文档库 最新最全的文档下载
当前位置:文档库 › 钢的碳当量公式及其在焊接中的应用

钢的碳当量公式及其在焊接中的应用

钢的碳当量公式及其在焊接中的应用
钢的碳当量公式及其在焊接中的应用

钢的碳当量公式及其在焊接中的应用

曹良裕 魏战江

摘 要 介绍了目前世界各国常用的碳当量公式及其适用的钢种、强度级别、化学成分范围及应用判据。 关键词关键词 碳当量 焊接裂纹 低合金高强度钢

钢的碳当量就是把钢中包括碳在内的对淬硬、冷裂纹及脆化等有影响的合金元素含量换算成碳的相当含量。通过对钢的碳当量和冷裂敏感指数的估算,可以初步衡量低合金高强度钢冷裂敏感性的高低,这对焊接工艺条件如预热、焊后热处理、线能量等的确定具有重要的指导作用。

50年代初,当时钢的强化主要采用碳锰,在预测钢的焊接性时,应用较广泛的碳当量公式主要有国际焊接学会(IIW)所推荐的公式和日本JIS 标准规定的公式。

60年代以后,人们为改进钢的性能和焊接性,大力发展了低碳微量多合金之类的低合金高强度钢,同时又提出了许多新的碳当量计算公式。

由于各国所采用的试验方法和钢材的合金体系不尽相同,所以应搞清楚各国所使用的碳当量公式的来源、用途及应用范围等,以免应用不当。

1 国际焊接学会推荐的碳当量公式CE(IIW)CE(IIW)::[[11]

CE(IIW)=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15 (%) (1)

(式中的元素符号均表示该元素的质量分数,下同。)

该式主要适用于中、高强度的非调质低合金高强度钢(σb =500~900 MPa。当板厚小于20 mm,CE(IIW)<0.40%时,钢材淬硬倾向不大,焊接性良好,不需预热;CE(IIW)=0.40%~0.60%,特别当大于0.5%时,钢材易于淬硬,焊接前需预热。

2 日本推荐的碳当量公式

2.12.1 日本JIS 和WES 标准规定的碳当量公式标准规定的碳当量公式::[[22]]

Ceq(JIS)=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14 (%) (2)

该式主要适用于低碳调质的低合金高强度钢(σb =500~1000 MPa)。

当板厚小于25 mm,手工焊线能量为17 kJ/cm 时,确定的预热温度大致如下:

钢材σb =500 MPa, Ceq(JIS)≈0.46%, 不预热 σb =600 MPa, Ceq(JIS)≈0.52%, 预热75 ℃

σb =700 MPa, Ceq(JIS)≈0.52%, 预热100 ℃ σb =800 MPa, Ceq(JIS)≈0.62%, 预热150 ℃

(1)、(2)式均适用于含碳量偏高的钢种(C≥0.18%),即

C≤0.20%;Si≤0.55%;Mn≤1.5%;Cu≤0.50%;Ni≤2.5%;Cr≤1.25%;Mo≤0.70%;V≤0.1%;B≤0.006%。

2.22.2 P cm 公式

日本伊藤等人进行了大量试验后,提出了冷裂敏感指数(P cm )的计算公式: P cm =C+Si/30+(Mn+Cu+Cr)/20+Ni/60+Mo/15+V/10+5B (%) (3)

该式适用于C=0.07%~0.22%,σb =400~1000 MPa 的低合金高强度钢。

适用化学成分范围:C 0.07%~0.22%;Si 0~0.60%;Mn 0.40%~1.40%;Cu 0~0.50%;Ni 0~1.20%;Cr 0~1.20%;Mo 0~0.70%;V 0~0.12%;Nb 0~0.04%;Ti 0~0.05%;B 0~0.005%。

伊藤等又根据P cm 、板厚h 或拘束度(R),建立了冷裂敏感性(P w )、冷裂敏感指数(P cm )及防止冷裂所需要的预热温度的计算公式:

P w =Pcm+[H]/60+h/600 (3-1) 或P w =Pcm+[H]/60+R/40000 (3-2)

式中, [H]熔敷金属中扩散氢含量(m l /100g ,甘油法)

R 接缝拉伸拘束度(k g /mm .

mm) h 板厚(mm)

P cm 冷裂敏感指数

当P w >0时,即有产生裂纹的可能性。

利用(3-1)、(3-2)两公式可以计算出无裂纹焊缝所需预热温度:

T 0=1440P w -392 (℃)

(3-1)、(3-2)两式适用条件:扩散氢含量[H]为1.0~5.0 m l /100g ;板厚为19~50 mm;线能量为17~30 kJ/cm;化学成分范围同(3)式。

(3-1)、(3-2)两式不仅考虑了钢中化学成分的影响,还考虑到钢板厚度或拘束 度,以及熔敷金属中含氢量,利用这两式可以计算出防止冷裂纹所需的预热温度。 3.33.3 新日铁的碳当量公式

日本新日铁公司近年来为适应工程需要提出的新的碳当量公式:[5~6]

CE=C+A (C){Si/24+Mn/16+Cu/15+Ni/20+(Cr+Mo+V+Nb)/5+5B } (%) (4)

该CE公式是新日铁公司近年提出的,适用于w(C)为0.034%~0.254%的钢种,是目前应用较广、精度较高的碳当量公式。

式中, A(C)碳的适用系数

A(C)=0.75+0.25tg h[20(C-0.12)]

A(C)与钢中含碳量的关系见表1。

A(C)与钢中含碳量的关系

与钢中含碳量的关系

表1A(C)

与钢中含碳量的关系

w(C)/%0 0.08 0.12 0.16 0.200.26

A(C)0.500.5840.7540.9160.980.99

日本新日铁碳当量(CE)公式、碳的适用系数A(C)、国际焊接学会碳当量CE(IIW)公式与碳含量的关系见图1、图2。

图1 日本新日铁CE、A(C)与碳含量的关系

图2 CE(IIW)和新日铁CE的对应关系

3 美国推荐的碳当量公式

3.13.1 计算预热温度的碳当量公式计算预热温度的碳当量公式

美国金属学会提出的用于计算预热温度的碳当量CE 经验公式:[3]

CE=C+Mn/6+Ni/15+Mo/4+Cr/4+Cu/13 (%) (5)

当CE<0.45%时,可不预热;当CE 在0.45%~0.60%之间时,预热100~200 ℃;当CE >0.60%时,预热200~370℃。 该式适用于碳钢和低合金高强度钢。

3.23.2 评定焊接性的碳当量公式

美国金属学会提出的用于评定淬火碳钢和低合金钢的焊接性的碳当量公式: CE=C+Mn/6+(Cr+Mo+V)/5+(Si+Ni+Cu)/15 (%) (6)

该式考虑了钢中Si 的影响,当CE<0.35%时,通常不需预热和后热;当CE 在0.35%~0.55%之间时,一般需预热;当CE >0.55%时,可能既要预热,又要后热。

3.33.3 美国焊接学会美国焊接学会(AWS)(AWS)(AWS)提出的碳当量公式提出的碳当量公式提出的碳当量公式::[[44]

CE=C+Mn/6+Si/24+Ni/15+Cr/5+Mo/4+Cu/13+P/2 (%) (7)

该式适用于碳钢和低合金钢,适用的化学成分范围如下:C<0.60%;Mn<1.6%;Ni<3.3%;Cr<1.0%;Mo<0.6%;Cu 0.50%~1.0%;P 0.05%~0.15%(当Cu<0.50%和P<0.05%时可不计)。

碳当量及所对应的板厚的焊接性和施焊条件分别见图3和表2。

表2 钢的焊接性与施焊条件

焊接性分类 普通酸性焊条 低氢焊条 消除应力 敲击处理 Ⅰ优良 不需预热 不需预热 不需 不需 Ⅱ较好 预热40~100 ℃ -10 ℃以上不需预热

任意 任意 Ⅲ尚好 预热150 ℃ 预热40~100 ℃ 希望 希望 Ⅳ难焊

预热150~200 ℃

预热100 ℃

必要

希望

图3 焊接性与板厚、碳当量的关系

由图3可查得Ⅰ、Ⅱ、Ⅲ、Ⅳ类钢的最佳施焊条件。 3.43.4 美国海军的碳当量公式

美国海军船体结构钢用低合金高强度钢碳当量公式:[6] CE=C+(Mn+Si)/6+(Cr+Mo+V)/5+(Ni+Cu)/15 (%) (8)

碳当量、碳含量与钢的冷裂敏感性的关系见图4。

图4 碳当量、含碳量与冷裂敏感性的关系

如图4所示,按含碳量和碳当量的不同,可把钢的焊接性划分为易焊区(Ⅰ区)、可焊区(Ⅱ区)和难焊区(Ⅲ区)3个区域,含碳量为0.10%~0.12%以下的区域,为易焊区,含碳大于0.10%~0.12%,且碳当量CE<0.49%的区域,为可焊区,含碳量大于0.10%~0.12%,碳当量CE >0.49%的区域,为难焊区。

4 其它国家推荐的碳当量公式

4.14.1 前苏联提出的碳当量公式

前苏联提出的碳当量公式::[[44]]

CE=C+Mn/6+Cr/3+V/5+Mo/4+Ni/15+Cu/13+P/2 (%) (9)

前苏联用(9)式计算碳当量,认为一般低合金高强度钢,当CE≤0.45%时,焊接厚度为25 mm 以下的钢板可不预热。此外,他们还从钢的合金元素总含量和碳当量对钢的焊接性作了评定,结果见表3。

表3 合金元素含量与焊接性的关系合金元素含量与焊接性的关系 w (Mn+Si+Cr+Mo)/%

w (C)/%

焊接性 <1%

<0.25 0.25~0.35 0.35~0.45 >0.45 优良

较好 尚可 不良 1%~3%

<0.20 0.20~0.30 0.30~0.40 >0.40 优良 较好 尚可 不良 >0.30%

<0.18 0.18~0.28 0.28~0.38 >0.38

优良 较好 尚可 不良

4.24.2 捷克采用的碳当量公式捷克采用的碳当量公式::

CE=C+Mn/6+Cr/5+Ni/15+Mo/4+Cu/13+P/2 (%) (10)

当碳当量≤0.35%且C≤0.22%时,碳钢和低合金高强度钢的焊接性良好。 4.34.3 英国的碳当量公式英国的碳当量公式

英国迪尔登(D ear d en)和奥尼尔(O nei ll )为评定热影响区的裂纹而提出的碳

当量公式:[4]

CE=C+Mn/6+Ni/15+Cr/5+Mo/4+V/5+Cu/13+Co/150 (%) (11)

该式适用于下列化学成分范围的钢材:

C 0.1%~0.30%;Mn 0.26%~1.56%;Ni 0~5.38%;Cr 0~1.73%;Mo 0~0.64%;Cu 0~0.65%;V≤0.14%;Co 2.3%.

为了获得良好的焊接热影响区,应将碳当量限制在0.45%内。

一般可用碳当量预测某种钢种的焊接性,表4给出了碳当量公式中合金元素及系数的关系,通过碳当量的计算可以看出,当碳当量增加时,钢材的淬硬倾向增大,硬度增加,这时钢材焊接热影响区就容易产生冷裂纹。

表4碳当量公式中合金元素对应的系数

合金元素

碳当量公式

C Mn Si Cr Ni Mo V Cu B P Co Nb

CE(IIW)11/6-1/51/151/51/51/15----

Ceq(JIS、WES)11/61/241/51/401/41/14----CE(A WS)11/6-1/41/151/4-1/13-1/2--

CE(美,预热)11/6-1/41/151/4-1/13----

CE(美,焊接性)11/61/151/51/151/51/51/15----CE(英)11/6-1/51/151/41/51/13--1/150-

CE(俄)11/6-1/31/151/41/51/13-1/2--

CE(捷)11/6-1/51/151/4-1/13-1/2--

CE(美,海军)11/61/61/51/151/51/51/15----

CE(新日铁)11/16*1/24*1/5*1/20*1/5*1/5*1/15*5*--1/5*

注:*表示乘以A(C)。

用上述的碳当量公式评定钢的焊接性时,大致有以下几种类型:第Ⅰ类只考虑

到钢中化学成分的影响,根据碳当量数值的大小,确定是否需要预热或预热温度范围;第Ⅱ类除考虑到化学成分外,还考虑了熔敷金属扩散氢含量、试板的厚度或拘

束度等因素,然后再计算防止开裂的预热温度;第Ⅲ类是根据碳当量和含碳量的大

小把钢的焊接性划分为可焊、易焊和难焊3个区域,这3个区分别有不同的施焊要求,如对预热等的要求也不同。

曹良裕:男,59岁,高级工程师,主要从事焊接材料与工艺的研究。

作者单位:洛阳船舶材料研究所 洛阳471039 参考文献

1 斯重遥等.焊接手册(第二卷).北京:机械工业出版社,1992.59~65

2 铃木春义.钢材的焊接裂纹.梁桂芳译.北京:机械工业出版社,1981

3 金属手册(第六卷).第九版.北京:机械工业出版社,1994

4 吴世初.金属可焊试验方法.上海:上海科技文献出版社,1982.327~328

5 付积和,孙玉林.焊接数据资料手册.北京:机械工业出版社,1994.12~14

6 Y urioka N, e t a l. We ld in g Journa l, 1983,62(6):1475~1535

收稿日期:1998-10-19

金属材料的焊接性能汇总

金属材料的焊接性能 (2014.2.27) 摘要:对各种常用金属材料的焊接性能进行研究,通过参考各类焊接丛书及焊接前辈多年的经验总结,对常用金属材料的焊接工艺可行性起指导作用。 关键词:碳当量;焊接性;焊接工艺参数;焊接接头 1 前言 随着中国特种设备制造业的不断发展,我们在制造产品时所用到的金属材料种类也在不断增加,相应地所必须掌握的各种金属材料的焊接性能也在不断研究和更新中,为了实际产品制造的焊接质量,熟悉金属材料的焊接性能,以制定正确的焊接工艺参数,从而获得优良的焊接接头起到至关重要的指导作用。 2 金属材料的焊接性能 2.1 金属材料焊接性的定义及其影响因素 2.1.1 金属材料焊接性的定义 金属材料的焊接性是指金属材料在采用一定的焊接工艺包括焊接方法、焊接材料、焊接规范及焊接结构形式等条件下,获得优良焊接接头的能力。一种金属,如果能用较多普通又简便的焊接工艺获得优良的焊接接头,则认为这种金属具有良好的焊接性能金属材料焊接性一般分为工艺焊接性和使用焊接性两个方面。 工艺焊接性是指在一定焊接工艺条件下,获得优良,无缺陷焊接接头的能力。它不是金属固有的性质,而是根据某种焊接方法和所采用的具体工艺措施来进行的评定。所以金属材料的工艺焊接性与焊接过程密切相关。 使用焊接性是指焊接接头或整个结构满足产品技术条件规定的使用性能的程度。使用性能取决于焊接结构的工作条件和设计上提出的技术要求。通常包括力学性能、抗低温韧性、抗脆断性能、高温蠕变、疲劳性能、持久强度、耐蚀性能和耐磨性能等。例如我们常用的S30403,S31603不锈钢就具有优良的耐蚀性能,16MnDR,09MnNiDR低温钢也有具备良好的抗低温韧性性能。

焊接当量--焊接工程统计方法

焊接当量--焊接工程统计方法

焊接当量——焊接工程统计新方法探讨 (核电专辑) 张宗富1罗来丰2 (1.国家电力公司电源建设部,北京市,100011; 2.山东核电工程公司,深圳,518124) [摘要]本文介绍一种统计焊接工程量的新方法,此方法在岭澳核电站常规岛工程焊接工作量统计中发挥了重要作用。 [关键词] 焊接当量统计 Equivalent Weld----A New Method of Weld project statistics Zhang Zongfu1Luo Laifeng2 (1.State Electric Power Corporation,Beijing,100011 2.Shandong Nuclear Power Construction Company, Shenzhen,518124) 焊接工种是门特殊的工种,焊工是需要经过特殊的专业培训,耗费一定量的钢材,经过严格考试取证,才允许上岗,而真正能承担管道焊接,保证焊接质量的稳定和提高,还需要经过四、五年的实践锻炼和培养。在涉外工程或遇到新钢种时还需要进行额外的培训、考核和取证,因而培养一名优秀的合格焊工成本和代价是很高的,在电建行业属稀缺的人力资源。

1 焊接工程量和焊接定额统计缺乏统一的标准,是造成人力资源浪费或工期延长的主要因素之一 在电力建设安装过程中因种种原因会经常发生焊工数量过多,劳动效率低下,或焊工数量过少,形成工程进度的瓶径效应。如何将焊工人数控制在一个合理的范围,与安装工保持一个最佳的匹配,保证工程进度按计划进行。过去的经验做法是根据安装工程量的大小确定安装工的人数,再按一定的比例确定焊工的人数,由于安装工程焊接工作量的不确定性,有时还会发生焊工过多,造成人力资源的浪费,有时焊工不够,进度难以保证。在工地上经常听到安装队的主任抱怨焊工不够任务完不成,公司领导时常批评焊工任务不足,劳动效率低下。这都是因为对焊接工程量和焊工劳动定额缺乏一个统一的量化指标。 2 当前焊接工程量和焊接定额的统计方法及存在的问题 目前焊接工程量的统计方法有焊口数量统计法、焊缝长度统计法、焊口直径统计法、焊缝体积统计法、焊条消耗统计法、焊接劳动定额等。 (1) 焊口统计法和焊缝长度统计法是按焊口数量或焊缝长度不 考虑管径和厚度的形象统计法,能比较直观地反映焊接工程的形象工作 量,适用于相同直径和相同厚度的焊件焊接工程量的考核,但不能反映 不同管径和不同厚度的实际工程量和劳力消耗状况,以此来指导现场多 规格焊接工作,缺乏现实的指导意义。 (2) 焊接直径统计法是对焊口的直径累加的统计方法,考虑了直 径的变化,对于厚度相同的焊接工作统计和考核,具有直接、简单和方 便的优点,但对于不同厚度的焊接工作,同样缺乏现实的指导意义。 (3) 焊缝体积法是计算焊缝实际体积的一种统计方法,该方法计 算出的焊接工程量准确,但由于计算过程复杂烦琐,考虑的因素和条件 过多,难以推广使用。 (4) 焊条消耗统计法是统计焊工每天消耗焊条的数量的一种方 法,主要用来考核焊工每天完成的工作量,但这样不易保证焊接质量并 容易造成焊材的浪费。 (5) 正是由于以上统计方法存在的弊端,建设安装行业的焊接工 作者,经过长期的生产实践和经验总结,将各类材料、各种规格的焊口

焊接工艺参数选择

焊接工艺参数的选择 手工电弧焊的焊接工艺参数主要条直径、焊接电流、电弧电压、焊接层数、电源种类及极性等。 1.焊条直径 焊条直径的选择主要取决于焊件厚度、接头形式、焊缝位置和焊接层次等因素。在一般情况下,可根据表6-4按焊件厚度选择焊条直径,并倾向于选择较大直径的焊条。另外,在平焊时,直径可大一些;立焊时,所用焊条直径不超过5mm;横焊和仰焊时,所用直径不超过4mm;开坡口多层焊接时,为了防止产生未焊透的缺陷,第一层焊缝宜采用直径为3.2mm的焊条。 表6-4 焊条直径与焊件厚度的关系mm 焊件厚度 ≤2 3~4 5~12 >12 焊条直径 2 3.2 4~5 ≥15 2.焊接电流 焊接电流的过大或过小都会影响焊接质量,所以其选择应根据焊条的类型、直径、焊件的厚度、接头形式、焊缝空间位置等因素来考虑,其中焊条直径和焊缝空间位置最为关键。在一般钢结构的焊接中,焊接电流大小与焊条直径关系可用以下经验公式进行试选: I=10d2 (6-1) 式中 I ——焊接电流(A); d ——焊条直径(mm)。 另外,立焊时,电流应比平焊时小15%~20%;横焊和仰焊时,电流应比平焊电流小10%~15%。 3.电弧电压 根据电源特性,由焊接电流决定相应的电弧电压。此外,电弧电压还与电弧长有关。电弧长则电弧电压高,电弧短则电弧电压低。一般要求电弧长小于或等于焊条直径,即短弧焊。在使用酸性焊条焊接时,为了预热部位或降低熔池温度,有时也将电弧稍微拉长进行焊接,即所谓的长弧焊。 4.焊接层数 焊接层数应视焊件的厚度而定。除薄板外,一般都采用多层焊。焊接层数过少,每层焊缝的厚度过大,对焊缝金属的塑性有不利的影响。施工中每层焊缝的厚度不应大于4~5mm。

碳当量计算

碳当量计算小结 主要描述了碳当量的定义和一些计算公式,自己编程实现,为以后应用提供方便。并收集下载了 一些相关文献参考。 钢铁材料的焊接性能一般是指焊缝及热影响区是否容易形成裂纹,焊接接头是否出现脆性等等。由于很多高压管、罐、船体、桥梁等重要结构件都是用焊接方式连接起来的,一旦出现质量问题,将造成灾难性的事故。如1943年,美国一个电站的蒸气管道,在500摄氏度温度下工作了5年,突然发生爆炸,经检查发现,断裂发生于焊缝热影响区。因此材料的焊接性能一直是一个非常重要的工艺指标。 人们通过大量的实验结果,发现钢的焊接性能与其成分关系很大,尤其是碳含量。当碳含量高时,焊接区容易产生裂纹,合金元素含量增加也容易产生开裂现象,因此可以用合金成分的"碳当量"概念来表示焊接性能的好坏 ,常用的碳当量[C]的经验计算公式为: [C]=C + Mn/6 + (Ni+Cu)/15 + (Cr+Mo+V)/5 式中的元素符号代表这些元素在钢中的重量百分比 。经验表明 ,当[C]小于0.4%时,钢材焊接冷裂倾向不大,焊接性良好 ;[C]在0.4%~0.6 %之间时,钢材焊接冷裂倾向较显著 ,焊接性较差,焊接时需要预热钢材和采取其它工艺措施来防止裂纹;当[C]大于0.6%时,钢材焊接冷裂严重,焊接性能很差,基本上不适合于焊接,或者只有在严格的工艺措施下和较高的预热温度下才能进行焊接操作。 为了得到较高的强度,一个最有效的办法就是提高钢中的碳含量,但由于碳含量高导致焊接性能降低,因此低合金高强钢必须是低碳的(一般小于含碳0.25%),如16Mn, 15MnVN ,20CrMnTi 等。一些高碳的工具钢,如 T7~T13(含碳0.7~1.3%)和铸铁零件,通常是不能焊接的。开发和使用高强度钢铁材料,用于制造工程结构件,必须考虑焊接性能 。 以下内容摘自[第14 卷第1期 材料开发与应用1999 年2月 经验交流] 钢的碳当量就是把钢中包括碳在内的对淬硬、冷裂纹及脆化等有影响的合金元素含量换算成碳的相当含量。通过对钢的碳当量和冷裂敏感指数的估算, 可以初步衡量低合金高强度钢冷裂敏感性的高低,这对焊接工艺条件如预热、焊后热处理、线能量等的确定具有重要的指导作用。 50 年代初, 当时钢的强化主要采用碳锰, 在预测钢的焊接性时, 应用较广泛的碳当量公式主要有国际焊接学会( IIW ) 所推荐的公式和日本J IS 标准规定的公式。 60 年代以后, 人们为改进钢的性能和焊接性, 大力发展了低碳微量多合金之类的低合金高强度钢, 同时又提出了许多新的碳当量计算公式。由于各国所采用的试验方法和钢材的合金体系不尽相同, 所以应搞清楚各国所使用的碳当量公式的来源、用途及应用范围等, 以免应用不当。 1 国际焊接学会推荐的碳当量公式CE(IIW): [1 ] (1) ()/6()/5()/15(%CE IIW C Mn Cr Mo V Ni Cu =++++++式中采用)(式中的元素符号均表示该元素的质量分数, 下同。) 该式主要适用于中、高强度的非调质低合金高强度钢( Rb=500~900MPa 。当板厚小于20mm,CE(IIW)< 0. 40% 时, 钢材淬硬倾向不大, 焊接性良好, 不需预

碳当量计算公式

钢的碳当量公式及其在焊接中的应用 曹良裕 魏战江 摘 要 介绍了目前世界各国常用的碳当量公式及其适用的钢种、强度级别、化学成分范围及应用判据。 关键词关键词 碳当量 焊接裂纹 低合金高强度钢 钢的碳当量就是把钢中包括碳在内的对淬硬、冷裂纹及脆化等有影响的合金元素含量换算成碳的相当含量。通过对钢的碳当量和冷裂敏感指数的估算,可以初步衡量低合金高强度钢冷裂敏感性的高低,这对焊接工艺条件如预热、焊后热处理、线能量等的确定具有重要的指导作用。 50年代初,当时钢的强化主要采用碳锰,在预测钢的焊接性时,应用较广泛的碳当量公式主要有国际焊接学会(IIW)所推荐的公式和日本JIS 标准规定的公式。 60年代以后,人们为改进钢的性能和焊接性,大力发展了低碳微量多合金之类的低合金高强度钢,同时又提出了许多新的碳当量计算公式。 由于各国所采用的试验方法和钢材的合金体系不尽相同,所以应搞清楚各国所使用的碳当量公式的来源、用途及应用范围等,以免应用不当。 1 国际焊接学会推荐的碳当量公式CE(IIW)CE(IIW)::[[11] ] CE(IIW)=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15 (%) (1) (式中的元素符号均表示该元素的质量分数,下同。) 该式主要适用于中、高强度的非调质低合金高强度钢(σb =500~900 MPa。当板厚小于20 mm,CE(IIW)<0.40%时,钢材淬硬倾向不大,焊接性良好,不需预热;CE(IIW)=0.40%~0.60%,特别当大于0.5%时,钢材易于淬硬,焊接前需预热。 2 日本推荐的碳当量公式 2.12.1 日本JIS 和WES 标准规定的碳当量公式标准规定的碳当量公式::[[22]] Ceq(JIS)=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14 (%) (2) 该式主要适用于低碳调质的低合金高强度钢(σb =500~1000 MPa)。 当板厚小于25 mm,手工焊线能量为17 kJ/cm 时,确定的预热温度大致如下: 钢材σb =500 MPa, Ceq(JIS)≈0.46%, 不预热 σb =600 MPa, Ceq(JIS)≈0.52%, 预热75 ℃

常用焊接规范要点

常用焊接规范要点

常规平焊的焊接方法 平焊 平焊时,由于焊缝处在水平位置,熔滴主要靠自重自然过渡,所以操作比较容易,允许用较大直径的焊条和较大的电流,故生产率高。如果参数选择及操作不当,容易在根部形成未焊透或焊瘤。运条及焊条角度不正确时,熔渣和铁水易出现混在一起分不清的现象,或熔渣超前形成夹渣。 平焊又分为平对接焊和平角接焊。 1.平对接焊 (1)不开坡口的平对接焊 当焊件厚度小于6mm时,一般采用不开坡口对接。 焊接正面焊缝时,宜用直径为3~4mm的焊条,采用短弧焊接,并应使熔深达到板厚的2/3,焊缝宽度为5~8mm,余高应小于1.5mm,如图2-1所示。 对不重要的焊件,在焊接反面的封底焊缝前,可不必铲除焊根,但应将正面 焊缝下面的熔渣彻底清除干净,然后用3mm焊条进行焊接,电流可以稍大些。 焊接时所用的运条方法均为直线形,焊条角度如图2-2所示。 在焊接正面焊缝时,运条速度应慢些,以获得较大的熔深和宽度;焊反面封 底焊缝时,则运条速度要稍快些,以获得较小的焊缝宽度。

9 65°~80° ° 图2-2平面对接焊的焊条角度 运条时,若发现熔渣和铁水混合不清,即可把电弧稍微拉长一些,同时将焊条向前 倾斜,并往熔池后面推送熔渣,随着这个动作,熔渣就被推送到熔池后面去了,如 图2-3所示。 图2-3 推送熔渣的方法 3 2 1 4 图2-4 对接多层焊 (2)开坡口的平对接焊 当焊件厚度等于或大于6mm时,因为电弧的热量很难使焊缝的根部焊透,所以应开坡口。开坡口对接接头的焊接,可采用多层焊法(图2-4)或多层多道焊法(图2-5)。

123456789101112 图2-5 对接多层多道焊 多层焊时, 对第一层的打底焊道应选用直径较小的焊条,运条方法应以间隙大小而定,当间隙小时可用直线形,间隙较大时则采用直线往返形,以免烧穿。当间隙很大而无法一次焊成时,就采用三点焊法(图2-6)。先将坡口两侧各焊上一道焊缝(图2-6中1、2),使间隙变小,然后再进行图2-6中缝3的敷焊,从而形成由焊缝1、2、3共同组成的一个整体焊缝。但是,在一般情况下,不应采用三点焊法。 3 12 图2-6 三点焊法的施焊次序 在焊第二层时,先将第一层熔渣清除干净,随后用直径较大的焊条和较大的焊接电流进行焊接。用直线形、幅度较小的月牙形或锯齿形运条法,并应采用短弧焊接。以后各层焊接,均可采用月牙形或锯齿形运条法,不过其摆动幅度应随焊接层数的增加而逐渐加宽。焊条摆动时,必须在坡口两边稍作停留,否则容易产生边缘熔合不良及夹渣等缺陷。 为了保证质量和防止变形,应使层与层之间的焊接方向相反,焊缝接头也应相互错开。 多层多道焊的焊接方法与多层焊相似,所不同的是因为一道焊缝不能达到所要求的宽度,而必须由数条窄焊道并列组成,以达到较大的焊缝宽度(图2-5)。焊接时采用直线形运条法。 在采用低氢型焊条焊接平面对接焊缝时,除了焊条一定要按规定烘干外,焊件的焊接处必须彻底清除油污、铁锈、水分等,以免产生气孔。

电焊工计算题

四、计算题 1. 已知3个电阻值为R1=8Ω,R2=12Ω,R3=500Ω的电阻串联电路,试求该电路中的总电阻? 2.已知Rl,R2串联电路中,电阻两端的电压分别为Ul=10V,U2=15V,试求该电路两端的总电压? 3.已知3个电阻值为R1=2kΩ,R2=4kΩ,R3=6kΩ的电阻并联电路,试求该电路中的总电阻? 4.已知R1,R2并联电路中,流过电阻的电流分别为I l=50mA,I2=25mA,试求该电路中的总电流? 5.已知某变压器的初级电压为220V,次级电压为36V,试求该变压器的变压比。 6.已知某电焊机变压器的匝数比n=5,其次级电流I2=60A,试计算初级电流为多少? 7.已知:某钢材化学成分为:ω(C)=0.24%,ω(Si)=0.40%,ω(Mn)=0.87%,ω(P)=0.040%,试求其碳当量,并判断其焊接性。 8.已知:某钢材化学成分为:ω(C)=0.14%,ω(Mn)=0.56%,ω(Si)=0.35%, ω(Cr)=0.87%,ω(V)=0.32%,ω(Mo)=0.67%,ω(S)=0.020%,试求其碳当量? 四、计算题答案 1.解;由公式R=R1+R2+R3=8+12+500=520(Ω) 答:该电路中的总电阻值为520Ω。 2.解:根据串联电路性质:U=Ul+U2=10+15=25(V) 答;该电路两端的总电压为25V。 3.解:由并联电阻性质: 1/R=1/Rl+l/R2+1/R3=1/2+1/4+1/6=11/12 R=12/11=1.09(kΩ) 答;该电路中的总电阻值为1.09kΩ。 4.解:根据并联电路性质: I=Il+I2=50+25=75(mA) 答;该电路两端的总电流为75mA。 5.解;由公式n=U1/U2 得 n=220/36≈6.1 答:该变压器的变压比为6.1 6.解;由公式 Il/I2=1/n 得:I1=I2/n=60/5=12(A) 答:初级电流为12A。 7.解;由公式 C E=C+Mn/6+(Cr+Mo+v)/5+(Ni+Cu)/15% =0.24+0.87/6=0.385% ∵C E=0.385% < 0.4%∴其焊接性优良 答;其碳当量为0.385%,其焊接性优良。 8.解;由公式 CE=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15% =0.14 + 0.56/6 + (0.87+0.67+0.32)/5 ≈0.605% 答:其碳当量为0.605%。

碳当量

碳当量 碳当量:碳和硅是铸铁的主要组成元素,又都是强烈促进石墨化的元素,一般情况下碳和硅含量越高,越有利于石墨化。为了简化和避免使用多元合金相图,可以将碳、硅等元素,按照其影响石墨化的程度,以一定的比例近似换算成相应的碳含量,这就是碳当量。 钢的碳当量就是把钢中包括碳在内的对淬硬、冷裂纹及脆化等有影响的合金元素含量换算成碳的相当含量。通过对钢的碳当量和冷裂敏感指数的估算,可以初步衡量低合金高强度钢冷裂敏感性的高低,这对焊接工艺条件如预热、焊后热处理、线能量等的确定具有重要的指导作用。 50年代初,当时钢的强化主要采用碳锰,在预测钢的焊接性时,应用较广泛的碳当量公式主要有国际焊接学会(IIW)所推荐的公式和日本JIS标准规定的公式。 60年代以后,人们为改进钢的性能和焊接性,大力发展了低碳微量多合金之类的低合金高强度钢,同时又提出了许多新的碳当量计算公式。 由于各国所采用的试验方法和钢材的合金体系不尽相同,所以应搞清楚各国所使用的碳当量公式的来源、用途及应用范围等,以免应用不当。 1 国际焊接学会推荐的08韩国饰品加盟碳当量公式CE(IIW): CE(IIW)=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15 (%) (1) (式中的元素符号均表示该元素的质量分数,下同。) 该式主要适用于中、高强度的非调质低合金高强度钢(σb=500~900 MPa。当板厚小于20 mm,CE(IIW)<0.40%时,钢材淬硬倾向不大,焊接性良好,不需预热;CE(IIW)=0.40%~0.60%,特别当大于0.5%时,钢材易于淬硬,焊接前需预热。 2 日本推荐的碳当量公式 2.1 日本JIS和WES标准规定的碳当量公式: Ceq(JIS)=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14(%) (2) 该式主要适用于低碳调质的低合金高强度钢(σb=500~1000 MPa)。 当板厚小于25 mm,手工焊线能量为17 kJ/cm时,确定的预热温度大致如下: 钢材σb=500 MPa, Ceq(JIS)≈0.46%,不预热 σb=600 MPa, Ceq(JIS)≈0.52%,预热75 ℃ σb=700 MPa, Ceq(JIS)≈0.52%,预热100 ℃ σb=800 MPa, Ceq(JIS)≈0.62%,预热150 ℃ (1)、(2)式均适用于含碳量偏高的钢种(C≥0.18%),即C≤0.20%;Si≤0.55%;Mn≤1.5%;Cu≤0.50%;Ni≤2.5%;Cr≤1.25%;Mo≤0.70%;V≤0.1%;B≤0 .006%。

焊接公式及实验

1、碳当量 国际焊接学会:CE(IIW)=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15 <淬硬倾向不大 日本焊接学会:Ceq(JIS)=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14 Ceq《%,焊接性优良;淬硬倾向逐渐明显,焊接时需要采取合适的措施;Ceq>%时,淬硬倾向明显,属于较难焊接材料。 淬硬倾向较大的钢, 焊后在空气中冷却时,焊缝易出现淬硬的马氏体组织,低温焊接或焊接刚性较大时易出现冷裂纹,焊接时需要预热,预热是防止冷裂纹和再热裂纹的有效措施。与人是防止冷裂纹和再热裂纹的有效措施。温度太低,焊缝会开裂,太高又会降低韧性,恶化劳动条件,所以确定合适的预热温度成为很重要的问题。 Rb=500MPa,Ceq= 不预热 Rb=600MPa,Ceq= 预热75o C Rb=700MPa, Ceq= 预热75 o C Rb=800MPa,Ceq= 预热150 o C 新日铁: CE IIW公式对碳钢和碳锰钢更合适,但不适用于低碳低合金钢;Pcm适于低碳低合金钢。CEN在图表法中被用作评价钢冷裂纹敏感性的尺度(当碳增加时,CEN接近CE IIW,而当碳降低时他又接近Pcm)。——用图表法确定钢焊接时的预热温度上 2、冷裂纹敏感指数:Pcm Pcm=C+Si/30+(Mn+Cu+Cr)/20+Ni/60+Mo/15+V/10+5B 使用化学成分范围(质量分数):C=、冷裂纹敏感性Pw Pw=Pcm+[H]/60+h/600或Pw=Pcm+[H]/60+R/40000 [H]:熔敷金属中扩散氢含量(ml/100g) R:焊缝拉伸拘束度 h:板厚(mm) 当Pw>0时,即有产生裂纹的可能性。 适用条件:扩散氢含量[H]=(1-5)ml/100g,h=19-50mm,线能量为17-30kJ/cm.

焊接当量

焊接当量 焊接当量是焊接工作量的一种体现形式。它对领导的宏观调控和焊工微观的工作量、应得报酬分配具有十分重要的参考、指导作用。 某炼油厂管道安装工程焊接当量采用的是焊口直径统计法,即把焊口直径(单位:寸)累计相加,对于厚度的影响,解决办法是把工程中包含的厚度范围分类,然后对于每一类相应的乘以不同的系数。例如,在某加氢精制装置中,管道厚度分为2类,0~18mm,19~24mm,相对应的系数分别为×1,×1.5。此种方法在统计工程量和工作量时,统计人员根据班组每天所报焊接记录确定管道厚度,然后根据等级乘以相应的系数,最后把所得的寸口相加求和。此种方法操作简单。但由于对厚度只是粗略考虑,分类不是很细,所以缺乏科学性。首先,对领导的宏观调控不能起到很好的参考作用。例如某装置管道安装工程工期1年,焊接量为75000寸,前半年完成50000寸,下半年还剩25000寸。如果没有特别清晰的补充说明,领导理解中已经完成了一半多了。但实际情况是,上半年完成的基本是薄壁管,剩下的基本都是厚壁管。也就是说,虽然数据上看上半年已经完成了一多半,但下半年的真实剩余工程量比上半年还要多。这很容易给领导造成误解,或者不能很好的反映出真实情况,进而不能很好的进行宏观调控,影响工程秩序和进度。另外在给焊工的报酬中不能更好的体现公平原则,18mm就是薄,19mm就是厚,其实在焊接过程中它俩焊接难度差的不是很多,但得到的报酬却明显不一样,不能更好的体现公平原则。 既然决定因素是管径和壁厚,那么不如把两者同等对待。这里有个好一点的办法,就是每个焊缝的管道外径或板材长度与厚度的乘积除1000即为焊接当量值。 管道焊接当量=管道外径×管道厚度/1000 板材焊接当量=板材长度×板材厚度/1000/3.14 外径、长度、厚度的单位为毫米(mm) 焊接当量的单位为EW。 此种方法统计员事先需在数据库中插入两列,一列是规格(要求管径和壁厚),一列是乘积结果,这样在统计时只需把当天结果加和就可以了。更加方便和科学。 此种方法应该适用于包含多种管道规格的工程。

管道施工DIN计量方法

管道施工DIN 计量方法 什么是焊接达因数, DIN,Dia-i nch,?计算焊接工作量的单位?也就是焊接当量?国外叫达因?是指直径1英寸的一个焊口为1个焊接当量,1个达因,?10个1英寸的焊口就是10 个达因?2个5英寸的焊口也是10个达因?1 、Din: dia-inch 就是用接头公称直径来表示工作量的一种计量单位。包括承插、罗纹和对焊接头。 2、DB: dia-inch-butt 指用寸径表示的对焊接头。 3、焊接当量大致意思同第一条差不多。 以上焊接工作量描述具体包含哪些内容呢, 一般来说?在用DIN描述的工作量清单当中?相应的将管道的工作量大致分解为:焊接达因、热处理、无损检测、阀门安装、支架制作/ 安装、试压和吹洗等。 在用达因表示的工程量清单商务报价方面?总是分别按照材质、管表号、焊接类型、接头类型进行包价。 如:SS SCH20 FW(SW) BW(SW) 38.00解释一下:不锈钢壁厚SCH20安装口, 预制口, 对焊口,承插口, 另外: 对于各种特殊情况如开孔补强?管廊和工艺焊口?都规定了折算系数。 国外在这些方面作的已经很成熟了?我们需要关注的是各种情况下我们实际的消耗。实际影响焊工效率的主要因素: a. 管道材料质量:如果管道材料质量较好?那么接头的组对效率和组对质量都很理想?如错边什么的。焊工焊接效率会比较高?焊接 合格率也高?折算下来对平均焊接能力估算值影响是比较大的。 b. 辅助工种配比?实际施工组织中?不能保证焊工有足够多的辅助工种协助?以保证焊工能够

连续不断地进行焊接。如焊口的打磨、组对、点焊等?中间会有很多的中断焊接时间。 c. 焊接质量要求?质量要求高的管道?焊接工艺的执行当然也会更加严格?检查过程也比较正规。焊工作业中投机取巧的伪效率就降低了。 d. 焊接设备和焊接工艺?采用自动和半自动焊接设备的焊接工艺效率当然要比纯手工焊接效率要高的多。 装置区的可以根据经验公式算:装置区的焊接工程量,管线总长度x 0.127,修正系数,X管线寸口,,弯头数量x管线寸口x 2,,,三通数量x管线寸口x 3,,,法兰数量x 管线寸口,,,大小头数量x管线寸口x 2, 对于非装置区即管廊区?可以按公式计算 非装置区的焊接工程量,焊口数,管线总长度/单根管线长度,x管线寸口,,弯头数量x管线寸口x 2,,,三通数量x管线寸口x 3,,,法兰数量x管线寸口,,,大小头数量x管线寸口x2 ,如:管线是3”?焊口数有20个?焊接工程量就是60”。上式中的管线寸口即管线外径的英制?上面公式只是 1 种外径规格的管子计算方法?所有规格的管线均按上面公式计算?最后再加起来?就可得到总焊接工程量。 对于厚壁管?可以根据经验乘以一个系数。 还有一种方法?可按经验?根据总单线图的图纸数量?估算总焊口数。

钢板的碳当量计算分析及公式-免下载券

钢板的碳当量计算分析及公式主要描述了碳当量的定义和一些计算公式,自己编程实现,为以后应用提供方便。并收集下载了一些相关文献参考。 钢铁材料的焊接性能一般是指焊缝及热影响区是否容易形成裂纹,焊接接头是否出现脆性等等。由于很多高压管、罐、船体、桥梁等重要结构件都是用焊接方式连接起来的,一旦出现质量问题,将造成灾难性的事故。如1943年,美国一个电站的蒸气管道,在500摄氏度温度下工作了5年,突然发生爆炸,经检查发现,断裂发生于焊缝热影响区。因此材料的焊接性能一直是一个非常重要的工艺指标。 人们通过大量的实验结果,发现钢的焊接性能与其成分关系很大,尤其是碳含量。当碳含量高时,焊接区容易产生裂纹,合金元素含量增加也容易产生开裂现象,因此可以用合金成分的"碳当量"概念来表示焊接性能的好坏,常用的碳当量[C]的经验计算公式为: [C]=C + Mn/6 + (Ni+Cu)/15 + (Cr+Mo+V)/5 式中的元素符号代表这些元素在钢中的重量百分比。经验表明,当[C]小于0.4%时,钢材焊接冷裂倾向不大,焊接性良好;[C]在0.4%~0.6 %之间时,钢材焊接冷裂倾向较显著,焊接性较差,焊接时需要预热钢材和采取其它工艺措施来防止裂纹;当[C]大于0.6%时,钢材焊接冷裂严重,焊接性能很差,基本上不适合于焊接,或者只有在严格的工艺措施下和较高的预热温度下才能进行焊接操作。为了得到较高的强度,一个最有效的办法就是提高钢中的碳含量,但由于碳含量高导致焊接性能降低,因此低合金高强钢必须是低碳的(一般小于含碳0.25%),如16Mn, 15MnVN,20CrMnTi等。一些高碳的工具钢,如T7~T13(含碳0.7~1.3%)和铸铁零件,通常是不能焊接的。开发和使用高强度钢铁材料,用于制造工程结构件,必须考虑焊接性能。 以下内容摘自[第14 卷第1期材料开发与应用1999 年2月经验交流] 钢的碳当量就是把钢中包括碳在内的对淬硬、冷裂纹及脆化等有影响的合金元素含量换算成碳的相当含量。通过对钢的碳当量和冷裂敏感指数的估算, 可以初步衡量低合金高强度钢冷裂敏感性的高低,这对焊接工艺条件如预热、焊后热处理、线能量等的确定具有重要的指导作用。 50 年代初, 当时钢的强化主要采用碳锰, 在预测钢的焊接性时, 应用较广泛的碳当量公式主要有国际焊接学会( IIW ) 所推荐的公式和日本J IS 标准规定的公式。 60 年代以后, 人们为改进钢的性能和焊接性, 大力发展了低碳微量多合金之类的低合金高强度钢, 同时又提出了许多新的碳当量计算公式。由于各国所采用的试验方法和钢材的合金体系不尽相同, 所以应搞清楚各国所使用的碳当量公式的来源、用途及应用范围等, 以免应用不当。 1 国际焊接学会推荐的碳当量公式CE(IIW): [1 ] CE(IIW)=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15(式中采用%)(1)

碳当量

、碳当量 将钢铁中各种合金元素折算成碳的含量。 碳素钢中决定强度和可焊性的因素主要是含碳量。 合金钢 ( 主 要是 低合金钢 ) 除碳以外各种合金元素对钢材的强度与可焊性也起着重要作用。 为便于表达这些材料的 强度性能和焊接性能便通过大量试验数据的统计简单地以碳当量来表示。 2 、铸铁石墨化 铸铁的石墨化就是铸铁中碳原子析出和形成石墨的过程。一般认为石墨既可以

由液体铁水中析出,也 可以自奥氏体析出,还可以由渗碳体分解 3 、工艺焊接性 工艺焊接性是指在一定焊接条件下,是否易于获得优良焊接接头的能力称为工艺焊接性。它取决于焊 缝产生裂纹、气孔等倾向。焊接性能好的材料易于用一般的焊接方法和工艺焊接, 4 、热处理强化铝合金 具有溶解度变化,可以通过固溶处理和时效强化。 5

、晶间腐蚀 局部腐蚀的一种。沿着金属晶粒间的分界面向内部扩展的腐蚀。主要由于晶粒表面和内部间化学成分 的差异以及晶界杂质或内应力的存在。晶间腐蚀破坏晶粒间的结合,大大降低金属的机械强度。 (本题 25 分,每空 1 分)二、填空 6. 常用直接工艺焊接性试验方法有斜 Y 形坡口焊接裂纹试验方法、焊接热影响区最高硬度试验方法、

插销试验方法等。斜 Y 形坡口若裂纹率不超过 20 % ,在实际结构焊接时就不致发生裂纹。 7. 碳素钢的焊接性主要取决于 碳含量的高低,随着碳含量的增加,焊接性逐渐变差。 8. 中碳钢的预热温度取决于碳当量、母材厚度、结构刚性、焊条类型和工艺方法。通常35 、

钢预热 温度可为 150 ~ 250 ℃。刚性很大时,可将预热温度提高到250 ~ 400 ℃。 9. 焊接珠光体耐热钢一般都需要预热,预热温度一般为 150 ~ 300 ℃;

焊接相关计算

焊接的有关计算 第一章 基本概念的有关计算 一、焊条药皮质量系数 概念:焊条药皮质量系数即焊条与药芯(不包括无药皮的夹持端)的质量比。 b l m K 100%m = ? 式中:Kb ——药皮质量系数(%); m o ——药皮质量(Kg ); m l ——焊芯质量(Kg )。 二、焊条药皮厚度分类 (1)薄药皮焊条 1.2≤焊条直径焊芯直径 (2)厚药皮焊条 1.2 1.5<≤焊条直径焊芯直径 (3)特厚药皮焊条 1.8<焊条直径 焊芯直径 三、熔敷系数 熔敷系数指熔焊过程中,单位电流、单位时间内,焊芯(或焊丝)熔敷在焊件上的金属量。 H o l p m It m m It αα= -= 式中:H α——熔敷系数(g/Ah ); m ——熔敷焊缝金属质量(g ); I ——焊接电流(A ); t ——焊接时间(h )。 四、熔化系数 熔化系数指熔焊过程中,单位电流,单位时间内,焊芯(或焊丝)的熔化量。 o l p m m It α-= 式中 :p α——熔化系数(g/Ah ); o m ——焊芯原质量(g ); l m ——焊后剩下焊芯质量(g ); 五、熔化速度 熔化速度指熔焊过程中,熔化电极在单位时间内熔化的长度或质量。

O p L L v t -= 式中 p v —— 熔化速度(mm/min ); O L ——焊条原长(mm ) ; L ——余下焊条头长度(mm ); T ——焊接时间(min )。 例:某焊条长320mm ,经过5min 的焊接,剩下40mm 的焊条头,求该焊条的熔化速度。 解:O p L L v t -= =(320mm-40mm )/5min=56mm/min 答:该焊条的熔化速度为56mm/min 。 六、熔敷速度 熔敷速度指熔焊过程中,单位时间内熔敷在焊件上的金属量。 p m m v t -= 式中:p v ——熔敷速度(kg/h ); M ——焊后焊件的质量(kg ); 0m ——焊前焊件的质量(kg ) ; t ——焊接时间(h )。 七、热输入 热输入指熔焊时,由焊接能源输入给单位长度焊缝上的热能。 q U I /v η= 式中:q ——热输入(J/mm ); U ——电弧电压(V ); I ——焊接电流(A ); V ——焊接速度(mm/s ); η——热效率(焊条电弧焊η=0.7~0.8;埋弧焊η=0.8~0.95;TIG 焊η=0.5)。 例1:用焊条电弧焊焊接Q390(原15MnTi )钢时,为防止和减小焊接热影响区的过热区脆化倾向,要求焊接时热输入不超过30kj/cm 。如果选择焊接电流为180A,电弧电压为28V ,试计算焊接速度应为多少? 已知:I=180A ;q=30kJ/cm ;U=28V 求:v=? 解:由 q UI/v η= 取η=0.7 得:v=UI/q=0.728180/30000cm/s=0.118cm/s η?? 答:应选用的焊接速度为0.118cm/s 。 例2:已知某钢材焊接过程中焊条电弧焊的电弧电压为26V ,焊接电流为200A ,焊接速度为0.2cm/s ,试求其焊接热输入(η取0.8)。 已知:I=200A ;v=0.2cm/s ;U=26V ;η=0.8

焊接公式及实验

1、碳当量 国际焊接学会:CE(IIW)=C+Mn/6+(C叶Mo+V)/5+(Ni+Cu)/15 <0.4 淬硬倾向不大 日本焊接学会:Ceq(JIS)=C+Mn /6+Si/24+Ni/40+Cr/5+Mo/4+V/14 Ceq《0.46%,焊接性优良;0.46-0.52%淬硬倾向逐渐明显,焊接时需要采取合适的措施;Ceq>0.52%时,淬硬倾向明显,属于较难焊接材料。 淬硬倾向较大的钢,焊后在空气中冷却时,焊缝易出现淬硬的马氏体组织,低温焊接或焊接刚性较大时易出现冷裂纹,焊接时需要预热,预热是防止冷裂纹和再热裂纹的有效措施。与人是防止冷裂纹和再热裂纹的有效措施。温度太低,焊缝会开裂,太高又会降低韧性,恶化劳动条件,所以确定合适的预热温度成为很重要的问题。 Rb=500MPa,Ceq=0.46 不预热 Rb=600MPa, Ceq=0.52 预热75o C Rb=700MPa, Ceq=0.52 预热75 o C Rb=800MPa, Ceq=0.62 预热150 o C 新日铁: CE= C+ A(C){Si/ 24+ Mil/ 16+ Cu/15 + Ni/ 2 0+ (Cr+ Mo+ V+ Nb)/5+ 5B} (%) A(C)= 0 75+ 0. 25tgh[20(C- 0. 12)] CE IIW公式对碳钢和碳锰钢更合适,但不适用于低碳低合金钢;Pcm适于低碳低合金钢。CEN在图表法中被用作评价钢冷裂纹敏感性的尺度(当碳增加时,CEN接近CE IIW,而当碳降低时他又接近Pcm)。——用图表法确定钢焊接时的预热温度上 2、冷裂纹敏感指数:Pcm Pcm=C+Si/30+(M n+Cu+Cr)/20+Ni/60+Mo/15+V/10+5B =C +男+勢+芻十黑+富+寧+焉+ 23B-使用化学成分范围(质量分数): C=0.07-0.22%,Si=0-0.6%,M n=0.4-1.4%,Cu=0-0.5%,Ni=0-1.2%,Cr=0-1.2%,Mo=0-0.7%,V =0-0.12%,Nb=0-0.04%,Ti=0-0.05%,B=0-0.005%. 3、冷裂纹敏感性Pw Pw=Pcm+[H]/60+h/600 或Pw=Pcm+[H]/60+R/40000 [H]:熔敷金属中扩散氢含量(ml/100g) R:焊缝拉伸拘束度 h:板厚(mm) 当Pw>0时,即有产生裂纹的可能性。 适用条件:扩散氢含量[H]=(1-5)ml/100g,h=19-50mm,线能量为17-30kJ/cm. 4、预热温度:To To=1440Pw-392

焊接变形计算公式

焊接变形收缩始终是一个比较复杂的问题,对接焊缝的收缩变形与对接焊缝的坡口形式、对接间隙、焊接线的能量、钢板的厚度和焊缝的横截面积等因素有关,坡口大、对接间隙大,焊缝截面积大,焊接能量也大,则变形也大。 为了给设计人员提供一定的参考,贴几个公式: 1、单V对接焊缝横向收缩近似值及公式: y = *e^() y=收缩近似值 e= x=板厚 2、script id=text173432>双V对接焊缝横向收缩近似值及公式: y = *e^() y=收缩近似值

e= x=板厚 3、 4、

5、 6、

1、预热处理是为了防止裂纹,同时兼有一定改善接头性能的作用,但是预热也恶化劳动条件,延长生产周期,增加制造成本。过高预热温度反会使接头韧性下降。 预热温度确定取决于钢材的化学成分、焊件结构形状、约束度、环境温度和焊后热处理等。随着钢材碳当量、板厚、结构约束度增大和环境温度下降,焊前预热温度也需相应提高。焊后进行热处理的可以不预热或降低预热温度。 Q345焊接的预热温度板厚≤40mm,可不预热; 板厚>40mm,预热温度≥100度(以上为理论参考)2、焊接变形收缩始终是一个比较复杂的问题,对接焊缝的收缩变形与对接焊缝的坡口形式、对接间隙、焊接线的能量、钢板的厚度和焊缝的横截面积等因素有关,坡口大、对接间隙大,焊缝截面积大,焊接能量也大,则变形也大。具体经验公式见附件! 3、低合金钢接头焊接区的清理是一项不可忽视的工作,是建立低氢环境的主要环节之一。 若直接在焊件切割边缘和切割坡口上的焊接接头,则焊前必须清理干净切割面得氧化皮盒熔化金属的毛刺,必要时可用砂轮打磨。

焊接相关计算

精心整理 焊接的有关计算 第一章基本概念的有关计算 一、焊条药皮质量系数 概念:焊条药皮质量系数即焊条与药芯(不包括无药皮的夹持端)的质量比。 式中:Kb ——药皮质量系数(%); m o ——药皮质量(Kg ); m l ——焊芯质量(Kg )。 二、焊条药皮厚度分类 (1)薄药皮焊条 (2(3 式中:αm I t 式中:αo m l m 式中p v O L L T 例:某焊条长320mm ,经过5min 的焊接,剩下40mm 的焊条头,求该焊条的熔化速度。 解:O p L L v t -==(320mm-40mm )/5min=56mm/min 答:该焊条的熔化速度为56mm/min 。 六、熔敷速度 熔敷速度指熔焊过程中,单位时间内熔敷在焊件上的金属量。 式中:p v ——熔敷速度(kg/h ); M ——焊后焊件的质量(kg );

m——焊前焊件的质量(kg); t——焊接时间(h)。 七、热输入 热输入指熔焊时,由焊接能源输入给单位长度焊缝上的热能。 式中:q——热输入(J/mm); U——电弧电压(V); I——焊接电流(A); V——焊接速度(mm/s); η——热效率(焊条电弧焊η=0.7~0.8;埋弧焊η=0.8~0.95;TIG焊η=0.5)。 例1:用焊条电弧焊焊接Q390(原15MnTi)钢时,为防止和减小焊接热影响区的过热区脆化倾向, 已知: 求:v= 解:由q 得:v= 例2:,已知: 求:q= 解:q= 例324V,已知: 求:I= 解:由q 得I=qv/( 八、熔合比 熔合比又称截面系数。熔合比指熔焊时,被熔化的母材部分在焊道金属中所占的比例 (如下图焊缝截面) 式中:θ——熔合比(%); ——填充焊丝(焊条)所占面积; A A ——母材所占面积。 A B 九、碳当量 碳当量即把钢中合金元素(包括碳)的含量按其作用换算成碳的相当含量。它可作为评定钢材焊接性的一种参考指标。 国际焊接学会推荐: 日本JIS标准所规定的:

焊接当量--焊接工程统计方法参考模板

焊接当量——焊接工程统计新方法探讨 (核电专辑) 张宗富1罗来丰2 (1.国家电力公司电源建设部,北京市,100011;2.山东核电工程公司,深圳,518124) [摘要]本文介绍一种统计焊接工程量的新方法,此方法在岭澳核电站常规岛工程焊接工作量统计中发挥了重要作用。 [关键词] 焊接当量统计 Equivalent Weld----A New Method of Weld project statistics Zhang Zongfu1 Luo Laifeng2 (1.State Electric Power Corporation,Beijing,100011 2.Shandong Nuclear Power Construction Company, Shenzhen,518124) 焊接工种是门特殊的工种,焊工是需要经过特殊的专业培训,耗费一定量的钢材,经过严格考试取证,才允许上岗,而真正能承担管道焊接,保证焊接质量的稳定和提高,还需要经过四、五年的实践锻炼和培养。在涉外工程或遇到新钢种时还需要进行额外的培训、考核和取证,因而培养一名优秀的合格焊工成本和代价是很高的,在电建行业属稀缺的人力资源。 1 焊接工程量和焊接定额统计缺乏统一的标准,是造成人力资源浪费或工期延长的主要因素之一 在电力建设安装过程中因种种原因会经常发生焊工数量过多,劳动效率低下,或焊工数量过少,形成工程进度的瓶径效应。如何将焊工人数控制在一个合理的范围,与安装工保持一个最佳的匹配,保证工程进度按计划进行。过去的经验做法是根据安装工程量的大小确定安装工的人数,再按一定的比例确定焊工的人数,由于安装工程焊接工作量的不确定性,有时还会发生焊工过多,造成人力资源的浪费,有时焊工不够,进度难以保证。在工地上经常听到安装队的主任抱怨焊工不够任务完不成,公司领导时常批评焊工任务不足,劳动效率低下。这都是因为对焊接工程量和焊工劳动定额缺乏一个统一的量化指标。 2 当前焊接工程量和焊接定额的统计方法及存在的问题

相关文档