以了

泰勒公式及其应用典型例题.docx

泰勒公式及其应用 常用近似公式,将复杂函数用简单的一次多项式函数近似地表示,这是一个进步。当然这种近似表示式还 较粗糙(尤其当较大时),从下图可看出。 上述近似表达式至少可在下述两个方面进行改进: 1、提高近似程度,其可能的途径是提高多项式的次数。 2、任何一种近似,应告诉它的误差,否则,使用者“心中不安”。 将上述两个想法作进一步地数学化: 对复杂函数,想找多项式来近似表示它。自然地,我们希望尽可能多地反映出函数所具有的性态——如:在某点处的值与导数值;我们还关心的形式如何确定;近似所产生的误差。 【问题一】 设在含的开区间内具有直到阶的导数,能否找出一个关于的次多项式

近似 【二】 若一的解存在,其差的表达式是什么一、【求解问题一】 一的求解就是确定多式的系数。 ????? 上述工整且有律的求系数程,不出:

于是,所求的多项式为: (2) 二、【解决问题二】 泰勒 (Tayler)中值定理 若函数在含有的某个开区间内具有直到阶导数,则当时,可以表示成 这里是与之间的某个值。 先用倒推分析法探索证明泰勒中值定理的思路:

这表明: 只要对函数之间反复使用 及在与次柯西中值定理就有可能完成该定理的证明工作。 【证明】 以与为端点的区间函数 或记为在上 具有直至 ,。 阶的导数, 且 函数在上有直至阶的非零导数, 且 于是,对函数及在上反复使用次柯西中值定理,有

三、几个概念 1、 此式称为函数按的幂次展开到阶的泰勒公式; 或者称之为函数在点处的阶泰勒展开式。 当时,泰勒公式变为 这正是拉格朗日中值定理的形式。因此,我们也称泰勒公式中的余项。 为拉格朗日余项。 2、对固定的,若 有

最新全国数学微积分-泰勒公式汇总

2010年全国数学微积分-泰勒公式

泰勒公式及其应用 [摘要]文章简要介绍了泰勒公式及其几个常见函数的展开式,针对泰勒公式的应用讨论了九个问 题,即应用泰勒公式求极限,证明不等式,判断级数的敛散性,证明根的唯一存在性,判断函数的极值, 求初等函数的幂级数展开式,进行近似计算,求高阶导数在某些点的数值,求行列式的值. [关键词]泰勒公式;极限;不等式;敛散性;根的唯一存在性;极值;展开式;近似计算;行列式. 1引言 泰勒公式是高等数学中一个非常重要的内容,它将一些复杂函数近似地表示为简单的多项式函数,这种化繁为简的功能,使它成为分析和研究其他数学问题的有力杠杆.作者通过阅读大量的参考文献,从中搜集了大量的习题,通过认真演算,其中少数难度较大的题目之证明来自相应的参考文献,并对这些应用方法做了系统的归纳和总结.由于本文的主要内容是介绍应用,所以,本文会以大量的例题进行讲解说明. 2预备知识 定义2.1?Skip Record If...?若函数?Skip Record If...?在?Skip Record If...?存在?Skip Record If...?阶导数,则有 ?Skip Record If...? ?Skip Record If...?(1) 这里?Skip Record If...?为佩亚诺型余项,称(1)f在点?Skip Record If...?的泰勒公式. 当?Skip Record If...?=0时,(1)式变成?Skip Record If...?,称此式为(带有佩亚诺余项的)麦克劳林公式.

定义2.2?Skip Record If...?若函数 ?Skip Record If...?在?Skip Record If...?某邻域内为存在直至 ?Skip Record If...?阶的连续导数,则?Skip Record If...? , (2)这里?Skip Record If...?为拉格朗日余项?Skip Record If...?,其中?Skip Record If...?在?Skip Record If...?与?Skip Record If...?之间,称(2)为?Skip Record If...?在?Skip Record If...?的泰勒公式. 当?Skip Record If...?=0时,(2)式变成?Skip Record If...? 称此式为(带有拉格朗日余项的)麦克劳林公式. 常见函数的展开式: ?Skip Record If...?. ?Skip Record If...?. ?Skip Record If...?. ?Skip Record If...?. ?Skip Record If...? ?Skip Record If...?. 定理2.1?Skip Record If...?(介值定理) 设函数?Skip Record If...?在闭区间?Skip Record If...?上连续,且?Skip Record If...?,若?Skip Record If...?为介于?Skip Record If...?与?Skip Record If...?之间的任何实数,则至少存在一点?Ski p Record If...??Skip Record If...?,使得 ?Skip Record If...?. 3泰勒公式的应用

常用十个泰勒展开公式

常用十个泰勒展开公式 泰勒公式,泰勒公式[1]真的非常有名,我相信上过高数课的一定都记得它的大名。即使你翘掉了所有的课,也一定会在考前重点里见过。 我对它的第一映像就是比较难,而且感觉没有太多意思,就是一个近似的函数而已。最近重温了一下有了一些新的心得,希望尽我所能讲解清楚。 泰勒公式的用途 在看具体的公式和证明之前,我们先来了解一下它的用途,然后带着对用途的理解再去思考它出现的背景以及原理会容易许多。这也是我自学这么久总结出来的规律。 泰勒公式本质解决的是近似的问题,比如说我们有一个看起来很复杂的方程,我们直接计算方程本身的值可能非常麻烦。所以我们希望能够找到一个近似的方法来获得一个足够近似的值。 从这里,我们得到了两个重点,一个是近似的方法,另一个是近似的精度。我们既需要找到合适的方法来近似,同时也需要保证近似的精度是可控的。否则一切都没有意义,结合实际其实很好理解,比如我们用机床造一个零件。我们都知道世界上不存在完美的圆,实际上我们也并不需要完美,但是我们需要保证偏差是可控的,并且在一定的范围内。泰勒公式也是一样,它既可以帮助我们完成近似,也可以保证得到的结果是足够精确的。

泰勒公式的定义 我们下面来看看泰勒公式的定义,我们已经知道了它的用途是求一个函数的近似值。但是我们怎么来求呢,其实一个比较朴素的思路是通过斜率逼近。 举个例子: 这是一张经典的导数图,从上图我们可以看到,随着Δx的减小,点P0 和P 也会越来越接近,这就带来了Δy 越来越接近Δx f'(x0)。 当然,当Δx 比较大的时候显然误差就会比较大,为了缩小误差,我们可以引入二阶导数、三阶导数以及高阶导数。由于我们并不知道函数究竟可以有多少阶导数,我们不妨假设f(x)在区间内一直有(n+1)阶导数,我们试着写出一个多项式来逼近原函数: 我们希望这个式子与原值的误差越小越好,究竟要多小才算足够好呢?数学家们给出了定义,希望它是

相关文档