文档库 最新最全的文档下载
当前位置:文档库 › 物理学3章习题解答

物理学3章习题解答

物理学3章习题解答
物理学3章习题解答

[物理学3章习题解答]

3-1用榔头击钉子,如果榔头的质量为500 g,击钉子时的速率为8.0 m?s-1,作用时间为2.0?10-3 s,求钉子所受的冲量和榔头对钉子的平均打击力。

解对于榔头:

,

式中i

1是榔头所受的冲量,

是榔头所受钉子的平均打击力;

对于钉子:

,

式中i

2是钉子受到的冲量,

是钉子所受的平均打击力,显然= -

题目所要求的是i

2和

,

i2的方向与榔头运动方向一致。

,

的方向与榔头运动方向一致。

3-2 质量为10 g的子弹以500 m?s-1 的速度沿与板面垂直的方向射向木板,穿过木板,速度降为400 m?s-1 。如果子弹穿过木板所需时间为1.00?10-5 s,试分别利用动能定理和动量定理求木板对子弹的平均阻力。

(1)用动能定理求解:

, (1)

其中是木板对子弹的平均阻力,d为穿过木板的厚度,它可用下面的关系求得:

, (2)

. (3)

由式(2)和式(3)联立所求得的木板厚度为

&nb .

根据式(1),木板对子弹的平均阻力为

.

(2)用动量定理求解:

,

.

与上面的结果一致。由求解过程可见,利用动量定理求解要简便得多。

3-4 质量为m的小球与桌面相碰撞,碰撞前、后小球的速率都是v,入射方向和出射方向与桌面法线的夹角都是α,如图3-3所示。若小球与桌面作用的时间为δt,求小球对桌面的平均冲力。

解 设桌面对小球的平均冲力为f ,并建立如图所示的坐标系,根据动量定

理,对于小球可列出

,

.

由第一个方程式可以求得

,

由第二个方程式可以求得

.

根据牛顿第三定律,小球对桌面的平均冲力为

,

负号表示小球对桌面的平均冲力沿y 轴的负方向。

3-5 如图3-4

所示,一个质量为m 的刚性小球在光滑的水平桌面上以速度v 1

动,v 1

与x 轴的负方向成α角。当小球运动到o 点时,受到一个沿y 方向的冲力作用,使小球运动速度的大小和方向都发生了变化。已知变化后速度的方向与x 轴成β角。如果冲力与小球作用的时间为δt ,求小球所受的平均冲力和运动速率。

解 设小球受到的平均冲力为f ,根据题意,它是沿y 方向的,小球受到撞击后,

运动速率为v 2

。根据动量定理,在y 方向上可以列出下面的方程式

,

由此得到

图3-3

图3-4

. (1)

小球在x 轴方向上不受力的作用,动量是守恒的。故有

,

由此求得小球受到撞击后的运动速率为

. (2)

将式(2)代入式(1),即可求得小球所受的平均冲力

.

3-7 求一个半径为r

的半圆形均匀薄板的质心。

解 将坐标原点取在半圆形薄板的圆心上,并建立如图3-5所示的坐标系。在这种情况下,质心c 必定处于y 轴上,即

,

.

质量元是取在y 处的长条,如图所示。长条的宽度为d y ,长度为2x 。根据圆方程

,

故有

.

如果薄板的质量密度为 ,则有

图3-5

.

, 则

,对上式作变量变换,并积分,得

.

3-8 有一厚度和密度都均匀的扇形薄板,其半径为r,顶角为2α,求质心的位置。

解以扇形的圆心为坐标原点、以顶角的平分线为y轴,建立如图3-6所示的坐标系。在这种情况下,质心c必定处于y轴上,即

,

.

质量元可表示为

,

式中σ为扇形薄板的质量密度,d s为图中黑色方块所示的扇形薄板面元。整个扇形薄板的质量为

,

于是

.

代入上式,得

. 图3-6

3-9 一个水银球竖直地落在水平桌面上,并分成三个质量相等的小水银球。其中两个以30 cm ?s

-

1

的速率沿相互垂直的方向运动,如图3-7

中的1、2两球。

求第三个小水银球的速率和运动方向 (

即与1球运动方向的夹角α )。

解 建立如图3-8所示的坐标系。在水平方向上,水银求不受力的作用,所以动量守恒,故可列出下面的两个方程式

,

.

式中v 是1、2两球的运动速率,v 3是第三个水银小球的运动速率。由上两方程式可解的

,

.

3-10 如图3-9

所示,一个质量为1.240 kg 的木块与一个处于平衡位置

的轻弹簧的一端相接触,它们静止地处于光滑的水平桌面上。一个质量为10.0 g

的子弹

沿水平方向飞行并射进木块,受到子弹撞击的木块将弹

簧压缩了2.0 cm 。如果轻弹簧的劲度系数为2000 n ?m -

1

,求子弹撞

击木块的速率。

解 设木块的质量为m ;子弹的质量为m ,速度为v ;碰撞后的共同速度为v 。此类问题一般分两步处理:第一步是子弹与木块作完

全非弹性碰撞,第二步是子弹在木块内以共同的速度压缩弹簧。

第一步遵从动量守恒,故有

. (1)

图3-8

图3-7

图3-9

第二步是动能与弹力势能之间的转换,遵从机械能守恒,于是有

. (2)

有式(2)解得

.

将v值代入式(1),就可求得子弹撞击木块的速率,为

.

3-11 质量为5.0 g的子弹以500 m?s-1 的速率沿水平方向射入静止放置在水平桌面上的质量为1245 g 的木块内。木块受冲击后沿桌面滑动了510 cm。求木块与桌面之间的摩擦系数。

解这个问题也应分两步处理:第一步是子弹与木块作完全非弹性碰撞过程,第二步是子弹处于木块内一起滑动而克服桌面的摩擦力作功的过程。

第一步遵从动量守恒,有

.

式中v是木块受冲击后沿桌面滑动的速度。

第二步遵从功能原理,可列出下面的方程式

.

由以上两式可解得

3-12一个中子撞击一个静止的碳原子核,如果碰撞是完全弹性正碰,求碰撞后中子动能减少的百分数。已知中子与碳原子核的质量之比为1:12。

解设中子的质量为m,与碳核碰撞前、后的速度分别为v

和v2;碳核的质量为m,碰撞前、后的速度分别为0和

1

v。因为是正碰,所以v1、v2和v必定处于同一条直线上。

完全弹性碰撞,动量守恒,故有

, (1)

总动能不变,即

(2)

以上两式可分别化为

,(3)

. (4)

式(4)除以式(3),得

. (5)

由式(1)和式(5)解得

.

于是,可以算得中子动能的减少

,

因为m = 12m,所以

.

3-13 质量为m1的中子分别与质量为m2的铅原子核(质量m2 = 206 m1 )和质量为m3的氢原子核(质量m3 = m1 )发生完全弹性正

碰。分别求出中子在碰撞后动能减少的百分数,并说明其物理意义。

解 求解此题可以利用上题的结果:

.

对于中子与铅核作完全弹性正碰的情形:

.

铅核的质量比中子的质量大得多,当它们发生完全弹性正碰时,铅核几乎保持静止,而中子则以与碰前相近的速率被反弹回去,所以动能损失极少。

对于中子与氢核作完全弹性正碰的情形:

.

氢核就是质子,与中子质量相等,当它们发生完全弹性正碰时,将交换速度,所以碰撞后,中子静止不动了,而将自身的全部动能交给了氢核。

3-14 如图3-10

所示,用长度为l 的细线将一个质量为m 的小球悬挂于o 点。手拿小球将细线拉到水平位置,然后释放。当小球摆动到细

线竖直的位置时,正好与一个静止放置在水平桌面上的质量为m

的物体作完全弹性碰撞。求碰撞后小球达到的最高位置所对应

的细线张角 。

解 小球与物体相碰撞的速度v 1

可由下式求得

. (1)

小球与物体相碰撞,在水平方向上满足动量守恒,碰撞后

小球的速度变为v 2,物体的速度为v ,在水平方向上应有

. (2)

图3-10

完全弹性碰撞,动能不变,即

. (3)

碰撞后,小球在到达张角 的位置的过程中满足机械能守恒,应有

. (4)

由以上四式可解得

.

将上式代入式(4),得

,

.

物理学第三版 刘克哲12章习题解答

[物理学12章习题解答] 12-7 在磁感应强度大小为b = 0.50 t的匀强磁场中,有一长度为l = 1.5 m的导体棒垂直于磁场方向放置,如图12-11所示。如果让此导体棒以既垂直于自身的长度又垂直于磁场的速度v向右运动,则在导体棒中将产生动生电动势。若棒的运动速率v = 4.0 m?s-1 ,试求: (1)导体棒内的非静电性电场k; (2)导体棒内的静电场e; (3)导体棒内的动生电动势ε的大小和方向; (4)导体棒两端的电势差。 解 (1)根据动生电动势的表达式 , 由于()的方向沿棒向上,所以上式的积分可取沿棒向上图12-11 的方向,也就是d l的方向取沿棒向上的方向。于是可得 . 另外,动生电动势可以用非静电性电场表示为 . 以上两式联立可解得导体棒内的非静电性电场,为 , 方向沿棒由下向上。 (2)在不形成电流的情况下,导体棒内的静电场与非静电性电场相平衡,即 , 所以,e的方向沿棒由上向下,大小为 . (3)上面已经得到 , 方向沿棒由下向上。 (4)上述导体棒就相当一个外电路不通的电源,所以导体棒两端的电势差就等于棒的动生电动势,即 , 棒的上端为正,下端为负。

12-8如图12-12所表示,处于匀强磁场中的导体回路 abcd,其边ab可以滑动。若磁感应强度的大小为b = 0.5 t,电 阻为r = 0.2 ω,ab边长为l = 0.5 m,ab边向右平移的速率为v = 4 m?s-1 ,求: (1)作用于ab边上的外力; 图12-12 (2)外力所消耗的功率; (3)感应电流消耗在电阻r上的功率。 解 (1)当将ab向右拉动时,ab中会有电流通过,流向为从b到a。ab中一旦出现电流,就将受到安培力f的作用,安培力的方向为由右向左。所以,要使ab向右移动,必须 。 对ab施加由左向右的力的作用,这就是外力f 外 在被拉动时,ab中产生的动生电动势为 , 电流为 . ab所受安培力的大小为 , 安培力的方向为由右向左。外力的大小为 , 外力的方向为由左向右。 (2)外力所消耗的功率为 . (3)感应电流消耗在电阻r上的功率为 . 可见,外力对电路消耗的能量全部以热能的方式释放出来。 12-9有一半径为r的金属圆环,电阻为r,置于磁感应强度为b的匀强磁场中。初始时刻环面与b垂直,后将圆环以匀角速度ω绕通过环心并处于环面内的轴线旋转π/ 2。求: (1)在旋转过程中环内通过的电量; (2)环中的电流; (3)外力所作的功。

物理学11章习题解答

[物理学11章习题解答] 11-7 在磁感应强度大小为b = 0.50 t的匀强磁场中,有一长度为l = 1.5 m的导体棒垂直于磁场向放置,如图11-11所示。如果让此导体棒以既垂直于自身的长度又垂直于磁场的速度v向右运动,则在导体棒中将产生动生电动势。若棒的运动速率v = 4.0 m?s-1 ,试求: (1)导体棒的非静电性电场k; (2)导体棒的静电场e; (3)导体棒的动生电动势ε的大小和向; (4)导体棒两端的电势差。 解 (1)根据动生电动势的表达式 , 由于()的向沿棒向上,所以上式的积分可取沿棒向上的向,也就是d l的向取沿棒向上的向。于是可得 . 另外,动生电动势可以用非静电性电场表示为 . 以上两式联立可解得导体棒的非静电性电场,为 , 向沿棒由下向上。 图11-11

(2)在不形成电流的情况下,导体棒的静电场与非静电性电场相平衡,即 , 所以,e的向沿棒由上向下,大小为 . (3)上面已经得到 , 向沿棒由下向上。 (4)上述导体棒就相当一个外电路不通的电源,所以导体棒两端的电势差就等于棒的动生电动势,即 , 棒的上端为正,下端为负。 11-8如图11-12所表示,处于匀强磁场中的导体回路abcd,其边ab可以 滑动。若磁感应强度的大小为b = 0.5 t,电阻为r = 0.2 ω,ab边长为l = 0.5 m, ab边向右平移的速率为v = 4 m?s-1 ,求: (1)作用于ab边上的外力; (2)外力所消耗的功率; (3)感应电流消耗在电阻r上的功率。 解 (1)当将ab向右拉动时,ab中会有电流通过,流向为从b到a。ab中一旦出现电流,就将受到安培力f的作用,安培力的向为由右向左。所以,要使ab向右移动,必须对ab施加由左向右的力的作用,这就是外力f外。 图11-12

大学物理学-第1章习题解答

大学物理简明教程(上册)习题选解 第1章 质点运动学 1-1 一质点在平面上运动,其坐标由下式给出)m 0.40.3(2 t t x -=,m )0.6(3 2 t t y +-=。求:(1)在s 0.3=t 时质点的位置矢量; (2)从0=t 到s 0.3=t 时质点的位移;(3)前3s 内质点的平均速度;(4)在s 0.3=t 时质点的瞬时速度; (5)前3s 内质点的平均加速度;(6)在s 0.3=t 时质点的瞬时加速度。 解:(1)m )0.6()0.40.3(322j i r t t t t +-+-= 将s 0.3=t 代入,即可得到 )m (273j i r +-= (2)03r r r -=?,代入数据即可。 (3)注意:0 30 3--=r r v =)m/s 99(j i +- (4)dt d r =v =)m/s 921(j i +-。 (5)注意:0 30 3--=v v a =2)m/s 38(j i +- (6)dt d v a ==2)m/s 68(j -i -,代入数据而得。 1-2 某物体的速度为)25125(0j i +=v m/s ,3.0s 以后它的速度为)5100(j 7-i =v m/s 。 在这段时间内它的平均加速度是多少? 解:0 30 3--= v v a =2)m/s 3.3333.8(j i +- 1-3 质点的运动方程为) 4(2k j i r t t ++=m 。(1)写出其速度作为时间的函数;(2)加速度作为时间的函数; (3)质点的轨道参数方程。 解:(1)dt d r =v =)m/s 8(k j +t (2)dt d v a = =2m/s 8j ; (3)1=x ;2 4z y =。 1-4 质点的运动方程为t x 2=,22t y -=(所有物理量均采用国际单位制)。求:(1)质点的运动轨迹;(2)从0=t 到2=t s 时间间隔内质点的位移r ?及位矢的径向增量。 解:(1)由t x 2=,得2 x t = ,代入22t y -=,得质点的运动轨道方程为 225.00.2x y -=; (2)位移 02r r r -=?=)m (4j i - 位矢的径向增量 02r r r -=?=2.47m 。 (3)删除。 1-6 一质点做平面运动,已知其运动学方程为t πcos 3=x ,t πsin =y 。试求: (1)运动方程的矢量表示式;(2)运动轨道方程;(3)质点的速度与加速度。 解:(1)j i r t t πsin πcos 3+=; (2)19 2 =+y x (3)j i t t πcos πsin 3π+-=v ; )πsin πcos 3(π2j i t t a +-= *1-6 质点A 以恒 定的速率m/s 0.3=v 沿 直线m 0.30=y 朝x +方 向运动。在质点A 通过y 轴的瞬间,质点B 以恒 定的加速度从坐标原点 出发,已知加速度2m/s 400.a =,其初速度为零。试求:欲使这两个质点相遇,a 与y 轴的夹角θ应为多大? 解:提示:两质点相遇时有,B A x x =,B A y y =。因此只要求出质点A 、B 的运动学方程即可。或根据 222)2 1 (at y =+2(vt)可解得: 60=θ。 1-77 质点做半径为R 的圆周运动,运动方程为 2021 bt t s -=v ,其中,s 为弧长,0v 为初速度,b 为正 的常数。求:(1)任意时刻质点的法向加速度、切向加速度和总加速度;(2)当t 为何值时,质点的总加速度在数值上等于b ?这时质点已沿圆周运行了多少圈? 题1-6图

大学物理学第二版第章习题解答精编

大学物理学 习题答案 习题一答案 习题一 1.1 简要回答下列问题: (1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等? (2)平均速度和平均速率有何区别?在什么情况下二者的量值相等? (3)瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么? (4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不 变? (5) r ?v 和r ?v 有区别吗?v ?v 和v ?v 有区别吗?0dv dt =v 和0d v dt =v 各代表什么运动? (6) 设质点的运动方程为:()x x t = ,()y y t =,在计算质点的速度和加速度时,有人先求出 r = dr v dt =及22d r a dt = 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即 v =及a =你认为两种方法哪一种正确?两者区别何在? (7)如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性 的? (8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速 度也一定为零.”这种说法正确吗? (9)任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么? (10)质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变? (11)一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何? 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。 解:

物理学第三版课后习题答案第十章

[物理学10章习题解答] 10-3两个相同的小球质量都是m,并带有等量同号电荷q,各用长为l的丝线悬挂于同一点。由于电荷的斥力作用,使小球处于图10-9所示的位置。如果θ角很小,试证明两个小球的间距x可近似地表示为 . 解小球在三个力的共同作用下达到平衡,这三个力分别 是重力m g、绳子的张力t和库仑力f 。于是可以列出下面的 方程式 ,(1) 图10-9 ,(2) (3) 因为θ角很小,所以 , . 利用这个近似关系可以得到 ,(4) . (5) 将式(5)代入式(4),得 , 由上式可以解得 . 得证。 10-4在上题中,如果l = 120 cm,m = 0.010 kg,x = 5.0 cm,问每个小球所带的电量q为多大? 解在上题的结果中,将q解出,再将已知数据代入,可得

. 10-5氢原子由一个质子和一个电子组成。根据经典模型,在正常状态下,电子绕核作圆周运动,轨道半径是r0 = 5.29?10-11m。质子的质量m = 1.67?10-27kg,电子的质量m = 9.11?10-31kg ,它们的电量为±e =1.60?10-19c。 (1)求电子所受的库仑力; (2)电子所受库仑力是质子对它的万有引力的多少倍? (3)求电子绕核运动的速率。 解 (1)电子与质子之间的库仑力为 . (2)电子与质子之间的万有引力为 . 所以 . (3)质子对电子的高斯引力提供了电子作圆周运动的向心力,所以 , 从上式解出电子绕核运动的速率,为 . 10-6 边长为a的立方体,每一个顶角上放一个电荷q。 (1)证明任一顶角上的电荷所受合力的大小为 . (2) f的方向如何? 解立方体每个顶角上放一个电荷q,由于对称性,每 个电荷的受力情况均相同。对于任一顶角上的电荷,例如b 图10-10 角上的q b,它所受到的力、和大小也是相等的,即

大学物理习题册题目及答案第5单元 狭义相对论

第一章 力学的基本概念(二) 狭义相对论 序号 学号 姓名 专业、班级 一 选择题 [ B ]1. 一火箭的固有长度为L ,相对于地面作匀速直线运动的速度为1v ,火箭上有一个人从火箭的后端向火箭前端上的一个靶子发射一颗相对于火箭的速度为2v 的子弹,在火箭上测得子弹从射出到击中靶的时间是 (A ) 21v v L + (B )2v L (C )12v v L - (D )211) /(1c v v L - [ D ]2. 下列几种说法: (1) 所有惯性系对物理基本规律都是等价的。 (2) 在真空中,光的速率与光的频率、光源的运动状态无关。 (3) 在任何惯性系中,光在真空中沿任何方向的传播速度都相同。 其中哪些说法是正确的 (A) 只有(1)、(2)是正确的; (B) 只有(1)、(3)是正确的; (C) 只有(2)、(3)是正确的; (D) 三种说法都是正确的。 [ A ]3. 宇宙飞船相对于地面以速度v 作匀速直线飞行,某一时刻飞船头部的宇航员向飞船尾部发出一个光讯号,经过t ?(飞船上的钟)时间后,被尾部的接收器收到,则由此可知飞船的固有长度为 (A) t c ?? (B) t v ?? (C) 2)/(1c v t c -??? (D) 2 ) /(1c v t c -?? (c 表示真空中光速) [ C ]4. 一宇宙飞船相对于地以0.8c ( c 表示真空中光速 )的速度飞行。一光脉冲从船尾传到船头,飞船上的观察者测得飞船长度为90m ,地球上的观察者测得光脉冲从船上尾发出和到达船头两事件的空间间隔为 (A) m 90 (B) m 54 (C)m 270 (D)m 150 [ D ]5. 在参考系S 中,有两个静止质量都是 0m 的粒子A 和B ,分别以速度v 沿同一直线相向运动,相碰后合在一起成为一个粒子,则其静止质量0M 的值为 (A) 02m (B) 2 0)(12c v m - (C) 20)(12c v m - (D) 2 0) /(12c v m - ( c 表示真空中光速 ) [ C ]6. 根据相对论力学,动能为 MeV 的电子,其运动速度约等于 (A) c 1.0 (B) c 5.0 (C) c 75.0 (D) c 85.0 ( c 表示真空中光速, 电子的静止能V e M 5.020=c m ) [ A ]7. 质子在加速器中被加速,当其动能为静止能量的4倍时,其质量为静止质量的多少倍 (A )5 (B )6 (C )3 (D )8 二 填空题 1. 以速度v 相对地球作匀速直线运动的恒星所发射的光子,其相对于地球的速度的大小为 ____________C________________。 2.狭义相对论的两条基本原理中, 相对性原理说的是 _ __________________________略________________________. 光速不变原理说的是 _______________略___ _______________。 3. 在S 系中的X 轴上相隔为x ?处有两只同步的钟A 和B ,读数相同,在S '系的X '的轴上也有一只同样的钟A '。若S '系相对于S 系的运动速度为v , 沿X 轴方向且当A '与A 相遇时,刚好两钟的读数均为零。那么,当A '钟与B 钟相遇时,在S 系中B 钟的读数是v x /?;此时在S '系中A '钟的 读数是 2 )/(1)/(c v v x -? 。 4. 观察者甲以 c 5 4的速度(c 为真空中光速)相对于观察者乙运动,若甲携带一长度为l 、截面积为S 、 质量为m 的棒,这根棒安放在运动方向上,则 (1) 甲测得此棒的密度为 s l m ; (2) 乙测得此棒的密度为 s l m ?925 。 三 计算题

物理学10章习题解答

[物理学10章习题解答] 10-3 两个相同的小球质量都是m ,并带有等量同号电荷q ,各用长为l 的丝线悬挂于同一点。由于电荷的斥力作用,使小球处于图10-9所示的位置。如果θ角很小,试证明两个小球的间距x 可近似地表示为 . 解 小球在三个力的共同作用下达到平衡,这三个力分别是重力m g 、绳子的张力t 和库仑力f 。于是可以列出下面的方程式 ,(1) ,(2) (3) 因为θ角很小,所以 , . 利用这个近似关系可以得到 ,(4) . (5) 将式(5)代入式(4),得 , 由上式可以解得 . 得证。 10-4 在上题中, 如果l = 120 cm ,m = 0.010 kg ,x = 5.0 cm ,问每个小球所带的电量q 为多大? 解 在上题的结果中,将q 解出,再将已知数据代入,可得 图10-9

. 10-5 氢原子由一个质子和一个电子组成。根据经典模型,在正常状态下,电子绕核作圆周运动,轨道半径是r 0 = 5.29?10-11m 。质子的质量m = 1.67?10-27kg ,电子的质量m = 9.11?10-31kg ,它们的电量为 ±e =1.60?10-19c 。 (1)求电子所受的库仑力; (2)电子所受库仑力是质子对它的万有引力的多少倍? (3)求电子绕核运动的速率。 解 (1)电子与质子之间的库仑力为 . (2)电子与质子之间的万有引力为 . 所以 . (3)质子对电子的高斯引力提供了电子作圆周运动的向心力,所以 , 从上式解出电子绕核运动的速率,为 . 10-6 边长为a 的立方体,每一个顶角上放一个电荷q 。 (1)证明任一顶角上的电荷所受合力的大小为 . (2) f 的方向如何? 解 立方体每个顶角上放一个电荷q ,由于对称性,每个电荷的受力情况均相同。对于任一顶角上的电荷,例如b 角上的q b ,它所受到的力 、 和 大小也是相等的, 即 图10-10

大学物理狭义相对论习题及答案

第5章 狭义相对论 习题及答案 1. 牛顿力学的时空观与相对论的时空观的根本区别是什么?二者有何联系? 答:牛顿力学的时空观认为自然界存在着与物质运动无关的绝对空间和时间,这种空间和时间是彼此孤立的;狭义相对论的时空观认为自然界时间和空间的量度具有相对性,时间和空间的概念具有不可分割性,而且它们都与物质运动密切相关。在远小于光速的低速情况下,狭义相对论的时空观与牛顿力学的时空观趋于一致。 2.狭义相对论的两个基本原理是什么? 答:狭义相对论的两个基本原理是: (1)相对性原理 在所有惯性系中,物理定律都具有相同形式;(2)光速不变原理 在所有惯性系中,光在真空中的传播速度均为c ,与光源运动与否无关。 3.你是否认为在相对论中,一切都是相对的?有没有绝对性的方面?有那些方面?举例说明。 解 在相对论中,不是一切都是相对的,也有绝对性存在的方面。如,光相对于所有惯性系其速率是不变的,即是绝对的;又如,力学规律,如动量守恒定律、能量守恒定律等在所有惯性系中都是成立的,即相对于不同的惯性系力学规律不会有所不同,此也是绝对的;还有,对同时同地的两事件同时具有绝对性等。 4.设'S 系相对S 系以速度u 沿着x 正方向运动,今有两事件对S 系来说是同时发生的,问在以下两种情况中,它们对'S 系是否同时发生? (1)两事件发生于S 系的同一地点; (2)两事件发生于S 系的不同地点。 解 由洛伦兹变化2()v t t x c γ'?=?- ?知,第一种情况,0x ?=,0t ?=,故'S 系中0t '?=,即两事件同时发生;第二种情况,0x ?≠,0t ?=,故'S 系中0t '?≠,两事件不同时发生。 5-5 飞船A 中的观察者测得飞船B 正以0.4c 的速率尾随而来,一地面站测得飞船A 的速率为0.5c ,求: (1)地面站测得飞船B 的速率; (2)飞船B 测得飞船A 的速率。 解 选地面为S 系,飞船A 为S '系。 (1)'0.4,0.5x v c u c ==,2'341'x x x v u v c v v c +==+ (2)'0.4BA AB x v v v c =-=-=- 5.6 惯性系S ′相对另一惯性系S 沿x 轴作匀速直线运动,取两坐标原点重合时刻作为计时起点.在S 系中测得两事件的时空坐标分别为1x =6×104m,1t =2×10-4s ,以及2x =12×104 m,2t =1×10-4 s .已知在S ′系中测得该两事件同时发生.试问: (1)S ′系相对S 系的速度是多少? (2)S '系中测得的两事件的空间间隔是多少? 解: 设)(S '相对S 的速度为v , (1) )(12 11x c v t t -='γ

大学物理学习题解答习题

第十章 10-1无限长直线电流的磁感应强度公式为B=μ0I 2π a,当场点无限接近于导线时(即a→0),磁感应强度B→∞,这个结论正确吗?如何解释? 答:结论不正确。公式 a I B π μ 2 =只对理想线电流适用,忽略了导线粗细,当a→0,导线的尺寸不能忽略,电流就不能称为线电流,此公式不适用。 10-2如图所示,过一个圆形电流I附近的P点,作一个同心共面圆形环路L,由于电流分布的轴对称,L上各点的B大小相等,应用安培环路定理,可得∮L B·d l =0,是否可由此得出结论,L上各点的B均为零?为什么? 答:L上各点的B不为零. 由安培环路定理 ∑ ?= ? i i I l d B μ 得0 = ? ?l d B ,说明圆形环路L内的电流代数和为零, 并不是说圆形环路L上B一定为零。 10-3设题10-3图中两导线中的电流均为8A,对图示的三条闭合曲线a,b,c,分别写出安培环路定理等式右边电流的代数和.并讨论: (1)在各条闭合曲线上,各点的磁感应强度B 的大小是否相等? (2)在闭合曲线c上各点的B 是否为零?为什么? 解:?μ = ? a l B 8 d ?μ = ? ba l B 8 d ?= ? c l B0 d (1)在各条闭合曲线上,各点B 的大小不相等. (2)在闭合曲线C上各点B 不为零.只是B 的环路积分为零而非每点0 = B .题10-3图 习题10-2图

10-4 图示为相互垂直的两个电流元,它们之间的相互作用力是否等值、反向?由此可得出什么结论? 答:两个垂直的电流元之间相互作用力不是等值、反向的。 B l Id F d ?= 2 0?4r r l Id B d ?= πμ 221 21221 10221212201112)?(4?4r r l d I l d I r r l d I l d I F d ??=??= πμπμ 2 12 12112 20212121102212)?(4?4r r l d I l d I r r l d I l d I F d ??=??= πμπμ ))?()?((42 12 121221************r r l d l d r r l d l d I I F d F d ??+??-=+ πμ 2 122112 210212112221212102112)(?4))?()?((4r l d l d r I I r l d r l d l d r l d I I F d F d ??=?-?=+πμπμ 一般情况下 02112≠+F d F d 由此可得出两电流元(运动电荷)之间相互作用力一般不满足牛顿第三定律。 10-5 把一根柔软的螺旋形弹簧挂起来,使它的下端和盛在杯里的水银刚好接触,形成串联电路,再把它们接到直流电源上通以电流,如图所示,问弹簧会发生什么现象?怎样解释? 答:弹簧会作机械振动。 当弹簧通电后,弹簧内的线圈电流可看成是同向平行的,而同向平行电流会互相吸引,因此弹簧被压缩,下端会离开水银而电流被断开,磁力消失,而弹簧会伸长,于 是电源又接通,弹簧通电以后又被压缩……,这样不断重复,弹簧不停振动。 10-6 如图所示为两根垂直于xy 平面放置的导线俯视图,它们各载有大小为I 但方向相反的电流.求:(1)x 轴上任意一点的磁感应强度;(2)x 为何值时,B 值最大,并给出最大值B max . 解:(1) 利用安培环路定理可求得1导线在P 点产生的磁感强度的大小为: r I B π=201μ2/1220)(12x d I +?π=μ 2导线在P 点产生的磁感强度的大小为: r I B π=202μ2 /1220)(1 2x d I +?π=μ 1B 、2B 的方向如图所示. P 点总场 θθcos cos 2121B B B B B x x x +=+= 021=+=y y y B B B 习题10-4图 r 12 r 21 习题10-5图 习题10-6图 y P r B 1 x y 1 o x d θ θ

物理学8章习题解答

[物理学8章习题解答] 8-3 已知s'系相对于s系以-0.80c的速度沿公共轴x、x'运动,以两坐标原点相重合时为计时零点。现在s'系中有一闪光装置,位于x'= 10.0 km,y'= 2.5 km,z'= 1.6 km处,在t'= 4.5?10-5 s时发出闪光。求此闪光在s系的时空坐标。 解已知闪光信号发生在s'系的时空坐标,求在s系中的时空坐标,所以应该将洛伦兹正变换公式中带撇量换成不带撇量,不带撇量换成带撇量,而成为下面的形式 , , , . 将、和代入以上各式,就可以求得闪光信号在s系中的时空坐标: , , , . 8-4 已知s'系相对于s系以0.60c的速率沿公共轴x、x'运动,以两坐标原点相重合时为计时零点。s系中的观察者测得光信号a的时空坐标为x = 56 m,t = 2.1?10-7 s,s '系的观察者测得光信号b的时空坐标为x'= 31 m,t'= 2.0?10-7 s。试计算这两个光信号分别由观察者s、s '测出的时间间隔和空间间隔。 解在s系中: , 空间间隔为 . ,

时间间隔为 . 在s'系中: , 空间间隔为 . , 时间间隔为 . 8-5 以0.80c的速率相对于地球飞行的火箭,向正前方发射一束光子,试分别按照经典理论和狭义相对论计算光子相对于地球的运动速率。 解按照经典理论,光子相对于地球的运动速率为 . 按照狭义相对论,光子相对于地球的运动速率为 . 8-6航天飞机以0.60c的速率相对于地球飞行,驾驶员忽然从仪器中发现一火箭正从后方射来,并从仪器中测得火箭接近自己的速率为0.50c。试求: (1)火箭相对于地球的速率; (2)航天飞机相对于火箭的速率。 解 (1)火箭相对于地球的速率 . (2)航天飞机相对于火箭的速率为-0.50c。 8-7 在以0.50c相对于地球飞行的宇宙飞船上进行某实验,实验时仪器向飞船的正前方发射电子束,同时又向飞船的正后方发射光子束。已知电子相对于飞船的速率为0.70c。试求: (1)电子相对于地球的速率; (2)光子相对于地球的速率; (3)从地球上看电子相对于飞船的速率;

大学物理第4章 狭义相对论时空观习题解答改

习 题 4-1 一辆高速车以0.8c 的速率运动。地上有一系列的同步钟,当经过地面上的一台钟时,驾驶员注意到它的指针在0=t ,她即刻把自己的钟拨到0'=t 。行驶了一段距离后,她自己的钟指到6 us 时,驾驶员瞧地面上另一台钟。问这个钟的读数就是多少? 【解】s)(10) /8.0(16/12 2 2 0μ=-μ= -?= ?c c s c u t t 所以地面上第二个钟的读数为 )(10's t t t μ=?+= 4-2 在某惯性参考系S 中,两事件发生在同一地点而时间间隔为4 s,另一惯性参考系S′ 以速度c u 6.0=相对于S 系运动,问在S′ 系中测得的两个事件的时间间隔与空间间隔各就是多少? 【解】已知原时(s)4=?t ,则测时 (s)56 .014/1'2 2 2 =-= -?= ?s c u t t 由洛伦兹坐标变换2 2 /1'c u ut x x --= ,得: )(100.9/1/1/1'''82 22 2202 21012m c u t u c u ut x c u ut x x x x ?=-?= --- --= -=? 4-3 S 系中测得两个事件的时空坐标就是x 1=6×104 m,y 1=z 1=0,t 1=2×10-4 s 与x 2=12×104 m,y 2=z 2=0,t 2=1×10-4 s 。如果S′ 系测得这两个事件同时发生,则S′ 系相对于S 系的速度u 就是多少?S′ 系测得这两个事件的空间间隔就是多少? 【解】(m)1064 ?=?x ,0=?=?z y ,(s)1014 -?-=?t ,0'=?t

0)('2=?- ?γ=?c x u t t 2c x u t ?=?? (m/s)105.182?-=??=?x t c u (m )102.5)('4?=?-?γ=?t u x x 4-4 一列车与山底隧道静止时等长。列车高速穿过隧道时,山顶上一观察者瞧到当列车完全进入隧道时,在隧道的进口与出口处同时发生了雷击,但并未击中列车。试按相对论理论定性分析列车上的旅客应观察到什么现象?这现象就是如何发生的? 【解】S 系(山顶观察者)瞧雷击同时发生,但车厢长度短于山洞长度,故未被击中。 'S 系(列车观察者)瞧雷击不同时发生。虽然车厢长度长于山洞长度,但出洞处先遭 雷击,入洞处后遭雷击,此时车尾已经进入山洞。故未被击中。 4-5 一飞船以0.99c 的速率平行于地面飞行,宇航员测得此飞船的长度为400 m 。(1)地面上的观察者测得飞船长度就是多少?(2)为了测得飞船的长度,地面上需要有两位观察者携带着两只同步钟同时站在飞船首尾两端处。那么这两位观察者相距多远?(3)宇航员测得两位观察者相距多远? 【解】(1))(4.5699.01400/12 2 2 0m c u l l =-=-= (2)这两位观察者需同时测量飞船首尾的坐标,相减得到飞船长度,所以两位观察者相距就是56.4 m 。 (3)上的两位观察者相距56.4 m,这一距离在地面参考系中就是原长,宇航员瞧地面就是运动的,她测得地面上两位观察者相距为 )(96.799.014.56/12220m c u l l =-=-= 所以宇航员测得两位观察者相距7.96 m 。 4-6 一艘飞船原长为l 0,以速度v 相对于地面作匀速直线飞行。飞船内一小球从尾部运

物理学第3版习题解答_第5章直流电

习 题 解 答 5-1 一测温用的铂金属丝,在常温(20℃)时,电阻为118Ω,温度为100℃时,其电阻为154.8Ω,求铂丝的电阻温度系数。如果把这段电阻丝放入电炉,其阻值将增加450Ω,求炉温。 [5-1 解] ①由)](1[1212t t -+= αρρ , S L R ρ = 所以,)]20100(1[1188.154-+=α 所以,电阻温度系数)/1(109.33 C ??=-α ② )]20(1[118)8.154450(3-+=+t α 所以,C t ?=8.10773 5-2 在测定导线电阻的实验中(图5-24),已知导线长度为8米,横截面面积为22 mm ,安培表的读数是1.6A,伏特表的读数是2.5V ,求导线的电阻和电阻率。 [5-2 解] 设导线电阻为R )(5625.16 .15.2Ω===I U R , S L R ρ = , )(1039.081026.15.266 m L S R ?Ω?=??==--ρ m mm /39.02?Ω= 5-3 用截面积为62 mm 的铝线从车间向150米外的一个临时工地送电,如果车间的电压是220V ,线路的电流是20A ,试问临时工地的电压是多少?根据日常观察,电灯在深夜要比黄昏时亮一些,为什么? [5-3 解] ①查书中的电阻率表得,铝线电阻率m mm /026.02 ?Ω=ρ 所以,导线电阻Ω=??== 3.16 2 150026.0S L R ρ 所以,临时工地电压V IR U 1943.120220220=?-=-= ②因为深夜时温度低,故铝线的电阻率也低.所以导线电阻低,输送到工地上的电压高,灯亮一些

物理学11章习题解答

[物理学11章习题解答] 11-1如果导线中的电流强度为 a,问在15 s内有多少电子通过导线的横截面解设在t秒内通过导线横截面的电子数为n,则电流可以表示为 , 所以 . 11-2 在玻璃管内充有适量的某种气体,并在其两端封有两个电极,构成一个气体放电管。当两极之间所施加的电势差足够高时,管中的气体分子就被电离,电子和负离子向正极运动,正离子向负极运动,形成电流。在一个氢气放电管中,如果在3 s 内有1018 个电子和1018 个质子通过放电管的横截面,求管中电流的流向和这段时间内电流的平均值。 解放电管中的电流是由电子和质子共同提供的,所以 . 电流的流向与质子运动的方向相同。 11-3 两段横截面不同的同种导体串联在一起,如图11-7所示,两端施加的电势差为u。问: (1)通过两导体的电流是否相同 (2)两导体内的电流密度是否相同 (3)两导体内的电场强度是否相同 (4)如果两导体的长度相同,两导体的电阻之比等于什么 (5)如果两导体横截面积之比为1: 9,求以上四个问题中各量的比例关 系,以及两导体有相同电阻时的长度之比。 解 (1)通过两导体的电流相同,。 (2)两导体的电流密度不相同,因为 , 图11-7 又因为 , 所以 . 这表示截面积较小的导体电流密度较大。

(3)根据电导率的定义 , 在两种导体内的电场强度之比为 . 上面已经得到,故有 . 这表示截面积较小的导体中电场强度较大。 (4)根据公式 , 可以得到 , 这表示,两导体的电阻与它们的横截面积成反比。 (5)已知,容易得到其他各量的比例关系 , , , . 若,则两导体的长度之比为 . 11-4两个同心金属球壳的半径分别为a和b(>a),其间充满电导率为的材料。已知是随电场而变化的,且可以表示为 = ke,其中k为常量。现在两球壳之间维持电压u,求两球壳间的电流。 解在两球壳之间作一半径为r的同心球面,若通过该球面的电流为i,则 . 又因为 , 所以

大学物理学-习题解答-习题10

第十章 10-1 无限长直线电流的磁感应强度公式为B =μ0I 2πa ,当场点无限接近于导线时(即 a →0),磁感应强度B →∞,这个结论正确吗?如何解释? 答:结论不正确。公式a I B πμ20=只对理想线电流适用,忽略了导线粗细,当a →0, 导线的尺寸不能忽略,电流就不能称为线电流,此公式不适用。 10-2 如图所示,过一个圆形电流I 附近的P 点,作一个同心共面圆形环路L ,由于电流分布的轴对称,L 上各点的B 大小相等,应用安培环路定理,可得∮L B ·d l =0,是否可由此得出结论,L 上各点的B 均为零?为什么? 答:L 上各点的B 不为零. 由安培环路定理 ∑?=?i i I l d B 0μρ ρ 得 0=??l d B ρ ρ,说明圆形环路L 内的电流代数和为零, 并不是说圆形环路L 上B 一定为零。 10-3 设题10-3图中两导线中的电流均为8A ,对图示的三条闭合曲线a ,b ,c ,分别写出安培环路定理等式右边电流的代数和.并讨论: (1)在各条闭合曲线上,各点的磁感应强度B ? 的大小是否相等? (2)在闭合曲线c 上各点的B ? 是否为零?为什么? 解: ?μ=?a l B 08d ? ? ? μ=?ba l B 08d ? ? ?=?c l B 0d ?? (1)在各条闭合曲线上,各点B ? 的大小不相等. (2)在闭合曲线C 上各点B ?不为零.只是B ? 的环路积分为零而非每点0=B ?. 习题10-2图

题10-3图 10-4 图示为相互垂直的两个电流元,它们之间的相互作用力是否等值、反向?由此可得出什么结论? 答:两个垂直的电流元之间相互作用力不是等值、反向的。 B l Id F d ρρρ ?= 2 0?4r r l Id B d ?=? ?πμ 2 21 2122110221212201112)?(4?4r r l d I l d I r r l d I l d I F d ??=??=? ρ?ρρπμπμ 2 12 12112 20212121102212)?(4?4r r l d I l d I r r l d I l d I F d ??=??=? ρ?ρρπμπμ ))?()?((42 12 121221************r r l d l d r r l d l d I I F d F d ??+??-=+? ρ?ρρρπμ 2 122112 210212112221212102112) (?4))?()?((4r l d l d r I I r l d r l d l d r l d I I F d F d ?ρ? ρ?ρρρ??=?-?=+πμπμ 一般情况下 02112≠+F d F d ρ ρ 由此可得出两电流元(运动电荷)之间相互作用力一般不满足牛顿第三定律。 10-5 把一根柔软的螺旋形弹簧挂起来,使它的下端和盛在杯里的水银刚好接触,形成串联电路,再把它们接到直流电源上通以电流,如图所示,问弹簧会发生什么现象?怎样解释? 答:弹簧会作机械振动。 当弹簧通电后,弹簧内的线圈电流可看成是同向平行 的,而同向平行电流会互相吸引,因此弹簧被压缩,下端 会离开水银而电流被断开,磁力消失,而弹簧会伸长,于是电源又接通,弹簧通电以后又被压缩……,这样不断重复,弹簧不停振动。 10-6 如图所示为两根垂直于xy 平面放置的导线俯视图,它们各载有大小为I 但方向相反的电流.求:(1)x 轴上任意一点的磁感应强 度;(2)x 为何值时,B 值最大,并给出最大值B max . 习题10-4图 r 12 r 21 习题10-5图 y

大学物理学 (第版.修订版) 北京邮电大学出版社 上册 第五章习题5 答案

习题 5 5.1选择题 (1)一物体作简谐振动,振动方程为)2 cos(π ω+ =t A x ,则该物体在0=t 时刻 的动能与8/T t =(T 为振动周期)时刻的动能之比为: (A)1:4 (B )1:2 (C )1:1 (D) 2:1 [答案:D] (2)弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为 (A)kA 2 (B) kA 2/2 (C) kA 2//4 (D)0 [答案:D] (3)谐振动过程中,动能和势能相等的位置的位移等于 (A)4A ± (B) 2A ± (C) 2 3A ± (D) 2 2A ± [答案:D] 5.2 填空题 (1)一质点在X 轴上作简谐振动,振幅A =4cm ,周期T =2s ,其平衡位置取作坐标原点。若t =0时质点第一次通过x =-2cm 处且向X 轴负方向运动,则质点第二次通过x =-2cm 处的时刻为____s 。 [答案: 23 s ] (2)一水平弹簧简谐振子的振动曲线如题5.2(2)图所示。振子在位移为零,速度为-ωA 、加速度为零和弹性力为零的状态,对应于曲线上的____________点。振子处在位移的绝对值为A 、速度为零、加速度为-ω2A 和弹性力为-KA 的状态,则对应曲线上的____________点。 题5.2(2) 图 [答案:b 、f ; a 、e] (3)一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点,已知周期为T ,振幅为A 。

(a)若t=0时质点过x=0处且朝x 轴正方向运动,则振动方程为x=___________________。 (b) 若t=0时质点过x=A/2处且朝x 轴负方向运动,则振动方程为x=_________________。 [答案:cos(2//2)x A t T ππ=-; cos(2//3)x A t T ππ=+] 5.3 符合什么规律的运动才是谐振动?分别分析下列运动是不是谐振动: (1)拍皮球时球的运动; (2)如题5.3图所示,一小球在一个半径很大的光滑凹球面内滚动(设小球所经过的弧线很 短). 题5.3图 题5.3图(b) 解:要使一个系统作谐振动,必须同时满足以下三个条件:一 ,描述系统的各种参量,如质量、转动惯量、摆长……等等在运动中保持为常量;二,系统是在自己的稳定平衡位置附近作往复运动;三,在运动中系统只受到内部的线性回复力的作用. 或者说,若一个系统的运动微分方程能用 0d d 2 22=+ξωξt 描述时,其所作的运动就是谐振动. (1)拍皮球时球的运动不是谐振动.第一,球的运动轨道中并不存在一个稳定的平衡位置; 第二,球在运动中所受的三个力:重力,地面给予的弹力,击球者给予的拍击力,都不是线性回复力. (2)小球在题5.3图所示的情况中所作的小弧度的运动,是谐振动.显然,小球在运动过程中,各种参量均为常量;该系统(指小球凹槽、地球系统)的稳定平衡位置即凹槽最低点,即系统势能最小值位置点O ;而小球在运动中的回复力为θsin mg -,如题5.3图(b)中所示, 因S ?<<R ,故R S ?=θ→0,所以回复力为θmg -.式中负号,表示回复力的方向始终与角位移的方向相反.即小球在O 点附近的往复运动中所受回复力为线性的.若以小球为对象,则小球在以O '为圆心的竖直平面内作圆周运动,由牛顿第二定律,在凹槽切线方向上 有 θθ mg t mR -=22d d

大学物理第11章习题答案(供参考)

第11章 电磁感应 11.1 基本要求 1理解电动势的概念。 2掌握法拉第电磁感应定律和楞次定律,能熟练地应用它们来计算感应电动势的大小,判别感应电动势的方向。 3理解动生电动势的概念及规律,会计算一些简单问题中的动生电动势。 4理解感生电场、感生电动势的概念及规律,会计算一些简单问题中的感生电动势。 5理解自感现象和自感系数的定义及物理意义,会计算简单回路中的自感系数。 6理解互感现象和互感系数的定义及物理意义,能计算简单导体回路间的互感系数。 7理解磁能(磁场能量)和磁能密度的概念,能计算一些简单情况下的磁场能量。 8了解位移电流的概念以及麦克斯韦方程组(积分形式)的物理意义。 11.2 基本概念 1电动势ε:把单位正电荷从负极通过电源内部移到正极时,非静电力所作的功,即 W q ε= 2动生电动势:仅由导体或导体回路在磁场中的运动而产生的感应电动势。 3感生电场k E :变化的磁场在其周围所激发的电场。与静电场不同,感生电场的电 场线是闭合的,所以感生电场也称有旋电场。 4感生电动势:仅由磁场变化而产生的感应电动势。 5自感:有使回路保持原有电流不变的性质,是回路本身的“电磁惯性”的量度。 自感系数L ://m L I N I =ψ=Φ 6自感电动势L ε:当通过回路的电流发生变化时,在自身回路中所产生的感应电动势。

7互感系数M :2112 12 M I I ψψ= = 8互感电动势12ε:当线圈2的电流2I 发生变化时,在线圈1中所产生的感应电动势。 9磁场能量m W :贮存在磁场中的能量。 自感贮存磁能:212 m W LI = 磁能密度m w :单位体积中贮存的磁场能量22111 222 m B w μH HB μ=== 10位移电流:D d d I dt Φ= s d t ?=??D S ,位移电流并不表示有真实的电荷在空 间移动。但是,位移电流的量纲和在激发磁场方面的作用与传导电流是一致的。 11位移电流密度:d t ?=?D j 11.3 基本规律 1电磁感应的基本定律:描述电磁感应现象的基本规律有两条。 (1)楞次定律:感生电流的磁场所产生的磁通量总是反抗回路中原磁通量的改变。楞 次定律是判断感应电流方向的普适定则。 (2)法拉第电磁感应定律:不论什么原因使通过回路的磁通量(或磁链)发生变化,回路 中均有感应电动势产生,其大小与通过该回路的磁通量(或磁链)随时间的变化成正比,即 m i d dt εΦ=- 2动生电动势:()B B K A A i εd d ==???E l v B l ,若0i ε>,则表示电动势方向由A B →;若 0i ε<,则表示电动势方向B A → 3感生电动势:m K l s i d Φd εd d dt dt = ?=- =-? ?B E l S (对于导体回路) B K A i εd =?E l (对于一段导体) 4自感电动势:L dI εL dt =- 5互感电动势:12212d ΨdI εM dt dt =-=- 6麦克斯韦方程组

相关文档
相关文档 最新文档