文档库 最新最全的文档下载
当前位置:文档库 › 天线基本原理

天线基本原理

天线基本原理
天线基本原理

第一讲天线基本原理

一、天线的基本概念

1.天线的作用

在任何无线电通信设备中,总存在一个向空间辐射电磁能量和从空间接收电磁能量的装置,这个装置就是天线。

天线的作用就是将调制到射频频率的数字信号或模拟信号发射到空间无线信道,或从空间无线信道接收调制在射频频率上的数字或模拟信号。

2.天线问题的实质

从电磁场理论出发,天线问题实质上就是研究天线所产生的空间电磁场分布,以及由空间电磁场分布所决定的电特性。空间任何一点的电磁场满足电磁场方程——麦克斯韦方程及其边界条件。因此,天线问题是时变电磁场问题的一种特殊形式。

从信号系统的角度出发,天线问题可以理解为考察由一个电磁波激励源产生的电磁响应特性。从通信系统的角度出发,天线可以理解为信号发射和接收器,收发天线之间的无线电信号强度满足通道传输方程和多径衰落特性。

3.对天线结构的概念理解

采用不同的模型,对天线可以有不同的理解。典型的模型比如:

●开放的电容

[思考] 野外电台或电视发射塔,无线电视或电台接收机,为什么能构成一个天线,其电流回路在什么地方?

●开放的传输线

从传输线理论理解,天线可以看做是将终端开路的传输线终端掰开。

●TM mn型波导

将天线辐射看做是在4π空间管道中传输的波导,则对应的传输波型是TM型波,但在传输过程中不断遇到波导的不连续性,因此不断激励高次模。

由电磁波源和电磁波传输媒质形成电磁波传输的机构

波的形成都需要波源和传输媒质。在一盆水中形成机械波纹,可以使用点激励源产生波,并在水面上传播。波的传播特性只与媒质特性有关而与波源无关。将一个肉包子扔出去,这个肉包子可能产生不同的结果,或者被狗吃了,或者掉在什么地方了,都与扔包子的人不再有任何关系。而对天线来说,馈点的激励源就是这种波源,天线导体和外界空间就是传输媒质。不过电磁波的传输媒质可以是真空。

[思考] 电磁波具有波粒二象性。频率越低,波动性越强;频率越高,粒子性越强。所以光波主要表现出粒子性,而长波表现出波动性。射频电磁波就是介于这二者之间的一种电磁波,它既有显著的波动性,又有显著的粒子性。只要认清这一点,许多问题就会变得易于理解。认清事物的本质规律我们才能很好地利用它,我们不能把一头驴当马使,否则就会出现许多荒唐的错误。有人认为射频很复杂,有人认为很简单,就是这个道理。

[哲学启示] 电磁波由于看不见,摸不着,所以在很多人看来它很抽象。但考虑到世界是普遍联系的,尽管不同的事物也有许多不相同点,但找到它们之间的联系,就能获得认识抽象事物的“火眼金睛”。

二、电磁场基本方程

1.麦克斯韦方程

(电生磁。若电场变化,则磁场随之变化)

(磁生电。若磁场变化,则电场随之变化)

(磁力线是无始无终的封闭闭合曲线)

(电力线出发和终止于自由电荷)

麦克斯韦方程的物理含义:变化的电场可以产生磁场,变化的磁场可以产生电场,这是电磁波可以脱离辐射体在空间存在的物理基础。

[思考] 自然界存在一些有趣的现象,尽管机理与电磁波不完全一致,但是其过程却可以帮助我们加深对我们问题的理解。请大家考虑一下,孩童吹肥皂泡时,肥皂泡能够

脱离吹管而在空气中独立存在的条件是什么?

[哲学启示] 电磁波看不见,摸不着,但它是一种不依赖于人的意识的客观存在,因此属于辩证唯物哲学中物质的范畴。微波炉中的一盘鸡,看不见有火苗,是谁把它烤熟了?就是电磁波这种物质。要研究任何所谓抽象的事物,必须跳出“巧妇难为无米之炊”这种传统思维模式,要知道没有米还可以用面。

2.边界条件

两种不同媒质的分界面,媒质参数会发生突变,引起某些场分量的不连续。电磁场边界条件是:

(媒质分界面处磁场切向不连续)

(媒质分界面处切向电场连续)

(媒质分界面处法向磁感应强度连续)

(媒质分界面处法向电位移矢量不连续)根据电磁场边界条件,在媒质分界面处电场的切向分量和磁感应强度的法向分量是连续的。这是非常重要的概念。

[思考] 在天线导体和大气空间中,尽管导体和大气中的电场满足不同的分布规律,导体中电场集中在导体边缘,而大气中的电场则呈瑞利指数分布,但是在导体和大气分界面处的导体上和空间切向电场却是完全相同。这是为什么?

[哲学启示] 自然界不存在绝对无限大的事物,大海和宇宙都很大,但都有边界,电磁场也不例外。所有数学物理问题,只有确定的边界条件才有确定的解。

3.电流连续性方程

根据电荷守恒定律,电流和电荷的关系是:

(电荷的波动导致电流密度的变化)

该方程反映了流入一个封闭面积和流出该封闭面积的电流之间的差异,都是由于该面积内包含的电荷在“兴风作浪”。这也是物质不灭定律在电磁学领域中的反映。

4.本构方程(媒质特性方程)

(电位移矢量和电场强度的关系)

(磁感应强度和磁场强度的关系)

(电流密度和电场的关系)

这几个方程反映了在特定的媒质中电场强度和电位移矢量、磁场强度和磁感应强度、电流和电场之间的关系,等式右边的矢量与媒质无关,左侧矢量与媒质相关。这几个方程反映了媒质的电特性,是麦克斯韦方程的三个辅助方程。

5.波印亭定理

空间电磁场的能量关系满足能量守恒定律。电磁场能量守恒定律由矢量波印亭定理描述。

该方程的物理含义是:包围在封闭体积内的电场和磁场能量总和等于传输能量和

损耗的能量之和。称为波印亭矢量,它代表功率通量。

6.矢量波动方程

从麦克斯韦方程出发,利用矢量公式和相关边界条件,可以得到电磁场的矢量波动方程:

给定电流密度和电荷密度,求解矢量波动方程就可以得到麦氏方程的解。

矢量波动方程不是一组独立的方程。本质上它与麦克斯韦方程及其边界条件一致。天线问题可以通过求解矢量波动方程得到,也可以通过直接求解麦克斯韦方程得到。

[问题] 既然已有麦克斯韦方程,为什么还要矢量波动方程?

麦克斯韦方程是一个严格方程,但它的求解非常复杂。由于过去的计算手

段非常落后,许多电磁问题只能通过手工计算得到,在这种情况下直接求

解麦克斯韦方程非常困难;

●麦克斯韦方程不仅是天线的理论基础,也是传输线和光纤的理论基础。麦

克斯韦方程与不同的边界条件可以分别导出矢量波动方程,电报方程和射

线方程,但只有矢量波动方程才代表天线;

●导出矢量波动方程并在不同的具体应用条件对该方程作简化,往往可以获

得某些规则天线的准确解,这在当时非常有意义;

●近年来随着计算机和电磁仿真工具的发展,直接求解麦克斯韦方程才逐渐

成为可能。

[注意] 麦克斯韦方程和矢量波动方程之间不能划等号。矢量波动方程是天线方程,而麦克斯韦方程必须连同特定的边界条件才构成天线方程。

在无耗媒质(非导电媒质)和时谐电场中,上式变为:

其中,k称为波数。

无源区域退化为齐次亥姆霍兹方程:

三、电磁场唯一性定理和电磁场方程的求解方法

1.电磁场唯一性定理:满足特定边界条件的电磁场是唯一的。因此不论采取什么方法,只要得到了一个符合边界条件的电磁场解,这个解正是需要寻找的解。

2.电磁问题的求解方法

●特定的少数具有规则几何形状和简单几何条件下的电磁场问题,可以采用

一些技巧性方法进行严格的数学求解。这些方法有分离变量法、镜像法、

格林函数法等。

●少数简单几何形状的电磁问题可以采用辅助函数法求解,如矢量磁位和标

量磁位法,微分函数法和积分函数法。

大多形状不规则的电磁问题不能进行严格的数学方法进行求解,或者数学方程过于复杂。此时可以借助计算机工具对麦克斯韦方程或矢量波动方程

进行数值求解。这些方法有矩量法、有限元法和有限时域差分法等。

四、辐射条件

对天线来说,不仅需要满足麦克斯韦波动方程及其边界条件,而且还应满足辐射条件。天线的激励源分布在有限区域,无穷远处不存在场源,因此满足齐次波动方程。求解该方程即得到辐射条件。

这个方程的物理含义是,在无穷远处,位函数和场为0,即只有出射波,没有入射波。这是天线问题与一般电磁场问题的根本区别之处。只有同时满足矢量波动方程和辐射条件,才能形成天线。

五、天线的近场和远场

满足条件kr<<1的场区称为天线的近场,又称感应场。近场的场强与半径的平方或更高次方成反比。即随着半径的减小,场强迅速增大。从这个概念还可以看出,近场场强与天线的形状相关。

满足条件kr>>1的场区称为天线的远场,又称辐射场。远场的场强与半径成反比。远场场强与天线形状关系不大,但与观察方向有关。

天线的近场与远场分解点可用以下公式表达:

λ2

2D

R

ff

=,其中D是天线的最大尺寸,λ是工作波长。

近场与远场之间通过快速傅立叶变换相关联。因此天线的近场测试与远场测试在一定范围内是等效的,只是精度会有所不同。

六、天线的电参数

1.输入阻抗和带宽

天线的输入阻抗即馈电端输入电压和输入电流的比值。输入到天线的功率被输入

阻抗吸收,并被天线转换成辐射功率。

天线的输入阻抗由两部分组成,即:A A A jX R Z +=。其中Z A 称为天线的输入电阻,A X 称为天线的输入电抗。理想情况下,天线的输入阻抗是纯电阻并等于馈线的

特性阻抗,这时馈线终端没有功率反射。天线匹配电路的作用就是消除天线输入阻抗中的电抗分量,使电阻分量尽可能接近馈线的特性阻抗。描述匹配的优劣常用的参数是驻波比和回波损耗。

假设馈线的特性阻抗是Z 0,则馈点处的反射系数由下式定义:

Γ=(Z A - Z 0)/(Z A + Z 0)

驻波比定义为:VSWR=(1+|Γ|)/(1-|Γ|)

其值在1和无穷大之间。完全匹配状态下(Z A = Z 0),驻波比为1;完全失配状态下(馈线终端短路或开路,Z A =0或无穷大)驻波比为无穷大。手机天线一般要求驻波比小于2.5。

回波损耗(RL )定义为:RL=20log (|Γ|)

它是反射系数绝对值的倒数,以分贝值表示。回波损耗值在0dB 到负无穷大之间,其绝对值越大表示匹配越好。0dB 表示全反射,负无穷大表示完全匹配。手机天线一般要求回波损耗小于-7dB 左右。

驻波比(VSWR )和回波损耗(RL )两个参数之间有固定的数值对应关系:

??

? ??-+=11log 20VSWR VSWR RL

天线的输入阻抗取决于天线本身的结构、工作频率并受环境因素的影响,一般它只能通过实验确定。输入阻抗测试等效于驻波比和回波损耗测试。

在天线谐振频率附近,可使电气性能(回波损耗或驻波比)满足使用要求的频带范围称为天线的带宽。

2. 方向系数

天线的方向系数描述电磁能量集中程度以描述方向特性,又称为方向增益,最大辐射方向的方向系数定义为:

其中F是场强方向函数。方向系数的物理含义是,天线辐射的最大方向上获得与该点相同功率所需的点源的总辐射功率与实际天线辐射总功率的比值。

3.辐射效率

天线的辐射效率用于衡量天线将高频电流或导波能量转换为无线电波能量的有效程度,它是天线辐射的总功率和天线从馈线得到的净功率之比:

采用电阻表示,则:

式中分子为天线的辐射电阻,分母为辐射电阻与损耗电阻之和。所以,提高天线辐射效率的途径就是尽可能提高辐射电阻,降低损耗电阻。对电小尺寸天线来说(尺寸在0.1波长以下),辐射效率低是致命的缺陷,应采取措施降低损耗提高天线效率。

4.增益

方向系数描述天线辐射电磁能量的集中程度,效率表示天线能量转换效能,这二者集中起来表示能量集束程度和能量转换效率的总增益,称为天线增益。

天线增益描述天线在某一方向的辐射强度和天线以同一输入功率向空间均匀辐射的辐射强度之比,即:

并有:。

描述天线在空间各方向辐射场强的图形称为辐射方向图,一般在远场测试。方向图的主波瓣相对场强即对应于天线增益。

通常所说的增益都是相对于点源的增益(dBi)和相对半波振子的增益(dBd)。理想点源的增益是1(0dBi);半波振子的增益是1.64(2.43dBi)。

5.极化方向

指天线发射的电磁波电场或磁场的振动方向。如果电磁波传播过程中电场振动方向始终平行于发射源的电场方向,则称为线极化,如果传播过程中电场矢量端点的轨迹是一个圆,则称为圆极化。

七、互易定理

互易定理的基本内容是:将天线辐射场中的电场和磁场相关的对偶矢量互换,导出的结论仍然是正确的。由互易定理可以导出的一个重要结论是:同一天线作为发射天线和接收天线,其电性能完全相同。

机械原理基本概念

(2)运动副是两构件通过直接接触形成的可动联接。(3)两构件通过点或线接触形成的联接称为高副。一个平面高副所引入的约束数为1。(4)两构件通过面接触形成的联接称为高副,一个平面低副所引入的约束数为2。(5)机构能实现确定相对运动的条件是原动件数等于机构的自由度,且自由度大于零。(6)虚约束是对机构运动不起实际约束作用的约束,或是对机构运动起重复约束作用的约束。(7)局部自由度是对机构其它运动构件的运动不产生影响的局部运动。(8)平面机构组成原理:任何机构均可看作是由若干基本杆组依次联接于原动件和机架上而构成。(8)基本杆组的自由度为0。(1)瞬心是两构件上瞬时速度相等的重合点-------即等速重合点。(2)两构件在绝对瞬心处的速度为0。(3)相构件在其相对瞬心处的速度必然相等。(4)两构件中若有一个构件为机架,则它们在瞬心处的速度必须为0。(5)用瞬心法只能求解机构的速度,无法求解机构的加速度。(1)驱动机械运动的力称为驱动力,驱动力对机械做正功。(2)阻止机械运动的力称为阻抗力,阻抗力对机械做负功。(1)机械的输出功与输入功之比称为机械效率。(2)机构的损失功与输入功之比称为损失率。(3)机械效率等于理想驱动力与实际驱动力的比值。(4)平面移动副发生自锁条件:作用于滑块上的驱动力作用在其摩擦角之内。(5)转动副发生自锁的条件:作用于轴颈上的驱动力为单力,且作用于轴颈的摩擦圆之内。(1)机构平衡的目的:消除或减少构件不平衡惯性力所带来的不良影响。(2)刚性转子总可通过在转子上增加或除去质量的办法来实现其平衡。(3)转子静平衡条件:转子上各偏心质量产生的离心惯性力的矢量和为零(或质径积矢量和为零)。(4)对于静不平衡转子只需在同一个平面内增加或除去平衡质量即可获得平衡,故称为单面平衡。(5)对于宽径比b/D<0.2的不平衡转子,只做静平衡处理。(6)转子动平衡条件:转子上各偏心质量产生的离心惯性力的矢量和为零,以及这些惯性力所构成的力矩矢量的和也为零。(7)实现动平衡时需在两个平衡基面增加或去除平衡质量,故动平衡又称为双面平衡。(8)动平衡的转子一定是静平衡的,反之则不然。(9)转的许用不平衡量有两种表示方法:许用质径积+许用偏心距。(1)机械运转的三阶段:启动阶段、稳定运转阶段、停车阶段。(2)建立机械系统等动力学模型的等效条件:瞬时动能等效、外力做功等效。(3)机器的速度波动分为:周期性速度波动和非周期性速度波动。(4)周期性速度波动的调节方法:安装飞轮。(5)非周期性速度波动的调节方法:安装调速器。(6)表征机械速度波动程度的参量是:速度不均匀系数δ。(8)飞轮调速利用了飞轮的储能原理。(9)飞轮宜优先安装在高速轴上。(10)机械在安装飞轮后的机械仍有速度波动,只是波动程度有所减小。(1)铰链四杆机构是平面四杆机构的基本型式。(2)铰链四杆机构的三种表现形式:曲柄摇杆机构、双曲柄机构、双摇杆机构。(3)曲柄摇杆机构的功能:将曲柄的整周转动变换为摇杆的摆动或将摇杆的摆动变换为曲柄的回转。(4)曲柄滑动机构的功能:将回转运动变换为直线运动(或反之)。(5)铰链四杆机构存在曲柄的条件:最短杆与最长杆长度之和小于等于其它两杆长度之和;最短杆为连架杆或机架。(6)铰链四杆机构成为曲柄摇杆机构的条件:最短杆与最长杆长度之和小于等于其它两杆长度之和;最短杆为连架杆。(7)铰链四杆机构成为曲柄摇杆机构的条件:最短杆与最长杆长度之和小于等于其它两杆长度之和;最短杆为机架。(8)铰链四杆机构成为又摇杆机构的条件:不满足杆长条件;或者是满足杆长条件但最短杆为连杆。(9)曲柄滑块机构存在曲柄的条件是:曲柄长度r+偏距r小于等于连杆长度l(12)曲柄摇杆机构以曲柄为原动件时,具有急回性质。(13)曲柄摇杆机构以曲柄为主动件,当曲柄与连杆共线时,机构处于极限位置。(14)曲柄滑块机构以曲柄为主动件,当曲柄与连杆共线时,机构处于极限位置。(15)偏置曲柄滑块机构以曲柄为原动件时,具有急回性质。(16)对心曲柄滑块机构不具有急回特性。(17)曲柄导杆机构以曲柄为原动件时,具有具有急回性质。(18)连杆机构的传动角越大,对传动越有利。(19)连杆机构的压力角越大,对传动越不利。(20)导杆机构的传动角恒为90o。21)曲柄摇杆机构以曲柄为主动杆时,最小传动角出现在曲柄与机架共线的两位置之一。(22)曲柄摇杆机构以摇杆为主动件,当从动曲柄与连杆共线时,机构处于死点位置。(23)当连杆机构处于死点时,机构的传动角为0。(1)凸轮机构的优点是:只要适当地设计出凸轮轮廓曲线,就可使打推杆得到各种运动规律。(2)凸轮机构的缺点:凸轮轮廓曲线与推杆间为点、线接触,易磨损。(3)常用的推杆运动规律:等速运动规律、等加速等减速运动规律、余弦加速度运动规律、正弦加速度运动规律、五次多项式运动规律。(4)采用等速运动规律会给机构带来刚性冲击,只能用于低速轻载。(5)采用等加速等减速运动规律会给机构带来柔性冲击,常用于中速轻载场合。(6)采用余弦加速度运动规律也会给机构带来柔性冲击,常用于中低速重载场合。(7)余弦加速度运动规律无冲击,适于中高速轻载。(8)五次多项式运动规律无冲击,适于高速中载。(9)增大基圆半径,则凸轮机构的压力角减少。(10)对凸轮机构进行正偏置,可降低机构的推程压力角。(11)设计滚子推杆盘形凸轮机构时,对于外凸的凸轮廓线段,若滚子半径大于理论廓线上的最小曲率半径,将使工作廓线出现交叉,从而使机构出现运动失真现象。(12)设计滚子推杆盘形凸轮机构时,对于外凸的凸轮廓线段,若滚子半径等于理论廓线上的最小曲率半径,将使凸轮廓线出现变尖现象。(1)圆锥齿轮机构可实现轴线相交的两轴之间的运动和动力传递。(2)蜗

HFSS的天线课程设计报告书

. . . . . 图1:微带天线的结构 一、 实验目的 ●利用电磁软件Ansoft HFSS 设计一款微带天线。 ◆微带天线要求:工作频率为2.5GHz ,带宽 (回波损耗S11<-10dB)大于5%。 ●在仿真实验的帮助下对各种微波元件有个具体形象的了解。 二、 实验原理 1、微带天线简介 微带天线的概念首先是由Deschamps 于1953年提出来的,经过20年左右的发展,Munson 和Howell 于20世纪70年代初期制造出了实际的微带天线。微带天线由于具有质量轻、体积小、易于制造等优点,现今已经广泛应用于个人无线通信中。 图1是一个简单的微带贴片天线的结构,由辐射源、介质层和参考地三部分组成。与天线性能相关的参数 包括辐射源的长度L 、辐射源的 宽度W 、介质层的厚度h 、介质 的相对介电常数r ε和损耗正切 δtan 、 介质层的长度LG 和宽度WG 。图1所示的微带贴片天线是采用微带天线来馈电的,本次将要设计的矩形微带贴片天线采用的是同轴线馈电,也就是将同轴线街头的心线穿过参考地和介质层与辐射源相连接。 对于矩形贴片微带天线,理论分析时可以采用传输线模型来分析其性能,矩形贴片微带天线的工作主模式是TM10模,意味着电场在长度L 方向上有2/g λ的改变,而在宽度W 方向上保持不变,如图2(a )所示,在长度L 方向上可以看做成有两个终端开路的缝隙辐射出电磁能量,在宽度W 方向的边缘处由于终端开路,所以电压值最大电流值最小。从图2(b )可以看出,微带线边缘的电场可以分解成垂直于参考地的分量和平行于参考地的分量两部分,两个边缘的垂直电场分量大小相等、方向相反,平行电场分量大小相等,方向相反;因此,远区辐射电场垂直分量相互抵消,辐射电场平行于天线表面。

第一讲 天线基本原理

第一讲天线基本原理 1、天线的基本概念 1.天线的作用 在任何无线电通信设备中,总存在一个向空间辐射电磁能量和从空间接收电磁能量的装置,这个装置就是天线。 天线的作用就是将调制到射频频率的数字信号或模拟信号发射到空间无线信道,或从空间无线信道接收调制在射频频率上的数字或模拟信号。 2.天线问题的实质 从电磁场理论出发,天线问题实质上就是研究天线所产生的空间电磁场分布,以及由空间电磁场分布所决定的电特性。空间任何一点的电磁场满足电磁场方程——麦克斯韦方程及其边界条件。因此,天线问题是时变电磁场问题的一种特殊形式。 从信号系统的角度出发,天线问题可以理解为考察由一个电磁波激励源产生的电磁响应特性。从通信系统的角度出发,天线可以理解为信号发射和接收器,收发天线之间的无线电信号强度满足通道传输方程和多径衰落特性。 3.对天线结构的概念理解 采用不同的模型,对天线可以有不同的理解。典型的模型比如:开放的电容 [思考] 野外电台或电视发射塔,无线电视或电台接收机,为什么能构成一个天线,其电流回路在什么地方? 开放的传输线 从传输线理论理解,天线可以看做是将终端开路的传输线终端掰 开。 TM mn型波导 将天线辐射看做是在4π空间管道中传输的波导,则对应的传输波型是TM型波,但在传输过程中不断遇到波导的不连续性,因此不断激励

高次模。 由电磁波源和电磁波传输媒质形成电磁波传输的机构 波的形成都需要波源和传输媒质。在一盆水中形成机械波纹,可以使用点激励源产生波,并在水面上传播。波的传播特性只与媒质特性有关而与波源无关。将一个肉包子扔出去,这个肉包子可能产生不同的结果,或者被狗吃了,或者掉在什么地方了,都与扔包子的人不再有任何关系。而对天线来说,馈点的激励源就是这种波源,天线导体和外界空间就是传输媒质。不过电磁波的传输媒质可以是真空。 [思考] 电磁波具有波粒二象性。频率越低,波动性越强;频率越高,粒子性越强。所以光波主要表现出粒子性,而长波表现出波动性。射频电磁波就是介于这二者之间的一种电磁波,它既有显著的波动性,又有显著的粒子性。只要认清这一点,许多问题就会变得易于理解。认清事物的本质规律我们才能很好地利用它,我们不能把一头驴当马使,否则就会出现许多荒唐的错误。有人认为射频很复杂,有人认为很简单,就是这个道理。 [哲学启示] 电磁波由于看不见,摸不着,所以在很多人看来它很抽象。但考虑到世界是普遍联系的,尽管不同的事物也有许多不相同点,但找到它们之间的联系,就能获得认识抽象事物的“火眼金睛”。 2、电磁场基本方程 1.麦克斯韦方程 (电生磁。若电场变化,则磁场随之变化) (磁生电。若磁场变化,则电场随之变化) (磁力线是无始无终的封闭闭合曲线) (电力线出发和终止于自由电荷)

HFSS 天线设计实例

HFSS 天线设计实例 这是一种采用同轴线馈电的圆极化微带天线 切角实现圆极化 设计目标!(具体参数可能不精确,望大家谅解)主要讲解HFSS操作步骤! GPS微带天线:介质板:厚度:2mm,介电常数:2.2,大小:100mm*100mm 工作频率:1.59GHz,圆极化(左旋还是右旋这里不讲了哈),天线辐射在上半平面覆盖! 50欧同轴线馈电, 1、计算参数 首先根据经验公式计算出天线的基本参数,便于下一步建立模型。 贴片单元长度、宽度(正方形贴片长宽相等)、馈电点位置,分离单元长度.下表是经HFSS分析后选择的一组参数:

2、建立模型 首先画出基板50mm*50mm*2mm 的基板 起名为substrate 介电常数设置为如图2.2的,可以调整color颜色和transparent透明度便于观察 按Ctrl+D可以快速的使模型全可见!按住Ctrl+Alt键,拖动鼠标可以使3D模型自由旋转同理,我们画贴片:

1、在基板上画出边长65mm(假设用公式算出的是这么多)的正方形 2、起名为patch,颜色选绿色,透明度设为0。5 画切角是比较麻烦的 1、用画线条工具,画三线段,坐标分别是0.5.0, 5.0.0, 0.0.0 2、移动三角形,选中polyline1,选菜旦里edit\Arrange\move,先确定坐标原点或任一点为基准点,将三角形移动到左上角和贴片边沿齐平。 3、复制三角形,选中polyline1,选菜单里edit\arrange\duplicate\around axis,相对坐标轴复制,角度换成180,然后在右下角就出现了相对称的另一个三角形。 4、从patch上切掉对角上的分离单元polyline1和polyline1_1: 选中patch、polyline1和polyline1_1,选菜单里3D modeler\Boolean\Subtract 把polyline1和polyline1_1从patch上切掉最后剩下 先在介质板底面画一个100mm*100mm的正方形作为导电地板。起名为 ground 下面就是画馈源了:我们采用同轴线馈电,有两种建模方法: 1、在馈电点画一0.5mm的铜柱代表同轴线内导体,起名为feed 2、在介质板底面馈电点处画一1.5mm的圆,起名为port 3、复制port为port1,复制feed为feed1 4、复选port和feed1,执行菜单里3D Modeler\Boolean\Subtract,使port成为一个内径0.5mm外径1.5mm

基本概念与原理:溶液

基本概念与原理:溶液 主要考点: 1.常识:温度、压强对物质溶解度的影响;混合物分离的常用方法 ① 一般固体物质.... 受压强影响不大,可以忽略不计。而绝大部分固体随着温度的升高,其溶解度也逐渐升高(如:硝酸钾等);少数固体随着温度的升高,其溶解度变化不大(如:氯化钠等);极少数固体随着温度的升高,其溶解度反而降低的(如:氢氧化钙等)。 气体物质.... 的溶解度随着温度的升高而降低,随着压强的升高而升高。 ② 混合物分离的常用方法主要包括:过滤、蒸发、结晶 过滤法用于分离可溶物与不溶物组成的混合物,可溶物形成滤液,不溶物形成滤渣而遗留在滤纸上; 结晶法用于分离其溶解度受温度影响有差异的可溶物混合物,主要包括降温结晶法及蒸发结晶法 降温结晶法用于提取受温度影响比较大的物质(即陡升型物质),如硝酸钾中含有少量的氯化钠; 蒸发结晶法用于提取受温度影响不大的物质(即缓升型物质),如氯化钠中含有少量的硝酸钾; 2.了解:溶液的概念;溶质,溶剂的判断;饱和溶液与不饱和溶液的概念、判断、转换的方法;溶解度的概念;固体 溶解度曲线的应用 ① 溶液的概念就是9个字:均一的、稳定的、混合物。溶液不一定是液体的,只要同时满足以上三个条件的物质, 都可以认为是溶液。 ② 一般简单的判断方法:当固体、气体溶于液体时,固体、气体是溶质,液体是溶剂。两种液体相互溶解时,通常把量多的一种叫做溶剂,量少的一种叫做溶质。当溶液中有水存在的时候,无论水的量有多少,习惯上把水看作溶剂。通常不指明溶剂的溶液,一般指的是水溶液。 在同一个溶液中,溶质可以有多种。特别容易判断错误的是,经过化学反应之后,溶液中溶质的判断。 ③ 概念:饱和溶液是指在一定温度下,在一定量的溶剂里,不能再溶解某种物质的溶液。还能继续溶解某种溶质的溶液,叫做这种溶质的不饱和溶液。 在一定温度下,某溶质的饱和溶液只是说明在该温度下,不能够继续溶解该物质,但还可以溶解其他物质,比如说,在20℃的饱和氯化钠溶液中,不能再继续溶解氯化钠晶体,但还可以溶解硝酸钾固体。 判断:判断是否是饱和溶液的唯一方法:在一定温度下,继续投入该物质,如果不能继续溶解,则说明原溶液是饱和溶液,如果物质的质量减少,则说明原溶液是不饱和溶液。 当溶液中出现有固体时,则该溶液一定是该温度下,该固体的饱和溶液。 转换:饱和溶液与不饱和溶液的相互转换: 改变溶解度,实际一般就是指改变温度,但具体是升高温度还是降低温度,与具体物质溶解度曲线有 ④ 溶解度曲线的意义: 饱和溶液 不饱和溶液 增加溶剂,增加溶解度 减少溶剂,增加溶质,减少溶解度

(完整版)射频微带阵列天线设计毕业设计

射频微带阵列天线设计 摘要 微带天线是一种具有体积小、重量轻、剖面低、易于载体共形、易于与微波集成电路一起集成等诸多优点的天线形式,目前已在无线通信、遥感、雷达等诸多领域得到了广泛应用。同时研究也发现由于微带天线其自身结构特点,存在一些缺点,例如频带窄、增益低、方向性差等。通常将若干单个微带天线单元按照一定规律排列起来组成微带阵列天线,来增强天线的方向性,提高天线的增益。 本文在学习微带天线和天线阵的原理和基本理论,加以分析,利用Ansoft 公司的高频电磁场仿真软件HFSS,设计了中心频率在10GHz的4元均匀直线微带阵列,优化和调整了相关参数,然后分别对单个阵元和天线阵进行仿真,对仿真结果进行分析,对比两者在相关参数的差异。最后得到的研究结果表明,微带天线阵列相较于单个微带天线,由于阵元间存在互耦效应以及存在馈电网络的影响,微带阵列天线的回波损耗要大于单个阵元。但是天线阵列增益明显大于单个微带天线,且阵列天线比单个阵元具有更好的方向性。

关键词:微带天线微带阵列天线方向性增益 HFSS仿真 Design of Radio-Frequency Microstrip Array Antenna ABSTRACT Microstrip antenna is a kind of antenna form with many advantages like,small size, light weight, low profile, easy-to-carrier conformal, easy integration with many other of microwave integrated circuits and so on. Now microstrip array wildly applied in the filed of wireless

天线设计毕业汇报总结

第一章绪论 一、绪论 1.1课题的研究背景及意义 自古至今,通信无时无刻不在影响着人们的生活,小到一次社会交际中的简单对话;大到进行太空探索时,人造探测器与地球间的信息交换。可以毫不保留地说,离开了通信技术,我们的生活将会黯然失色。近年来,随着光纤技术越来越成熟,应用范围越来越广。在广播电视领域,光纤作为广播电视信号传输的媒体,以光纤网络为基础的网络建设的格局已经形成。光纤传输系统具有的传输频带宽,容量大,损耗低,串扰小,抗干扰能力强等特点,已成为城市最可靠的数字电视和数据传输的链路,也是实现直播或两地传送最经常使用的电视传送方式。随着全球通信业务的迅速发展,作为未来个人通信主要手段的现代通信技术引起了人们的极大关注,我国在移动通信技术方面投入了巨大的人力物力,我国很多地区的电力通信专用网也基本完成了从主干线向光纤过度的过程。目前,电力系统光纤通信网已成为我国规模较大,发展较为完善的专用通信网,其数据、语音,宽带等业务及电力生产专业业务都是由光纤通信承载,电力系统的生产生活,显然,已离不开光纤通信网。 无线通信现状另一非常活跃的通信技术当属,无线通信技术了。无线通信技术包括了移动通信技术和无线局域网(WLAN)技术等两大主要方面。移动通信就目前来讲是3G 时代,数字化和网络化已成为不可逆转的趋势。目前,移动通信已从模拟通信发展到了数字移动通信阶段。无线局域网可以弥补以光纤通信为主的有线网络的不足,适用于无固定场所,或有线局域网架设受限制的场合,当然,同样也可以作为有线局域网的备用网络系统。WLAN,目前广泛应用IEEE802.11 系列标准。其中,工作于2.4GHZ 频段的820.11 可支持11Mbps 的共享接入速率;而802.11a 采用5GHZ频段,速率高达54Mbps,它比802.11b 快上五倍,并和820.11b兼容。给人们的生活工作带来了很大的方便与快捷。 在整个无线通信系统中,用来辐射或接收无线电波的装置成为天线,而通信、雷达、导航、广播、电视等无线电技术设备都是通过无线电波来传递信息的,均需要有无线电波的辐射和接收,因此,同发射机和接收机一样,天线也是无线电技术设备的一个重要组成部分,其性能的优良对无线通信工程的成败起到重要作用。天线的作用首先在于辐射和接收无线电波,但是能辐射或接收电磁波的东西不一定都能作为天线。任何高频电路,只要不被完全屏蔽,都可以向周围空间或

HFSS的天线课程设计(20201005041508).docx

一、实验目的 ●利用电磁软件Ansoft HFSS 设计一款微带天线。 ◆微带天线要求:工作频率为,带宽( 回波损耗 S11<-10dB)大于 5%。 ● 在仿真实验的帮助下对各种微波元件有个具体形象的了解。 二、实验原理 1、微带天线简介 微带天线的概念首先是由 Deschamps于 1953 年提出来的,经过 20 年左右的发展, Munson和 Howell 于 20 世纪 70 年代初期制造出了实际的微带天线。微带天线由于具有质量轻、体积小、易于制造等优点,现今已经广泛应用于个人无线通信中。 图1 是一个简单的微带贴片天线的结构,由辐射源、介质层和参考地三部分组成。与天线性能相关的参数 包括辐射源的长度L、辐射源的 宽度 W、介质层的厚度 h、介质 的相对介电常数r和损耗正切 tan、介质层的长度LG和宽度 WG。图 1 所示的微带贴片天线是图 1:微带天线的结构 采用微带天线来馈电的,本次将要设计的矩形微带贴片天线采用的是同轴线馈 电,也就是将同轴线街头的内心线穿过参考地和介质层与辐射源相连接。 对于矩形贴片微带天线,理论分析时可以采用传输线模型来分析其性能, 形贴片微带天线的工作主模式是TM10模,意味着电场在长度L方向上有 g / 2 矩 的 改变,而在宽度 W方向上保持不变,如图 2(a)所示,在长度 L 方向上可以看做 成有两个终端开路的缝隙辐射出电磁能量,在宽度W方向的边缘处由于终端开路,所以电压值最大电流值最小。从图 2(b)可以看出,微带线边缘的电场可以分解成 垂直于参考地的分量和平行于参考地的分量两部分,两个边缘的垂直电场分量大小 相等、方向相反,平行电场分量大小相等,方向相反;因此,远区辐射电场垂直分 量相互抵消,辐射电场平行于天线表面。

化工原理基本概念和原理

化工原理基本概念和原理 蒸馏––––基本概念和基本原理 利用各组分挥发度不同将液体混合物部分汽化而使混合物得到分离的单元操作称为蒸馏。这种分离操作是通过液相和气相之间的质量传递过程来实现的。 对于均相物系,必须造成一个两相物系才能将均相混合物分离。蒸馏操作采用改变状态参数的办法(如加热和冷却)使混合物系内部产生出第二个物相(气相);吸收操作中则采用从外界引入另一相物质(吸收剂)的办法形成两相系统。 一、两组分溶液的气液平衡 1.拉乌尔定律 理想溶液的气液平衡关系遵循拉乌尔定律: p A=p A0x A p B=p B0x B=p B0(1—x A) 根据道尔顿分压定律:p A=Py A而P=p A+p B 则两组分理想物系的气液相平衡关系: x A=(P—p B0)/(p A0—p B0)———泡点方程 y A=p A0x A/P———露点方程 对于任一理想溶液,利用一定温度下纯组分饱和蒸汽压数据可求得平衡的气液相组成; 反之,已知一相组成,可求得与之平衡的另一相组成和温度(试差法)。 2.用相对挥发度表示气液平衡关系 溶液中各组分的挥发度v可用它在蒸汽中的分压和与之平衡的液相中的摩尔分率来表示,即v A=p A/x A v B=p B/x B 溶液中易挥发组分的挥发度对难挥发组分的挥发度之比为相对挥发度。其表达式有:α=v A/v B=(p A/x A)/(p B/x B)=y A x B/y B x A 对于理想溶液:α=p A0/p B0 气液平衡方程:y=αx/[1+(α—1)x] Α值的大小可用来判断蒸馏分离的难易程度。α愈大,挥发度差异愈大,分离愈易;α=1时不能用普通精馏方法分离。 3.气液平衡相图 (1)温度—组成(t-x-y)图 该图由饱和蒸汽线(露点线)、饱和液体线(泡点线)组成,饱和液体线以下区域为液相区,饱和蒸汽线上方区域为过热蒸汽区,两曲线之间区域为气液共存区。 气液两相呈平衡状态时,气液两相温度相同,但气相组成大于液相组成;若气液两相组成相同,则气相露点温度大于液相泡点温度。 (2)x-y图 x-y图表示液相组成x与之平衡的气相组成y之间的关系曲线图,平衡线位于对角线的上方。平衡线偏离对角线愈远,表示该溶液愈易分离。总压对平衡曲线影响不大。 二、精馏原理 精馏过程是利用多次部分汽化和多次部分冷凝的原理进行的,精馏操作的依据是混合物中各组分挥发度的差异,实现精馏操作的必要条件包括塔顶液相回流和塔底产生上升蒸汽。精馏塔中各级易挥发组分浓度由上至下逐级降低;精馏塔的塔顶温度总是低于塔底温度,原因之一是:塔顶易挥发组分浓度高于塔底,相应沸点较低;原因之二是:存在压降使塔底压

天线的几个重要参数介绍

一、天线的几个重要参数介绍 1.天线的输入阻抗 天线的输入阻抗是天线馈电端输入电压与输入电流的比值。天线与馈线的连接,最佳情形是天线输入阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输入阻抗随频率的变化比较平缓。天线的匹配工作就是消除天线输入阻抗中的电抗分量,使电阻分量尽可能地接近馈线的特性阻抗。匹配的优劣一般用四个参数来衡量,即反射系数,行波系数,驻波比和回波损耗,四个参数之间有固定的数值关系,使用那一个纯出于习惯。在我们日常维护中,用的较多的是驻波比和回波损耗。 xx: 它是行波系数的倒数,其值在1到无穷大之间。驻波比为1,表示完全匹配;驻波比为无穷大表示全反射,完全失配。在移动通信系统中,一般要求驻波比小于 1.5。回波损耗: 它是反射系数绝对值的倒数,以分贝值表示。回波损耗的值在0dB的到无穷大之间,回波损耗越大表示匹配越差,回波损耗越大表示匹配越好。0表示全反射,无穷大表示完全匹配。在移动通信系统中,一般要求回波损耗大于 14dB。 2.天线的极化方式 所谓天线的极化,就是指天线辐射时形成的电场强度方向。当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。由于电波的特性,决定了水平极化传播的信号在贴近地面时会在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保证了信号的有效传播。因此,在移动通信系统中,一般均采用垂直极化的传播方式。另外,随着新技术的发展,最近又出现了一种双极化天线。就其设计思路而言,一般分为垂直与水平极化和±45°极化两种方式,性能

建筑力学基本概念和基本原理

建筑力学基本概念和基本原理 一、判断 1、材料的横向变形系数(泊松比)和弹性模量E、剪切模量G都是材料固有的力学性质。 2、一对等大反向的平行力(即力偶)既可使物体发生转动,也可使物体发生移动。 3、铸铁试件压缩破坏是沿45度斜截面被剪断。 4、矩形梁危险截面的最大拉、压应力发生在截面的上下边缘处。 5、梁的合理截面是使大部分材料分布于靠近中性轴(梁的横截面与线应变=0的纵向面的交线)。 6、梁在集中力偶作用处,剪力图有突变。 7、忽略杆件自重,杆件上无荷载,荷载作用于结点上的杆件都是二力杆。 8、作用于弹性体一小块区域上的载荷所引起的应力,在离载荷作用区较远处,基本上只同载荷的主矢和主矩有关;载荷的分布情况只影响作用区域附近的应力分布,这就是圣维南原理。 9、轴向拉(压)直杆的斜截面只有正应力,没有剪应力。 10、铸铁和砖石、混凝土等材料的抗拉能力远小于抗压能力。 11、某T形铸铁梁最大弯矩为正(截面下侧受拉、上侧受压),该T形梁应该正放而不是倒放。 12、某矩形钢筋混凝土梁最大弯矩为负(截面上侧受拉、下侧受压),钢筋应该配置在截面的下侧。 13、杆件某截面内力反映的是该截面处两部分杆件因为外力作用发生小变形而产生的相互作用,内力成对出现、等大反向,因此求内力要用截面法。 14、构件的内力与横截面的尺寸大小和材料的力学性质都有关。 15、应力是内力的分布集度。 16、平面一般力系向平面内某点平移的简化结果可能有三种情形:平衡状态、合力不为零、合力矩不为零。 17、各种材料对应力集中的敏感程度相同。 18、当某力的作用线通过某点时,该力对该点存在力矩。 19、因为杆件受到外力作用发生的变形是小变形,所以求支座约束力和杆件内力时,杆件都使用原始尺寸。 20、杆件的稳定性是针对细长压杆的承载能力,此时稳定性要求超过强度要求。 二、填空 1. 理想弹性体模型包括四个基本简化假设:假设、假设、假设、线弹性假设;在变形体静力学分析中,对所研究的问题中的变形关系也作了一个基本假设,它是假设。

天线基本原理

第一讲天线基本原理 一、天线的基本概念 1.天线的作用 在任何无线电通信设备中,总存在一个向空间辐射电磁能量和从空间接收电磁能量的装置,这个装置就是天线。 天线的作用就是将调制到射频频率的数字信号或模拟信号发射到空间无线信道,或从空间无线信道接收调制在射频频率上的数字或模拟信号。 2.天线问题的实质 从电磁场理论出发,天线问题实质上就是研究天线所产生的空间电磁场分布,以及由空间电磁场分布所决定的电特性。空间任何一点的电磁场满足电磁场方程——麦克斯韦方程及其边界条件。因此,天线问题是时变电磁场问题的一种特殊形式。 从信号系统的角度出发,天线问题可以理解为考察由一个电磁波激励源产生的电磁响应特性。从通信系统的角度出发,天线可以理解为信号发射和接收器,收发天线之间的无线电信号强度满足通道传输方程和多径衰落特性。 3.对天线结构的概念理解 采用不同的模型,对天线可以有不同的理解。典型的模型比如: ●开放的电容 [思考] 野外电台或电视发射塔,无线电视或电台接收机,为什么能构成一个天线,其电流回路在什么地方? ●开放的传输线 从传输线理论理解,天线可以看做是将终端开路的传输线终端掰开。 ●TM mn型波导 将天线辐射看做是在4π空间管道中传输的波导,则对应的传输波型是TM型波,但在传输过程中不断遇到波导的不连续性,因此不断激励高次模。

由电磁波源和电磁波传输媒质形成电磁波传输的机构 波的形成都需要波源和传输媒质。在一盆水中形成机械波纹,可以使用点激励源产生波,并在水面上传播。波的传播特性只与媒质特性有关而与波源无关。将一个肉包子扔出去,这个肉包子可能产生不同的结果,或者被狗吃了,或者掉在什么地方了,都与扔包子的人不再有任何关系。而对天线来说,馈点的激励源就是这种波源,天线导体和外界空间就是传输媒质。不过电磁波的传输媒质可以是真空。 [思考] 电磁波具有波粒二象性。频率越低,波动性越强;频率越高,粒子性越强。所以光波主要表现出粒子性,而长波表现出波动性。射频电磁波就是介于这二者之间的一种电磁波,它既有显著的波动性,又有显著的粒子性。只要认清这一点,许多问题就会变得易于理解。认清事物的本质规律我们才能很好地利用它,我们不能把一头驴当马使,否则就会出现许多荒唐的错误。有人认为射频很复杂,有人认为很简单,就是这个道理。 [哲学启示] 电磁波由于看不见,摸不着,所以在很多人看来它很抽象。但考虑到世界是普遍联系的,尽管不同的事物也有许多不相同点,但找到它们之间的联系,就能获得认识抽象事物的“火眼金睛”。 二、电磁场基本方程 1.麦克斯韦方程 (电生磁。若电场变化,则磁场随之变化) (磁生电。若磁场变化,则电场随之变化) (磁力线是无始无终的封闭闭合曲线) (电力线出发和终止于自由电荷) 麦克斯韦方程的物理含义:变化的电场可以产生磁场,变化的磁场可以产生电场,这是电磁波可以脱离辐射体在空间存在的物理基础。 [思考] 自然界存在一些有趣的现象,尽管机理与电磁波不完全一致,但是其过程却可以帮助我们加深对我们问题的理解。请大家考虑一下,孩童吹肥皂泡时,肥皂泡能够

(完整版)基于HFSS的微带天线设计毕业设计论文

烟台大学 毕业论文(设计) 基于HFSS的微带天线设计 Microstrip antenna design based on HFSS 申请学位:工学学士学位 院系:光电科学技术与信息学院

烟台大学毕业论文(设计)任务书院(系):光电信息科学技术学院

[摘要]天线作为无线收发系统的一部分,其性能对一个系统的整体性能有着重要影响。近年来内置天线在移动终端数量日益庞大的同时功能也日益强大,对天线的网络覆盖及小型化也有了更高的要求。由于不同的通信网络间的频段差异较大,所以怎样使天线能够覆盖多波段并且同时拥有足够小的尺寸是设计内置天线的主要问题。微带天线具有体积小,重量轻,剖面薄,易于加工等诸多优点,得到广泛的研究与应用。微带天线的带宽通常小于3%,在无线通信技术中,对天线的带宽有了更高的要求;而电路集成度提高,系统对天线的体积有了更高的要求。 随着技术的进步,在不同领域对于天线的各个要求越来越高,所以对微带天线的尺寸与性能的分析有着重要的作用。对此,本文使用HFSS 软件研究了微带天线的设计方法,论文介绍及分析了天线的基本概念和相关性能参数,重点对微带天线进行了研究。 本文介绍了微带天线的分析方法,并使用HFSS 软件的天线仿真功能,对简单的微带天线进行了仿真和分析。 [关键词] 微带天线设计分析HFSS [Abstract]Antenna as part of the wireless transceiver system, its performance important impact on the overall performance of a system. Internal antenna in recent years an increasingly large number of mobile terminals while also increasingly powerful, and also network coverage and miniaturization of the antenna Band differences between the different communication networks, cover band and also problem of the design built-in antenna. Microstrip antenna with small size, light weight, thin profile, easy to process many advantages, extensive research and application. Microstrip antenna bandwidth is typically less than 3% the bandwidth of the antenna in wireless communication technology; improve the integration of the circuit the size of the antenna. As technology advances in different areas for various requirements of the antenna important role. Article uses HFSS microstrip antenna design, the paper introduces and analyzes the basic concepts and performance parameters of the antenna, with emphasis on the microstrip antenna. This article describes the analysis of the microstrip antenna and antenna simulation in HFSS simulation and analysis functions, simple microstrip antenna. [Key Words]Microstrip antenna design analysis HFSS

天线设计

5. 2.4G PCB 天线设计 本节主要讨论的是2.4G PCB 天线,如果不考虑成本及体积,可以选用其它天线,如贴片天 线(小尺寸、中性能、中成本)或外置的鞭状天线(大尺寸、高性能、高成本),而PCB 天线是最低成本、中等尺寸,只要设计得当又能获得足够性能的天线。 本节中包括三种天线: ◆ 超小型PIFA 天线:用于Nano Dongle 的PCB 天线,由于PCB 空间受限,最大增益会 比其它几种天线小6dB 左右,即工作距离会短一半。由此天线及MCU 做成的完整板子大小为11mm*18mm 左右。 ◆ 正常PIFA 天线:用于Normal Module 的PCB 天线,所占PCB 空间最大,最大增益可 以达到1.5dB ,如PCB 面积足够,建议用此天线。由此天线做成的RF Module 板子大小为15mm*18mm 左右。 ◆ 正常Wiggle 天线:用于Normal Module 的PCB 天线,所占PCB 空间比第二种稍小, 增益也稍差1dB ,可以用于对体积稍有要求的无线终端,如对于空间比较紧凑的无线鼠标等设备。由此天线做成的RF Module 板子大小为13mm*18mm 左右。 5.1. 小尺寸Nano Dongle 用PIFA 天线设计 天线具体尺寸如下图(板材为两层FR4,板厚0.6mm ): 其中天线线宽A :0.15mm ;B :0.25mm ;C : 0.4mm 图表11 Nano Dongle PIFA 天线

天线性能S11如下,工作频段覆盖整个2.4G ISM 频段 : 图表12 Nano Dongle PIFA 天线S11 2D 和3D 增益如下,该天线最大增益只有-5dB 左右:

高中化学基本概念和原理

一.物质的组成、性质和分类: (一)掌握基本概念 1.分子 分子是能够独立存在并保持物质化学性质的一种微粒。 (1)分子同原子、离子一样是构成物质的基本微粒. (2)按组成分子的原子个数可分为: 单原子分子如:、、、… 双原子分子如:O2、H2、、… 多原子分子如:H2O、P4、C6H12O6… 2.原子 原子是化学变化中的最小微粒。确切地说,在化学反应中原子核不变,只有核外电子发生变化。 (1)原子是组成某些物质(如金刚石、晶体硅、二氧化硅等原子晶体)和分子的基本微粒。 (2)原子是由原子核(中子、质子)和核外电子构成的。 3.离子 离子是指带电荷的原子或原子团。 (1)离子可分为: 阳离子:、、、4+… 阴离子:–、O2–、–、42–… (2)存在离子的物质: ①离子化合物中:、2、24… ②电解质溶液中:盐酸、溶液… ③金属晶体中:钠、铁、钾、铜… 4.元素

元素是具有相同核电荷数(即质子数)的同—类原子的总称。 (1)元素与物质、分子、原子的区别与联系:物质是由元素组成的(宏观看);物质是由分子、原子或离子构成的(微观看)。 (2)某些元素可以形成不同的单质(性质、结构不同)—同素异形体。 (3)各种元素在地壳中的质量分数各不相同,占前五位的依次是:O、、、、。 5.同位素 是指同一元素不同核素之间互称同位素,即具有相同质子数,不同中子数的同一类原子互称同位素。如H有三种同位素:11H、21H、31H(氕、氘、氚)。 6.核素 核素是具有特定质量数、原子序数和核能态,而且其寿命足以被观察的一类原子。 (1)同种元素、可以有若干种不同的核素—同位素。 (2)同一种元素的各种核素尽管中子数不同,但它们的质子数和电子数相同。核外电子排布相同,因而它们的化学性质几乎是相同的。 7.原子团 原子团是指多个原子结合成的集体,在许多反应中,原子团作为一个集体参加反应。原子团有几下几种类型:根(如42-、ˉ、3ˉ等)、官能团(有机物分子中能反映物质特殊性质的原子团,如—、—2、—等)、游离基(又称自由基、具有不成价电子的原子团,如甲基游离基·3)。 8.基 化合物中具有特殊性质的一部分原子或原子团,或化合物分子中去掉某些原子或原子团后剩下的原子团。 (1)有机物的官能团是决定物质主要性质的基,如醇的羟基(—)和羧酸的羧基(—)。 (2)甲烷(4)分子去掉一个氢原子后剩余部分(·3)含有未成对的价电子,称甲基或甲基游离基,也包括单原子的游离基(·)。

天线功能与工作原理

中国联通江苏分公司 技 术 交 流 材 料 江苏靖江亚信电子科技有限公司二00三年六月十一日 目录

一、天线功能与工作原理 (3) 二、天线的分类 (6) 三、性能指标与检测方法 (9) 四、天线结构和质量保证 (14) 五、天线选型原则 (20) 一、天线功能与工作原理 用来进行无线通讯的手机和基站,在空中是通过无线电波来传递信息的,需要有无线电波的辐射和接收。在无线电技术设备中,用来辐射和接收无线电波的装置称为天线。 天线的功能首先在于辐射和接收无线电波,但是能辐射或接收电磁波的装置并

不一定都能用来作为天线,任何高频电路,只要不被完全屏蔽,都可以向周围空间辐射电磁波,或者从周围空间接收电磁波,但是并非任何高频电路都能用作天线,因为辐射或接收效率有高有低,为了有效地辐射或接收电磁波,天线的结构形式应该满足一定的要求。 例如,像平行双导线传输线这样的封闭结构就不能用作天线,因为双导线传输线在周围空间激发的电磁场很微弱,终端开路的平行双导线传输线上的电流呈驻波分布。在两根互相平行的导线上,电流方向相反,线间距离远小于波长,所激发的电磁场在两线外部大部分空间中,由于相位相反而相互抵消。如果把两根导线的末端逐渐张开,辐射就会逐渐增强,当两根线完全张开时,张开的两臂短于半波长,上面电流的方向相同,在周围空中激发的电磁场在某些方向由于相位关系而互相抵消,在大部分方向则互相叠加,或者部分叠加、部分抵消,使辐射显著增强,这样的结构称为开放式结构,由末端开路的平行双导线传输线张开而成的天线,就是通常的对称振子天线。 作为基站天线,常常要求天线在水平面内向所有方向(一圈360o)均匀地辐射(或对所有方向具有同等的接收能力),具有这种特性的天线,叫做全向天线。而对某些基站天线,只要求能覆盖含有一定角度的一个扇区,这种天线叫做定向天线,对这种天线要求只向待定的扇形区域辐射(或只接收来自特定扇形区域的无线电波),在其它方向不辐射或辐射很弱(不能接收或接收能力很弱)。也就是说,要求天线具有所谓方向性。 如果天线没有方向性,无线电波呈球形向外均匀辐射,即所谓无方向性天线。此时,对发射天线来说,所辐射的功率中只有很少一部分到达所需要的方向,大部分功率浪费在不需要的方向上;对接收天线来说,在接收到所需要的信号同时,还接收到来自其它方向的干扰和噪声,甚至使信号完全淹没在干扰和噪

天线设计毕业论文

第一章绪论 一、绪论 1.1 课题的研究背景及意义 自古至今,通信无时无刻不在影响着人们的生活,小到一次社会交际中的简单对话;大到进行太空探索时,人造探测器与地球间的信息交换。可以毫不保留地说,离开了通信技术,我们的 生活将会黯然失色。近年来,随着光纤技术越来越成熟,应用范围越来越广。在广播电视领域, 光纤作为广播电视信号传输的媒体,以光纤网络为基础的网络建设的格局已经形成。光纤传输系统 具有的传输频带宽,容量大,损耗低,串扰小,抗干扰能力强等特点,已成为 城市最可靠的数字电视和数据传输的链路,也是实现直播或两地传送最经常使用的电视传送 方式。随着全球通信业务的迅速发展,作为未来个人通信主要手段的现代通信技 术引起了人们的极大关注,我国在移动通信技术方面投入了巨大的人力物力,我国很多地区的电力通信专用网也基本完成了从主干线向光纤过度的过程。目前,电力系统光纤通信网已成为我国规模较大,发展较为完善的专用通信网,其数据、语音,宽带等业务及电力生产专业业务都是由光纤通信承载,电力系统的生产生活,显然,已离不开光纤通信网。 无线通信现状另一非常活跃的通信技术当属,无线通信技术了。无线通信技术包括了移动通信技术和无线局域网( WLAN )技术等两大主要方面。移动通信就目前来讲是 3G时代,数字化和网络化已成为不可逆转的趋势。目前,移动通信已从模拟通信发展到了数字移动通 信阶段。无线局域网可以弥补以光纤通信为主的有线网络的不足,适用于无固定场所,或有线局域网架设受限制的场合,当然,同样也可以作为有线局域网的备用网络系统。WLAN ,目前广泛应用 IEEE802.11 系列标准。其中,工作于 2.4GHZ频段的 820.11可支持 11Mbps 的共享接入速率;而802.11a 采用 5GHZ 频段,速率高达 54Mbps ,它比802.11b 快上五倍,并和 820.11b兼容。给人们的生活工作带来了很大的方便与快捷。 在整个无线通信系统中,用来辐射或接收无线电波的装置成为天线,而通信、雷达、导航、广播、电视等无线电技术设备都是通过无线电波来传递信息的,均 需要有无线电波的辐射和接收,因此,同发射机和接收机一样,天线也是无线电技术设备的一个重要组成部分,其性能的优良对无线通信工程的成败起到重要作用。天线的作用首先在于辐射和接收无线电波,但是能辐射或接收电磁波的东西不一定都能作为天线。任何高频电路,只要不被完全屏蔽,都可以向周围空间或多或少地辐射电磁波,或从周围空间或多或少地接收电磁波,但是任意一个高频电路并不一定能用作天线,因为它的辐射或接收效率可能很低,要能够有效地辐射或接收电磁波,天线在结构和形式上必须满足一定的要求。快速发展的移动通信系统需要的是小型化、宽频带、多功能 (多频段、多极化 )、高性能的天线。微带天线作为天线 家祖的重要一员,经过近几十年的发展,已经取得了可喜的进步,在移动终端中采用内置微带天线,不但可以减小天线对于人体的辐射,还可使手机的外形设计多样化,因此内置微带天线将是未来天线技术的发展方向之一,设计出具有小型化的微带天线不但具有一定的理论价值而且具有重要的应用价值,这也成为当前国际天线界研究的热点之一。

相关文档