文档库 最新最全的文档下载
当前位置:文档库 › BP神经网络在生存分析中的应用

BP神经网络在生存分析中的应用

BP神经网络在生存分析中的应用
BP神经网络在生存分析中的应用

BP 神经网络在生存分析中的应用

李丽霞,郜艳晖,张丕德,张瑛,邹宇华(广东药学院卫生统计学教研室,广东广州510310)

摘要:目的探讨BP 神经网络在生存分析中的应用。方法通过贲门癌预后的实例说明神经网络的连续时间模型与离散时间模型的使用。结果所建立的神经网络生存分析模型有较好的预测能力。结论神经网络在生存分析中有很大的灵活性,在模型中可以容纳非线性效应,协变量的效应可以随时间而变化,不要求满足P H 假定,有较广泛的应用前景。关键词:BP 神经网络;生存分析;贲门癌

中图分类号:O 212 文献标识码:A 文章编号:1006-8783(2008)01-0079-03

The Application of BP neural net w ork in t he surviva l analysis

LI Li xia ,GAO Yan hu,i Z HANG Pi de ,Z HANG Y i ng ,ZOU Yu hua (Section of Medical Statistics ,Guan gdong Colle ge of Phar mac y,Guangzhou ,Guan gdong 510310,China)

Abstract :Objective To exp l ore t he appli cation of BP neural net work in t he survival anal ysi s .M ethod Three approaches have been illustrated how to fit survivalm odel for carcinoma of t he gastric card i a .Results The neural net w ork m odels have good p redicti ve ability .Concl usion BP neural net work is very fl exi b l ew ithoutm aki ng assu m pti on of proporti onality of hazards ,it can allo w non li near pred i ctors and t he effect of the covari ates to vary over tm i e ,so it has broad app licati on prospects .K ey words :BP neural net w ork ;survival anal ysi s ;carcinoma of the gastric cardia

基金项目:国家自然科学基金(30500421);广东省医学科学

技术研究基金(A 2006316)作者简介:李丽霞(1974-),女,硕士,主要从事统计学的教

学和科研工作。

生存分析(surv i v al analysis)起源于19世纪对寿命表的分析,目前已广泛应用到临床研究中,可以处理含有删失值的数据,可以同时考虑事件发生的结局及发生结局的时间。目前处理生存资料的方法有参数模型、非参数模型及半参数模型。参数模型对生存时间的分布要求非常严格,医学资料中很少能满足;生存分析中传统的回归模型,例如:Cox 比例风险模型、加速失效时间模型也要求模型满足一定的假设前提,而实际数据往往难以满足这些假设。神经网络近年来受到普遍的关注,在医学领域中的应用主要预测与分类,与传统回归模型不同,它可以克服这些缺点,在模型中可以容纳非线性效应,交互效应、协变量的效应可以随时间变化。目前国内研究神经网络在生存分析中的应用尚较少,本文拟探讨几种不同的神经网络生存模型在贲门癌预后中的应用。

1 方法

BP 神经网络是目前应用最多的神经网络,一般由一个输入层(i n put l a yer )、一个输出层(output layer)、一个或几个中间层(隐层)组成,每一层可包

含一个或多个神经元,其中每一层的每个神经元和前一层相连接,同一层之间没有连接。输入层神经元传递输入信息到第一隐层或直接传到输出层,隐层的神经元对输入层的信息加权求和,加一个常数

后,经传递函数运算后传到下一个隐层(或输出层),常用的传递函数是log istic 函数,即 h =1/(1+exp (-z)),输出层神经元对前一层的输入信息加权求和经传递函数 0(线性或l o g istic 函数或门限函数)运算后输出,例如:如果输入为x i ,对于含一个隐层的神经网络可以得到:

g (x i , )= 0( k + i k w ik x i + j w jk h ( j + i

w ij x i ))(1) 表示未知的参数矢量(即各层的网络权值),BP 神经网络一般采用BP 算法训练网络,训练开始时选择初始值^ 0,BP 算法通过梯度下降法得到估计值^ ,使得g (x,^ )能很好地估计实测值,关于BP 算

法及改进可参考相关文献[1]

利用BP 神经网络模型建立生存分析模型,常用的方法有:连续时间模型(continuous ti m e m ode ls)与离散时间模型(discrete ti m e m odels)。1.1 连续时间模型(conti n uous ti m e m odels)最常用的是Faragg i 和S i m on [2]

提出的方法,在C ox 比例风险模型中,风险函数与时间、协变量有如下关系:

h(t ,x i )=h 0(t)exp (!x i )

(2)通过最大化偏似然函数,使用N e w ton Raphson

79

第24卷第1期广 东 药 学 院 学 报

V o.l 24N o .12008年2月

J OURNAL OF GUANGDONG COLLEGE OF P HAR MACY Feb .2008

法得到参数的估计值,现在使用神经网络的输出值g (x i, )来代替(2)中的线性项!x i,比例风险模型变成h(t,x i)=h0(t)exp[g(x i, )],有偏似然函数:

L c( )=!

i?u

exp

j

w jk/(1+exp(-w ij x i))

j?R i

exp

j

w jk/(1+exp(-w ij x j))

(3)

g(x i, )可以依赖时间和协变量变化,也就是说协变量的效应可以随时间而变化,这给我们提供了一个可以处理删失变量但又不需要满足比例风险模型的P H假定的可供选择的方法。

1.2 离散时间模型(discrete ti m e m odels)

常用的模型有[3]:(1)直接预测患者是否可以存活到某年(例如5年),是最简单的神经网络模型,模型的输出层只有一个神经元结点,如欲预测多个时间点,则需建立多个神经网络模型(每个模型对应一个时间区间);(2)多个输出结点的单个神经网络模型。

1.2.1 输出层有单个结点的神经网络模型 是一个标准的分类神经网络模型,生存时间被分成2个区间,例如生存时间是否大于5年。其似然函数为: !

patients

p t i i(1 p i)(1 t i)

其对数似然函数为:

patients

t i log p i+(1 t i)log(1 p i)

p i:第i个病人死亡的概率,t i:第i个观测在某时间点(例如5年)的结果,如观测死亡,取值为1,否则取值为0。对于删失的观测不能简单地排除,这样会造成偏性,我们使用Cox线性比例风险模型产生的个体预测值对删失值做填补。

1.2.2 输出层有多个结点的神经网络模型将生存时间分成几个离散的区间,估计某个区间事件发生的概率。

不考虑时间区间的顺序,有模型:l o g p k log p1 =?k(X)(k=2,#,P)

从神经网络可以得到输出值y k:y k=

i w ik x i+

j

w jk 1(

i

w ij x i)(K=1,#,P)(这里我们设?k(x)=y k-y1),

于是可以得到时间区间k的概率:p k=

exp(y k)

l

(y l)

建立似然函数!

patients

l i

k=m i+1

p ki

m i:观测i存活的前一个生存区间,l i:最后的时间区间,p k i:第i个病人在时间区间k死亡的概率。

本次研究采用灵敏度、特异度、一致性指数C (concordance index)[4,5]作为预测准确性的评价指标。一致性指数C是对含有删失数据的ROC曲线下面积的推广(genera lizati o n),是指预测结果和实际结果一致的观察单位的对子数占总的有用对子数的比例,即C=一致的对子数/有用的对子数,C接近0.5表明模型的预测性能差,接近1表明预测性能好。一致性指数的计算步骤为[5]:?产生所有的病例配对。若有n个观察个体,则所有的对子数为C2n。%排除两种对子:对子中具有较小观察时间的个体没有达到观察终点及对子中2个个体都没达到观察终点。&计算有用对子中,预测结果和实际相一致的对子数,?计算一致性指数。

2 实例分析

贲门癌是常见恶性肿瘤,对236例经手术切除但未行放化疗的贲门癌患者随访,生存时间为确诊到最后一次随访,按月记录,分析的协变量包括:性别、年龄、肿瘤的长度、组织学类型、大体分型、浸润深度、淋巴结转移情况、TNM分期等临床上可能的预后因素。为了减少训练时间,先采用COX比例危险模型对可能影响预后的因素进行筛选,采用向前逐步法,引入标准为0.05,剔除标准为0.10,结果显示对贲门癌患者生存率有影响的因素为:病人的肿瘤长度、淋巴结转移情况、组织学类型、筛选结果见表1。

表1 贲门癌患者生存的COX逐步回归分析结果

Tab.1 The resu lt of Cox regression model for carcino ma of the gastric cardia

影响因素B SE W ald df P值RR

L(肿瘤长度)/c m0.5420.16311.08210.0011.720

病理分型24.84950.000

高分化-0.3910.3121.57710.2090.676

中分化-0.8460.19319.31210.0000.429

黏液腺癌-0.4790.2135.07410.0240.620

低分化腺癌0.1290.2350.30110.5831.138

鳞癌-0.5530.4691.39110.2380.575

淋巴结转移0.5280.11820.00210.0001.695

80

广东药学院学报,2008,24(1)

2.1 BP网训练集、校验集和测试集的确定

从原始数据中随机抽取80例作为训练集,80例作为校验集,76例为预测样本。

2.2 输入数据的预处理

使输入变量的取值落在0到1的范围内。对于

肿瘤长度使用x(i=

x i

m ax(x)

进行归一化处理;病理

分型为无序分类变量,以哑变量的形式赋值。

2.3 神经网络模型的建立及训练

选取Cox回归选出的3个变量作为网络的输入。建立输出层为1个结点的离散型神经网络时,将病人生存时间按下式分为两类作为输出变量

y i(i=1,2,#,n),即y i=

1生存t)5年

0生存t<5年

;建立输出层为5个结点的离散型神经网络时,将病人生存时间分为5类作为输出变量y i,ti m e<1year,1year?ti m e<2year,2?ti m e<3year,3?ti m e<5year,ti m e>5year。

使用M atlab软件建立神经网络模型,学习率为0.01,传递函数采用log istic传递函数,单结点网络的隐单元数为2,多结点网络隐单元数为3,采用+早停止,策略防止过度拟合。

2.4 两种神经网络模型预测性能

使用灵敏度、特异度、一致性指数C评价模型的预测性能。

表2 两种神经网络模型预测性能*

Tab.2 The pred i c ti ve perfor m ance of th ree typ e of neu ra l ne t work

训练样本

灵敏度/%特异度/%一致性指数C

测试样本

灵敏度/%特异度/%一致性指数C

连续时间模型91860.90189790.860离散时间模型

输出层为1个结点91850.90383700.841 输出层为5个结点89840.86084720.832 *判断界值取0.5

3 讨论

神经网络已在语音识别、图像诊断分析、临床诊断、高分子序列分析等许多方面取得了成功的应用,在医学研究领域,变量间关系往往非常复杂,神经网络正逐渐变成分析数据的流行工具,目前主要应用于分类与预测,用于生存分析方面的研究还较少。国内黄德生[5]等建立利用BP神经网络建立ti m e coded m odel和si n g le ti m e po i n tm ode l用于肺鳞癌预后预测,贺佳[6]等对肝癌术后无瘤生存期的预测做了应用尝试。

本文通过实例建立连续时间模型与离散时间模型探讨BP神经网络在生存分析中的应用,Faraggi 提出的方法还可以扩展到其他可以处理删失数据的模型,例如加速失效时间模型、Buck ley Ja m es模型,但哪一种模型更好,还有待进一步研究。神经网络在生存分析中的应用主要在于[7]:个体患者预后的预测,研究预后因子的重要性,研究预后因子的相互作用;对于预测变量的影响力强弱,解释性还有待进一步探讨。还有研究者在建立多个时间区间的模型时将时间区间也作为一个输入变量,也有学者将神经网络纳入Bayes方法的研究框架,神经网络建立的生存分析模型可以探测复杂的非线性效应,复杂的交互效应,相信会逐渐应用到生物医学研究领域。参考文献:

[1]余雪丽.神经网络与实例学习[M].中国铁道出版社,

1996:56-61.

[2]DAV I D F,R IC HARD S.A neura l net wo rk m ode l f o r

surv ival data[J].S tati stics i n M edic i ne,1995,14:73-

82.

[3]RUTH,R IPLEY,ADR I AN L,et al.N on li near surv i va l

analysis usi ng neura l net w orks[J].Statistics in M ed i c i ne,

2004,23:825-842.

[4]贺宪民,贺佳,范思昌,等.Cox模型与BP神经网络在处

理非线性数据时的性能比较[J].数理统计与管理,

2004,23(2):69-72.

[5]黄德生,周宝森,刘延龄,等.BP人工神经网络用于肺鳞

癌预后预测[J].中国卫生统计,2000,17(6):337-340. [6]贺佳,张智坚,贺宪民.肝癌术后无瘤生存期的人工神经

网络预测[J].数理统计与管理,2002,21(4):14-16. [7]高蔚,聂绍发,施侣元,等.神经网络在生存分析中的应

用进展[J].中国卫生统计,2006,23(4):358-360.

(收稿日期:2008-01-14)

81

第1期 李丽霞,等.BP神经网络在生存分析中的应用

BP神经网络测试例子(附数据)

Train.txt 5.0,3.0,1.6,0.2,1 5.0,3.4,1.6,0.4,1 5.2,3.5,1.5,0.2,1 5.2,3.4,1.4,0.2,1 4.7,3.2,1.6,0.2,1 4.8,3.1,1.6,0.2,1 5.4,3.4,1.5,0.4,1 5.2,4.1,1.5,0.1,1 5.5,4.2,1.4,0.2,1 4.9,3.1,1.5,0.1,1 5.0,3.2,1.2,0.2,1 5.5,3.5,1.3,0.2,1 4.9,3.1,1.5,0.1,1 4.4,3.0,1.3,0.2,1 5.1,3.4,1.5,0.2,1 5.0,3.5,1.3,0.3,1 4.5,2.3,1.3,0.3,1 4.4,3.2,1.3,0.2,1 5.0,3.5,1.6,0.6,1 5.1,3.8,1.9,0.4,1 4.8,3.0,1.4,0.3,1 5.1,3.8,1.6,0.2,1 4.6,3.2,1.4,0.2,1 5.3,3.7,1.5,0.2,1 5.0,3.3,1.4,0.2,1 6.6,3.0,4.4,1.4,2 6.8,2.8,4.8,1.4,2 6.7,3.0,5.0,1.7,2 6.0,2.9,4.5,1.5,2 5.7,2.6,3.5,1.0,2 5.5,2.4,3.8,1.1,2 5.5,2.4,3.7,1.0,2 5.8,2.7,3.9,1.2,2 6.0,2.7,5.1,1.6,2 5.4,3.0,4.5,1.5,2 6.0,3.4,4.5,1.6,2 6.7,3.1,4.7,1.5,2 6.3,2.3,4.4,1.3,2 5.6,3.0,4.1,1.3,2 5.5,2.5,4.0,1.3,2 5.5,2.6,4.4,1.2,2 6.1,3.0,4.6,1.4,2 5.8,2.6,4.0,1.2,2

BP神经网络模型应用实例

BP神经网络模型 第1节基本原理简介 近年来全球性的神经网络研究热潮的再度兴起,不仅仅是因为神经科学本身取得了巨大的进展.更主要的原因在于发展新型计算机和人工智能新途径的迫切需要.迄今为止在需要人工智能解决的许多问题中,人脑远比计算机聪明的多,要开创具有智能的新一代计算机,就必须了解人脑,研究人脑神经网络系统信息处理的机制.另一方面,基于神经科学研究成果基础上发展出来的人工神经网络模型,反映了人脑功能的若干基本特性,开拓了神经网络用于计算机的新途径.它对传统的计算机结构和人工智能是一个有力的挑战,引起了各方面专家的极大关注. 目前,已发展了几十种神经网络,例如Hopficld模型,Feldmann等的连接型网络模型,Hinton等的玻尔茨曼机模型,以及Rumelhart等的多层感知机模型和Kohonen的自组织网络模型等等。在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。多层感知机神经网络的研究始于50年代,但一直进展不大。直到1985年,Rumelhart等人提出了误差反向传递学习算法(即BP算),实现了Minsky的多层网络

设想,如图34-1所示。 BP 算法不仅有输入层节点、输出层节点,还可有1个或多个隐含层节点。对于输入信号,要先向前传播到隐含层节点,经作用函数后,再把隐节点的输出信号传播到输出节点,最后给出输出结果。节点的作用的激励函数通常选取S 型函数,如 Q x e x f /11)(-+= 式中Q 为调整激励函数形式的Sigmoid 参数。该算法的学习过程由正向传播和反向传播组成。在正向传播过程中,输入信息从输入层经隐含层逐层处理,并 传向输出层。每一层神经元的状态只影响下一层神经

BP神经网络matlab实例

神经网络Matlab p=p1';t=t1'; [pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %原始数据归一化net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx');%设置网络,建立相应的BP网络 net.trainParam.show=2000; % 训练网络 net.trainParam.lr=0.01; net.trainParam.epochs=100000; net.trainParam.goal=1e-5; [net,tr]=train(net ,pn,tn); %调用TRAINGDM算法训练BP网络 pnew=pnew1'; pnewn=tramnmx(pnew,minp,maxp); anewn=sim(net,pnewn); %对BP网络进行仿真 anew=postmnmx(anewn,mint,maxt); %还原数据 y=anew'; 1、BP网络构建 (1)生成BP网络 = net newff PR S S SNl TF TF TFNl BTF BLF PF (,[1 2...],{ 1 2...},,,) R?维矩阵。 PR:由R维的输入样本最小最大值构成的2

S S SNl:各层的神经元个数。 [1 2...] TF TF TFNl:各层的神经元传递函数。 { 1 2...} BTF:训练用函数的名称。 (2)网络训练 = [,,,,,] (,,,,,,) net tr Y E Pf Af train net P T Pi Ai VV TV (3)网络仿真 = [,,,,] (,,,,) Y Pf Af E perf sim net P Pi Ai T {'tansig','purelin'},'trainrp' BP网络的训练函数 训练方法训练函数 梯度下降法traingd 有动量的梯度下降法traingdm 自适应lr梯度下降法traingda 自适应lr动量梯度下降法traingdx 弹性梯度下降法trainrp Fletcher-Reeves共轭梯度法traincgf Ploak-Ribiere共轭梯度法traincgp Powell-Beale共轭梯度法traincgb 量化共轭梯度法trainscg 拟牛顿算法trainbfg 一步正割算法trainoss Levenberg-Marquardt trainlm

(完整版)BP神经网络matlab实例(简单而经典)

p=p1';t=t1'; [pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %原始数据归一化 net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx');%设置网络,建立相应的BP网络net.trainParam.show=2000; % 训练网络 net.trainParam.lr=0.01; net.trainParam.epochs=100000; net.trainParam.goal=1e-5; [net,tr]=train(net ,pn,tn); %调用TRAINGDM算法训练BP 网络 pnew=pnew1'; pnewn=tramnmx(pnew,minp,maxp); anewn=sim(net,pnewn); %对BP网络进行仿真 anew=postmnmx(anewn,mint,maxt); %还原数据 y=anew'; 1、BP网络构建 (1)生成BP网络 = net newff PR S S SNl TF TF TFNl BTF BLF PF (,[1 2...],{ 1 2...},,,) PR:由R维的输入样本最小最大值构成的2 R?维矩阵。 S S SNl:各层的神经元个数。 [ 1 2...] { 1 2...} TF TF TFNl:各层的神经元传递函数。 BTF:训练用函数的名称。 (2)网络训练 [,,,,,] (,,,,,,) = net tr Y E Pf Af train net P T Pi Ai VV TV (3)网络仿真 = [,,,,] (,,,,) Y Pf Af E perf sim net P Pi Ai T {'tansig','purelin'},'trainrp'

BP神经网络实例

BP神经网络实例

智能控制 第一章BP神经网络基本原理 一、BP神经网络基本概念 1、人工神经网络 人工神经网络ANN(Artificial Neural Network),是对人类大脑系统的一阶特性的一种描述。简单地讲,它是一个数学模型,可以用电子线路来实现,也可以用计算机程序来模拟,是人工智能研究地一种方法。近年来发展迅速并逐渐成熟的一种人工智能技术,其来源于对神经元细胞的模拟。人工神经网络具有以下三个特点:信息分布表示,运算全局并行与局部操作,信息非线性处理。由于这三个特点,使得由人工神经网络构成的分类器具有强大的数据拟和与泛化能力,因而广泛运用于模式识别与机器学习领域。 神经网络模式识别的过程分为两步:首先是学习过程,通过大量的训练样本,对网络进行训练,根据某种学习规则不断对连接权值进行调节,然后使网络具有某种期望的输出,这种输出就可以将训练样本正确分类到其所属类别中去,此时可以认为网络是学习到了输入数据或样本间的内在规律。接下来是分类过程,应用前面学习过程所训练好的权值,对任意送入网络的样本进行分类。 人工神经网络模型各种各样,目前已有数十种。他们从各个角度对生物神经系统的不同层次进行了描述和模拟。代表模型有感知机、多层映射BP网、RBF 网络、HoPfiled模型、Boit~机等等。虽然人工神经网络有很多模型,但按神经元的连接方式只有两种型态:没有反馈的前向网络和相互结合型网络。前向网络是多层映射网络,每一层中的神经元只接受来自前一层神经元的信号,因此信号的传播是单方向的。BP网络是这类网络中最典型的例子。在相互结合型网络中,任意两个神经元都可能有连接,因此输入信号要在网络中往返传递,从某一初态开始,经过若干变化,渐渐趋于某一稳定状态或进入周期震荡等其它状态,这方面典型的网络有Hopfiled模型等。 1

2019神经网络实学习 例子.doc

神经网络实学习例子 1通过神经网络滤波和信号处理,传统的sigmoid函数具有全局逼近能力,而径向基rbf函数则具有更好的局部逼近能力,采用完全正交的rbf径向基函 数作为激励函数,具有更大的优越性,这就是小波神经网络,对细节逼近能力 更强。 BP网络的特点①网络实质上实现了一个从输入到输出的映射功能,而数学 理论已证明它具有实现任何复杂非线性映射的功能。这使得它特别适合于求解 内部机制复杂的问题。我们无需建立模型,或了解其内部过程,只需输入,获 得输出。只要BPNN结构优秀,一般20个输入函数以下的问题都能在50000次 的学习以内收敛到最低误差附近。而且理论上,一个三层的神经网络,能够以 任意精度逼近给定的函数,这是非常诱人的期望;②网络能通过学习带正确答 案的实例集自动提取"合理的"求解规则,即具有自学习能力;③网络具有一定 的推广、概括能力。bp主要应用回归预测(可以进行拟合,数据处理分析,事 物预测,控制等)、分类识别(进行类型划分,模式识别等),在后面的学习中,都将给出实例程序。但无论那种网络,什么方法,解决问题的精确度都无法打 到100%的,但并不影响其使用,因为现实中很多复杂的问题,精确的解释是毫 无意义的,有意义的解析必定会损失精度。BP注意问题1、BP算法的学习速度 很慢,其原因主要有:a由于BP算法本质上为梯度下降法,而它所要优化的目 标函数又非常复杂,因此,必然会出现"锯齿形现象",这使得BP算法低效; 结论4:由上表可以看出,后者的初始权值比较合适些,因此训练的时间 变短, 误差收敛速度明显快些。因此初始权值的选取对于一个网络的训练是很重 要的。 1.4,用最基本的BP算法来训练BP神经网络时,学习率、均方 误差、权值、阈值的设置都对网络的训练均有影响。综合选取合理的值, 将有

BP神经网络的设计实例(MATLAB编程)资料

神经网络的设计实例(MATLAB编程) 例1 采用动量梯度下降算法训练BP 网络。 训练样本定义如下: 输入矢量为 p =[-1 -2 3 1 -1 1 5 -3] 目标矢量为t = [-1 -1 1 1] 解:本例的MATLAB 程序如下: close all clear echo on clc % NEWFF——生成一个新的前向神经网络 % TRAIN——对BP 神经网络进行训练 % SIM——对BP 神经网络进行仿真 pause % 敲任意键开始 clc % 定义训练样本 P=[-1, -2, 3, 1; -1, 1, 5, -3]; % P 为输入矢量 T=[-1, -1, 1, 1]; % T 为目标矢量 pause; clc % 创建一个新的前向神经网络 net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm') % 当前输入层权值和阈值 inputWeights=net.IW{1,1} inputbias=net.b{1} % 当前网络层权值和阈值 layerWeights=net.LW{2,1} layerbias=net.b{2} pause clc % 设置训练参数 net.trainParam.show = 50; net.trainParam.lr = 0.05; net.trainParam.mc = 0.9; net.trainParam.epochs = 1000; net.trainParam.goal = 1e-3; pause clc % 调用TRAINGDM 算法训练BP 网络 [net,tr]=train(net,P,T);

BP神经网络详细讲解

PS:这篇介绍神经网络是很详细的,有一步一步的推导公式!神经网络是DL(深度学习)的基础。 如果对神经网络已经有所了解,可以直接跳到“三、BP算法的执行步骤“ 部分,算法框架清晰明了。 另外,如果对NN 很感兴趣,也可以参阅最后两篇参考博文,也很不错! 学习是神经网络一种最重要也最令人注目的特点。在神经网络的发展进程中,学习算法的研究有着十分重要的地位。目前,人们所提出的神经网络模型都是和学习算法相应的。所以,有时人们并不去祈求对模型和算法进行严格的定义或区分。有的模型可以有多种算法.而有的算法可能可用于多种模型。不过,有时人们也称算法为模型。 自从40年代Hebb提出的学习规则以来,人们相继提出了各种各样的学习算法。其中以在1986年Rumelhart等提出的误差反向传播法,即BP(error BackPropagation)法影响最为广泛。直到今天,BP算法仍然是自动控制上最重要、应用最多的有效算法。 1.2.1 神经网络的学习机理和机构 在神经网络中,对外部环境提供的模式样本进行学习训练,并能存储这种模式,则称为感知器;对外部环境有适应能力,能自动提取外部环境变化特征,则称为认知器。 神经网络在学习中,一般分为有教师和无教师学习两种。感知器采用有教师信号进行学习,而认知器则采用无教师信号学习的。在主要神经网络如BP网络,Hopfield网络,ART网络和Kohonen 网络中;BP网络和Hopfield网络是需要教师信号才能进行学习的;而ART网络和Kohonen网络则无需教师信号就可以学习。所谓教师信号,就是在神经网络学习中由外部提供的模式样本信号。 一、感知器的学习结构 感知器的学习是神经网络最典型的学习。 目前,在控制上应用的是多层前馈网络,这是一种感知器模型,学习算法是BP法,故是有教师学习算法。 一个有教师的学习系统可以用图1—7表示。这种学习系统分成三个部分:输入部,训练部和输出部。

BP神经网络预测实例

%% 清空环境变量 clc clear %% 训练数据预测数据 data=importdata('test.txt'); %从1到768间随机排序 k=rand(1,768); [m,n]=sort(k); %输入输出数据 input=data(:,1:8); output =data(:,9); %随机提取500个样本为训练样本,268个样本为预测样本input_train=input(n(1:500),:)'; output_train=output(n(1:500),:)'; input_test=input(n(501:768),:)'; output_test=output(n(501:768),:)'; %输入数据归一化 [inputn,inputps]=mapminmax(input_train); %% BP网络训练 % %初始化网络结构 net=newff(inputn,output_train,10);

net.trainParam.epochs=1000; net.trainParam.lr=0.1; net.trainParam.goal=0.0000004; %% 网络训练 net=train(net,inputn,output_train); %% BP网络预测 %预测数据归一化 inputn_test=mapminmax('apply',input_test,inputps); %网络预测输出 BPoutput=sim(net,inputn_test); %% 结果分析 %根据网络输出找出数据属于哪类 BPoutput(find(BPoutput<0.5))=0; BPoutput(find(BPoutput>=0.5))=1; %% 结果分析 %画出预测种类和实际种类的分类图 figure(1) plot(BPoutput,'og') hold on plot(output_test,'r*'); legend('预测类别','输出类别') title('BP网络预测分类与实际类别比对','fontsize',12)

BP神经网络原理及应用

BP神经网络原理及应用 1 人工神经网络简介 1.1生物神经元模型 神经系统的基本构造是神经元(神经细胞),它是处理人体内各部分之间相 互信息传递的基本单元。据神经生物学家研究的结果表明,人的大脑一般有1011 个神经元。每个神经元都由一个细胞体,一个连接其他神经元的轴突1010 和一些向外伸出的其它较短分支——树突组成。轴突的功能是将本神经元的输出信号(兴奋)传递给别的神经元。其末端的许多神经末梢使得兴奋可以同时送给多个神经元。树突的功能是接受来自其它神经元的兴奋。神经元细胞体将接受到的所有信号进行简单地处理后由轴突输出。神经元的树突与另外的神经元的神经末梢相连的部分称为突触。 1.2人工神经元模型 神经网络是由许多相互连接的处理单元组成。这些处理单元通常线性排列成组,称为层。每一个处理单元有许多输入量,而对每一个输入量都相应有一个相关 联的权重。处理单元将输入量经过加权求和,并通过传递函数的作用得到输出量,再传给下一层的神经元。目前人们提出的神经元模型已有很多,其中提出最早且影 响最大的是1943年心理学家McCulloch和数学家Pitts在分析总结神经元基本特

性的基础上首先提出的M-P 模型,它是大多数神经网络模型的基础。 )()(1∑=-=n i j i ji j x w f t Y θ (1.1) 式(1.1)中为神经元单元的偏置(阈值),ji w 为连接权系数(对于激发状态, ji w 取正值,对于抑制状态,ji w 取负值) ,n 为输入信号数目,j Y 为神经元输出,t 为时间,f()为输出变换函数,有时叫做激发或激励函数,往往采用0和1二值函数或S形函数。 1.3人工神经网络的基本特性 人工神经网络由神经元模型构成;这种由许多神经元组成的信息处理网络具有并行分布结构。每个神经元具有单一输出,并且能够与其它神经元连接;存在许多(多重)输出连接方法,每种连接方法对应一个连接权系数。严格地说,人工神经网络是一种具有下列特性的有向图: (1)对于每个节点存在一个状态变量xi ; (2)从节点i 至节点j ,存在一个连接权系数wji ; (3)对于每个节点,存在一个阈值; (4)对于每个节点,定义一个变换函数(,,),j i ji j f x w i j θ≠,对于最一般的情况,此函数取()j ji i j i f w x θ-∑形式。 1.4 人工神经网络的主要学习算法 神经网络主要通过两种学习算法进行训练,即指导式(有师)学习算法和非指导式(无师)学习算法。此外,还存在第三种学习算法,即强化学习算法;可把它看做有师学习的一种特例。 (1)有师学习 有师学习算法能够根据期望的和实际的网络输出(对应于给定输入)间的差来调整神经元间连接的强度或权。因此,有师学习需要有个老师或导师来提供期望或目标输出信号。有师学习算法的例子包括规则、广义规则或反向传播算法以及LVQ 算法等。 (2)无师学习 无师学习算法不需要知道期望输出。在训练过程中,只要向神

BP神经网络的matlab实现学习历程

考拉BP神经网络的matlab实现学习历程(一) 考拉BP神经网络的matlab实现学习历程(一) 本文《考拉BP神经网络的matlab实现学习历程》系列由论坛超级版主akjuan整理和原创,我们在此表示特别感谢 这两天在学习bp,总结和汇报一下,和大家一起学习。希望初入神经网络能有所收获,给新手一些帮组和启发。也希望熟悉bp的高手,多提宝贵意见和建议。 学习内容总结成五个小节,具体内容如下: 第一节内容:包括神经网络的基础知识,BP网络的特点,bp主要应用的场合,使用时应注意的问题。 第二节内容:主要是阐述BP中几个容易混绕的概念和问题,包括什么是网络的泛化能力?过拟合是什么,怎么处理?学习速率有什么作用?神经网络的权值和阈值分别是个什么概念?用BP逼近非线性函数,如何提高训练精度? 第三节内容:主要阐述使用matlab实现,为了充分利用数据,得到最优的网络训练结果,在网络建立前,应该进行的基本数据处理问题,包括:BP神经网络matlab实现的基本步骤,数据归一化问题和方法,输入训练数据的乱序排法,以及分类方法,如何查看和保存训练的结果,每次结果不一样问题。 第四节内容:bp神经网络进行交通预测的Matlab例子及源代码,bp神经网络进行交通预测的Matlab程序的优化(主要是按设置误差要求,寻找最优网络过程) 第五节内容:bp神经网络处理蠓虫分类问题的matlab例子及源代码。 不多说,先如主题,第一节,很基础,高手见谅。 什么是神经网络? 神经网络是由很多神经元组成的,首先我们看一下,什么是神经元 上面这个图表示的就是一个神经元,我们不管其它书上说的那些什么树突,轴突的。我用个比较粗浅的解释,可能不太全面科学,但对初学者很容易理解: 1、我们把输入信号看成你在matlab中需要输入的数据,输进去神经网络后 2、这些数据的每一个都会被乘个数,即权值w,然后这些东东与阀值b相加后求和得到u, 3、上面只是线性变化,为了达到能处理非线性的目的,u做了个变换,变换的规则和传输函数有关

BP神经网络模型应用实例

第1节基本原理简介 近年来全球性的神经网络研究热潮的再度兴起,不仅仅是因为神经科学本身取得了巨大的进展.更主要的原因在于发展新型计算机和人工智能新途径的迫切需要.迄今为止在需要人工智能解决的许多问题中,人脑远比计算机聪明的多,要开创具有智能的新一代计算机,就必须了解人脑,研究人脑神经网络系统信息处理的机制.另一方面,基于神经科学研究成果基础上发展出来的人工神经网络模型,反映了人脑功能的若干基本特性,开拓了神经网络用于计算机的新途径.它对传统的计算机结构和人工智能是一个有力的挑战,引起了各方面专家的极大关注. 目前,已发展了几十种神经网络,例如Hopficld 模型,Feldmann等的连接型网络模型,Hinton等的玻尔茨曼机模型,以及Rumelhart等的多层感知机模型和Kohonen的自组织网络模型等等。在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。多层感知机神经网络的研究始于50年代,但一直进展不大。直到1985年,Rumelhart等人提出了误差反向传递学习算法(即BP算),实现了Minsky的多层网络设想,如图34-1所示。

BP 算法不仅有输入层节点、输出层节点,还可有1个或多个隐含层节点。对于输入信号,要先向前传播到隐含层节点,经作用函数后,再把隐节点的输出信号传播到输出节点,最后给出输出结果。节点的作用的激励函数通常选取S 型函数,如 式中Q 为调整激励函数形式的Sigmoid 参数。该算法的学习过程由正向传播和反向传播组成。在正向传播过程中,输入信息从输入层经隐含层逐层处理,并传向输出层。每一层神经元的状态只影响下一层神经 元的状态。如果输出层得不到期望的输出,则转入反

BP神经网络matlab实例(简单而经典)

1、BP网络构建 (1)生成BP网络 net newff PR S S SNl TF TF TFNl BTF BLF PF = (,[1 2...],{ 1 2...},,,) R?维矩阵。 PR:由R维的输入样本最小最大值构成的2 S S SNl:各层的神经元个数。 [1 2...] TF TF TFNl:各层的神经元传递函数。 { 1 2...} BTF:训练用函数的名称。 (2)网络训练 net tr Y E Pf Af train net P T Pi Ai VV TV = [,,,,,] (,,,,,,) (3)网络仿真 = Y Pf Af E perf sim net P Pi Ai T [,,,,] (,,,,) BP网络的训练函数 训练方法训练函数 梯度下降法traingd 有动量的梯度下降法traingdm 自适应lr梯度下降法traingda 自适应lr动量梯度下降法traingdx 弹性梯度下降法trainrp Fletcher-Reeves共轭梯度法traincgf Ploak-Ribiere共轭梯度法traincgp Powell-Beale共轭梯度法traincgb 量化共轭梯度法trainscg 拟牛顿算法trainbfg 一步正割算法trainoss Levenberg-Marquardt trainlm BP网络训练参数 训练参数参数介绍训练函数 net.trainParam.epochs最大训练次数(缺省为10)traingd、traingdm、traingda、 traingdx、trainrp、traincgf、 traincgp、traincgb、trainscg、 trainbfg、trainoss、trainlm net.trainParam.goal训练要求精度(缺省为0)traingd、traingdm、traingda、 traingdx、trainrp、traincgf、 traincgp、traincgb、trainscg、 trainbfg、trainoss、trainlm net.trainParam.lr学习率(缺省为0.01)traingd、traingdm、traingda、 traingdx、trainrp、traincgf、

BP神经网络matlab实例简单而

精心整理p=p1';t=t1'; [pn,minp,maxp,tn,mint,maxt]=premnmx(p,t);%原始数据归一化 net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx');%设置网络,建立相应的BP网络 %训练网络 [net,tr]=train(net,pn,tn);%调用TRAINGDM算法训练BP网络 pnew=pnew1'; pnewn=tramnmx(pnew,minp,maxp); anewn=sim(net,pnewn);%对BP网络进行仿真 anew=postmnmx(anewn,mint,maxt);%还原数据

2、BP网络举例 举例1、 %traingd clear; clc; P=[-1-1224;05057]; T=[-1-111-1]; %利用minmax函数求输入样本范围 net=newff(minmax(P),T,[5,1],{'tansig','purelin'},'trainrp'); 0.1336-0.2013-0.4344-0.5000-0.3930-0.1647-.0988... 0.30720.39600.34490.1816-0.312-0.2189-0.3201]; figure; plot(X,D,'*');%绘制原始数据分布图(附录:1-1) net=newff([-11],[51],{'tansig','tansig'}); 0;%训练的最大次数 =0.005;%全局最小误差 net=train(net,X,D); O=sim(net,X); figure; plot(X,D,'*',X,O);%绘制训练后得到的结果和误差曲线(附录:1-2、1-3)V=net.iw{1,1};%输入层到中间层权值

相关文档
相关文档 最新文档