文档库 最新最全的文档下载
当前位置:文档库 › 一种高间隙奥氏体CrMn钢的热强度和蠕变抗力

一种高间隙奥氏体CrMn钢的热强度和蠕变抗力

一种高间隙奥氏体CrMn钢的热强度和蠕变抗力

一种高间隙奥氏体CrMn钢的热强度和蠕变抗力

研究了奥氏体钢CN0.85在高温下直至700℃的热强度和短时蠕变抗力,其化学成分为(质量百分比)18Cr、18Mn、0.6N、0.25C,同时观察了其固溶退火状态或冷作初始状态的相应组织改变。在初蠕变区域蠕变速率迅速降低到最小蠕变速率,在初始冷加工后更是如此。这也降低了蠕变速率,发生断裂的可能性很小。碳化物和氮化物在晶内和晶界的析出增加了蠕变裂纹。晶粒内的析出物,仅在过时效状态下可见,被认为提高了蠕变抗力。把CN0.85的蠕变强度与标准的热作工具钢H11的蠕变强度相比,在>550℃的工作环境下,前者有优越性。然而,需要有更多在实践试验来支持本试验性研究的有利结果。

A1016铁素体合金钢,奥氏体合金钢和不锈钢钢管的通用要求规范

A1016/A1016M-02a 铁素体合金钢,奥氏体合金钢和不锈钢钢管的 通用要求规范 A1016/A1016M-02a Standard Specification for General Requirements for Ferritic Alloy Steel,Austenitic Alloy Steel,and Stainless Steel Tubes 8.每单位长度的质量标准 8.1根据最小公称壁厚,计算每英尺的质量,应取决于以下公式(见注1): W=C(D-t)t (1) 在这里: C=10.69[0.0246615] W=每单位长度的质量,单位为kg/m D=钢管的外径,单位为mm t=钢管的最小壁厚,单位为mm 注1- 式1计算的质量是碳钢钢管的质量。铁素体不锈钢管的质量约可达到上式数值5%以下,奥式体不锈钢则约为2%。铁素体/奥式体(双 相体)不锈钢管的质量是完全铁素体不锈钢管和完全奥式体不锈钢 管重量的中间值。 8.2每英尺的质量(kg/m)的允许偏差应符合表1规定。 9.壁厚的允许偏差 9.1规定的最小壁厚的偏差不得超过表2中规定的数值。 9.2对于外径大于等于2英寸(50mm),壁厚大于等于0.220英寸(5.6mm)的管子,任何管子的任一截面的壁厚偏差不得超过该截面实际平均壁厚的所规定 的百分比,其规定数值如下所示。平均壁厚是指一个截面上的最大和最小壁厚的 平均值。 无缝钢管为±10% 焊管为±5% 9.3 当冷轧钢管的壁厚大于等于3/4英寸(19.1mm),或者钢管的内径小于等于外径的60%时,壁厚的允许偏差应为热轧钢管所适用。 10.外径的允许偏差 10.1 除10.2.1,10.3,和25.10.4的规定外,外径的允许偏差不得超过表3

低合金高强度结构钢GBT

低合金高强度结构钢GB/T 1591-2008 一,范围 本标准规定了低合金高强度结构钢的牌号、尺寸、外形、重量及允许偏差、技术要求、试验方法、检验规则、包装、标志和质量证明书。 二,规范引用文件 GB/T 222 钢的成品化学成分允许偏差 GB/T 223.5 钢铁酸溶硅和全硅含量的测定还原性硅酸盐分 分光光度法 GB/T 223.9 钢铁及合金铝含量的测定铬天青S分光光度法 GB/T 223.12钢铁及合金化学分析方法碳酸钠分离-二笨碳酰 二肼光度法测铬含量 GB/T 223.14钢铁及合金化学分析方法钽试剂萃取光度法测定钒含量 GB/T 223.16钢铁及合金化学分析方法变色酸光度法测钛含量GB/T 223.19钢铁及合金化学分析方法新亚铜灵三氯甲烷萃取光度法测定铜含量 GB/T 223.23钢铁及合金镍含量的测定丁二酮肟分光光度法 GB/T 223.26 钢铁及合金钼含量的测定硫氰酸盐分光光度法GB/T 223.37钢铁及合金化学分析方法蒸馏分离腚酚蓝光度法测定氮含量 GB/T 223.40 钢铁及合金铌含量的测定氯磺酚S分光光度法

GB/T 223.62钢铁及合金化学分析方法乙酸丁酯萃取光度法测定磷含量 GB/T 223.63钢铁及合金化学分析方法高锰酸钾光度法测锰量GB/T 223.67 钢铁及合金硫含量的测定次甲基蓝分光光度法GB/T 223.69 钢铁及合金碳含量的测定管式炉燃烧气体容量法GB/T 223.78钢铁及合金化学分析方法姜黄素直接光度法测定硼含量 GB/T 228 金属材料室温拉伸试验方法(ISO 6892) GB/T 229 金属材料夏比摆锤冲击试验方法验方法(ISO 148) GB/T 232 金属材料弯曲试验方法(ISO 7438) GB/T 247 钢板和钢带包装、标志、质量证明书的一般规定GB/T 2101 型钢验收包装、标志、质量证明书的一般规定GB/T 2975 钢及钢产品力学性能试验取样位置及试样的制备(ISO 377) GB/T 4336 碳素钢和中低合金钢火花源原子发射光谱分析法GB/T 5313 厚度方向性能钢板(ISO 7778) GB/T 17505 钢及钢产品交货一般技术要求(ISO 404) GB/T 20066 钢和铁化学成分测定用试样的取样和制样方法(ISO 14284) GB/T 20125低合金钢多元素的测定(ISO 7778)电感耦合等离子体原子发射光谱法 YB/T 冶金技术标准的数值修约与检测数据的判定原则

材料的高温蠕变

材料的高温蠕变相关的理论解释和材料蠕变的因摘要:从蠕变的定义,金属材料在高温下蠕变的形成机理,陶瓷以及镁质耐火材料提高A1素等几个方面阐述了材料的 高温蠕变现象。其中也对多晶O3 2 抗蠕变性能给予介绍,解释。陶瓷;抗蠕变性能A1O关键词:高温蠕变;蠕变机理;多晶 32 1引言 材料具有许多的性能,有的性能在材料的使用时是有利的,但有的性能在材料的使用时是不利的。由于蠕变的产生我们就不能笼统的说材料在高温下的性质是如何的,材料在高温条件下的性能与在常温下的性能不同,在高温下材料发生蠕变,因此,材料的高温蠕变使得材料在高温条件下使用时性能变差,影响了材料在高温条件下的使用。如果能提高材料在高温条件下的抗蠕变性能,能够改善材料在高温条件下使用的品质,使得材料的使用寿命延长,可以节省材料,避免浪费。高温蠕变理论是在对多种金属所做的完整的蠕变实验的基础上建立起来的,因此介绍材料的蠕变机理也是根据金属的蠕变机理来进行解释的。 我们是这样定义材料蠕变这个现象的,材料在高温下长时间承受恒温、恒载荷作用,缓慢产生塑性变形的现象。所以,蠕变是在恒定压力作用下,随着时间的延长而材料持续形变的过程。在高温条件下,材料都有着与常温下不同的蠕变行为。借助于高温作用和外力作用,材料的形变障碍得到克服,内部质点发生迁移,晶界相对移动,于是蠕变现象产生了。 2.1 蠕变阶段 材料的高温蠕变分为几个阶段,几个区域有着不同的变化。 图1 图1表示在三个不同的恒定应力作用下,材料的应变ε随时间t变化的典型蠕变曲线。曲线的终端表示材料发生断裂。t=0时的应变表示加载结束时的即时应变,它包括弹性应变和塑性应变。蠕变曲线可分为三个阶段, 为定常蠕变所示:III为非定常蠕变阶段,应变率随时间的增加而减小;如图2t 阶段,应变率保持常值;在最末阶段Ⅲ,应变率随时间而增大,最后材料在r升高温度或增加应力会使蠕变加快并缩短达到断裂的时间。通常,时刻发生断裂。甚至不出现第三阶段则蠕变的第二阶段(Ⅱ)持续较久,若应力较小或温度较低,对应的蠕变曲线;相反,若应力较大或温度较高,则中1 (Ⅲ),如图 中对应的蠕变曲线。蠕变的第二阶段(Ⅱ)较短,甚至不出现,如图1

强度定义

强度定义 1、材料、机械零件和构件抵抗外力而不失效的能力。强度包括材料强度和结构强度两方面。强度问题有狭义和广义两种涵义。狭义的强度问题指各种断裂和塑性变形过大的问题。广义的强度问题包括强度、刚度和稳定性问题,有时还包括机械振动问题。强度要求是机械设计的一个基本要求。 材料强度指材料在不同影响因素下的各种力学性能指标。影响因素包括材料的化学成分、加工工艺、热处理制度、应力状态,载荷性质、加载速率、温度和介质等。 按照材料的性质,材料强度分为脆性材料强度、塑性材料强度和带裂纹材料的强度。①脆性材料强度:铸铁等脆性材料受载后断裂比较突然,几乎没有塑性变形。脆性材料以其强度极限为计算强度的标准。强度极限有两种:拉伸试件断裂前承受过的最大名义应力称为材料的抗拉强度极限,压缩试件的最大名义应力称为抗压强度极限。②塑性材料强度:钦钢等塑性材料断裂前有较大的塑性变形,它在卸载后不能消失,也称残余变形。塑性材料以其屈服极限为计算强度的标准。材料的屈服极限是拉伸试件发生屈服现象(应力不变的情况下应变不断增大的现象)时的应力。对于没有屈服现象的塑性材料,取与0.2%的塑性变形相对应的应力为名义屈服极限,用σ0.2表示。③带裂纹材料的强度:常低于材料的强度极限,计算强度时要考虑材料的断裂韧性(见断裂力学分析)。对于同一种材料,采用不同的热处理制度,则强度越高的断裂韧性越低。 按照载荷的性质,材料强度有静强度、冲击强度和疲劳强度。材料在静载荷下的强度,根据材料的性质,分别用屈服极限或强度极限作为计算强度的标准。材料受冲击载荷时,屈服极限和强度极限都有所提高(见冲击强度)。材料受循环应力作用时的强度,通常以材料的疲劳极限为计算强度的标准(见疲劳强度设计)。此外还有接触强度(见接触应力)。

特殊性能低合金高强度钢

特殊性能低合金高强度钢

特殊性能低合金高强度钢 摘要:特殊钢属于工程构件用钢,它是具有特殊的化学成分、采用特殊工艺生产、具备特殊的组织和性能、能够满足特殊需要的钢类。是国民经济各部门不可缺少的重要基础材料。 特殊钢的产量、质量和品种反映出一个国家工业化和科学技术发展的水平,是一个国家工业化水平的重要标志之一。随着知识经济和高技术产业的迅猛发展,对特殊钢提出高性能、多样化、低成本、节约能源,并符合环保和可持续发展的要求。本文主要介绍工程结构用特殊钢。 分类 一、耐候钢 定义: 以保证力学性能为主适当提高耐大气腐蚀性能以延长钢结构件使用寿命的一类刚。分为焊接结构用耐候钢和高耐候钢两类。 耐候钢是在钢中加入少量的合金元素,如Cu、Cr、P、Ni等,使其在金属基体表面上形成保护层,以提高钢材的耐候性能。为了改善钢的性能,可以加入一种或多种微量合金元素,但添加量应当要符合国际标准。 应用: 目前对焊接性要求不高的轻型结构件多采用较便宜的P-Cu系耐候钢。对于韧性和焊接性要求较高额结构件则采用Cr-Cu系耐候钢。 高强度钢主要用在车辆、桥梁、房屋、集装箱等结构的制造中,既满足了高腐蚀性又满足了好的成型性能和焊接性能。例如:我国开发研制的08CuPVRE 耐候钢已经批量用于铁路车辆制造和一些近海设施。 工艺要求 从消除夹杂物的有害影响和改善腐蚀性能两个角度入手,确定加入合金元素的量。 过高的稀土量没有什么意义,要选择合适的稀土含量。 双相区淬火可以得到较高的强韧性配合以及良好的成形性和焊接性。 加工变形可以影响耐候钢热处理时的组织变化。 二、表面处理钢材 定义: 钢材表面镀涂耐蚀合金或有机材料,既经济又显著提高其耐蚀能力。 因为刚的腐蚀都是从表面开始,整体合金化加入的合金元素,90%没有发挥作用,反而增加了成本,有时候还降低了性能,所以采用表面处理钢材。 分类 镀锌板 热镀锌板的平均耐蚀寿命为5~10年。 家电行业镀锌板镀层厚、耐蚀性能好、冲压性能高、生产成本低;采用了深冲电镀锌钢板或进口的深冲小锌花热镀锌板和合金化热镀锌板制作。 汽车用镀层板

金属材料蠕变

金属材料蠕变 早期,人们对金属材料强度的认识不足,设计金属构件时仅以短时强度作为设计依据。不少构件,即使使用应力低于弹性极限,使用一段时间后仍然会发生因塑性受形而失效或因破断而失效的现象。随着科学技术的发展,金属材料的使用温度逐步提高,这种矛盾越来越突出。这就使人们进一步认识到材料强度与使用期限之问尚有密切的联系,从而相继开拓了蠕变、蠕变断裂、松弛、疲劳、断裂力学等长时强度研究领域。蠕变则是其中研究最早、内容较丰富而成果较显着的一个领域,成为其他几个研究领域的基础。 金属在持续应力作用下(即使在远低于弹性极限的情况下)会发生缓慢的塑性变形。熔点较低的金属容易产生这种现象;金属所处的温度越高,这种现象越明显。在一定温度下,金属受持续应力的作用而产生缓慢的塑性变形的现象称为金属的蠕变。引起蠕变的这一应力称蠕变应力。在这种持续应力作用下,蠕变变形逐渐增加,最终可以导致断裂,这种断裂称蠕变断裂。导致断裂的这一初始应力称蜕变断裂应力。在有些情况下(特别是在工程上),把蠕变应力及蠕变断裂应力作为材料在特定条件下的一种强度指标来讨论时,往往又把它们称为蠕变强度及蠕变断裂强度,后者又称为持久强度。蠕变现象的发生是温度和应力共同作用的结果。温度和应力的作用方式可以是恒定的,也可以是变动的。常规的蠕变试验则是专门研究在恒定载荷及恒定温度下的蠕变规律。为了与变动情况相区别,把这种试验称为静态蠕变试验。 蠕变现象很早就被人们发现,远在1905年F. Philips等就开始进行专门研究。最初研究的是铅、锌等低熔点纯金属,因为这些金属在室温下就已表现出明显的蠕变现象。以后逐步研究了较高熔点的铝、镁等纯金属的蠕变现象,进而又研究了铁、镍以至难熔金属钨、铂等的蠕变规律。对纯金属的研究后来又发展到对铁、钴、镍基合金及其他各种高温合金的研究。对这些合金,要求它们在几百度的高温下才能表现出明显的蠕变现象(例如碳钢>0.35Tm,不锈钢>0.4Tm)。 蠕变现象的研究是与工业技术的发展密切相关的。随着工作温度的提高,材料蠕变现象越来越明显,对材料蠕变强度的要求越来越高。不同的工作温度需选用具有不同蠕变性能的材料,因此蠕变强度就成为决定高温金属材料使用价值的重要因素。 蠕变曲线 在恒定温度下,一个受单向恒定载荷(拉或压)作用的试样,其变形e与时间t的关系可用如图9.76所示的典型的蠕变曲线表示。曲线可分下列几个阶段: 图9.76 典型的蠕变曲线 第I阶段:减速蠕变阶段(图中AB段),在加载的瞬间产生了的弹性变形e0,以后随加载时间的延续变形连续进行,但变形速率不断降低; 第II阶段:恒定蠕变阶段,如图中曲线BC段,此阶段蠕变变形速率随加载时间的延续而保持恒定,且为最小蠕变速率; 第III阶段:曲线上从C点到D点断裂为止,也称加速蠕变阶段,随蠕变过程的进行,蠕变速率显着增加,直至最终产生蠕变断裂。D点对应的tr就是蠕变断裂时间,er是总的蠕变应变量。 温度和应力也影响蠕变曲线的形状。在低温(<0.3Tm)、低应力下(曲线1)实际上不存在蠕变第III阶段,而且第II阶段的蠕变速率接近于零;在高温(>0.8Tm)、高应力下(曲线3)主要是蠕变第III阶段,而第II阶段几乎不存在。

对蠕变的初步认识

对蠕变的初步认识 温度对金属材料力学性能的影响很大,随着温度升高,材料的强度降低而塑性增加;而材料在高温下,载荷持续时间对力学性能也会产生影响。因此,在高温下工作的材料,其力学性能与温度和时间两个因素有关。所谓高温,是指金属 的服役温度超过了它的再结晶温度约0.4~0.5T m ,T m 是金属的熔点。在这样的高温 下长时服役的金属,其微观结构、形变和断裂机制都会发生变化,在宏观上则会出现高温蠕变、持久断裂、应力松弛、高温腐蚀等现象。 材料在恒定应力作用下,其应变随时间的延长而逐渐增加的现象称为蠕变。由于蠕变而导致的断裂称为蠕变断裂。金属在低温下也会产生蠕变,但通常只有当温度升高到0.3T m 以上时,蠕变现象才会比较显著。金属在高温下还会发生应力松弛现象,即在保持应变恒定的情况下,应力随着时间延长而减小的现象。由于蠕变和应力松弛的发生,应力和应变之间已不是单值的对应关系,而必须考虑温度和时间的影响。 温度对金属材料力学性能的影响很大,随着温度升高,材料的强度降低而塑性增加;而材料在高温下,载荷持续时间对力学性能也会产生影响。因此,在高温下工作的材料,其力学性能与温度和时间两个因素有关。所谓高温,是指金属 的服役温度超过了它的再结晶温度约0.4~0.5T m ,T m 是金属的熔点。在这样的高温 下长时服役的金属,其微观结构、形变和断裂机制都会发生变化,在宏观上则会出现高温蠕变、持久断裂、应力松弛、高温腐蚀等现象。 1. 蠕变曲线 蠕变:材料在恒定应力作用下,其应变随时间的延长而逐渐增加的现象称为蠕变。由于蠕变而导致的断裂称为蠕变断裂。金属在低温下也会产生蠕变,但通常只有当温度升高到0.3T m 以上时,蠕变现象才会比较显著。金属在高温下还会发生应力松弛现象,即在保持应变恒定的情况下,应力随着时间延长而减小的现象。由于蠕变和应力松弛的发生,应力和应变之间已不是单值的对应关系,而必须考虑温度和时间的影响。 蠕变曲线:常载荷条件下的典型单轴蠕变曲线见图1 , 从图中可以看出蠕变的3 个典型阶段: 第一蠕变阶段AB (减速蠕变阶段),第二蠕变阶段BC (稳定蠕变阶段),第三阶段蠕变CD(加速蠕变阶段) 。在第二蠕变阶段(稳定蠕变阶段) , 蠕变速率近似为常数; 而在第三蠕变阶段, 蠕变速率逐渐增加,直至试件完全破坏。图1 中εe 代表瞬时弹性(或弹塑性) 应变,εp表示塑性应变,εc代表蠕变应变。

GBt1591-94低合金高强度钢

返回 中华人民共和国国家标 准 低合金高强度结构钢GB/T1591-94 High strength low alloy 代替GB1591-88 structural steels 本标准参照采用IS04950:1981《高屈服强度扁平钢材》和IS04951:1979《高屈服强度钢棒材和型材》。 1 主题内容与适用范围 本标准规定了低合金高强度结构钢的牌号和技术要求、试验方法、检验规则、包装、标志及质量证明书等。 本标准适用于热轧、控轧、正火、正火加回火及淬火加回火状态供应的工程用钢和一般结构用厚度不小于3mm的钢板、钢带及型钢、钢棒,一般在供应状态下使用。 本标准规定低合金高强度结构钢的化学成分也适用于钢锭、连铸坯、钢坯及其制品。 2 引用标准

3 牌号表示方法 钢的牌号由代表屈服点的汉语拼音字母(Q)、屈服点数值、质量等级符号(A、B、C、D、E)三个部分按顺序排列。 例如:Q390A 其中: Q--钢材屈服点的"屈"字汉语拼音的首位字母; 390--屈服点数值,单位MPa ;

A、B、C、D、E一一分别为质量等级符号。 4 尺寸、外形、重量等要求 尺寸、外形、重量及允许偏差应符合相应标准的规定 5 技术要求 5.1 牌号和化学成分 5.1.1 钢的牌号和化学成分(熔炼分析)应符合表1规定。合金元素含量应符合GB/T13304对低合金钢的规定。 注:表中的AI为全铝含量。如化验酸溶铝时,其含量应不小于0.010%。 5.1.1.1 Q295的碳含量39j0.18%也可交货。 5.1.1.2 不加V、Nb、Ti的Q295级钢,当C≤0.12%时,Mn含量上限可提高到1.80%。 5.1.1.3 Q345级钢的Mn含量上限可提高到1.70%。

蠕变应力松弛

蠕变 定义:蠕变是在应力影响下,固体材料缓慢永久性的移动或者变形的趋势。它的发生是低于材料屈服强度的应力长时间作用的结果。这种变形的速率与材料性质、加载时间、加载温度和加载结构应力有关。取决于加载应力和它的持续时间和环境温度,这种变形可能变得很大,以至于一些部件可能不再发挥它的作用。 阶段过程:1初步蠕变,形变率相对较大,但是随着应变的增加减慢。 2稳态蠕变,形变率达到一个最小值并接近常数,“蠕变应变率”就是指这一阶 段的应变率。 3颈缩现象,应变率随着应变增大指数性的增长。 晶体蠕变(考虑金属) 公式:Q m kT b d C e dt d εσ-= 其中:ε是蠕变应变,C 是一个依赖于材料和特别蠕变机制的常数,m 和b 是依赖于蠕变机制的指数,Q 是蠕变机制的激活能,σ是加载应力,d 是材料的晶粒尺寸,k 是波尔兹曼常数,T 是绝对温度。 位错蠕变 在相对于剪切模量的高应力条件下,蠕变是一个受位错控制的运动。当应力加载在材料上时,由于滑移面中的位错移动而塑性变形发生。 位错蠕变中,self diffusion Q Q -=,46m = ,0b =。因此位错蠕变强烈依赖于加载应力而不依赖于晶粒尺寸。引入初始应力0σ,低于初始应力时无法测量。这样,方程就写成 0()Q m kT d C e dt εσσ-=-。 Nabarro-Herring 蠕变 在N-H 蠕变中,原子通过晶格扩散,造成晶粒沿着应力轴伸长。k 和原子通过晶格的扩散系数有关,self diffusion Q Q -=,1m =,2b =。因此N-H 蠕变是一种弱应力依赖、中等晶

粒尺寸依赖的蠕变,它的蠕变形变率随着晶粒尺寸增长而降低。故公式变化成: 2Q kT d C e dt d εσ- = 上图是相关文献中的表格,按蠕变机理不一样确定指数m (在表中是n ),以及常见金属对应的激活能。 注意:金属蠕变在受力元件温度超过0.3T α(T α是熔点温度)时才开始显现出来,把常见金属熔点温度列出来。 虑蠕变,而铝、锡等金属常常会受到蠕变的影响。所以我们要格外留意长期承受压力的铝合

第23例 材料蠕变分析实例

第23例材料蠕变分析实例—受拉平板本例简单地介绍了蠕变的概念及蠕变材料模型的创建方法,简单地介绍了结构蠕变分析的方法、步骤及要点。 23.1蠕变简介 蠕变是指金属材料在长时间的恒温、恒载作用下,持续发生缓慢塑性变形的行为,大多数金属材料在高温下都会表现出蠕变行为。 如果材料发生了蠕变,在恒载作用下结构会发生持续变形;如果结构承受恒位移,则应力会随时间而减小,即产生应力松弛。 图23-1 蠕变曲线 蠕变一般分为蠕变初始阶段(Primary)、蠕变稳定阶段(Secondary)和蠕变加速阶段(Tertiary)三个阶段,如图23-1所示。蠕变初始阶段时间很短,应变率随时间而减小;在蠕变稳定阶段,应变以常速率发展;在蠕变加速阶段,应变率急剧增大直至材料失效。研究蠕变行为,主要针对蠕变初始阶段和蠕变稳定阶段。 研究问题时一般以蠕变方程(又称本构关系)来表征蠕变行为,蠕变方程以蠕应变率的,形式表示dεcr/dt =AσBεC t P式中,εcr为蠕应变。A、B、C、D是由实验得到的材料特性参数。当D<0时,蠕应变率随时间减小,材料处于蠕变初始阶段;当D=0时,蠕应变率不随时间变化,材料处于蠕变稳定阶段。

在ANSYS中,有一个蠕应变率库供选择。 23.2问题描述 一矩形平板,左端固定,右端作用有恒定压力p=100MPa,矩形平板尺寸如图23-2所示,材料的弹性模量为2xl05MPa,泊松比为0.3,蠕变稳定阶段蠕变方程dεcr/dt =C1σC2。C2,式中,C1=3.125 x10-14,C2=5。试分析平板右端的位移随时间的变化情况。 提示:为避免出现较小值,力单位用N,长度单位用mm,时间单位为h。 图23-2受拉矩形平板 23.3分析步骤 23.3.1改变任务名 拾取菜单Utility Menu→File→Change Jobname,弹出如图23-3所示的对话框,在“[/FJLNAM]”文本框中输入EXAMPLE23,单击“OK”按钮。 图23-3改变任务名对话框 23.3.2选择单元类型 拾取菜单Main Menu→Preprocessor→Element Type→Add/Edit/Delete,弹出如图23-4所示的对话框,单击“Add…”按钮,弹出如图23-5所示的对话框,

奥氏体晶界的硼偏聚对合金钢淬透性的影响

收稿日期:2001Ο06Ο11 作者简介:廖家欣(1966Ο ),男,湖南慈利县人,长沙电力学院物理与信息工程学工程师,学士,主要从事物理实验的研究.第17卷第1期 2002年2月 长沙电力学院学报(自然科学版)JOURNA L OF CH ANG SH A UNI VERSITY OF E LECTRIC POWER (NAT URA L SCIE NCE ) V ol.17N o.1 Feb.2002 奥氏体晶界的硼偏聚对合金钢淬透性的影响 廖家欣,李西南,刘小兵 (长沙电力学院物理与信息工程系,湖南长沙 410077) 摘 要:讨论了加硼合金钢在奥氏体化过程中,硼向奥氏体晶扩散而造成的晶硼偏聚,它阻止了新相形核,该理论 能很好地解释微量硼提高合金钢淬透性的机理. 关 键 词:淬透性;偏聚;奥氏体晶界 中图分类号:TG 111 文献标识码:A 文章编号:1006Ο 7140(2002)01Ο0071Ο03I nfluence of Boron Segeregated in Austenite G rain Boundarys on H ardenability of Alloy Steel LI AO Jia 2xin ,LI X i 2nan ,LI U X iao 2bing (Dept.of Phys.&In formation Eng.,Changsha Univ.of E lectr.P ower ,Changsha 410077,China ) Abstract :This paper discusses that the boron of diffusing in austenite grain boundarys causes boronic segrega 2tions at the boundarys.Therefore they prevent new phase nucleations from forming in austenitizing process of boride alloy steel.This theory can properly explain the mechanism that micro 2boron increases hardenability of alloy steel. K ey w ords :hardenability ;segregation ;austenite grain boundarys 在合金钢中加入极微量的硼(wt -%:B ≤0. 003)就能显著地提高钢的淬性,以往的研究已取得了很好的结果,理论模型能被大多数的实验结果所证实.贺信莱教授等在这一方面做了出色的研究工作[1~7].关于硼提高钢淬透性的作用机理,较为普遍的为同行所接受的观点是:偏聚于奥氏体晶界的硼的作用与体材料的成分和杂质(如氧、氮)含量密切相关;在给定成分的钢中,淬火温度对淬透性有显著的影响;其次,材料在淬火前的热处理史对淬透性也 有明显的影响. 关于硼提高钢淬透性的机理,人们作了如下的解释:奥氏体化过程中通过扩散偏聚在晶界上的硼阻止了新相的形核,晶界硼分布状态与尺寸不同;其影响程度也不同,奥氏体晶上比较明显的网状硼相和碳硼相对淬透性是不利的.已有的结果表明,为了防止硼化物沿奥氏体晶界析出而形成断续的网,钢

(推荐)GBT1591-2018低合金高强度结构钢

目次 前言 (1) 1范围 (1) 2规范性引用文件 (1) 3术语和定义 (2) 4牌号表示方法 (3) 5订货内容 (3) 6尺寸、外形.重量 (3) 7技术要求 (4) 8实验方法 (16) 9检验规则 (16) 10包装、标识和质量证明书 (17) 附录A (资料性附录)国内外标准牌号对照表 (18)

前言 本标准按照GB/T 1.1- 2009 给出的规则起草。 本标准代替GB/T 1591- -2008( 低合金高强度结构钢》。与GB/T 1591- -2008相比除编辑性修改外主要技术变化如下: ——明确了本标准的化学成分也适用于钢坯(见第1章,2008版第1章); ——修改了“热机械轧制”及“正火轧制”术语的定义,增加了“热轧”、“正火”术语与定义(见第3章,2008版第3章); ——修改了牌号表示方法(见第4 章,2008版第4章); ——增加了订货内容(见第5章); ——明确了尺寸外形、重量及允许偏差要求(见第6章,2008版第5章); ——以Q355钢级替代Q345钢级及相关要求(见第7章.9.2,2008版第6章.8.2); ——按不同交货状态规定各牌号的化学成分,并修改了细化晶粒元素的含量(见7.1 ,2008版6.1) ——按不同交货状态规定各牌号的力学性能,并将下屈服强度修改为上屈服强度,其指标相应提高了10 MPa~15 MPa(见7.4.1.7.4.2,2008版6.4.1.6.4.2); —一细化了钢材表面质量要求(见7.5,2008版6.5); ——修改了试验方法和检验规则,明确了冲击试验的取样部位(见第8章、第9章,2008版第7章、第8章); ——增加了本标准牌号与国外标准牌号对照表(见附录A)。本标准由中国钢铁工业协会提出。 本标准H全国钢标准化技术委员会归口(SAC/TC 183)。 本标准起草单位:鞍钢股份有限公司、冶金工业信息标准研究院、首钢总公司河钢股份有限公司唐山分公司、西王特钢有限公司、山东钢铁股份有限公司莱芜分公司、营口中车型钢新材料有限公司、中信金属有限公司。 本标准主要起草人:刘徐源、朴志民、栾燕、载强、师莉、沈钦义、邓翠青、张灵通、赵新华、李文武、王厚昕张成连、高燕。 本标准所代替标准的历次版本发布情况为: 一GB 1591- 1979、GB 1591- 1988、GB/T 1591- 1994 GB/T 1591- -2008。

强度-刚度--弹性模量区别

强度-刚度--弹性模量区别强度定义: 1、材料、机械零件和构件抵抗外力而不失效的能力。强度包括材料强度和结构强度两方面。强度问题有狭义和广义两种涵义。狭义的强度问题指各种断裂和塑性变形过大的问题。广义的强度问题包括强度、刚度和稳定性问题,有时还包括机械振动问题。强度要求是机械设计的一个基本要求。 材料强度指材料在不同影响因素下的各种力学性能指标。影响因素包括材料的化学成分、加工工艺、热处理制度、应力状态,载荷性质、加载速率、温度和介质等。 按照材料的性质,材料强度分为脆性材料强度、塑性材料强度和带裂纹材料的强度。①脆性材料强度:铸铁等脆性材料受载后断裂比较突然,几乎没有塑性变形。脆性材料以其强度极限为计算强度的标准。强度极限有两种:拉伸试件断裂前承受过的最大名义应力称为材料的抗拉强度极限,压缩试件的最大名义应力称为抗压强度极限。②塑性材料强度:钦钢等塑性材料断裂前有较大的塑性变形,它在卸载后不能消失,也称残余变形。塑性材料以其屈服极限为计算强度的标准。材料的屈服极限是拉伸试件发生屈服现象(应力不变的情况下应变不断增大的现象)时的应力。对于没有屈服现象的塑性材料,取与0。2%的塑性变形相对应的应力为名义屈服极限,用σ0。2表示。③带裂纹材料的强度:常低于材料的强度极限,计算强度时要考虑材料的断裂韧性(见断裂力学分析)。对于同一种材料,采用不同的热处理制度,则强度越高的断裂韧性越低。 按照载荷的性质,材料强度有静强度、冲击强度和疲劳强度。材料在静载荷下的强度,根据材料的性质,分别用屈服极限或强度极限作为计算强度的标准。材料受冲击载荷时,屈服极限和强度极限都有所提高(见冲击强度)。材料受循环应力作用时的强度,通常以材料的疲劳极限为计算强度的标准(见疲劳强度设计)。此外还有接触强度(见接触应力)。 按照环境条件,材料强度有高温强度和腐蚀强度等。高温强度包括蠕变强度和持久强度。当金属承受外载荷时的温度高于再结晶温度(已滑移晶体能够回复到未变形晶体所需要的最低温度)时,塑性变形后的应变硬化由于高温退火而迅速消除,因此在载荷不变的情况下,变形不断增长,称为蠕变现象,以材料的蠕变极限为其计算强度的标准。高温持续载荷下的断裂强度可能低于同一温度下的材料拉伸强度,以材料的持久极限为其计算强度的标准(见持久强度)。此外,还有受环境介质影响的应力腐蚀断裂和腐蚀疲劳等材料强度问题。 结构强度指机械零件和构件的强度。它涉及力学模型简化、应力分析方法、材料强度、强度准则和安全系数。 按照结构的形状,机械零件和构件的强度问题可简化为杆、杆系、板、壳、块和无限大体等力学模型来研究。不同力学模型的强度问题有不同的力学计算方法。材料力学一般研究杆的强度计算。结构力学分

高分子材料的蠕变和松弛行为

高分子材料的蠕变和松弛行为 高分子材料具有大分子链结构和特有的热运动,决定了它具有与低分子材料不同的物理性态。高分子材料的力学行为最大特点是它具有高弹性和粘弹性。在外力和能量作用下,比金属材料更为强烈地受到温度和时间等因素的影响,其力学性能变化幅度较大。 高聚物受力产生的变形是通过调整内部分子构象实现的。由于分子链构象的改变需要时间,因而受力后除普弹性变形外,高聚物的变形强烈地与时间相关,表现为应变落后于应力。除瞬间的普弹性变形外,高聚物还有慢性的粘性流变,通常称之为粘弹性。高聚物的粘弹性又可分为静态粘弹性和动态粘弹性两类。 静态粘弹性指蠕变和松弛现象。与大多数金属材料不同,高聚物在室温下已有明显的蠕变和松弛现象。本文章主要介绍高聚物的蠕变和应力松弛现象产生的原因、过程,应用以及如何避免其带来的损害。 1 高分子材料蠕变 高分子材料的蠕变即在一定温度和较小的恒定外力(拉力、压力或扭力等)作用下、高分子材料的形变随时间的增加而逐渐增大的现象。 1.1 蠕变过程及原理 图1-1就是描写这一过程的蠕变曲线,t 1是加荷时间,t 2是释荷时间。从分子运动和变化的角度来看,蠕变过程包括下面三种形变:当高分子材料受到外力(σ)作用时,分子链内部键长和键角立刻发生变化,这种形变量是很小的,称为普弹形变(1ε)。当分子链通过链段运动逐渐伸展发生的形变,称为高弹形变(2ε)。如果分子间没有化学交联,线形高分子间会发生相对滑移,称为粘性流动(3ε)。这种流动与材料的本体粘度(3η)有关。在玻璃化温度以下链段运动的松弛时间很长,分子之间的内摩擦阻力很大,主要发生普弹形变。在玻璃化温度以上,主要发生普弹形变和高弹形变。当温度升高到材料的粘流温度以上,这三种形变都比较显著。由于粘性流动是不能回复的,因此对于线形高聚物来说,当外力除去后会留下一部分不能回复的形变,称为永久形变。

ASTM A242高强度低合金结构钢

高强度低合金结构钢 ASTM A242/242M-04 1 范围 1.1 本标准适用于焊接、铆接和螺栓连接结构用的高强度低合金结构钢型材、钢板和棒材。这些钢材主要用作要求减轻重量或延长使用寿命的构件。该类钢在环境下的耐大气腐蚀性能明显优于含铜或不含铜的碳素结构钢。当完全暴露于大气中时,这种钢可以在裸露(未加涂层)状态下用于许多场合(见注1)。本标准仅适用于厚度≤4英寸[100mm]的材料。 注1:低合金钢耐大气腐蚀性评估方法见G101指南。 1.2 当钢必须焊接时,其先决定条件是采用适合于规定钢级和预定用途的焊接工艺。可焊性资料见A6/A 6M标准中附录X3。 1.3 用英寸——磅单位或用SI 单位表示的数值应视为标准值。本标准中,SI单位用括号示出。每种单位制所表示的数值并非精确相等,因此,每种单位制必须单独使用。混用两种单位制的数值,可能导致与标准不相符合。 1.4 对由卷板制成的钢板,应执行A6/A6M标准中包括的附加测试要求和附加测试结果报告的附加要求。 2 引用文件 2.1 ASTM标准: A6/A6M 结构用轧制钢板、型钢、钢板桩和棒材的一般要求 G101 低合金钢耐大气腐蚀性评估指南 3 一般交货要求 3.1 按本标准供货的钢材应符合现行版本的A6/A6M标准中的相应要求。对于特殊订购的结构钢产品除存在疑议外,此时也是通用的。 3.2 卷板产品不适用于本标准,除非其已压平或切成定尺长度。由卷板制成的钢板指已开卷成单张钢板。该加工过程可直接支付交货,或承担包括钢带卷到加工成结构钢产品在内的各种操作工序。这些操作包括开卷、展开、矫直、热成型或冷成型(如适合的话)、切成定尺钢板、试验、检查、状态、热处理(如适用的话)、包装标志、装运和检验证书。 注2:对于钢带卷制成的结构产品,除热处理或消除应力处理外,对于每种合格的钢带卷应报告两种试验结果。有关钢带卷制成的产品的附加要求列于A6/A6M中。 - 1 -

蠕变分析

4.4蠕变分析 4.4.1 蠕变理论 4.4.1.1 定义 蠕变是率相关材料非线性,即在常荷载作用下,材料连续变形的特性。相反如果位移固定,反力或应力将随时间而变小,这种特性有时也称为应力松驰,见图4-18a。 图4-18应力松弛和蠕变 蠕变的三个阶段如图4-18b所示。在初始蠕变阶段,应变率随时间而减小,这个阶段一般发生在一个相当短的时期。在第二期蠕变阶段,有一个常应变率,所以应变以常速率发展,在第三期蠕变阶段,应变率迅速增加直到材料失效。 由于第三期蠕变阶段所经历的时间很短,材料将失效,所以通常情况下,我们感兴趣的是初始蠕变和第二期蠕变。ANSYS程序中的蠕变行为用来模拟初始蠕变和第二期蠕变。蠕变系数可以是应力、应变、温度、时间或其它变量的函数。 在高温应力分析中(如核反应堆等),蠕变分析非常重要。例如,假设在核反应堆中施加了预荷载,以保证与相邻部件保持接触而不松开。在高温下过了一段时间后,预荷载将降低(应力松驰),可能使接触部件松开。对于一些材料如预应力砼,蠕变也可能十分重要。最重要的是要记住,蠕变是永久变形。 4.4.1.2 理论介绍 蠕变方程:我们通过一个方程来模拟蠕变行为,此方程描述了在实验中观测到的主要特征(特别是在一维的拉伸实验中)。这个方程以蠕应变率的方式表示出来,其形式如下: 上式中,A、B、C、D是从实验中得到的材料常数,常数本身也可能是应力,应变,时间或温度的函数,这种形式的方程被称为状态方程。 上式中,当常数D为负值时,蠕应变率随时间下降,材料处于初始蠕变阶段,当D为0时,蠕应变率为常值,材料处于第二期蠕变阶段。

对于2-D或3-D应力状态,使用VON Mises方程计算蠕应变率方程中所使用的标量等效应力和等效应变。 对蠕变方程积分时,我们使用经过修改的总应变,其表达式为: 经过修改的等效总应变为: 其等效应力由下式算出: 其中:G=剪切模量= 等效蠕应变增量由程序给出的某一种公式进行计算,一般为正值,如果在数据表中,则使用的是衰减的蠕应变率而不是常蠕变率,但这个选项一般不被推荐,因为在初始蠕变所产生的应力为主的情况下,它可能会严重的低估蠕变值。如果,程序使用修正的等效蠕应变增量来代替蠕应变增量。 其中:e=2.718281828(自然对数的底数) 下面是计算积分点的蠕应变率与弹性应变比率的公式: 将本次迭代的所有单元的所有积分点的的最大值记为,并且作为“CREEPRATIO”输出。 计算出等效蠕应变增量后,可将它转换成分量的形式,假设Nc是某个特定单元类型的应变分量的个数。如果则有:

奥氏体和马氏体定义

奥氏体: 固态金属及合金都是晶体,其内部原子是按一定规律排列的,排列的方式一般有三种即:体心立方晶格结构、面心立方晶格结构和密排六方晶格结构。金属是由多晶体组成的,它的多晶体结构是在金属结晶过程中形成的。组成铁碳合金的铁具有两种晶格结构:910℃以下为具有体心立方晶格结构的α——铁,910℃以上为具有面心立方晶格结构的Υ——铁。如果碳原子挤到铁的晶格中去,而又不破坏铁所具有的晶格结构,这样的物质称为固溶体。碳溶解到α——铁中形成的固溶体称铁素体,它的溶碳能力极低,最大溶解度不超过0.02%。而碳溶解到Υ——铁中形成的固溶体则称奥氏体, 马氏体: 它的溶碳能力较高,最高可达2%。奥氏体是铁碳合金的高温相。钢在高温时所形成的奥氏体,过冷到727℃以下时变成不稳定的过冷奥氏体。如以极大的冷却速度过冷到230℃以下,这时奥氏体中的碳原子已无扩散的可能,奥氏体将直接转变成一种含碳过饱和的α固溶体,称为马氏体。 铁素体: 由于含碳量过饱和,引起马氏体强度和硬度提高、塑性降低,脆性增大。不锈钢的耐蚀性主要来源于铬。实验证明,只有含铬量超过12%时钢的耐蚀性能才会大大提高,因此,不锈钢中的含铬量一般均不低于12%。由于含铬量的提高,对钢的组织也有很大影响,当铬含量高而碳含量很少时,铬会使铁碳平衡,图上的Υ相区缩小,甚至消失,这种不锈钢为铁素体. 铁素体铁素体是c溶于α-Fe中所形成的间隙固溶体,具有体心立方晶体结构,用字母F或者α表示. 奥氏体奥氏体是c溶于γ-Fe中所形成的间隙固溶体.具有面心立方晶体结构,用字母A或者γ表示. 马氏体马氏体有点长,我懒的打,只是简单的告诉你,它分为上马氏体和下马氏体,是过冷奥氏体等温冷却到230摄氏度以下形成的!!!! 奥氏体简介 英文名称:austenite 晶体结构:面心立方(fcc) 字母代号:A、γ 定义:碳在γ-Fe中形成的间隙固溶体 命名:为纪念英国冶金学家罗伯茨-奥斯汀(1843~1902)对金属科学中的贡献而命名。 微观表述:γ-Fe为面心立方晶体,其最大空隙为0.51×10-8cm,略小于碳原子半径,因而它的溶碳能力比α-Fe大,在1148℃时,γ-Fe最大溶碳量为2.11%,随着温度下降,溶碳能力逐渐减小,在727℃时其溶碳量为0.77%。 性能特点:奥氏体是一种塑性很好,强度较低的固溶体,具有一定韧性。不具有铁磁性。因此,分辨奥氏体不锈钢刀具(常见的18-8型不锈钢)的方法之一就是用磁铁来看刀具是否具有磁性。

蠕变机理

镁质耐火材料高温蠕变特性的研究现状 张国栋1)游杰刚1)刘海啸1)罗旭东1)袁政禾2) 1)辽宁科技大学鞍山114044 2)鞍钢集团耐火材料公司鞍山114001 摘要:本文介绍了镁质材料高温蠕变特性的研究现状,并对镁质耐火材料的高温蠕变特性的理论进行了阐述,同时指出了将镁质蓄热材料用在高炉热风炉上的可行性。 关键词:镁质材料蠕变特性研究现状 1、引言 高炉生产的大型化发展,要求热风炉向着高风温和长寿命的方向发展,为了实现这一目标,除了热风炉本体的大型化与更合理的结构以外,作为热风炉中的关键材料之一——蓄热材料的发展将直接影响到热风炉的使用温度和使用寿命。而高炉热风炉对耐火材料的要求是:蓄热体各层材料的选择必须要在相应的使用温度下有很好的抗压,蠕变性能,抗碱金属蒸气与烟尘侵蚀性能,抗温度急变而不破坏的性能;蓄热体砖要有足够高的换热表面积以及有利于热交换的几何形状;蓄热体材质要尽可能高的导热系数以及材料体积比热容。 目前,我国采用以Al2O3-SiO2系材料的系列低蠕变砖,在热风炉的顶部和隔墙及蓄热室的上部采用优质硅砖,中部应用不同牌号的低蠕变高铝砖,下部采用低蠕变粘土砖。镁质材料与高铝质和硅质材料相比具有良好的蓄热性能和热导率以及很强的抗渣侵蚀性能;这些特点有利于热风炉的高炉的大风量高风温的操作和降低高炉焦比,提高高炉利用系数,增加生铁产量。但是,镁质材料的热震性能差、抗压蠕变性能不好,因此限制了这类材料在热风炉上的使用。所以,提高和改善镁质材料的这两方面性能是将镁质材料应用到热风炉上的关键。因此研究镁质材料的高温蠕变性能对扩大我国镁资源综合利用和炼铁产业有着重大的意义。 2、蠕变理论 高温蠕变理论是在对多种金属所作的完整的蠕变试验的基础上建立起来的。材料的高温蠕变是指材料在恒定的高温和一定的荷重作用下,产生的变形和时间的关系[1]。由于施加的载荷不同,耐火材料的高温蠕变可以分为高温压缩蠕变、高温拉伸蠕变、高温抗折蠕变、高温扭转蠕变等。其中压缩蠕变和抗折蠕变

【材料报告】Incoloy825奥氏体镍铁铬合金钢

【材料报告】Incoloy825奥氏体镍铁铬合金钢 Incoloy825 金相组织结构: 该合金具有稳定的面心立方结构。化学成分和恰当的热处理保证了耐腐蚀性不受敏化性的削弱。 Incoloy825工艺性能与要求: 1、合金加热环境含有硫、磷、铅或其他低熔点金属,Nicrofer 6023/6023H 合金将变脆。杂质来源于做标记的油漆、粉笔、润滑油、水、燃料等。燃料的硫含量要低,如液化气和天然气的杂质含量要低于0.1%,城市煤气的硫含量要低于0.25g/m3,石油气的硫含量低于0.5%是理想的。 2、合金合适的热加工温度为1150-900℃,冷却方式可以是水淬或快速空冷。 3、采用钨电极惰性气体保护焊、等离子弧焊、手工亚弧焊、金属极惰性气体保护焊、熔化极惰性气体保护焊,其中脉冲电弧焊是首选方案 Incoloy825相近牌号: NS142(中国)、NC21FeDu (法国)、W.Nr.2.4858 NiCr21Mo (德国) NA16 (英国) Incoloy825力学性能: (在20℃检测机械性能的最小值) 热处理方式抗拉强度σb/MPa 屈服强度σp0.2/MPa 延伸率σ5 /% 布氏硬度HBS 固溶处理550 250 35 ≥200 Incoloy825生产执行标准: 标准棒材锻件板(带)材丝材管材 美国材料与试验协会ASTM B425 ASTM B564 ASTM B424 ASTM B423 ASTM B163 ASTM B704 ASTM B705 美国航k航天材料技术规范 美国机械工程师协会ASME SB425 ASME SB564 ASME SB424 ASTM SB423 ASTM SB163 Incoloy825 化学成份: 合金 牌号% 镍 Ni 铬 Cr 铁 Fe 钼 Mo 铌 Nb 钴 Co 碳 C 锰 Mn 硅 Si 硫 S 铜 Cu 铝 Al 钛 Ti

相关文档